JP7060848B2 - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
JP7060848B2
JP7060848B2 JP2019083432A JP2019083432A JP7060848B2 JP 7060848 B2 JP7060848 B2 JP 7060848B2 JP 2019083432 A JP2019083432 A JP 2019083432A JP 2019083432 A JP2019083432 A JP 2019083432A JP 7060848 B2 JP7060848 B2 JP 7060848B2
Authority
JP
Japan
Prior art keywords
region
illumination
illuminance
overlapping
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019083432A
Other languages
Japanese (ja)
Other versions
JP2019117417A (en
Inventor
浩志 藤原
一樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2019083432A priority Critical patent/JP7060848B2/en
Publication of JP2019117417A publication Critical patent/JP2019117417A/en
Application granted granted Critical
Publication of JP7060848B2 publication Critical patent/JP7060848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、投影光学系を介して基板を露光する露光技術、及びこの露光技術を用いるデバイス製造技術に関する。 The present invention relates to an exposure technique for exposing a substrate via a projection optical system and a device manufacturing technique using this exposure technique.

液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ、及びプラズマディスプレイ等のディスプレイ装置の製造工程中で、ガラスプレート等のパネル状の感光性の基板にマスクパターンの像を露光するために、マスクと基板とを投影光学系に対して同期移動して基板を走査露光する露光装置(以下、パネル露光装置という。)が使用されている。従来のパネル露光装置は、投影光学系の大型化を抑制して大面積のパターンを効率的に露光するために、複数の部分投影光学系から構成されるマルチレンズ型の投影光学系を備え、その複数の部分投影光学系の露光領域で露光されるパターンを基板上で高精度に繋ぐために、走査方向に対して傾斜した形状の2つの露光領域の端部で二重露光が行われる継ぎ部が設けられている(例えば、特許文献1参照)。 In order to expose an image of a mask pattern to a panel-shaped photosensitive substrate such as a glass plate during the manufacturing process of display devices such as liquid crystal displays, organic EL (Electro-Luminescence) displays, and plasma displays, masks and substrates An exposure device (hereinafter referred to as a panel exposure device) is used in which the above is moved synchronously with respect to the projection optical system to scan and expose the substrate. The conventional panel exposure device is equipped with a multi-lens type projection optical system composed of a plurality of partial projection optical systems in order to suppress the enlargement of the projection optical system and efficiently expose a pattern of a large area. In order to connect the patterns exposed in the exposed areas of the plurality of partial projection optics on the substrate with high accuracy, double exposure is performed at the ends of the two exposed areas having a shape inclined with respect to the scanning direction. A section is provided (see, for example, Patent Document 1).

特開2001-330964号公報Japanese Unexamined Patent Publication No. 2001-330964

パネル露光装置において、基板の表面の継ぎ部には、わずかな露光量むらが生じる恐れがあるが、このような露光量むらは、現在のディスプレイ装置で必要とされるレイヤの数では問題にならない程度のものである。しかしながら、今後、基板上で必要とされるレイヤの数が増加したときに、その複数のレイヤに対して同じ露光装置で露光を行うと、その継ぎ部のわずかな露光量むらの影響(例えば継ぎ部における透明な回路パターンの線幅が他の領域のパターンの線幅と微妙に異なること等)が次第に積算されて、最終的に製造されるディスプレイ装置の画面に微妙な輝度むら等が現れる恐れがある。 In panel exposure equipment, slight exposure unevenness may occur at the joints on the surface of the substrate, but such exposure amount unevenness does not matter with the number of layers required in the current display equipment. It is about. However, when the number of layers required on the substrate increases in the future, if the plurality of layers are exposed by the same exposure device, the effect of slight exposure amount unevenness at the joint portion (for example, the joint). (The line width of the transparent circuit pattern in the section is slightly different from the line width of the pattern in other areas, etc.) is gradually integrated, and there is a risk that slight unevenness in brightness will appear on the screen of the display device that is finally manufactured. There is.

本発明の態様は、このような事情に鑑み、複数の露光領域を用いて基板を走査露光する場合に、継ぎ部の露光量のむらを低減することを目的とする。 In view of such circumstances, it is an object of the present invention to reduce unevenness in the exposure amount of the joint portion when the substrate is subjected to scanning exposure using a plurality of exposure regions.

本発明の第1の態様によれば、パターンを有するマスクを、投影光学系を介して基板上に露光する露光装置において、そのマスクを照明光で照明する照明光学系と、そのマスクを支持するマスクステージと、そのマスクステージをその照明光に対して第1方向へ相対移動させるマスクステージ駆動部と、を備え、そのマスクステージ駆動部は、その第1方向に交差する第2方向に関して、第1領域が照明されたそのマスクに対してその第1領域と一部重複する第2領域に照明光が照射されるように、そのマスクを支持するそのマスクステージをその第1方向へ相対移動させ、その照明光学系は、その第1領域とその第2領域との重複照明領域内の一部領域のその照明光の照度を、その重複照明領域内のその一部領域以外の他部領域の照度に対して調整、その第1方向に透過率の分布を有し、その照明光の一部を透過させるフィルタ部を備える調整部材を含む、露光装置が提供される。
第2の態様によれば、照明光学系からの露光光でマスクのパターン及び投影光学系を介して基板を露光しつつ、そのマスク及びその基板をその投影光学系に対して同期して走査する露光装置において、その投影光学系は、その基板上の互いに異なる複数の露光領域を露光するとともに、その複数の露光領域は、その基板を走査方向に走査したときに、隣接する2つのその露光領域のその走査方向に交差する非走査方向の端部の二重露光によって、その基板上に継ぎ部が形成されるように配置され、その継ぎ部の露光量を制御するために、そのマスクのパターン面とその照明光学系の瞳面との間に設置されて、少なくとも一つのその露光領域の端部の光強度分布を調整する調整部材を備える露光装置が提供される。
According to the first aspect of the present invention, in an exposure apparatus that exposes a mask having a pattern onto a substrate via a projection optical system, an illumination optical system that illuminates the mask with illumination light and the mask are supported. It comprises a mask stage and a mask stage drive unit that moves the mask stage relative to the illumination light in the first direction, and the mask stage drive unit has a second direction that intersects the first direction. The mask stage supporting the mask is relatively moved in the first direction so that the illumination light is applied to the second region that partially overlaps the first region with respect to the mask illuminated by one region. , The illumination optical system sets the illuminance of the illumination light in a part of the overlapping illumination area of the first region and the second region to the other region other than the partial region in the overlapping illumination region. An exposure apparatus is provided that includes an adjusting member that is adjusted with respect to illuminance, has a transmission rate distribution in its first direction, and includes a filter unit that transmits a part of the illumination light .
According to the second aspect, while the substrate is exposed through the mask pattern and the projection optical system with the exposure light from the illumination optical system, the mask and the substrate are scanned synchronously with respect to the projection optical system. In the exposure apparatus, the projection optical system exposes a plurality of different exposure regions on the substrate, and the plurality of exposure regions are two adjacent exposure regions when the substrate is scanned in the scanning direction. A pattern of the mask is arranged so that a seam is formed on the substrate by double exposure of the non-scanning end intersecting the scanning direction of the light, and the exposure of the seam is controlled. An exposure device is provided that is installed between the surface and the pupil surface of the illumination optical system and includes at least one adjusting member for adjusting the light intensity distribution at the end of the exposure region.

第3の態様によれば、照明光学系からの露光光でマスクのパターン及び投影光学系を介して基板を露光しつつ、そのマスク及びその基板をその投影光学系に対して同期して走査する露光方法において、その基板上の互いに異なる複数の露光領域を露光しつつ、その基板を走査方向に走査して、隣接する2つのその露光領域のその走査方向に交差する非走査方向の端部の二重露光によって、その基板上に継ぎ部を形成することと、その継ぎ部の露光量を制御するために、そのマスクのパターン面とその照明光学系の瞳面との間に設置された調整部材を用いて、少なくとも一つのその露光領域の端部の光強度分布を調整する露光方法が提供される。 According to the third aspect, while the substrate is exposed through the mask pattern and the projection optical system with the exposure light from the illumination optical system, the mask and the substrate are scanned synchronously with respect to the projection optical system. In the exposure method, while exposing a plurality of different exposure regions on the substrate, the substrate is scanned in the scanning direction, and the end portions of the two adjacent exposure regions in the non-scanning direction intersect in the scanning direction. Coordination installed between the pattern surface of the mask and the pupil surface of the illumination optical system to form a joint on the substrate by double exposure and to control the exposure of the joint. An exposure method is provided in which a member is used to adjust the light intensity distribution at the end of at least one exposure region.

第4の態様によれば、本発明の態様の露光装置又は露光方法を用いて基板上に感光層のパターンを形成することと、そのパターンが形成されたその基板を処理することと、を含むデバイス製造方法が提供される。 According to the fourth aspect, the pattern of the photosensitive layer is formed on the substrate by using the exposure apparatus or the exposure method of the aspect of the present invention, and the substrate on which the pattern is formed is processed. A device manufacturing method is provided.

本発明の態様によれば、複数の露光領域を用いて基板の走査露光を行う場合に、継ぎ部の露光量むらを低減できる。 According to the aspect of the present invention, when scanning exposure of a substrate is performed using a plurality of exposure regions, uneven exposure amount of the joint portion can be reduced.

実施形態の一例に係る露光装置の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the exposure apparatus which concerns on an example of Embodiment. 図1の露光装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the exposure apparatus of FIG. 図1中の2つの部分照明系及び2つの部分投影光学系を示す一部を断面で表した側面図である。It is a side view which showed the part which shows the two partial illumination system and two partial projection optical systems in FIG. 1 in the cross section. (A)、(B)、及び(C)はそれぞれ第1、第2、及び第3の透過率分布の調整部を示す平面図である。(A), (B), and (C) are plan views showing adjustment portions of the first, second, and third transmittance distributions, respectively. (A)は複数の照明領域の配置の一例を示す平面図、(B)は複数の露光領域の配置の一例を示す平面図である。(A) is a plan view showing an example of arrangement of a plurality of illumination areas, and (B) is a plan view showing an example of arrangement of a plurality of exposure areas. (A)及び(B)はそれぞれ部分照明系の要部及び照度分布の一例及び他の例を示す図である。(A) and (B) are diagrams showing an example and another example of a main part of a partial lighting system and an illuminance distribution, respectively. 露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of an exposure method. (A)は補正前の積算露光量分布の一例を示す図、(B)は透過率分布の調整部の配置の一例を示す図、(C)は積算露光量分布の補正量の一例を示す図、(D)は補正後の積算露光量分布を示す図、(E)は積算露光量分布の補正前の偏差及び補正量を示す図である。(A) is a diagram showing an example of the integrated exposure amount distribution before correction, (B) is a diagram showing an example of the arrangement of the transmittance distribution adjusting portion, and (C) is an example of the corrected amount of the integrated exposure amount distribution. FIG. 6D is a diagram showing a corrected integrated exposure amount distribution, and FIG. EE is a diagram showing a deviation and a correction amount of the integrated exposure amount distribution before correction. (A)は補正前の積算露光量分布の他の例を示す図、(B)は透過率分布の調整部の配置の他の例を示す図、(C)は積算露光量分布の補正量の他の例を示す図、(D)は補正後の積算露光量分布を示す図、(E)は積算露光量分布の補正前の偏差及び補正量を示す図である。(A) is a diagram showing another example of the integrated exposure amount distribution before correction, (B) is a diagram showing another example of the arrangement of the transmittance distribution adjusting portion, and (C) is a diagram showing the corrected amount of the integrated exposure amount distribution. The figure which shows the other example, (D) is the figure which shows the integrated exposure amount distribution after correction, (E) is the figure which shows the deviation and the correction amount of the integrated exposure amount distribution before correction. 変形例の透過率分布の調整部を示す平面図である。It is a top view which shows the adjustment part of the transmittance distribution of a modification. (A)は変形例の補正前の積算露光量分布を示す図、(B)は透過率分布の調整部の配置を示す図、(C)は積算露光量分布の補正量を示す図、(D)は補正後の積算露光量分布を示す図、(E)は積算露光量分布の補正前の偏差及び補正量を示す図である。(A) is a diagram showing the integrated exposure amount distribution before correction of the modified example, (B) is a diagram showing the arrangement of the adjusting portion of the transmittance distribution, and (C) is a diagram showing the corrected amount of the integrated exposure amount distribution. D) is a diagram showing the integrated exposure amount distribution after correction, and (E) is a diagram showing the deviation and the correction amount of the integrated exposure amount distribution before correction. (A)、(B)、(C)、(D)、(E)、及び(F)はそれぞれ制御部材の変形例を示す図である。(A), (B), (C), (D), (E), and (F) are diagrams showing modified examples of control members, respectively. 電子デバイスの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of an electronic device.

本発明の実施形態の一例につき図1~図9を参照して説明する。図1は、本実施形態に係る露光装置EXの概略構成を示す。露光装置EXは、フォトレジスト(感光材料)が塗布された矩形の平板ガラスよりなるプレートP(感光性基板)にマスクMのパターンの像を露光する走査露光方式のパネル露光装置である。露光装置EXで露光されたプレートPは、一例として、液晶ディスプレイ又は有機ELディスプレイ等の表示装置の表示部であるパネルを製造するために使用される。露光装置EXは、それぞれマスクMのパターンの像をプレートPの表面に投影する複数(本実施形態では一例として7つ)の部分投影光学系PLA,PLB,PLC,PLD,PLE,PLF,PLG(図5(A)参照)を有するマルチレンズ型の投影システムPS(投影光学系)を備えている。以下、投影システムPSに対して合焦されているときのプレートPの表面に垂直にZ軸を取り、その表面に平行な平面(本実施形態ではほぼ水平面)内で走査露光時のマスクM及びプレートPの走査方向に沿ってX軸を、X軸に直交する方向(非走査方向)に沿ってY軸を取って説明する。 An example of the embodiment of the present invention will be described with reference to FIGS. 1 to 9. FIG. 1 shows a schematic configuration of an exposure apparatus EX according to the present embodiment. The exposure apparatus EX is a scan exposure type panel exposure apparatus that exposes an image of a mask M pattern on a plate P (photosensitive substrate) made of rectangular flat glass coated with a photoresist (photosensitive material). The plate P exposed by the exposure apparatus EX is used, for example, for manufacturing a panel which is a display unit of a display apparatus such as a liquid crystal display or an organic EL display. The exposure apparatus EX is a plurality of partial projection optical systems PLA, PLB, PLC, PLD, PLE, PLF, PLG (seven as an example in this embodiment) that project an image of the pattern of the mask M onto the surface of the plate P. It is equipped with a multi-lens type projection system PS (projection optical system) having (see FIG. 5A). Hereinafter, the Z-axis is taken perpendicular to the surface of the plate P when it is in focus with respect to the projection system PS, and the mask M and the mask M at the time of scanning exposure are taken in a plane parallel to the surface (almost a horizontal plane in this embodiment). The X-axis along the scanning direction of the plate P and the Y-axis along the direction orthogonal to the X-axis (non-scanning direction) will be described.

図1において、露光装置EXは、露光用の照明光(露光光)ELを発生する例えば超高圧水銀ランプからなる光源10と、照明光ELでマスクMのパターン面の部分投影光学系PLA~PLGと同じ個数の照明領域IRA,IRB,IRC,IRD,IRE,IRF,IRG(図5(A)参照)を均一な照度分布で照明する照明系ISと、マスクMをマスクホルダ(不図示)を介してXY平面に平行に保持して移動するマスクステージ21と、プレートPを保持して移動するプレートステージ22とを備えている。一例として、第1列の照明領域IRA~IRCはY方向に一定間隔で配置され、第2列の照明領域IRD~IRGは、第1列の照明領域IRA~IRCに対して-X方向に所定間隔離れて、かつX方向に見たときに、第1列の照明領域IRA~IRCを間に挟むように配置されている(図5(A)参照)。 In FIG. 1, the exposure apparatus EX includes a light source 10 including, for example, an ultra-high pressure mercury lamp that generates an illumination light (exposure light) EL for exposure, and a partial projection optical system PLA to PLG of a pattern surface of a mask M using the illumination light EL. Illumination system IS that illuminates the same number of illumination areas IRA, IRB, IRC, IRD, IRE, IRF, and IRG (see FIG. 5A) with a uniform illuminance distribution, and a mask holder (not shown) for the mask M. It includes a mask stage 21 that holds and moves in parallel to the XY plane via the plate P, and a plate stage 22 that holds and moves the plate P. As an example, the illumination regions IRA to IRC in the first row are arranged at regular intervals in the Y direction, and the illumination regions IRD to IRG in the second row are predetermined in the −X direction with respect to the illumination regions IRA to IRC in the first row. When viewed in the X direction at a distance, they are arranged so as to sandwich the illumination regions IRA to IRC in the first row (see FIG. 5A).

さらに、露光装置EXは、マスクステージ21の端部に設けられたX軸の移動鏡23MX及びY軸の移動鏡23MYに計測用のレーザ光を照射して、マスクステージ21の位置情報を計測する複数軸のレーザ干渉計23Aと、プレートステージ22の端部に設けられたX軸の移動鏡23PX及びY軸の移動鏡23PYに計測用のレーザ光を照射して、プレートステージ22の位置情報を計測する複数軸のレーザ干渉計23Bとを備えている。また、露光装置EXは、レーザ干渉計23A,23Bの計測結果に基づいてマスクステージ21及びプレートステージ22を駆動するそれぞれリニアモータ等を含むマスクステージ駆動系25及びプレートステージ駆動系26(図2参照)と、装置全体の動作を統括的に制御するコンピュータを含む主制御装置20(図2参照)とを備えている。 Further, the exposure apparatus EX measures the position information of the mask stage 21 by irradiating the X-axis moving mirror 23MX and the Y-axis moving mirror 23MY provided at the end of the mask stage 21 with laser light for measurement. The position information of the plate stage 22 is obtained by irradiating the multi-axis laser interferometer 23A and the X-axis moving mirror 23PX and the Y-axis moving mirror 23PY provided at the ends of the plate stage 22 with laser light for measurement. It is equipped with a multi-axis laser interferometer 23B for measurement. Further, the exposure apparatus EX includes a mask stage drive system 25 and a plate stage drive system 26 (see FIG. 2) including linear motors and the like for driving the mask stage 21 and the plate stage 22 based on the measurement results of the laser interferometers 23A and 23B, respectively. ) And a main control device 20 (see FIG. 2) including a computer that comprehensively controls the operation of the entire device.

マスクステージ駆動系25は、走査露光時にマスクステージ21の走査方向(X方向)の位置及び速度を制御するとともに、必要に応じてマスクステージ21のZ軸に平行な軸の回り(以下、θz方向という)の回転角を所定範囲内で調整可能である。また、プレートステージ駆動系26は、走査露光時にマスクステージ21に同期してプレートステージ22のX方向の位置及び速度を制御するとともに、走査露光の間(ステップ移動時)に、プレートステージ22のX方向及び/又はY方向の位置を制御する。なお、一例として、マスクMは、X方向の幅が1~2m程度、Y方向の幅が1~1.5m程度の矩形の平板状であり、プレートPは、X方向の幅が2~2.5m程度、Y方向の幅が2~3m程度の矩形の平板状であり、マスクステージ21及びプレートステージ22はそれぞれマスクM及びプレートPを保持できる大きさに設定されている。また、プレートPの複数のパターン形成領域(不図示)にそれぞれマスクMのパターンの像が露光される。 The mask stage drive system 25 controls the position and speed of the mask stage 21 in the scanning direction (X direction) during scanning exposure, and around the axis parallel to the Z axis of the mask stage 21 (hereinafter, θz direction) as necessary. The rotation angle of) can be adjusted within a predetermined range. Further, the plate stage drive system 26 controls the position and speed of the plate stage 22 in the X direction in synchronization with the mask stage 21 during scanning exposure, and X of the plate stage 22 during scanning exposure (during step movement). Controls the position in the direction and / or the Y direction. As an example, the mask M is a rectangular flat plate having a width of about 1 to 2 m in the X direction and a width of about 1 to 1.5 m in the Y direction, and the plate P has a width of 2 to 2 in the X direction. It is a rectangular flat plate having a width of about 5.5 m and a width in the Y direction of about 2 to 3 m, and the mask stage 21 and the plate stage 22 are set to a size capable of holding the mask M and the plate P, respectively. Further, the image of the pattern of the mask M is exposed on each of the plurality of pattern forming regions (not shown) of the plate P.

次に、照明系IS及び投影システムPSにつき説明する。まず、光源10から射出された照明光ELは、楕円鏡、ミラー、シャッタ(不図示)、及び波長選択フィルター(不図示)を介して集光光学系11に入射する。集光光学系11を通過した照明光ELは、分岐光学系13の入射端12に入射し、部分投影光学系PLA~PLGと同じ個数の分岐光学系13の射出端14A~14Gから射出された照明光ELは、それぞれ対応する部分照明系ILA~ILGを介して台形状の照明領域IRA~IRGを照明する。なお、本実施形態では、部分投影光学系PLA~PLGの物体面側の視野は、部分投影光学系PLA~PLG中の視野絞り35(図3参照)によって規定される。このため、照明領域IRA~IRGとは、視野絞り35の開口35aと光学的に共役な領域を意味しており、部分照明系ILA~ILGは、それぞれ照明領域IRA~IRGを含み照明領域IRA~IRGよりもわずかに広い範囲を照明する。互いに実質的に同じ構成の部分照明系ILA~ILGは、それぞれコリメートレンズ、フライアイインテグレータ(オプティカルインテグレータ)、及びコンデンサーレンズ系等を有する。集光光学系11から部分照明系ILA~ILGまでの光学部材を含んで照明系ISが構成されている。 Next, the lighting system IS and the projection system PS will be described. First, the illumination light EL emitted from the light source 10 is incident on the condensing optical system 11 via an elliptical mirror, a mirror, a shutter (not shown), and a wavelength selection filter (not shown). The illumination light EL that has passed through the condensing optical system 11 is incident on the incident end 12 of the branched optical system 13 and is emitted from the ejection ends 14A to 14G of the same number of branched optical systems 13 as the partial projection optical systems PLA to PLG. The illumination light EL illuminates the trapezoidal illumination regions IRA to IRG via the corresponding partial illumination systems ILA to ILG, respectively. In the present embodiment, the field of view of the partial projection optical systems PLA to PLG on the object surface side is defined by the field diaphragm 35 (see FIG. 3) in the partial projection optical systems PLA to PLG. Therefore, the illumination regions IRA to IRG mean regions that are optically coupled to the opening 35a of the field diaphragm 35, and the partial illumination systems ILA to ILG include the illumination regions IRA to IRG, respectively, and the illumination regions IRA to IRA. Illuminates a slightly wider area than the IRG. The partial illumination systems ILA to ILG having substantially the same configuration as each other have a collimating lens, a fly-eye integrator (optical integrator), a condenser lens system, and the like, respectively. The illumination system IS includes optical members from the condensing optical system 11 to the partial illumination systems ILA to ILG.

図3は、2つの部分照明系ILA,ILDのフライアイインテグレータ15からマスクMのパターン面Ma(被照射面)までの構成、及び部分照明系ILA,ILDに対応する部分投影光学系PLA,PLDの構成を示す。図3において、部分照明系ILAのフライアイインテグレータ15から射出された照明光ELは、第1コンデンサーレンズ16a、透過率分布を制御又は調整するための円板状の制御部材17A、及び第2コンデンサーレンズ16bを介してパターン面Maの照明領域IRA(実際にはこれよりも広い領域)を照明する。コンデンサーレンズ16a及び16bからコンデンサーレンズ系16が構成されている。 FIG. 3 shows the configuration from the fly-eye integrator 15 of the two partial illumination systems ILA and ILD to the pattern surface Ma (irradiated surface) of the mask M, and the partial projection optical systems PLA and PLD corresponding to the partial illumination systems ILA and ILD. The configuration of is shown. In FIG. 3, the illumination light EL emitted from the flyeye integrator 15 of the partial illumination system ILA is a first condenser lens 16a, a disk-shaped control member 17A for controlling or adjusting the transmittance distribution, and a second condenser. The illumination region IRA (actually, a region wider than this) of the pattern surface Ma is illuminated via the lens 16b. The condenser lens system 16 is composed of the condenser lenses 16a and 16b.

また、フライアイインテグレータ15の射出面(又はフライアイインテグレータ15を構成する各レンズエレメントの後側焦点面)が、この部分照明系ILAの瞳面PPA(パターン面Maに対する光学的なフーリエ変換面)である。
また、部分照明系ILAの一部に開口絞りを設けて、この開口絞りの設置面を瞳面PPAとすることもできる。また、瞳面PPAは一箇所とは限らず、互いに共役関係にして複数個所設けることもできる。
Further, the ejection surface of the fly-eye integrator 15 (or the rear focal surface of each lens element constituting the fly-eye integrator 15) is the pupil surface PPA (optical Fourier transform surface with respect to the pattern surface Ma) of this partial illumination system ILA. Is.
Further, it is also possible to provide an aperture diaphragm in a part of the partial illumination system ILA and use the installation surface of the aperture diaphragm as the pupil surface PPA. Further, the pupil surface PPA is not limited to one place, and may be provided at a plurality of places in a conjugate relationship with each other.

制御部材17Aは、第1コンデンサーレンズ16aと第2コンデンサーレンズ16bとの間(本実施形態では瞳面PPAとパターン面Maとの間のほぼ中央)にある設置面SPAに、保持機構18によって保持されている。なお、制御部材17Aは、瞳面PPA(又は瞳面PPAと光学的に共役な面)とパターン面Maとの間の任意の位置に設置可能である。
また、部分照明系ILA内に瞳面PPAを複数個所設けた場合には、それぞれの瞳面PPAとパターン面Maとの間の任意の位置に少なくとも1つの制御部材17Aを設置することもできる。
The control member 17A is held by the holding mechanism 18 on the installation surface SPA located between the first condenser lens 16a and the second condenser lens 16b (in the present embodiment, substantially the center between the pupil surface PPA and the pattern surface Ma). Has been done. The control member 17A can be installed at an arbitrary position between the pupil surface PPA (or a surface optically conjugate with the pupil surface PPA) and the pattern surface Ma.
Further, when a plurality of pupil surface PPA are provided in the partial illumination system ILA, at least one control member 17A can be installed at an arbitrary position between each pupil surface PPA and the pattern surface Ma.

保持機構18は、制御部材17Aの周縁部(図4(A)の枠部17Ac)が載置されるリング状の回転部44と、回転部44に対して制御部材17Aの周縁部を押さえ付けて固定するリング状の固定部43と、回転部44が部分照明系ILAの光軸AXAに平行な軸の回りに回転可能に載置されるとともに照明光ELを通過させる開口が形成されたスライド部45と、スライド部45が載置されるとともに照明光ELを通過させる開口が形成された支持部46とを有する。固定部43は回転部44に対してボルト47によって固定され、スライド部45に設けられたX方向に平行なスリット45aを通して、スライド部45が支持部46にボルト47によって固定されている。回転部44の側面には、この回転部44を回転するためのピン状のレバー(不図示)が設けられている。保持機構18によって制御部材17Aの回転角を任意の角度に調整できるとともに、制御部材17AのX方向の位置を調整できる。なお、保持機構18の構成は任意である。例えば、保持機構18から制御部材17AをX方向に移動する機構を省略することもできる。 The holding mechanism 18 presses the peripheral portion of the control member 17A against the ring-shaped rotating portion 44 on which the peripheral portion of the control member 17A (frame portion 17Ac in FIG. 4A) is placed and the rotating portion 44. A slide in which a ring-shaped fixing portion 43 and a rotating portion 44 are rotatably mounted around an axis parallel to the optical axis AXA of the partial illumination system ILA and an opening through which the illumination light EL is passed is formed. It has a portion 45 and a support portion 46 on which the slide portion 45 is placed and an opening through which the illumination light EL is passed is formed. The fixing portion 43 is fixed to the rotating portion 44 by a bolt 47, and the slide portion 45 is fixed to the support portion 46 by the bolt 47 through a slit 45a provided in the slide portion 45 parallel to the X direction. A pin-shaped lever (not shown) for rotating the rotating portion 44 is provided on the side surface of the rotating portion 44. The holding mechanism 18 can adjust the rotation angle of the control member 17A to an arbitrary angle, and can also adjust the position of the control member 17A in the X direction. The configuration of the holding mechanism 18 is arbitrary. For example, the mechanism for moving the control member 17A from the holding mechanism 18 in the X direction may be omitted.

図4(A)に示すように、制御部材17Aは、リング形の枠部17Acの中に、ランダムな形状の多数の網目をほぼ半円状の領域に配置して形成されたメッシュ型のフィルタ部17Aaを保持したものであり、それ以外の領域は開口部17Ab(透過率100%)である。メッシュ型のフィルタ部17Aaは、ランダムウォーク型のフィルタ部と呼ぶこともできる。制御部材17Aの枠部17Acが保持機構18によって保持され、通常は、枠部17Acの中心が光軸AXAにほぼ一致するように制御部材17Aが位置決めされ、枠部17Acの内側で、かつフィルタ部17Aaの一部及び開口部17Abの一部を含む領域を照明光ELが通過する。フィルタ部17Aaの直線状のエッジ部はY軸に平行であるとともに、枠部17Acの中心を通りY軸に平行な直線に対して+X方向に所定のオフセットδx1だけずれている。一例として、フィルタ部17Aaの平均的な透過率は90%であり、オフセットδx1は部材17Acの内側の直径の5%程度である。ただし、保持機構18が制御部材17AのX方向の位置を調整する機構を備えているときには、保持機構18によって制御部材17AのX方向の位置を調整することも可能である。 As shown in FIG. 4A, the control member 17A is a mesh-type filter formed by arranging a large number of randomly shaped meshes in a substantially semicircular region in a ring-shaped frame portion 17Ac. The portion 17Aa is retained, and the other region is the opening 17Ab (transmittance 100%). The mesh type filter unit 17Aa can also be called a random walk type filter unit. The frame portion 17Ac of the control member 17A is held by the holding mechanism 18, and normally, the control member 17A is positioned so that the center of the frame portion 17Ac substantially coincides with the optical axis AXA, and is inside the frame portion 17Ac and the filter portion. The illumination light EL passes through a region including a part of 17Aa and a part of the opening 17Ab. The linear edge portion of the filter portion 17Aa is parallel to the Y axis and is offset by a predetermined offset δx1 in the + X direction with respect to the straight line passing through the center of the frame portion 17Ac and parallel to the Y axis. As an example, the average transmittance of the filter unit 17Aa is 90%, and the offset δx1 is about 5% of the inner diameter of the member 17Ac. However, when the holding mechanism 18 includes a mechanism for adjusting the position of the control member 17A in the X direction, the holding mechanism 18 can also adjust the position of the control member 17A in the X direction.

この制御部材17Aは、例えば、ほぼ円状の領域に配置されたランダムな形状の多数の網目から、ほぼ半円状に網目を除去することにより比較的容易に作成できる。このため、一例として、調整部材17Aを保持機構18を介して部分照明系ILAに取り付けて、2つの露光領域の継ぎ部及びそれ以外の領域で露光された後の2つの積算露光量(又は平均的な照度)ができるだけ等しくなるように調整しても、その2つの積算露光量の差が許容範囲内に収まらなかったような場合を想定する。このような場合でも、調整部材17Aのメッシュ型のフィルタ部17Aaの一部を、ハサミ等の切断工具を用いて削除することによって、簡単に、短時間に、露光装置が設置されているその場で、継ぎ部及びそれ以外の領域で露光された後の積算露光量(又は平均的な照度)ができるだけ等しくなるように再調整を行うことができる。 The control member 17A can be relatively easily created, for example, by removing the meshes in a substantially semicircular shape from a large number of meshes having a random shape arranged in a substantially circular region. Therefore, as an example, the adjusting member 17A is attached to the partial illumination system ILA via the holding mechanism 18, and the two integrated exposure amounts (or averages) after being exposed in the joint portion of the two exposure regions and the other regions. Even if the illuminance is adjusted to be as equal as possible, it is assumed that the difference between the two integrated exposure amounts is not within the permissible range. Even in such a case, by removing a part of the mesh type filter portion 17Aa of the adjusting member 17A using a cutting tool such as scissors, the exposure device can be easily and quickly installed on the spot. Then, readjustment can be performed so that the integrated exposure amount (or average illuminance) after exposure in the joint portion and other regions is as equal as possible.

なお、制御部材17Aの他に、オフセットδx1が0、又は図4(A)の場合の数倍等に設定された複数の制御部材(不図示)が用意されており、制御部材17Aはそれらの制御部材と交換可能である。また、図3では、制御部材17Aのフィルタ部17Aaが+X方向側に配置されているが、このときの制御部材17Aの回転角を0度とする。保持機構18によって制御部材17Aを180度回転してフィルタ部17Aaを-X方向側(又は光軸AXAに関して任意の方向)に配置することも可能である。さらに、制御部材17Aの代わりに、図4(B)の制御部材17B、図4(C)の制御部材17C、又は他の任意の構成の制御部材を使用することも可能である。制御部材17Bは、枠部17Bc中に、透過率が95%程度の半円状のメッシュ型のフィルタ部17Baを保持したものであり、それ以外の領域は開口部17Bbである。制御部材17Cは、枠部17Cc中に、透過率が97.5%程度でオフセットδx2(ほぼδx1と同じ程度)の半円状のメッシュ型のフィルタ部17Caを保持したものであり、それ以外の領域は開口部17Cbである。なお、メッシュ型のフィルタ部17Aa,17Ba,17Ca等の代わりに、透過率が同様(又は一様)のNDフィルタ(neutral density filter)などを使用することもできる。 In addition to the control member 17A, a plurality of control members (not shown) in which the offset δx1 is set to 0 or several times the offset δx1 in FIG. 4A are prepared, and the control member 17A is one of them. It can be replaced with a control member. Further, in FIG. 3, the filter portion 17Aa of the control member 17A is arranged on the + X direction side, and the rotation angle of the control member 17A at this time is set to 0 degree. It is also possible to rotate the control member 17A by 180 degrees by the holding mechanism 18 to arrange the filter unit 17Aa on the −X direction side (or in any direction with respect to the optical axis AXA). Further, instead of the control member 17A, the control member 17B of FIG. 4B, the control member 17C of FIG. 4C, or any other control member having an arbitrary configuration can be used. The control member 17B holds a semicircular mesh type filter portion 17Ba having a transmittance of about 95% in the frame portion 17Bc, and the other region is an opening portion 17Bb. The control member 17C holds a semicircular mesh type filter portion 17Ca having a transmittance of about 97.5% and an offset of δx2 (about the same as δx1) in the frame portion 17Cc, and other than that. The region is the opening 17Cb. Instead of the mesh type filter portions 17Aa, 17Ba, 17Ca and the like, an ND filter (neutral density filter) having the same (or uniform) transmittance can also be used.

図3において、部分照明系ILDのフライアイインテグレータ15の射出面(瞳面PPD)とパターン面Maとの間の設置面SPDにも、保持機構18(不図示)によって制御部材17A(又は他の制御部材17B等)が保持されている。なお、図3では、一例として、部分照明系ILD中の制御部材17Aの光軸AXDに平行な軸の回りの回転角は、部分照明系ILA中の制御部材17Aに対して180度異なっている。同様に、他の照明領域IRB,IRC,IRE~IRG(図5(A)参照)を照明する部分照明系にも制御部材17A,17B等が設置されている。ただし、部分照明系ILAに制御部材17Aを設置したときに、他の部分照明系ILD等には別の制御部材17B等を設置するというように、部分照明系ILA~ILG毎に異なる制御部材17A,17B等を設置してもよい。さらに、一つの部分照明系(例えば部分照明系ILA)に制御部材17A(又は17B等)を設置したときに、他の部分照明系には制御部材17A,17B等を設置しないようにしてもよい。 In FIG. 3, a control member 17A (or another) is also provided on the installation surface SPD between the injection surface (pupil surface PPD) of the fly-eye integrator 15 of the partial illumination system ILD and the pattern surface Ma by the holding mechanism 18 (not shown). The control member 17B, etc.) is held. In FIG. 3, as an example, the rotation angle of the control member 17A in the partial lighting system ILD around the axis parallel to the optical axis AXD is 180 degrees different from that of the control member 17A in the partial lighting system ILA. .. Similarly, control members 17A, 17B and the like are also installed in the partial lighting system that illuminates the other lighting areas IRB, IRC, IRE to IRG (see FIG. 5A). However, when the control member 17A is installed in the partial lighting system ILA, another control member 17B or the like is installed in the other partial lighting system ILD or the like. , 17B, etc. may be installed. Further, when the control members 17A (or 17B, etc.) are installed in one partial lighting system (for example, the partial lighting system ILA), the control members 17A, 17B, etc. may not be installed in the other partial lighting system. ..

次に、制御部材17A等の作用につき、部分照明系ILAの説明図である図6(A)及び(B)を参照して説明する。まず、図6(A)において、制御部材17Aが設置されていない場合のパターン面Maにおける照明光ELのX方向の照度分布は、点線の直線で示すように一定(値a2とする)であるとする。これに対して、部分照明系ILA内に、フィルタ部17Aaが-X方向側にあり、かつ制御部材17Aaのエッジ部が光軸AXAを通りY軸に平行な直線に合致するように透過率分布の制御部材17Aを設置したものとする。このとき、図3のフライアイインテグレータ15から射出されてコンデンサーレンズ16aを通過した照明光ELのうち、点線で示す-X方向側に最大に傾斜した光束EL1の大部分は、フィルタ部17Aaを透過して照度が低下した状態で、コンデンサーレンズ16bを介してパターン面Maの光軸AXAに対して-X方向に最も離れた位置に入射する。また、実線で示す光軸AXAに平行な光束EL2は、ほぼ半分がフィルタ部17Aaを透過するため、光束EL1に比べて照度の低下量がほぼ半分の状態でパターン面Maの光軸AXA上に入射し、破線で示す+X方向側に最大に傾斜した光束EL3の大部分は、光束EL2に比べて照度が低下しない状態で、パターン面Maの光軸AXAから+X方向に最も離れた位置に入射する。 Next, the operation of the control member 17A and the like will be described with reference to FIGS. 6A and 6B which are explanatory views of the partial lighting system ILA. First, in FIG. 6A, the illuminance distribution in the X direction of the illumination light EL on the pattern surface Ma when the control member 17A is not installed is constant (value a2) as shown by the dotted straight line. And. On the other hand, the transmittance distribution is such that the filter portion 17Aa is on the −X direction side in the partial illumination system ILA, and the edge portion of the control member 17Aa passes through the optical axis AXA and matches a straight line parallel to the Y axis. It is assumed that the control member 17A of the above is installed. At this time, of the illumination light EL emitted from the flyeye integrator 15 of FIG. 3 and passing through the condenser lens 16a, most of the luminous flux EL1 having the maximum inclination in the −X direction side shown by the dotted line passes through the filter portion 17Aa. Then, in a state where the illuminance is lowered, the light is incident on the pattern surface Ma at the position farthest from the optical axis AXA in the −X direction via the condenser lens 16b. Further, since almost half of the luminous flux EL2 parallel to the optical axis AXA shown by the solid line passes through the filter portion 17Aa, the amount of decrease in illuminance is almost half that of the luminous flux EL1 on the optical axis AXA of the pattern surface Ma. Most of the luminous flux EL3 that is incident and is inclined to the maximum in the + X direction shown by the broken line is incident at the position farthest in the + X direction from the optical axis AXA of the pattern surface Ma in a state where the illuminance does not decrease as compared with the luminous flux EL2. do.

この結果、パターン面Maにおける光束EL1の照度は最小値a1(照明光ELの光路の全面にフィルタ部17Aaと同じ透過率のフィルタ部があるときの照度)、光束EL3の照度は最大値a2となり、光束EL2の照度は、最小値a1及び最大値a2の中間値となる。また、コンデンサーレンズ16aを通過する光束の傾斜角が、光束EL1の傾斜角から光束EL2の傾斜角まで次第に変化すると、この光束のうちフィルタ部17Aaを透過する部分の割合が次第に減少するため、この光束のパターン面Maにおける照度は、図6(A)の照度ICEを示す直線A1のように、最小値a1から最大値a2まで次第に増加する。本実施形態の照明領域IRAは、パターン面Maで照明光ELが入射する領域の中央部であるため、照明領域IRAのX方向の照度分布は、最小値(値a1より大きい値)から最大値a3(値a2より小さい値)まで次第に大きくなるように傾斜している。言い換えると、部分照明系ILA内の瞳面とパターン面との間に制御部材17Aを設置することで、照明領域IRAの照度分布をX方向(走査方向)に傾斜させることができる。 As a result, the illuminance of the luminous flux EL1 on the pattern surface Ma is the minimum value a1 (the illuminance when there is a filter unit having the same transmittance as the filter unit 17Aa on the entire surface of the optical path of the illumination light EL), and the illuminance of the luminous flux EL3 is the maximum value a2. The illuminance of the luminous flux EL2 is an intermediate value between the minimum value a1 and the maximum value a2. Further, when the tilt angle of the light flux passing through the condenser lens 16a gradually changes from the tilt angle of the light flux EL1 to the tilt angle of the light beam EL2, the proportion of the portion of the light flux that passes through the filter portion 17Aa gradually decreases. The illuminance on the pattern surface Ma of the luminous flux gradually increases from the minimum value a1 to the maximum value a2 as shown by the straight line A1 showing the illuminance ICE in FIG. 6 (A). Since the illumination region IRA of the present embodiment is the central portion of the region where the illumination light EL is incident on the pattern surface Ma, the illuminance distribution in the X direction of the illumination region IRA is from the minimum value (value larger than the value a1) to the maximum value. It is inclined so as to gradually increase to a3 (a value smaller than the value a2). In other words, by installing the control member 17A between the pupil surface and the pattern surface in the partial illumination system ILA, the illuminance distribution of the illumination region IRA can be tilted in the X direction (scanning direction).

さらに、フィルタ部17Aaが光軸AXAに対して+X方向側になるように制御部材17Aを回転することで、照明領域IRAの照度分布の傾斜角の符号を反転させることができる。また、制御部材17Aの代わりに、平均的な透過率が異なるフィルタ部17Ba,17Caを持つ制御部材17B,17Cを設置することで、照度分布の最小値a1の値が変化するため、照度分布の傾斜角を制御できる。 Further, by rotating the control member 17A so that the filter unit 17Aa is on the + X direction side with respect to the optical axis AXA, the sign of the inclination angle of the illuminance distribution in the illumination region IRA can be inverted. Further, by installing the control members 17B and 17C having the filter portions 17Ba and 17Ca having different average transmittances instead of the control member 17A, the value of the minimum value a1 of the illuminance distribution changes, so that the illuminance distribution The tilt angle can be controlled.

また、図6(B)に示すように、制御部材17Aのフィルタ部17Aaのエッジ部の位置に-X方向に対するオフセットδxaを与えると、光軸AXAに平行な光束EL2は、フィルタ部17Aaを透過する割合が低下して、パターン面Maにおける照度が上昇する。同様に、他の光束でも、フィルタ部17Aaを透過する割合が低下して、パターン面Maにおける照度が上昇するため、パターン面Maにおける照度分布は、図6(B)の折れ線A2で示すように全体として上昇するが、最大値a2に達したときに飽和する。このため、照明領域IRAにおける照度分布の最大値a4は最大値a2に近い値になり、照明領域IRAにおける照度の平均値を高くして、照明光ELを有効に利用できる。 Further, as shown in FIG. 6B, when an offset δxa with respect to the −X direction is given to the position of the edge portion of the filter portion 17Aa of the control member 17A, the luminous flux EL2 parallel to the optical axis AXA passes through the filter portion 17Aa. The ratio of light flux decreases, and the illuminance on the pattern surface Ma increases. Similarly, with other light fluxes, the ratio of passing through the filter portion 17Aa decreases and the illuminance on the pattern surface Ma increases. Therefore, the illuminance distribution on the pattern surface Ma is as shown by the polygonal line A2 in FIG. 6 (B). It rises as a whole, but saturates when the maximum value a2 is reached. Therefore, the maximum value a4 of the illuminance distribution in the illumination region IRA becomes a value close to the maximum value a2, and the average value of the illuminance in the illumination region IRA is increased so that the illumination light EL can be effectively used.

図3の部分照明系ILAにおいて、制御部材17Aの設置面SPAが仮に瞳面PPAの近傍(または瞳面PPAと共役な面の近傍)にある場合、制御部材17Aのフィルタ部17Aaを通過した光束は、パターン面MaのX方向の領域にほぼ均等に入射するため、パターン面MaにおけるX方向の照度分布は均一に低下するのみで、傾斜することはない。一方、制御部材17Aの設置面SPAが仮にパターン面Maの近傍(またはパターン面Maと共役な面の近傍)にある場合、パターン面Maにおいてフィルタ部17Aaに対向する部分のみの照度が低下するため、パターン面MaにおけるX方向の照度分布は階段状に変化する。これに対して、本実施形態の制御部材17Aの設置面SPAは、瞳面PPAとパターン面Maとの間のほぼ中間の位置にあるため、制御部材17Aのフィルタ部17Aaによって、パターン面Maの照明領域IRAのX方向の照度分布を所望の傾斜角及びオフセットで傾斜させることができる。このように照度分布を傾斜させることによって、プレートP上の積算露光量の分布を高精度に制御できる(詳細後述)。また、制御部材17Aの設置精度は低くともよく、制御部材17Aを他の制御部材17B等と交換したときの位置決め精度も低い状態でよいため、制御部材17A,17B等の設置及び交換が容易である。 In the partial illumination system ILA of FIG. 3, when the installation surface SPA of the control member 17A is in the vicinity of the pupil surface PPA (or in the vicinity of the surface conjugate with the pupil surface PPA), the luminous flux passing through the filter portion 17Aa of the control member 17A. Is incident on the region of the pattern surface Ma in the X direction substantially evenly, so that the illuminance distribution in the X direction on the pattern surface Ma only decreases uniformly and does not incline. On the other hand, if the installation surface SPA of the control member 17A is in the vicinity of the pattern surface Ma (or in the vicinity of the surface conjugate with the pattern surface Ma), the illuminance of only the portion of the pattern surface Ma facing the filter portion 17Aa is reduced. , The illuminance distribution in the X direction on the pattern surface Ma changes stepwise. On the other hand, since the installation surface SPA of the control member 17A of the present embodiment is located at a position substantially intermediate between the pupil surface PPA and the pattern surface Ma, the filter portion 17Aa of the control member 17A causes the pattern surface Ma to be formed. The illuminance distribution in the X direction of the illuminated region IRA can be tilted at the desired tilt angle and offset. By inclining the illuminance distribution in this way, the distribution of the integrated exposure amount on the plate P can be controlled with high accuracy (details will be described later). Further, the installation accuracy of the control member 17A may be low, and the positioning accuracy when the control member 17A is replaced with another control member 17B or the like may be low, so that the control members 17A, 17B or the like can be easily installed or replaced. be.

次に、図1において、マスクMの照明領域IRA~IRGからの照明光は、各照明領域に対応するようにY方向に沿って2列に配列された複数の部分投影光学系PLA~PLGからなる投影システムPSに入射する。部分投影光学系PLA~PLGは照明領域IRA~IRG中のパターンの像を対応する台形状の露光領域PRA,PRB,PRC,PRD,PRE,PRF,PRG(図3(C)参照)に形成する。部分投影光学系PLA~PLGは、互いに同一構成で一例としてZ方向に配列された2段の反射屈折系を有するほぼ両側にテレセントリックで高解像度の結像光学系である。また、部分投影光学系PLA~PLGは、それぞれ一例として中間結像を行うとともに、マスクパターンの等倍の正立正像をプレートP上に形成する。 Next, in FIG. 1, the illumination light from the illumination regions IRA to IRG of the mask M is from a plurality of partial projection optical systems PLA to PLG arranged in two rows along the Y direction so as to correspond to each illumination region. It is incident on the projection system PS. The partial projection optical systems PLA to PLG form the image of the pattern in the illumination regions IRA to IRG in the corresponding trapezoidal exposure regions PRA, PRB, PRC, PRD, PRE, PRF, and PRG (see FIG. 3C). .. The partial projection optical systems PLA to PLG are telecentric and high-resolution imaging optical systems on almost both sides having a two-stage catadioptric system having the same configuration and arranged in the Z direction as an example. Further, the partial projection optical systems PLA to PLG each perform an intermediate image formation as an example, and form an erect image of the same magnification as the mask pattern on the plate P.

一例として、部分投影光学系PLAは、マスクMからの光をシフトする像シフタ31Aと、マスクMのパターンの一次像を形成する第1反射屈折系を構成する第1屈折系33A及び凹面鏡34Aと、マスクMからの光をその第1反射屈折系に向け、その第1反射屈折系からの光を-Z方向に向ける第1直角プリズム32Aと、その一次像の近傍に配置された視野絞り35と、その一次像の二次像をプレートP上に形成する第2反射屈折系を構成する第2屈折系33B及び凹面鏡34Bと、一次像からの光をその第2反射屈折系に向け、その第2反射屈折系からの光をプレートP側に向ける第2直角プリズム32Bと、プレートPに入射する光をシフトする像シフタ31Bとを備えている(図3参照)。像シフタ31A,31Bは例えば複数の平行平面板よりなる。また、部分投影光学系PLDは、部分投影光学系PLAとX方向に関して対称に構成されている。なお、マルチレンズ型の投影システムの詳細な構成の一例は、例えば特開2001-330964号公報に開示されている。 As an example, the partial projection optical system PLA includes an image shifter 31A that shifts the light from the mask M, a first reflection system 33A and a concave mirror 34A that form a first reflection refraction system that forms a primary image of the pattern of the mask M. The first right angle prism 32A that directs the light from the mask M toward the first reflection / refraction system and the light from the first reflection / refraction system in the −Z direction, and the field diaphragm 35 arranged in the vicinity of the primary image thereof. And the second refraction system 33B and the concave mirror 34B constituting the second reflection refraction system that forms the second image of the primary image on the plate P, and the light from the primary image is directed toward the second reflection refraction system. It includes a second right angle prism 32B that directs the light from the second reflection / refraction system toward the plate P, and an image shifter 31B that shifts the light incident on the plate P (see FIG. 3). The image shifters 31A and 31B are made of, for example, a plurality of parallel flat plates. Further, the partial projection optical system PLD is configured symmetrically with respect to the partial projection optical system PLA in the X direction. An example of a detailed configuration of the multi-lens type projection system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-330964.

また、投影システムPSを構成する部分投影光学系PLA~PLGの個数は、露光されるマスクMが大きくなるほど多くなり、投影システムPSは例えば11個の部分投影光学系(1列目が5個及び2列目が6個)を備えてもよい。このように、部分投影光学系PLA等の個数は任意であり、部分投影光学系PLA等の構成は任意である。
図5(A)に示すように、部分投影光学系PLA~PLGは、Y方向に配置された第1列の3個の部分投影光学系PLA,PLB,PLCと、それらに対向するように-X方向に配置されるとともに、Y方向に半周期ずれて配置された第2列の4個の部分投影光学系PLD,PLE,PLF,PLGとに分かれて、光学系フレーム(不図示)に支持されている。また、部分投影光学系PLA~PLGの中間結像面の近傍に配置された視野絞り35に設けられたY方向に平行なエッジ部を上辺及び底辺とする台形状の開口35aによって、露光領域PRA~PRGの基本的な形状が規定される。
Further, the number of partial projection optical systems PLA to PLG constituting the projection system PS increases as the exposed mask M increases, and the projection system PS has, for example, 11 partial projection optical systems (5 in the first row and 5). The second row may be provided with 6 pieces). As described above, the number of the partial projection optical system PLA and the like is arbitrary, and the configuration of the partial projection optical system PLA and the like is arbitrary.
As shown in FIG. 5A, the partial projection optical systems PLA to PLG are arranged so as to face the three partial projection optical systems PLA, PLB, and PLC in the first row arranged in the Y direction. It is divided into four partial projection optical systems PLD, PLE, PLF, and PLG in the second row, which are arranged in the X direction and are arranged half a cycle in the Y direction, and are supported by an optical system frame (not shown). Has been done. Further, the exposure region PRA is provided by the trapezoidal opening 35a having the edges parallel to the Y direction as the upper side and the bottom side provided in the field diaphragm 35 arranged near the intermediate image planes of the partial projection optical systems PLA to PLG. -The basic shape of PRG is defined.

図5(B)に示すように、第2列の部分投影光学系PLD~PLGの露光領域PRD~PRGは、-X方向側を底辺とする台形状であり、第1列の部分投影光学系PLA~PLCの露光領域PRA~PRCは、Y方向に関して露光領域PRD~PRGの間に位置しているとともに、露光領域PRA~PRCは、+X方向側を底辺とする台形状である。また、例えば+X方向に向かって全部の露光領域PRA~PRGを見ると、第1列の露光領域PRA~PRCの走査方向(X方向)に対して傾斜した2つのエッジ部(以下、傾斜部という)は、それぞれ第2列の露光領域PRD~PRGの対応する傾斜部と重なっている。なお、図5(B)において、第2列の外側の2つの露光領域PRD,PRGの外側のエッジ部は、例えばマスクMのパターン領域PA(図5(A)参照)を囲む遮光帯(不図示)によって遮光されているため、露光領域PRD,PRGの外側のエッジ部はX軸に平行になっている。 As shown in FIG. 5B, the exposure regions PRD to PRG of the partial projection optical systems PLD to PLG in the second row have a trapezoidal shape with the −X direction side as the base, and the partial projection optical systems in the first row. The exposure regions PRA to PRC of PLA to PLC are located between the exposure regions PRD and PRG in the Y direction, and the exposure regions PRA to PRC have a trapezoidal shape with the + X direction side as the base. Further, for example, when looking at all the exposed areas PRA to PRG toward the + X direction, two edge portions (hereinafter referred to as inclined portions) inclined with respect to the scanning direction (X direction) of the exposed areas PRA to PRC in the first row. ) Overlap the corresponding inclined portions of the exposure regions PRD to PRG in the second row, respectively. In FIG. 5B, the outer edge portions of the two exposed regions PRD and PRG outside the second row are, for example, a light-shielding band surrounding the pattern region PA of the mask M (see FIG. 5A). The outer edges of the exposed areas PRD and PRG are parallel to the X-axis because they are shielded from light by (shown).

また、部分投影光学系PLA~PLGは、一例としてそれぞれマスクパターンの等倍の正立正像をプレートP上に形成するため、照明領域IRA~IRGの形状及び配列は、露光領域PRA~PRGの形状及び配列と同じである。このため、例えば+X方向に見ると、露光領域PRA~PRG(照明領域IRA~IRG)はY方向に隙間なく配置されている。そこで、照明領域IRA~IRGのパターンの投影システムPSによる像でプレートPを露光しつつ、マスクステージ21によって照明領域IRA~IRGに対してマスクMを+X方向(又は-X方向)に移動(走査)することと、プレートステージ22によって露光領域PRA~PRGに対してプレートPを+X方向(又は-X方向)に移動(走査)することとを同期して行うことで、マスクMの全面のパターンを1回の走査露光でプレートPの一つのパターン形成領域53Aに隙間なく露光できる。 Further, since the partial projection optical systems PLA to PLG form an erect image of the same magnification as the mask pattern on the plate P as an example, the shapes and arrangements of the illumination regions IRA to IRG are the shapes of the exposure regions PRA to PRG. And the same as the sequence. Therefore, for example, when viewed in the + X direction, the exposed areas PRA to PRG (illuminated areas IRA to IRG) are arranged without gaps in the Y direction. Therefore, while the plate P is exposed with the image of the pattern of the illumination regions IRA to IRG by the projection system PS, the mask M is moved (scanned) in the + X direction (or −X direction) with respect to the illumination regions IRA to IRG by the mask stage 21. ) And moving (scanning) the plate P in the + X direction (or −X direction) with respect to the exposed areas PRA to PRG by the plate stage 22 in synchronization with the pattern on the entire surface of the mask M. Can be exposed to one pattern forming region 53A of the plate P without a gap by one scanning exposure.

また、パターン形成領域53Aにおいて、露光領域PRA~PRCの一方の傾斜部、及び対応する露光領域PRD~PRGの傾斜部(露光領域PRA~PRCの傾斜部とY方向に対称な形状の傾斜部)によって二重露光される継ぎ部54A,54B,54C,54D,54E,54Fでは、二重露光後の設計上の露光量が他の領域の設計上の露光量と実質的に同じになるため、露光領域PRA~PRGで露光されるパターンがY方向に高精度に繋がれる。露光領域PRA~PRGの傾斜部のY方向の幅をdとすると、継ぎ部54A~54FのY方向の幅もdとなる。 Further, in the pattern forming region 53A, one inclined portion of the exposed regions PRA to PRC and the inclined portion of the corresponding exposed regions PRD to PRG (an inclined portion having a shape symmetrical to the inclined portion of the exposed regions PRA to PRC in the Y direction). In the joints 54A, 54B, 54C, 54D, 54E, 54F that are double exposed by, the design exposure amount after the double exposure is substantially the same as the design exposure amount in the other regions. The patterns exposed in the exposure areas PRA to PRG are connected with high accuracy in the Y direction. Assuming that the width of the inclined portion of the exposed regions PRA to PRG in the Y direction is d, the width of the joint portions 54A to 54F in the Y direction is also d.

まず、図1において、マスクMの照明領域IRA~IRGの上方に近接して、それぞれY方向に細長い平板状の遮光部材よりなる4個のマスク側のブラインド41A,41B,41C,41Dが、互いに重ならないようにかつ互いに独立にX方向に移動可能に配置されている。そして、ブラインド41A~41Dの-Y方向の端部は、例えばリニアモータ方式でブラインド41A~41DのX方向の位置及び速度を個別に制御する駆動部42Aに連結され、ブラインド41A~41Dの+Y方向の端部はガイド部42Bに連結されている。一例として、駆動部42A及びガイド部42Bは、照明系ISを保持するフレーム(不図示)に支持されている。各走査露光の開始時及び終了時にブラインド41A~41Dによって照明領域IRA~IRGを開閉することによって、プレートP上に不要なパターンが露光されることが防止される。 First, in FIG. 1, four mask-side blinds 41A, 41B, 41C, and 41D, each of which is formed of a flat plate-shaped light-shielding member elongated in the Y direction, are close to each other in the vicinity of the illumination regions IRA to IRG of the mask M. They are arranged so as not to overlap each other and to be movable in the X direction independently of each other. The end portions of the blinds 41A to 41D in the −Y direction are connected to a drive unit 42A that individually controls the position and speed of the blinds 41A to 41D in the X direction by, for example, a linear motor system, and the blinds 41A to 41D are connected in the + Y direction. The end of the is connected to the guide portion 42B. As an example, the drive unit 42A and the guide unit 42B are supported by a frame (not shown) that holds the illumination system IS. By opening and closing the illumination regions IRA to IRG by the blinds 41A to 41D at the start and end of each scan exposure, it is possible to prevent unnecessary patterns from being exposed on the plate P.

また、露光装置EXは、プレートステージ22に設けられて露光領域PRA~PRGのY方向の照度分布を計測する光量計測部24と、プレートステージ22に設けられて例えばマスクMのアライメントマーク(不図示)の像の位置情報を計測する空間像計測部28(図2参照)と、プレートPのアライメントマーク(不図示)の位置情報を計測するアライメント系AL(図2参照)と、各種データ等を記憶する記憶部29と、を備えている。さらに、露光装置EXは、主制御装置20と不図示のホストコンピュータとの間で各種情報の授受を行うインタフェース部(不図示)と、オペレータが主制御装置20に各種制御情報等を入力する入力装置(不図示)と、主制御装置20が計測結果等を表示する表示装置(不図示)とを備えている。光量計測部24は、一例として複数の微小な受光素子をY方向に配置したものであり、プレートPをX方向に走査したときに光量計測部24で検出される照度(単位面積当たり、単位時間当たりのエネルギー)を積算することによって、プレートPに対する積算露光量のY方向の分布を計測できる。また、空間像計測部及びアライメント系ALの計測結果に基づいてそれぞれマスクM及びプレートPのアライメントを行うことができる。 Further, the exposure apparatus EX is provided on the plate stage 22 to measure the illuminance distribution in the Y direction of the exposure regions PRA to PRG, and is provided on the plate stage 22, for example, an alignment mark of a mask M (not shown). ), The spatial image measurement unit 28 (see FIG. 2) that measures the position information of the image, the alignment system AL (see FIG. 2) that measures the position information of the alignment mark (not shown) of the plate P, and various data. It includes a storage unit 29 for storing. Further, the exposure device EX has an interface unit (not shown) for exchanging various information between the main control device 20 and a host computer (not shown), and an input for the operator to input various control information and the like to the main control device 20. A device (not shown) and a display device (not shown) in which the main control device 20 displays measurement results and the like are provided. As an example, the light quantity measuring unit 24 has a plurality of minute light receiving elements arranged in the Y direction, and the illuminance (per unit area, unit time) detected by the light quantity measuring unit 24 when the plate P is scanned in the X direction. By integrating the energy per hit), the distribution of the integrated exposure amount with respect to the plate P in the Y direction can be measured. Further, the mask M and the plate P can be aligned based on the measurement results of the spatial image measuring unit and the alignment system AL, respectively.

次に、本実施形態の露光装置EXによる露光方法の一例につき図7のフローチャートを参照して説明する。この露光方法は主制御装置20によって制御される。まず、露光装置EXのマスクステージ21及びプレートステージ22にそれぞれマスクM及びプレートPがロードされていないとともに、部分照明系ILA~ILG中には制御部材17A等が設置されていないものとする。そして、図7のステップ102において、オペレータが主制御装置20に積算露光量分布を計測するように制御情報を入力する。これに応じて、光源10からの照明光ELの照射を行わせ、照明光ELで照明領域IRA~IRGを介して露光領域PRA~PRGを照明した状態で、プレートステージ22をY方向にステップ移動してからX方向に所定距離だけ移動するという動作を繰り返して、光量計測部24で露光領域PRA~PRGをX方向に順次走査する。そして、主制御装置20において、光量計測部24で検出される複数の照度をX方向に積算して、露光領域PRA~PRGで露光したときのプレートP上のY方向の積算露光量分布を求める。 Next, an example of the exposure method using the exposure apparatus EX of the present embodiment will be described with reference to the flowchart of FIG. 7. This exposure method is controlled by the main control device 20. First, it is assumed that the mask M and the plate P are not loaded on the mask stage 21 and the plate stage 22 of the exposure apparatus EX, respectively, and the control member 17A or the like is not installed in the partial lighting systems ILA to ILG. Then, in step 102 of FIG. 7, the operator inputs control information to the main control device 20 so as to measure the integrated exposure amount distribution. In response to this, the illumination light EL is irradiated from the light source 10, and the plate stage 22 is stepped in the Y direction with the illumination light EL illuminating the exposure areas PRA to PRG via the illumination areas IRA to IRG. After that, the operation of moving in the X direction by a predetermined distance is repeated, and the light amount measuring unit 24 sequentially scans the exposed areas PRA to PRG in the X direction. Then, in the main control device 20, a plurality of illuminances detected by the light amount measuring unit 24 are integrated in the X direction, and the integrated exposure amount distribution in the Y direction on the plate P when exposed in the exposure regions PRA to PRG is obtained. ..

その後、ステップ104において、主制御装置20は、求められた積算露光量分布のうち、図5(B)の継ぎ部54A~54Fで計測された露光量の平均値が目標値(ここでは継ぎ部以外の領域の露光量の平均値とする)に対して許容範囲内かどうかを判定する。積算露光量分布の計測結果及び継ぎ部54A~54Fの露光量の目標値からの偏差の情報は表示装置(不図示)に表示される。なお、以下では説明の便宜上、露光領域PRD,PRA,PREによる2つの継ぎ部54A,54Bをそれぞれ図8(B)及び図9(B)に示し、この2つの継ぎ部54A,54Bの露光量を調整する場合につき説明する。なお、図8(B)等では、説明の便宜上、-Y方向の端部の露光領域PRDの-Y方向のエッジ部も傾斜部として表されている。他の継ぎ部54C~54Fの露光量も同様に調整される。 After that, in step 104, in the main control device 20, the average value of the exposure amounts measured at the joint portions 54A to 54F in FIG. 5B is the target value (here, the joint portion) in the obtained integrated exposure amount distribution. It is determined whether or not it is within the allowable range for the average value of the exposure amount in the areas other than the above. The measurement result of the integrated exposure amount distribution and the information of the deviation of the exposure amount of the joints 54A to 54F from the target value are displayed on the display device (not shown). In the following, for convenience of explanation, the two joints 54A and 54B by the exposure areas PRD, PRA and PRE are shown in FIGS. 8B and 9B, respectively, and the exposure amounts of the two joints 54A and 54B are shown below. The case of adjusting is described. In FIG. 8B and the like, for convenience of explanation, the edge portion in the −Y direction of the exposed region PRD at the end portion in the −Y direction is also represented as an inclined portion. The exposure amount of the other joints 54C to 54F is adjusted in the same manner.

また、一例として、ステップ102で最初に計測されたY方向の積算露光量ΣEの分布において、図8(A)に示すように、継ぎ部54A,54Bの露光量の平均値が、他の領域の露光量の平均値(目標値)に対する許容範囲よりも小さい場合を想定する。この場合、動作はステップ104からステップ106に移行して、継ぎ部54A,54Bに対応する部分照明系ILA,ILD,ILEの上述の設置面SPA,SPD等に透過率分布の制御部材17A等が設置されているかどうかを確認する。そして、制御部材17A等が設置されていない場合には、ステップ108に移行して、主制御装置20は、ステップ102で計測した積算露光量分布の計測値から、継ぎ部54A,54Bの露光量を目標値にできるだけ近づけるために設置する制御部材17A等(ここでは制御部材17Aとする)、及びこの制御部材17Aの回転角及びX方向(走査方向)の位置の目標値を求め(これらの目標値の算出方法については後述する)、求めた結果の情報を記憶部29中のファイルに記録するとともに、表示装置を介してオペレータに提供する。これに応じて、オペレータは、設置面SPA,SPD等に保持機構18を介して制御部材17Aを設置するとともに、主制御装置20に、制御部材17A等の交換を行った回数(初期値は0)を示すパラメータに1を加算するように制御情報を入力する。 Further, as an example, in the distribution of the integrated exposure amount ΣE in the Y direction first measured in step 102, as shown in FIG. 8A, the average value of the exposure amounts of the joint portions 54A and 54B is in another region. It is assumed that the exposure amount is smaller than the allowable range for the average value (target value). In this case, the operation shifts from step 104 to step 106, and the transmittance distribution control member 17A and the like are placed on the above-mentioned installation surfaces SPA, SPD and the like of the partial lighting systems ILA, ILD, and ILE corresponding to the joint portions 54A and 54B. Check if it is installed. Then, when the control member 17A or the like is not installed, the process proceeds to step 108, and the main control device 20 determines the exposure amount of the joint portions 54A and 54B from the measured value of the integrated exposure amount distribution measured in step 102. The control member 17A and the like (here, the control member 17A) to be installed so as to be as close as possible to the target value, and the target values of the rotation angle and the position of the control member 17A in the X direction (scanning direction) are obtained (these targets). The method of calculating the value will be described later), and the information of the obtained result is recorded in a file in the storage unit 29 and provided to the operator via the display device. In response to this, the operator installed the control member 17A on the installation surface SPA, SPD, etc. via the holding mechanism 18, and replaced the control member 17A, etc. on the main control device 20 (initial value is 0). ) Is added to the parameter indicating the control information.

そして、ステップ110において、主制御装置20は、制御部材17A等の設置又は交換を所定回数(複数回で例えば3回等)行ったかどうかを判定する。その所定回数は、設置可能な制御部材17A等の種類以下の回数である。ここではその設置又は交換は1回であるため、動作はステップ112に移行し、制御部材17A等の交換を行うかどうかを判定する。制御部材17A等の交換を行うのは、現在、設置面SPA,SPD等に設置されている制御部材17Aの回転角等の調整が済んでいる場合である。ここでは、制御部材17Aの回転角等の調整が済んでいないため、動作はステップ114に移行して、主制御装置20は表示装置を介してオペレータに、設置面SPA,SPD等に設置されている制御部材17Aの回転角等を目標値に設定するように指示を行う。ここでは、露光領域PRAに対応する部分照明系ILA中の制御部材17Aの回転角の目標値は180度、位置のオフセットの目標値は0、露光領域PRD,PREに対応する部分照明系IRD,IRE中の制御部材17Aの回転角の目標値は0度、位置のオフセットの目標値は0であるとする。これに応じて、オペレータが対応する保持機構18を介して、図8(B)に示すように、露光領域PRA用の制御部材17Aのフィルタ部17Aaを-X方向に設定し、露光領域PRD,PRE用の制御部材17Aのフィルタ部17Aaを+X方向に設定する。 Then, in step 110, the main control device 20 determines whether or not the control member 17A or the like has been installed or replaced a predetermined number of times (a plurality of times, for example, three times, etc.). The predetermined number of times is less than or equal to the type of control member 17A or the like that can be installed. Here, since the installation or replacement is performed once, the operation shifts to step 112, and it is determined whether or not the control member 17A or the like is replaced. The control member 17A or the like is replaced when the rotation angle or the like of the control member 17A currently installed on the installation surface SPA, SPD or the like has been adjusted. Here, since the rotation angle and the like of the control member 17A have not been adjusted, the operation shifts to step 114, and the main control device 20 is installed on the installation surface SPA, SPD, etc. by the operator via the display device. An instruction is given to set the rotation angle or the like of the control member 17A to a target value. Here, the target value of the rotation angle of the control member 17A in the partial illumination system ILA corresponding to the exposure region PRA is 180 degrees, the target value of the position offset is 0, and the partial illumination system IRD corresponding to the exposure region PRD and PRE, It is assumed that the target value of the rotation angle of the control member 17A in the IRE is 0 degrees and the target value of the position offset is 0. Correspondingly, as shown in FIG. 8B, the operator sets the filter portion 17Aa of the control member 17A for the exposure region PRA in the −X direction via the corresponding holding mechanism 18, and the exposure region PRD, The filter unit 17Aa of the control member 17A for PRE is set in the + X direction.

本実施形態では、部分投影光学系PLA~PLGはそれぞれ等倍の正立正像を形成するため、台形状の露光領域PRA~PRGと制御部材17Aとの位置関係は、照明領域IRA~IRGと制御部材17Aとの位置関係と同じである。この結果、図6(A)を参照して説明したように、露光領域PRAにおける照明光ELのX方向の照度分布は、+X方向の照度が高くなるように傾斜し、露光領域PRD,PREにおける照明光ELのX方向の照度分布は、+X方向の照度が低くなるように傾斜する。また、露光領域PRAは+X方向の辺が長い台形状であり、露光領域PRD,PREは-X方向の辺が長い台形状であるため、露光領域PRA,PRD,PREの照度の平均値は、継ぎ部54A,54Bを形成する部分(台形状の領域の傾斜部)での低下量に比べて、継ぎ部54A,54B以外の部分(台形状の領域の平行な2つの辺で挟まれた部分)の低下量が大きくなる。 In the present embodiment, since the partial projection optical systems PLA to PLG each form an upright image of the same magnification, the positional relationship between the trapezoidal exposure regions PRA to PRG and the control member 17A is controlled with the illumination regions IRA to IRG. It is the same as the positional relationship with the member 17A. As a result, as described with reference to FIG. 6A, the illuminance distribution in the X direction of the illumination light EL in the exposure region PRA is inclined so that the illuminance in the + X direction becomes high, and in the exposure regions PRD and PRE. The illuminance distribution in the X direction of the illumination light EL is inclined so that the illuminance in the + X direction becomes low. Further, since the exposure region PRA has a trapezoidal shape with a long side in the + X direction and the exposure region PRD, PRE has a trapezoidal shape with a long side in the −X direction, the average value of the illuminance of the exposure region PRA, PRD, PRE is. Compared to the amount of reduction in the portion forming the joints 54A and 54B (inclined portion of the trapezoidal region), the portion other than the joints 54A and 54B (the portion sandwiched between two parallel sides of the trapezoidal region). ) Will increase.

このため、制御部材17Aを設置したことによる露光領域PRA,PRD,PREの照度の変化量(補正量)En(n=1~7)は、図8(C)に示すように、継ぎ部54A,54Bに対応する部分で小さくなる。この補正量Enを加算した全体の照度の補正量(積算露光量に対応する量)のY方向の分布は、図8(E)の点線の曲線56Bのようになる。また、制御部材17Aを設置する前の積算露光量は、図8(E)の点線の曲線56Aであるため、制御部材17Aを設置した後の積算露光量ΣEのY方向の分布は、図8(D)に示すように平坦になり、継ぎ部54A,54Bの露光量は目標値と同じになる。このため、図8(A)に示すように、制御部材17Aを設置する前の継ぎ部54A,54Bの露光量が目標値よりも低い場合には、露光領域PRA用の制御部材17Aの回転角を180度、露光領域PRD,PRE用の制御部材17Aの回転角を0度にすればよいことが分かる。 Therefore, as shown in FIG. 8C, the amount of change (correction amount) En (n = 1 to 7) in the illuminance of the exposed areas PRA, PRD, and PRE due to the installation of the control member 17A is the joint portion 54A. , 54B becomes smaller at the part corresponding to. The distribution in the Y direction of the correction amount (amount corresponding to the integrated exposure amount) of the entire illuminance to which the correction amount En is added is as shown by the dotted line curve 56B in FIG. 8 (E). Further, since the integrated exposure amount before installing the control member 17A is the curve 56A of the dotted line in FIG. 8 (E), the distribution of the integrated exposure amount ΣE after installing the control member 17A in the Y direction is shown in FIG. As shown in (D), it becomes flat, and the exposure amount of the joint portions 54A and 54B becomes the same as the target value. Therefore, as shown in FIG. 8A, when the exposure amount of the joint portions 54A and 54B before installing the control member 17A is lower than the target value, the rotation angle of the control member 17A for the exposure region PRA It can be seen that the angle of rotation of the control member 17A for the exposed areas PRD and PRE should be set to 180 degrees and 0 degrees.

また、制御部材17Aを設置する前の継ぎ部54A,54Bの露光量と目標値との偏差がより小さい場合には、露光領域PRA~PRGの照度の傾斜角は小さくともよいため、制御部材17Aの代わりに、より平均的な透過率の高い制御部材17B又は17Cを使用すればよい。このように予め、継ぎ部54A,54Bの露光量と目標値との偏差に応じてどの制御部材17A~17Cを使用すればよいかが、記憶部29のファイルに記録されており、主制御装置20は、その偏差に応じて使用する制御部材17A等を選択する。また、より照明光ELの利用効率を高めたい場合には、図6(B)を参照して説明したように、照度を高精度に制御できる範囲内で、制御部材17A等(制御部材17Aa等)のX方向の位置のオフセットを設定してもよい。 Further, when the deviation between the exposure amount of the joints 54A and 54B before installing the control member 17A and the target value is small, the inclination angle of the illuminance in the exposed areas PRA to PRG may be small, so that the control member 17A Instead of, a control member 17B or 17C having a higher average transmittance may be used. In this way, it is recorded in advance in the file of the storage unit 29 which control members 17A to 17C should be used according to the deviation between the exposure amount of the joint portions 54A and 54B and the target value, and the main control device 20 Selects the control member 17A or the like to be used according to the deviation. Further, when it is desired to further improve the utilization efficiency of the illumination light EL, as described with reference to FIG. 6B, the control member 17A or the like (control member 17Aa or the like) within a range in which the illuminance can be controlled with high accuracy. ) May be set for the offset of the position in the X direction.

逆に、図9(A)に示すように、制御部材17A等を設置する前の積算露光量ΣEのY方向の分布に関して、継ぎ部54A,54Bの露光量が目標値よりも高い場合には、図9(B)に示すように、露光領域PRA用の制御部材17Aのフィルタ部17Aaを+X方向に設定し、露光領域PRD,PRE用の制御部材17Aのフィルタ部17Aaを-X方向に設定すればよい。この結果、図6(A)を参照して説明したように、露光領域PRAにおける照明光ELのX方向の照度分布は、-X方向の照度が高くなるように傾斜し、露光領域PRD,PREにおける照明光ELのX方向の照度分布は、-X方向の照度が低くなるように傾斜する。このため、露光領域PRA,PRD,PREの照度の平均値は、継ぎ部54A,54Bを形成する部分(台形状の領域の傾斜部)での低下量が、継ぎ部54A,54B以外の部分(台形状の領域の平行な2つの辺で挟まれた部分)の低下量よりも大きくなる。 On the contrary, as shown in FIG. 9A, when the exposure amount of the joint portions 54A and 54B is higher than the target value with respect to the distribution of the integrated exposure amount ΣE in the Y direction before installing the control member 17A and the like. As shown in FIG. 9B, the filter unit 17Aa of the control member 17A for the exposure region PRA is set in the + X direction, and the filter unit 17Aa of the control member 17A for the exposure region PRD and PRE is set in the −X direction. do it. As a result, as described with reference to FIG. 6A, the illuminance distribution in the X direction of the illumination light EL in the exposure region PRA is inclined so that the illuminance in the −X direction becomes high, and the exposure regions PRD, PRE The illuminance distribution of the illumination light EL in the X direction is inclined so that the illuminance in the −X direction becomes low. Therefore, the average value of the illuminance of the exposed areas PRA, PRD, and PRE is such that the amount of decrease in the portion forming the joint portions 54A and 54B (the inclined portion of the trapezoidal region) is the portion other than the joint portions 54A and 54B (the portion other than the joint portions 54A and 54B). It is larger than the amount of decrease (the portion sandwiched between two parallel sides of the trapezoidal region).

このため、制御部材17Aを設置したことによる露光領域PRA,PRD,PREの照度の変化量(補正量)Enは、図9(C)に示すように、継ぎ部54A,54Bに対応する部分で大きくなる。この補正量Enを加算した全体の照度の補正量(積算露光量に対応する量)のY方向の分布は、図9(E)の点線の曲線57Bのようになる。また、制御部材17Aを設置する前の積算露光量は、図9(E)の点線の曲線57Aであるため、制御部材17Aを設置した後の積算露光量ΣEのY方向の分布は、図9(D)に示すように平坦になり、継ぎ部54A,54Bの露光量は目標値と同じになる。このため、制御部材17Aを設置する前の継ぎ部54A,54Bの露光量が目標値よりも低い場合には、露光領域PRA用の制御部材17Aの回転角を0度、露光領域PRD,PRE用の制御部材17Aの回転角を180度にすればよいことが分かる。 Therefore, as shown in FIG. 9C, the amount of change (correction amount) En of the illuminance in the exposed areas PRA, PRD, and PRE due to the installation of the control member 17A is the portion corresponding to the joint portions 54A and 54B. growing. The distribution in the Y direction of the correction amount (amount corresponding to the integrated exposure amount) of the entire illuminance to which the correction amount En is added is as shown by the dotted line curve 57B in FIG. 9 (E). Further, since the integrated exposure amount before installing the control member 17A is the curve 57A of the dotted line in FIG. 9E, the distribution of the integrated exposure amount ΣE after installing the control member 17A in the Y direction is shown in FIG. As shown in (D), it becomes flat, and the exposure amount of the joint portions 54A and 54B becomes the same as the target value. Therefore, when the exposure amount of the joints 54A and 54B before installing the control member 17A is lower than the target value, the rotation angle of the control member 17A for the exposure area PRA is set to 0 degrees, and the exposure area PRD and PRE are used. It can be seen that the rotation angle of the control member 17A of the above should be set to 180 degrees.

その後、オペレータが主制御装置20に制御部材17Aの回転角等の調整が済んだことを示す制御情報を入力すると、動作はステップ102に戻り、再び光量計測部24を用いて露光領域PRA~PRGによる露光後の積算露光量分布を計測し、ステップ104において、継ぎ部の露光量が目標値に対して許容範囲内かどうかを判定する。継ぎ部の露光量が目標値に対して許容範囲内である場合には、主制御装置20はオペレータに照明系ISの調整が終了したことを示す情報を提供し、照明系ISの調整が終了する。その後、動作はステップ120に移行してマスクステージ21に対するマスクMのロードが行われ、さらにプレートステージ22に対するプレートPのロードが行われ(ステップ122)、プレートPに対するマスクMのパターンの走査露光が行われる。 After that, when the operator inputs control information indicating that the rotation angle of the control member 17A has been adjusted to the main control device 20, the operation returns to step 102, and the exposure area PRA to PRG is again used by the light amount measuring unit 24. The integrated exposure amount distribution after the exposure is measured, and in step 104, it is determined whether or not the exposure amount of the joint is within the allowable range with respect to the target value. When the exposure amount of the joint is within the allowable range with respect to the target value, the main control device 20 provides the operator with information indicating that the adjustment of the lighting system IS is completed, and the adjustment of the lighting system IS is completed. do. After that, the operation shifts to step 120, the mask M is loaded on the mask stage 21, the plate P is further loaded on the plate stage 22 (step 122), and the scanning exposure of the mask M pattern on the plate P is performed. Will be done.

一方、ステップ104において、継ぎ部の露光量が目標値に対して許容範囲内でない場合には、ステップ106において、部分照明系ILA,ILD,ILEの設置面SPA,SPD等に透過率分布の制御部材17A等が設置されているかどうかを確認する。今回は制御部材17Aが設置されているため、動作はステップ110に移行して、主制御装置20は、制御部材17A等の設置又は交換を所定回数行ったかどうかを判定する。その設置又は交換の回数がその所定回数に達した場合には、動作はステップ118に移行して、主制御装置20はオペレータに、照明系ISの調整を行って照明領域IRA~IRGの光量分布の調整等を行うように指令を発する。 On the other hand, in step 104, when the exposure amount of the joint is not within the allowable range with respect to the target value, in step 106, the transmittance distribution is controlled on the installation surface SPA, SPD, etc. of the partial illumination system ILA, ILD, ILE. Check if the member 17A or the like is installed. Since the control member 17A is installed this time, the operation shifts to step 110, and the main control device 20 determines whether or not the control member 17A or the like has been installed or replaced a predetermined number of times. When the number of installations or replacements reaches the predetermined number, the operation shifts to step 118, and the main control device 20 adjusts the illumination system IS to the operator to distribute the light intensity in the illumination regions IRA to IRG. Issue a command to make adjustments, etc.

また、ステップ110において、その設置又は交換の回数がその所定回数に達していない場合には、ステップ112に移行して、制御部材17A等の交換を行うかどうかを判定する。ここでは、設置面SPA,SPD等に制御部材17Aが設置されているため、動作はステップ116に移行して、主制御装置20は、表示装置を介してオペレータに交換用の制御部材(制御部材17Bとする)、及びこの制御部材17Bの回転角等の目標値の情報を供給する。これに応じてオペレータは設置面SPA,SPD等の制御部材17Aを制御部材17Bに交換し、主制御装置20に、制御部材17A等の交換を行った回数を示すパラメータに1を加算するように制御情報を入力する。 Further, in step 110, if the number of installations or replacements has not reached the predetermined number of times, the process proceeds to step 112 to determine whether or not to replace the control member 17A or the like. Here, since the control member 17A is installed on the installation surface SPA, SPD, etc., the operation shifts to step 116, and the main control device 20 is replaced by the operator via the display device (control member). 17B), and information on target values such as the rotation angle of the control member 17B is supplied. In response to this, the operator replaces the control member 17A such as the installation surface SPA and SPD with the control member 17B, and adds 1 to the parameter indicating the number of times the control member 17A and the like have been replaced to the main control device 20. Enter the control information.

その後、動作はステップ114に移行して、主制御装置20は表示装置を介してオペレータに、設置面SPA,SPD等に設置されている制御部材17Bの回転角等を目標値に設定するように指示を行う。このようにして、照明領域IRA~IRGの設置面には、それぞれ積算露光量分布のうち、継ぎ部54A等に対応する露光量が目標値に近づくように、制御部材17A等が設置される。 After that, the operation shifts to step 114, and the main control device 20 causes the operator to set the rotation angle and the like of the control member 17B installed on the installation surface SPA, SPD, etc. as the target value via the display device. Give instructions. In this way, the control member 17A and the like are installed on the installation surfaces of the illumination regions IRA to IRG so that the exposure amount corresponding to the joint portion 54A and the like in the integrated exposure amount distribution approaches the target value.

この露光方法によれば、継ぎ部54A~54Fの露光量が目標値に近づき、走査露光後の積算露光量のY方向の分布が均一になっているため、プレートPに対する露光量むらが低減されて高精度に露光を行うことができる。
また、ステップ102~114の動作は、露光装置EXのメンテナンス時等に実行してもよい。これによって、経時変化等によって、照明領域IRA~IRGの照度分布が次第に変化して、積算露光量分布が変化したような場合でも、制御部材17A等の交換等を行うのみで容易に露光量むらを低減させることができる。
According to this exposure method, the exposure amount of the joints 54A to 54F approaches the target value, and the distribution of the integrated exposure amount after the scanning exposure in the Y direction is uniform, so that the exposure amount unevenness with respect to the plate P is reduced. It is possible to perform exposure with high accuracy.
Further, the operations of steps 102 to 114 may be executed at the time of maintenance of the exposure apparatus EX or the like. As a result, even if the illuminance distribution in the illumination areas IRA to IRG gradually changes due to changes over time and the integrated exposure amount distribution changes, the exposure amount unevenness can be easily achieved simply by replacing the control member 17A or the like. Can be reduced.

上述のように、本実施形態の露光方法及び露光装置EXは、照明系IS(照明光学系)からの露光用の照明光EL(露光光)でマスクMのパターン及び投影システムPS(投影光学系)を介してプレートP(基板)を露光しつつ、マスクM及びプレートPを投影システムPSに対して同期して走査する露光方法及び装置である。そして、露光装置EXにおいて、投影システムPSは、プレートP上の互いに異なる複数の露光領域PRA~PRGを露光するとともに、露光領域PRA~PRGは、プレートPをX方向(走査方向)に走査したときに、隣接する2つの露光領域のX方向に直交するY方向(非走査方向)の端部の二重露光によって、プレートP上に継ぎ部54A~54Fが形成されるように配置されている。また、露光装置EXは、継ぎ部54A~54Fの露光量を制御するために、マスクMのパターン面Maと照明系ISの瞳面PPA,PPD等との間に設置されて、少なくとも一つの露光領域PRA~PRGの端部の光強度分布を調整する制御部材17A等(調整部材)を備えている。 As described above, the exposure method and the exposure apparatus EX of the present embodiment are the illumination light EL (exposure light) for exposure from the illumination system IS (illumination optical system) and the pattern of the mask M and the projection system PS (projection optical system). ), While exposing the plate P (substrate), the exposure method and apparatus for scanning the mask M and the plate P synchronously with respect to the projection system PS. Then, in the exposure apparatus EX, the projection system PS exposes a plurality of different exposure regions PRA to PRG on the plate P, and the exposure regions PRA to PRG scan the plate P in the X direction (scanning direction). The joints 54A to 54F are arranged on the plate P by double exposure at the ends of the two adjacent exposure regions in the Y direction (non-scanning direction) orthogonal to the X direction. Further, the exposure apparatus EX is installed between the pattern surface Ma of the mask M and the pupil surfaces PPA, PPD, etc. of the illumination system IS in order to control the exposure amount of the joint portions 54A to 54F, and at least one exposure is provided. A control member 17A or the like (adjustment member) for adjusting the light intensity distribution at the ends of the regions PRA to PRG is provided.

また、露光装置EXを用いる露光方法は、プレートP上の複数の露光領域PRA~PRGを露光しつつ、プレートPをX方向に走査して、隣接する2つの露光領域の非走査方向の端部の二重露光によって、プレートP上に継ぎ部54A~54Fを形成するステップ124と、継ぎ部54A~54Fの露光量を制御するために、パターン面Maと照明系ISの瞳面との間に設置された制御部材17A等を設置するステップ108と、を有する。 Further, in the exposure method using the exposure apparatus EX, while exposing a plurality of exposure regions PRA to PRG on the plate P, the plate P is scanned in the X direction, and the end portions of the two adjacent exposure regions in the non-scanning direction are scanned. In order to control the exposure amount of the joint portions 54A to 54F between the step 124 of forming the joint portions 54A to 54F on the plate P by the double exposure of the above, between the pattern surface Ma and the pupil surface of the illumination system IS. It has a step 108 for installing the installed control member 17A and the like.

本実施形態の露光装置EX又は露光方法によれば、制御部材17A等の設置によって、継ぎ部54A~54Fの露光量を目標値に対して高精度に設定できるため、複数の露光領域PRA~PRGを用いてプレートPを走査露光する場合に、継ぎ部54A~54Fの露光量むらを低減して高精度に露光を行うことができる。
また、制御部材17A等は、マスクMのパターン面Maと照明系ISの瞳面PPA,PPD等との間に設置されているため、制御部材17A等の設置精度を低く設定しても、継ぎ部54A~54Fの露光量を高精度に制御でき、制御部材17A等の設置及び交換を容易に行うことができる。
According to the exposure apparatus EX or the exposure method of the present embodiment, the exposure amount of the joint portions 54A to 54F can be set with high accuracy with respect to the target value by installing the control member 17A or the like, so that a plurality of exposure areas PRA to PRG When the plate P is subjected to scanning exposure using the above, it is possible to reduce the exposure amount unevenness of the joint portions 54A to 54F and perform the exposure with high accuracy.
Further, since the control member 17A and the like are installed between the pattern surface Ma of the mask M and the pupil surfaces PPA, PPD and the like of the illumination system IS, even if the installation accuracy of the control member 17A and the like is set low, the joints are joined. The exposure amount of the portions 54A to 54F can be controlled with high accuracy, and the control member 17A and the like can be easily installed and replaced.

なお、上述の実施形態では、図4(A)~(C)に示すように、半円状のフィルタ部17Aa等を有する制御部材17A等が使用されているが、図10に示すように、開口部17Dbを囲むように配置された輪帯状のメッシュ型のフィルタ部17Daを有する透過率分布の制御部材17Dを使用してもよい。フィルタ部17Daの平均的な透過率は例えば70%~90%程度であり、フィルタ部17Daの内径は、台形状の露光領域PRA~PRGの傾斜部の中央付近の直径程度である。制御部材17Dは、制御部材17A等の代わりに、部分照明系ILA,ILDの設置面SPA,SPD等に保持機構18を介して設置可能である。 In the above-described embodiment, as shown in FIGS. 4A to 4C, a control member 17A or the like having a semicircular filter portion 17Aa or the like is used, but as shown in FIG. A transmittance distribution control member 17D having a ring-shaped mesh-shaped filter portion 17Da arranged so as to surround the opening 17Db may be used. The average transmittance of the filter portion 17Da is, for example, about 70% to 90%, and the inner diameter of the filter portion 17Da is about the diameter near the center of the inclined portion of the trapezoidal exposed region PRA to PRG. The control member 17D can be installed on the installation surface SPA, SPD or the like of the partial lighting system ILA, ILD or the like via the holding mechanism 18 instead of the control member 17A or the like.

例えば、図11(A)に示すように、制御部材17A等を設置する前の積算露光量ΣEのY方向の分布に関して、継ぎ部54A,54Bの露光量が目標値よりも高い場合には、図10(B)に示すように、露光領域PRA,PRD,PRE用の部分照明系ILA,ILD,ILEにそれぞれ制御部材17Dを設置する。この場合、制御部材17Dの輪帯状のフィルタ部17Daによって、露光領域PRA,PRD,PREのY方向の端部(傾斜部の先端部)における照明光ELの照度が低下する。 For example, as shown in FIG. 11A, when the exposure amount of the joint portions 54A and 54B is higher than the target value with respect to the distribution of the integrated exposure amount ΣE in the Y direction before installing the control member 17A or the like, As shown in FIG. 10B, control members 17D are installed in the partial illumination systems ILA, ILD, and ILE for the exposure regions PRA, PRD, and PRE, respectively. In this case, the ring-shaped filter portion 17Da of the control member 17D reduces the illuminance of the illumination light EL at the Y-direction ends (tips of the inclined portions) of the exposed areas PRA, PRD, and PRE.

このため、制御部材17Dを設置したことによる露光領域PRA,PRD,PREの照度の変化量(補正量)Enは、図10(C)に示すように、継ぎ部54A,54Bに対応する部分で大きくなる。この補正量Enを加算した全体の照度の補正量(積算露光量に対応する量)のY方向の分布は、図10(E)の点線の曲線58Bのようになる。また、制御部材17Dを設置する前の積算露光量は、図10(E)の点線の曲線58Aであるため、制御部材17Dを設置した後の積算露光量ΣEのY方向の分布は、図10(D)に示すように平坦になり、継ぎ部54A,54Bの露光量は目標値と同じになる。 Therefore, as shown in FIG. 10C, the amount of change (correction amount) En of the illuminance in the exposed areas PRA, PRD, and PRE due to the installation of the control member 17D is the portion corresponding to the joint portions 54A and 54B. growing. The distribution in the Y direction of the correction amount (amount corresponding to the integrated exposure amount) of the entire illuminance to which the correction amount En is added is as shown by the dotted line curve 58B in FIG. 10 (E). Further, since the integrated exposure amount before installing the control member 17D is the curve 58A of the dotted line in FIG. 10 (E), the distribution of the integrated exposure amount ΣE after installing the control member 17D in the Y direction is shown in FIG. As shown in (D), it becomes flat, and the exposure amount of the joint portions 54A and 54B becomes the same as the target value.

このように輪帯状のフィルタ部17Daを有する制御部材17DをマスクMのパターン面Maと照明系ISの瞳面PPA,PPD等との間に設置しても、継ぎ部54A~54Fにおける露光量むらを低減させることができる。
また、メッシュ型(又はNDフィルタ型)のフィルタ部を有する制御部材17A等の代替として、図12(A)、(B)、(C)、(D)、(E)、及び(F)に示すように、それぞれ線状部材が所定形状に配置されたフィルタ部を有する制御部材17F,17G,17H,17I,17J,17Kを使用することもできる。制御部材17Fのリング状の枠部17Faには、例えばボルトで固定できるように複数の開口17Fhが形成されている。これは他の制御部材17G~17Kも同様である。
Even if the control member 17D having the ring-shaped filter portion 17Da is installed between the pattern surface Ma of the mask M and the pupil surfaces PPA, PPD, etc. of the illumination system IS in this way, the exposure amount unevenness in the joint portions 54A to 54F is uneven. Can be reduced.
Further, as an alternative to the control member 17A having a mesh type (or ND filter type) filter unit, FIGS. 12 (A), (B), (C), (D), (E), and (F) are shown. As shown, control members 17F, 17G, 17H, 17I, 17J, 17K each having a filter portion in which linear members are arranged in a predetermined shape can also be used. A plurality of openings 17Fh are formed in the ring-shaped frame portion 17F of the control member 17F so that they can be fixed with bolts, for example. This also applies to the other control members 17G to 17K.

また、制御部材17F,17G,17Hのフィルタ部17Fa,17Ga,17Haは、走査方向(X方向)の半面側の領域に、それぞれ線状部材で、X方向及びY方向に平行な格子状パターン、X方向にほぼ45度で交差するように傾斜した格子状パターン、及び多数の正六角形状のパターンを形成したものである。
また、図12(D)、(E)、(F)の制御部材17I,17J,17Kのフィルタ部17Ia,17Ja,及び17Kaは、それぞれ台形状の視野絞りの長手方向と平行な2本の直線状部材、台形状の視野絞りの長手方向と平行な1本の直線状部材、及び台形状の視野絞りの長手方向に対して傾斜した1本の直線状部材から形成されている。制御部材17I,17J,17Kを用いた場合には、Y方向に平行な線状部材が使用されていないため、走査露光後のY方向(非走査方向)の積算露光量のむら(又はY方向の照度むら)を減少させることができる。
Further, the filter portions 17Fa, 17Ga, 17Ha of the control members 17F, 17G, 17H are linear members in the region on the half surface side in the scanning direction (X direction), respectively, and have a grid pattern parallel to the X direction and the Y direction. A grid pattern inclined so as to intersect at approximately 45 degrees in the X direction, and a large number of regular hexagonal patterns are formed.
Further, the filter portions 17Ia, 17Ja, and 17Ka of the control members 17I, 17J, and 17K of FIGS. 12 (D), (E), and (F) are two straight lines parallel to the longitudinal direction of the trapezoidal field aperture, respectively. It is formed of a shaped member, one linear member parallel to the longitudinal direction of the trapezoidal field diaphragm, and one linear member inclined with respect to the longitudinal direction of the trapezoidal field diaphragm. When the control members 17I, 17J, 17K are used, since the linear member parallel to the Y direction is not used, the integrated exposure amount in the Y direction (non-scanning direction) after the scanning exposure is uneven (or in the Y direction). Illuminance unevenness) can be reduced.

また、上述の制御部材17A~17D及び制御部材17F~17Kにおいて、フィルタ部を構成する線状部材の太さを全体的に調整するか、又は部分的に調整することによって、透過率分布を調整することもできる。
また、上述の実施形態では、マルチレンズ型で等倍の投影システムPSが使用されているが、投影システムPSとして単一の投影光学系を使用して、例えばスティッチング方式で基板を露光する場合にも本発明が適用できる。さらに、投影光学系の投影倍率が拡大又は縮小の場合にも本発明が適用できる。
Further, in the above-mentioned control members 17A to 17D and control members 17F to 17K, the transmittance distribution is adjusted by adjusting the thickness of the linear member constituting the filter portion entirely or partially. You can also do it.
Further, in the above-described embodiment, the multi-lens type projection system PS having the same magnification is used, but when a single projection optical system is used as the projection system PS and the substrate is exposed by, for example, a stitching method. The present invention can also be applied to. Further, the present invention can be applied even when the projection magnification of the projection optical system is enlarged or reduced.

また、上記の各実施形態の露光装置EX又は露光方法を用いて、基板上に所定のパターン(TFTパターン等)を形成することによって、電子デバイス(マイクロデバイス)としての液晶ディスプレイ用のパネル(液晶表示パネル)を得ることもできる。以下、図13のフローチャートを参照して、この製造方法の一例につき説明する。
図13のステップS401(パターン形成工程)では、先ず、露光対象の基板上にフォトレジストを塗布して感光基板(プレートP)を準備する塗布工程、上記の露光装置を用いてパネル用のマスク(例えばマスクMを含む)のパターンをその感光基板上の複数のパターン形成領域に露光する露光工程、及びその感光基板を現像する現像工程が実行される。この塗布工程、露光工程、及び現像工程を含むリソグラフィ工程によって、その基板上に所定のレジストパターンが形成される。このリソグラフィ工程に続いて、そのレジストパターンをマスクとしたエッチング工程、及びレジスト剥離工程等を経て、その基板上に所定パターンが形成される。そのリソグラフィ工程等は、その基板上のレイヤ数に応じて複数回実行される。
Further, by forming a predetermined pattern (TFT pattern or the like) on the substrate by using the exposure apparatus EX or the exposure method of each of the above embodiments, a panel (liquid crystal display) for a liquid crystal display as an electronic device (microdevice) is formed. You can also get a display panel). Hereinafter, an example of this manufacturing method will be described with reference to the flowchart of FIG.
In step S401 (pattern forming step) of FIG. 13, first, a photoresist is applied on the substrate to be exposed to prepare a photosensitive substrate (plate P), and a mask for a panel using the above-mentioned exposure apparatus (a mask for a panel (plate P). An exposure step of exposing a pattern of (including, for example, a mask M) to a plurality of pattern forming regions on the photosensitive substrate and a developing step of developing the photosensitive substrate are executed. A predetermined resist pattern is formed on the substrate by the lithography process including the coating process, the exposure process, and the developing process. Following this lithography step, a predetermined pattern is formed on the substrate through an etching step using the resist pattern as a mask, a resist peeling step, and the like. The lithography process or the like is executed a plurality of times according to the number of layers on the substrate.

その次のステップS402(カラーフィルタ形成工程)では、赤R、緑G、青Bに対応した3つの微細なフィルタの組をマトリックス状に多数配列するか、又は赤R、緑G、青Bの3本のストライプ状の複数のフィルタの組を水平走査線方向に配列することによってカラーフィルタを形成する。その次のステップS403(セル組立工程)では、例えばステップS401にて得られた所定パターンを有する基板とステップS402にて得られたカラーフィルタとの間に液晶を注入して、液晶セルを製造する。 In the next step S402 (color filter forming step), a large number of sets of three fine filters corresponding to red R, green G, and blue B are arranged in a matrix, or red R, green G, and blue B are arranged. A color filter is formed by arranging a set of three striped filters in the horizontal scanning line direction. In the next step S403 (cell assembly step), for example, a liquid crystal cell is manufactured by injecting liquid crystal between the substrate having the predetermined pattern obtained in step S401 and the color filter obtained in step S402. ..

その後のステップS404(モジュール組立工程)では、そのようにして組み立てられた液晶セルに表示動作を行わせるための電気回路、及びバックライト等の部品を取り付けて、液晶表示パネルとして完成させる。
上述の電子デバイスの製造方法によれば、上記の実施形態の露光装置又は露光方法を用いてマスクのパターンを基板に転写する工程(ステップS401の一部)と、この工程によりそのパターンが転写された基板をそのパターンに基づいて加工(現像、エッチング等)する工程(ステップS401の他の部分)とを含んでいる。
In the subsequent step S404 (module assembly step), the liquid crystal cell assembled in this way is attached with an electric circuit for performing a display operation and parts such as a backlight to complete the liquid crystal display panel.
According to the method for manufacturing an electronic device described above, a step of transferring a mask pattern to a substrate (a part of step S401) using the exposure apparatus or the exposure method of the above embodiment, and a step of transferring the pattern by this step. It includes a step (other part of step S401) of processing (developing, etching, etc.) the substrate based on the pattern.

この製造方法によれば、マスクのパターンを効率的に、及び露光量むらの影響を小さくして高精度に基板に露光できるため、液晶表示パネルを効率的に、及び高精度に製造できる。
なお、上述の電子デバイスの製造方法は、有機EL(Electro-Luminescence)ディスプレイ、又はプラズマディスプレイ等の他のディスプレイ用のパネル等を製造する場合にも適用できる。
According to this manufacturing method, the mask pattern can be efficiently exposed to the substrate with high accuracy by reducing the influence of the exposure amount unevenness, so that the liquid crystal display panel can be manufactured efficiently and with high accuracy.
The above-mentioned method for manufacturing an electronic device can also be applied to the case of manufacturing a panel for another display such as an organic EL (Electro-Luminescence) display or a plasma display.

なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。 The present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

EX…露光装置、PS…投影システム、PLA~PLG…部分投影光学系、M…マスク、P…プレート、PRA~PRG…露光領域、17A~17D…制御部材、18…保持機構、21…マスクステージ、22…プレートステージ、35…視野絞り、53A…パターン形成領域、54A~54F…継ぎ部 EX ... exposure device, PS ... projection system, PLA to PLG ... partial projection optical system, M ... mask, P ... plate, PRA to PRG ... exposure area, 17A to 17D ... control member, 18 ... holding mechanism, 21 ... mask stage , 22 ... Plate stage, 35 ... Field diaphragm, 53A ... Pattern formation area, 54A to 54F ... Joint

Claims (12)

パターンを有するマスクを、投影光学系を介して基板上に露光する露光装置において、
前記マスクを照明光で照明する照明光学系と、
前記マスクを支持するマスクステージと、
前記マスクステージを前記照明光に対して第1方向へ相対移動させるマスクステージ駆動部と、を備え、
前記マスクステージ駆動部は、前記第1方向に交差する第2方向に関して、第1領域が照明された前記マスクに対して前記第1領域と一部重複する第2領域に照明光が照射されるように、前記マスクを支持する前記マスクステージを前記第1方向へ相対移動させ、
前記照明光学系は、前記第1領域と前記第2領域との重複照明領域内の一部領域の前記照明光の照度を、前記重複照明領域内の前記一部領域以外の他部領域の照度に対して調整、前記第1方向に透過率の分布を有し、前記照明光の一部を透過させるフィルタ部を備える調整部材を含む、露光装置。
In an exposure apparatus that exposes a mask having a pattern onto a substrate via a projection optical system.
An illumination optical system that illuminates the mask with illumination light,
A mask stage that supports the mask and
A mask stage drive unit that moves the mask stage relative to the illumination light in the first direction is provided.
The mask stage drive unit illuminates a second region that partially overlaps the first region with respect to the mask whose first region is illuminated with respect to the second direction intersecting the first direction. As described above, the mask stage supporting the mask is relatively moved in the first direction.
In the illumination optical system, the illuminance of the illumination light in a part of the overlapping illumination region of the first region and the second region is the illuminance of the other region other than the partial region in the overlap illumination region. An exposure apparatus comprising an adjusting member having a transmission rate distribution in the first direction and a filter portion for transmitting a part of the illumination light .
前記調整部材は、前記第1領域内の前記重複照明領域以外である第1非重複照明領域の照度、あるいは前記第2領域内の前記重複照明領域以外である第2非重複照明領域の照度に対して前記重複照明領域の前記照明光の照度を調整する、請求項1に記載の露光装置。 The adjusting member has an illuminance of a first non-overlapping illumination region other than the overlapping illumination region in the first region, or an illuminance of a second non-overlapping illumination region other than the overlapping illumination region in the second region. The exposure apparatus according to claim 1, wherein the illuminance of the illumination light in the overlapping illumination region is adjusted. 前記調整部材は、前記マスクと前記照明光学系の瞳面との間に設けられる、請求項1又は2に記載の露光装置。 The exposure apparatus according to claim 1 or 2, wherein the adjusting member is provided between the mask and the pupil surface of the illumination optical system. 前記照明光学系は、オプティカルインテグレータを有し、The illumination optical system has an optical integrator and has an optical integrator.
前記調整部材は、前記マスクと前記オプティカルインテグレータとの間に設けられる、請求項1~3のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 3, wherein the adjusting member is provided between the mask and the optical integrator.
前記照明光学系は、前記マスクのパターン面に前記照明光を集光するレンズを有し、
前記調整部材は、前記レンズに対して前記第1方向に移動する、請求項1~のいずれか一項に記載の露光装置。
The illumination optical system has a lens that collects the illumination light on the pattern surface of the mask.
The exposure apparatus according to any one of claims 1 to 4 , wherein the adjusting member moves in the first direction with respect to the lens.
前記調整部材は、前記マスクを照明する前記照明光の照度分布が前記第1方向に対して非均一になるように調整する請求項1~のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 5 , wherein the adjusting member adjusts the illuminance distribution of the illumination light that illuminates the mask so as to be non-uniform with respect to the first direction. 前記調整部材は、前記第1非重複照明領域の照度あるいは前記第2非重複照明領域の照度に対して前記重複照明領域の照度の強さが異なるように、前記第1非重複照明領域の照度あるいは前記第2非重複照明領域の照度に対して前記重複照明領域の照度を調整する、請求項2に記載の露光装置。 The adjusting member has an illuminance in the first non-overlapping lighting region so that the intensity of the illuminance in the overlapping lighting region is different from the illuminance in the first non-overlapping lighting region or the illuminance in the second non-overlapping lighting region. Alternatively, the exposure apparatus according to claim 2, wherein the illuminance of the overlapping illumination region is adjusted with respect to the illuminance of the second non-overlapping illumination region. 前記投影光学系は、前記重複照明領域に照明されたパターンの投影像を前記基板上の重複投影領域に投影し、
前記調整部材は、前記重複投影領域の前記第2方向に関する光強度分布を非均一になるように調整する請求項1~のいずれか一項に記載の露光装置。
The projection optical system projects a projected image of a pattern illuminated in the overlapped illumination area onto the overlapped projection area on the substrate.
The exposure apparatus according to any one of claims 1 to 7 , wherein the adjusting member adjusts the light intensity distribution in the second direction of the overlapping projection region so as to be non-uniform.
前記投影光学系は、前記第1非重複照明領域、前記第2非重複照明領域、および前記重複照明領域に照明されたパターンの投影像をそれぞれ前記基板上の第1非重複投影領域、第2非重複投影領域、および重複領域に投影し、
前記調整部材は、前記第1非重複投影領域の照度あるいは前記第2非重複投影領域の照度に対して前記重複領域の照度の強さが異なるように前記重複領域の照度を調整する、請求項2に記載の露光装置。
The projection optical system displays a projected image of a pattern illuminated in the first non-overlapping illumination region, the second non-overlapping illumination region, and the overlapping illumination region in the first non-overlapping projection region and the second on the substrate, respectively. Project to non-overlapping projection areas and overlapping areas,
The adjusting member adjusts the illuminance of the overlapping region so that the intensity of the illuminance of the overlapping region is different from the illuminance of the first non-overlapping projection region or the illuminance of the second non-overlapping projection region. 2. The exposure apparatus according to 2.
前記フィルタ部は、前記照明光が通過する領域を、前記照明光を透過する透過領域と前記照明光の一部を遮光する遮光領域とに分割する前記第2方向に平行なエッジ部を有するメッシュ型のフィルタを有する、請求項1~のいずれか一項に記載の露光装置。 The filter unit is a mesh having an edge portion parallel to the second direction that divides a region through which the illumination light passes into a transmission region that transmits the illumination light and a light-shielding region that shields a part of the illumination light. The exposure apparatus according to any one of claims 1 to 9 , further comprising a type filter. 前記フィルタ部は、中空形状のメッシュ型のフィルタを有し、前記重複照明領域の少なくとも一部の前記照明光の一部を前記重複照明領域の他部に対して遮光するように配置される請求項1~のいずれか一項に記載の露光装置。 The filter unit has a hollow mesh type filter, and is arranged so as to shield at least a part of the illumination light of the overlapped illumination area from the other part of the overlapped illumination area. Item 6. The exposure apparatus according to any one of Items 1 to 9 . 前記照明光学系は、複数の前記投影光学系に対応するように複数設けられ、
前記調整部材は、複数の前記照明光学系にそれぞれ設けられる請求項1~11のいずれか一項に記載の露光装置。
A plurality of the illumination optical systems are provided so as to correspond to the plurality of projection optical systems.
The exposure apparatus according to any one of claims 1 to 11 , wherein the adjusting member is provided in each of a plurality of the illumination optical systems.
JP2019083432A 2019-04-24 2019-04-24 Exposure device Active JP7060848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019083432A JP7060848B2 (en) 2019-04-24 2019-04-24 Exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019083432A JP7060848B2 (en) 2019-04-24 2019-04-24 Exposure device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014146538A Division JP6519109B2 (en) 2014-07-17 2014-07-17 Exposure method and apparatus, and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2019117417A JP2019117417A (en) 2019-07-18
JP7060848B2 true JP7060848B2 (en) 2022-04-27

Family

ID=67304392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019083432A Active JP7060848B2 (en) 2019-04-24 2019-04-24 Exposure device

Country Status (1)

Country Link
JP (1) JP7060848B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299279A (en) 1999-04-16 2000-10-24 Nec Corp Scanning aligner and scanning aligning method
JP2001215717A (en) 2000-02-02 2001-08-10 Nikon Corp Scanning exposure method and scanning exposure system
JP2002258489A (en) 2000-04-20 2002-09-11 Nikon Corp Device and method for aligner
WO2003023832A1 (en) 2001-09-07 2003-03-20 Nikon Corporation Exposure method and system, and device production method
JP2004311896A (en) 2003-04-10 2004-11-04 Nikon Corp Method and equipment for exposure, process for fabricating device, and mask

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235078B2 (en) * 1993-02-24 2001-12-04 株式会社ニコン Scanning exposure method, exposure control device, scanning type exposure device, and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299279A (en) 1999-04-16 2000-10-24 Nec Corp Scanning aligner and scanning aligning method
JP2001215717A (en) 2000-02-02 2001-08-10 Nikon Corp Scanning exposure method and scanning exposure system
JP2002258489A (en) 2000-04-20 2002-09-11 Nikon Corp Device and method for aligner
WO2003023832A1 (en) 2001-09-07 2003-03-20 Nikon Corporation Exposure method and system, and device production method
JP2004311896A (en) 2003-04-10 2004-11-04 Nikon Corp Method and equipment for exposure, process for fabricating device, and mask

Also Published As

Publication number Publication date
JP2019117417A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
TWI512404B (en) Optical integrator, optical lighting system, exposure device, and device production method
KR20090029686A (en) Variable slit device, illuminating device, exposure device, exposure method, and method of manufacturing device
JP6519109B2 (en) Exposure method and apparatus, and device manufacturing method
WO2010061674A1 (en) Correction unit, illumination optical system, exposure device, and device manufacturing method
JP2007101592A (en) Scanning exposure apparatus and method for manufacturing microdevice
US10866521B2 (en) Exposure apparatus and exposure method
KR101662882B1 (en) Exposure apparatus, and method of manufacturing article
KR20100106949A (en) Exposure method and exposure device
JP7060848B2 (en) Exposure device
JP2004303951A (en) Aligner and exposure method
TWI459155B (en) Exposure method and device thereof
JP2019028084A (en) Exposure device
JP5360379B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
JP5388019B2 (en) Exposure illumination apparatus and exposure pattern misalignment adjustment method
JP6855969B2 (en) Exposure device and exposure method
JP2013021265A (en) Illumination device, exposure device, exposure method, and manufacturing method of device
JP5515323B2 (en) Projection optical apparatus, exposure apparatus, and device manufacturing method
TWI480705B (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2023282205A1 (en) Exposure device and device manufacturing method
WO2023127499A1 (en) Exposure device
KR102040341B1 (en) Illumination device
WO2020203002A1 (en) Exposure device, illumination optical system, and device manufacturing method
JP2011192900A (en) Projection optical apparatus, aligner, and device manufacturing method
JP2007049208A (en) Exposure device, method of exposure and method of manufacturing device
TW202115772A (en) Exposure method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201014

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220329

R150 Certificate of patent or registration of utility model

Ref document number: 7060848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150