JP2016020805A - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
JP2016020805A
JP2016020805A JP2015111931A JP2015111931A JP2016020805A JP 2016020805 A JP2016020805 A JP 2016020805A JP 2015111931 A JP2015111931 A JP 2015111931A JP 2015111931 A JP2015111931 A JP 2015111931A JP 2016020805 A JP2016020805 A JP 2016020805A
Authority
JP
Japan
Prior art keywords
air
temperature
evaporator
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111931A
Other languages
English (en)
Inventor
竹内 清
Kiyoshi Takeuchi
清 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015111931A priority Critical patent/JP2016020805A/ja
Priority to PCT/JP2015/003006 priority patent/WO2015194167A1/ja
Publication of JP2016020805A publication Critical patent/JP2016020805A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】除霜運転を行うヒートポンプ装置において、除霜時間の短縮化を図る。【解決手段】室内へ送風される送風空気(給気)を間接的に加熱するヒートポンプサイクル20、並びに、換気のために室内から排出される熱源空気(排気)をヒートポンプサイクル20の空気熱交換器24側へ導くための排気ダクト40bおよび排気ダクト40bの外気導入口を開閉するヒートポンプ側ドア43を備えており、空気熱交換器24に着霜が生じていると判定され、さらに、流入空気温度Taiが基準流入空気温度KTai以下となっている際には、空気熱交換器24内に高温の冷媒を流入させる第1除霜運転を実行し、第1除霜運転の実行中に、空気熱交換器24から流出する冷媒の温度(低圧冷媒温度)TLが基準低圧冷媒温度KTL以上となった際には、ヒートポンプ側ドア43を閉じて、温度低下していない排気を空気熱交換器24へ導く第2除霜運転を実行する。【選択図】図1

Description

本発明は、ヒートポンプサイクルの蒸発器に着霜が生じた際に、これを除霜するための除霜運転を行うヒートポンプ装置に関する。
従来、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)を備え、このヒートポンプサイクルの蒸発器に着霜が生じた際に、これを除霜するための除霜運転を行うヒートポンプ装置が知られている。例えば、特許文献1には、この種のヒートポンプ装置として、ヒートポンプサイクルの放熱器にて温室内の空気を加熱し、温室内の暖房を行う暖房システムが開示されている。
さらに、この特許文献1のヒートポンプ装置(暖房システム)では、温室内の空気を蒸発器側へ導くダクトを備えており、蒸発器に着霜が生じた際に、ヒートポンプサイクルの圧縮機を停止させた状態で、ダクトを介して換気のために温室内から排出された空気(排気)を蒸発器側へ導くことによって除霜運転を行っている。
特開2010−178721号公報
ところが、特許文献1のヒートポンプ装置のように、排気を蒸発器側へ導くことによって除霜運転を行う構成では、排気の温度や湿度が変化してしまうと、除霜運転の開始から蒸発器の除霜を完了するまでの除霜時間も変化してしまう。つまり、排気の温度や湿度が低下してしまうと、除霜時間が長くなってしまう。
さらに、特許文献1のヒートポンプ装置のように、除霜運転の実行中にヒートポンプサイクルの圧縮機を停止させてしまう構成では、除霜時間が長くなってしまうと、温室内の暖房を行うことができない時間も長くなってしまう。
本発明は、上記点に鑑み、除霜運転を行うヒートポンプ装置において、除霜時間の短縮化を図ることを目的とする。
本発明は、以下に説明する知見に基づいて案出されたものである。すなわち、ヒートポンプサイクル(20)の蒸発器(24)の除霜を完了させるために必要な熱量は、単に、蒸発器(24)に生じた霜を融解するために必要な熱量蒸発器(24)に生じた霜を融解するために必要な熱量だけでなく、蒸発器(24)本体等を加熱するための熱量も必要となる。
さらに、本発明者らが、蒸発器(24)の除霜を完了させるために必要な熱量についてより詳細に調査したところ、蒸発器(24)本体等を加熱するために必要な熱量のうち、蒸発器(24)内に滞留している低圧冷媒を加熱するために必要な熱量の割合が多いことが判った。
そこで、請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(21)、圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させる放熱器(22)、放熱器(22)から流出した冷媒を減圧させる減圧手段(23)、および減圧手段(23)にて減圧された低圧冷媒と空気とを熱交換させて低圧冷媒を蒸発させる蒸発器(24)を有するヒートポンプサイクル(20)と、外気よりも高温の熱源空気を蒸発器(24)側へ導く熱源空気導入手段(40b)と、蒸発器(24)に着霜が生じているか否かを判定する着霜判定手段(S1)と、を備え、
着霜判定手段(S1)によって蒸発器(24)に着霜が生じていると判定された際に、蒸発器(24)の除霜を行うための除霜運転を実行し、
除霜運転として、着霜判定手段(S1)によって蒸発器(24)に着霜が生じていると判定された際の低圧冷媒よりも高温の冷媒を蒸発器(24)へ流入させる第1除霜運転、および熱源空気導入手段(40b)によって前記熱源空気を前記蒸発器(24)側へ導く第2除霜運転を実行可能であるヒートポンプ装置を特徴としている。
これによれば、第1除霜運転および第2除霜運転を実行可能に構成されているので、蒸発器(24)の除霜時に必要とされる、蒸発器(24)内に滞留している低圧冷媒を加熱するために必要な熱量、および霜を融解するために必要な熱量を、容易に確保することができる。
より詳細には、第1除霜運転では、低圧冷媒よりも高温の冷媒を蒸発器(24)へ流入させるので、蒸発器(24)内の冷媒を低圧冷媒よりも高温の冷媒に置換して、主に蒸発器(24)本体および蒸発器(24)内に滞留する冷媒の温度を上昇させることができる。また、第2除霜運転では、熱源空気導入手段(40b)によって熱源空気を蒸発器(24)側へ導くので、主に蒸発器(24)の外部から霜を融解することができる。
従って、蒸発器(24)の除霜時に必要とされる熱量を容易に確保することができ、除霜時間(すなわち、第1、第2除霜運転の開始から、蒸発器(24)の除霜を完了するまでの時間)の短縮化を図ることができる。
さらに、第1除霜運転および第2除霜運転の実行順序を変更することや、第1除霜運転および第2除霜運転を同時に実行すること等によって、蒸発器(24)の除霜を速やかに完了させるための除霜制御を実現しやすい。
具体的には、さらに、蒸発器(24)にて低圧冷媒と熱交換する空気の流入空気温度(Tai)を検出する空気温度検出手段(51)を備え、
着霜判定手段(S1)によって蒸発器(24)に着霜が生じていると判定され、さらに、空気温度検出手段(51)によって検出された流入空気温度(Tai)が予め定めた基準流入空気温度(KTai)以下になっている際には、圧縮機(21)を作動させた状態で、第1除霜運転および第2除霜運転の双方を実行してもよい。
さらに、蒸発器(24)から流出した冷媒の低圧冷媒温度(TL)を検出する冷媒温度検出手段(52)を備え、
第1除霜運転および第2除霜運転の双方が実行されている際に、さらに、低圧冷媒温度(TL)が予め定めた基準低圧冷媒温度(KTL)以上となった際には、第1除霜運転を停止し、圧縮機(21)を停止させた状態で、第2除霜運転のみを実行するようにしてもよい。
また、請求項5に記載の発明では、冷媒を圧縮して吐出する圧縮機(21)、圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させる放熱器(22)、放熱器(22)から流出した冷媒を減圧させる減圧手段(23)、および減圧手段(23)にて減圧された低圧冷媒と空気とを熱交換させて低圧冷媒を蒸発させる蒸発器(24)を有するヒートポンプサイクル(20)と、外気よりも高温の熱源空気を蒸発器(24)側へ導く熱源空気導入手段(40b)と、蒸発器(24)にて低圧冷媒と熱交換する空気の流入空気温度(Tai)を検出する空気温度検出手段(51)と、蒸発器(24)から流出した冷媒の低圧冷媒温度(TL)を検出する冷媒温度検出手段(52)と、蒸発器(24)に着霜が生じているか否かを判定する着霜判定手段(S1)と、を備え、
着霜判定手段(S1)によって蒸発器(24)に着霜が生じていると判定され、さらに、空気温度検出手段(51)によって検出された流入空気温度(Tai)が予め定めた基準流入空気温度(KTai)以下になっている際には、圧縮機(21)を作動させた状態で、着霜判定手段(S1)によって蒸発器(24)に着霜が生じていると判定された際の低圧冷媒よりも高温の冷媒を蒸発器(24)へ流入させる第1除霜運転を実行し、
さらに、第1除霜運転の実行中に、低圧冷媒温度(TL)が予め定めた基準低圧冷媒温度(KTL)以上となった際には、圧縮機(21)を停止させた状態で、熱源空気導入手段(40b)によって熱源空気を蒸発器(24)側へ導く第2除霜運転を実行するヒートポンプ装置を特徴としている。
これによれば、第1除霜運転時に、低圧冷媒よりも高温の冷媒を蒸発器(24)へ流入させるので、蒸発器(24)内の冷媒を低圧冷媒よりも高温の冷媒に置換することができる。従って、蒸発器(24)の除霜を完了させるために必要な熱量を低減させることができる。
さらに、第1除霜運転の実行中に、低圧冷媒温度(TL)が予め定めた基準低圧冷媒温度(KTL)以上となった際には、第2除霜運転へ移行するので、第1除霜運転の実行時間を不必要に長時間化させてしまうことなく、蒸発器(24)内の冷媒を確実に低圧冷媒よりも高温の冷媒に置き換えることができる。
これに加えて、第2除霜運転時に、熱源空気導入手段(40b)によって熱源空気を蒸発器(24)側へ導くので、蒸発器(24)の効率的に除霜を行うことができる。その結果、除霜時間(すなわち、第1、第2除霜運転の開始から、蒸発器(24)の除霜を完了するまでの時間)の短縮化を図ることができる。
また、請求項7に記載の発明では、冷媒を圧縮して吐出する圧縮機(21)、圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させる放熱器(22)、放熱器(22)から流出した冷媒を減圧させる減圧手段(23)、および減圧手段(23)にて減圧された低圧冷媒と空気とを熱交換させて低圧冷媒を蒸発させる蒸発器(24)を有するヒートポンプサイクル(20)と、外気よりも高温の熱源空気を蒸発器(24)側へ導く熱源空気導入手段(40b)と、熱源空気導入手段(40b)から蒸発器(24)側へ導かれる熱源空気の流入空気温度(Tai)を検出する空気温度検出手段(51)と、蒸発器(24)に着霜が生じているか否かを判定する着霜判定手段(S1)と、を備え、
着霜判定手段(S1)によって蒸発器(24)に着霜が生じていると判定され、さらに、空気温度検出手段(51)によって検出された流入空気温度(Tai)が予め定めた基準流入空気温度(KTai)以下になっている際には、圧縮機(21)を作動させた状態で、着霜判定手段(S1)によって蒸発器(24)に着霜が生じていると判定された際の低圧冷媒よりも高温の冷媒を蒸発器(24)へ流入させる第1除霜運転を実行し、
さらに、第1除霜運転の実行開始から予め定めた基準経過時間(KTa)を経過した際には、圧縮機(21)を停止させた状態で、熱源空気導入手段(40b)によって熱源空気を蒸発器(24)側へ導く第2除霜運転を実行するヒートポンプ装置を特徴としている。
これによれば、第1除霜運転時に、低圧冷媒よりも高温の冷媒を蒸発器(24)へ流入させるので、請求項5に記載の発明と同様に、蒸発器(24)の除霜を完了させるために必要な熱量を低減させることができる。さらに、第1除霜運転の実行開始から予め定めた既定時間(T1)を経過した際には、第2除霜運転へ移行するので、第1除霜運転の実行時間を不必要に長時間化させてしまうことがない。
これに加えて、第2除霜運転時に、熱源空気を蒸発器(24)側へ導くように熱源空気導入手段(40b)を作動させるので、請求項1に記載の発明と同様に、蒸発器(24)の効率的に除霜を行うことができる。その結果、除霜時間の短縮化を図ることができる。
ここで、各請求項に記載された着霜判定手段(S1)は、実際に蒸発器(24)に着霜が生じているか否かを判定する判定手段に限定されることなく、蒸発器(24)に着霜が生じ得る運転条件であるか否かを判定する判定手段や、蒸発器(24)に着霜が生じている可能性があるか否かを判定する判定手段を含む。
また、熱源空気導入手段(40b)は、少なくとも第2除霜運転時に熱源空気を蒸発器(24)側へ導くことができれば、他の運転時に熱源空気を蒸発器(24)側へ導くものであってもよい。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態の暖房システムの全体構成図である。 第1実施形態の暖房システムの電気制御部を示すブロック図である。 第1実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第2実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第3実施形態の暖房システムの全体構成図である。 第4実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第5実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第6実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第7実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第8実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第9実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第10実施形態の暖房システムの制御処理の要部を示すフローチャートである。 第11実施形態の暖房システムの制御処理の要部を示すフローチャートである。
(第1実施形態)
図1〜図3を用いて、本発明の第1実施形態について説明する。本実施形態では、本発明に係るヒートポンプ装置を、図1に示す暖房システム10に適用している。
この暖房システム10は、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)20、第1、第2水循環回路30a、30b、給気ダクト40a、排気ダクト40b等を備えている。そして、ヒートポンプサイクル20にて第1、第2水循環回路30a、30bを循環する熱媒体を加熱し、加熱された熱媒体を熱源として家屋Hの室内へ送風される送風空気を加熱する構成になっている。
まず、ヒートポンプサイクル20について説明する。本実施形態のヒートポンプサイクル20は、後述する第1水循環回路30aを循環する熱媒体を加熱する機能を果たす。従って、熱媒体は、ヒートポンプサイクル20の加熱対象流体である。ヒートポンプサイクル20は、圧縮機21、水−冷媒熱交換器22、電気式膨張弁23、および空気熱交換器24を冷媒配管で接続して構成されている。
また、本実施形態のヒートポンプサイクル20では、冷媒として二酸化炭素を採用しており、圧縮機21の吐出口側から電気式膨張弁23の入口側へ至るサイクルの高圧冷媒の圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機21を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
圧縮機21は、ヒートポンプサイクル20において冷媒を吸入し、臨界圧力以上となるまで圧縮して吐出するもので、吐出容量が固定された固定容量型圧縮機構を電動モータにて駆動する電動圧縮機である。固定容量型圧縮機構としては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。
電動モータは、後述する制御装置50から出力される制御信号によって、その回転数が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機21の冷媒吐出能力が変更される。圧縮機21の吐出口には、水−冷媒熱交換器22の冷媒通路22a入口側が接続されている。
水−冷媒熱交換器22は、圧縮機21から吐出された高圧冷媒を流通させる冷媒通路22a、および第1水循環回路30aを循環する熱媒体を流通させる水通路22bを有し、冷媒通路22aを流通する高圧冷媒と水通路22bを流通する熱媒体とを熱交換させて、熱媒体を加熱する放熱器である。
このような水−冷媒熱交換器22としては、冷媒通路22aの内周に水通路22bを配置して冷媒と冷却水とを熱交換させる構成や、冷媒通路22aとして冷媒を流通させる蛇行状のチューブあるいは複数本のチューブを採用し、隣り合うチューブ間に水通路22bを形成して冷媒と冷却水とを熱交換させる構成のものを採用することができる。
さらに、本実施形態では、水−冷媒熱交換器22として、冷媒通路22aを流通する冷媒の流れ方向と水通路22bを流通する熱媒体の流れ方向が対向流となる対向流型の熱交換器を採用している。
また、本実施形態のヒートポンプサイクル20は、前述の如く、超臨界冷凍サイクルを構成しているので、水−冷媒熱交換器22の冷媒通路22aでは、冷媒は凝縮することなく超臨界状態のまま放熱する。水−冷媒熱交換器22の冷媒通路22a出口側には、電気式膨張弁23の入口側が接続されている。
電気式膨張弁23は、水−冷媒熱交換器22の冷媒通路22aから流出した冷媒を減圧させる減圧手段である。より具体的には、電気式膨張弁23は、絞り開度を変更可能に構成された弁体、および弁体を変位させて絞り開度を変化させる電動アクチュエータを有する可変絞り機構で構成されている。
さらに、電気式膨張弁23は、制御装置50から出力される制御信号によって、その作動が制御される。電気式膨張弁23の出口側には、空気熱交換器24の冷媒入口側が接続されている。
空気熱交換器24は、電気式膨張弁23にて減圧された低圧冷媒と送風ファン24aから送風された空気とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器である。空気熱交換器24の冷媒出口には、圧縮機21の吸入口側が接続されている。また、送風ファン24aは、制御装置50から出力される制御電圧によって回転数(送風能力)が制御される電動送風機である。
これらのヒートポンプサイクル20の各構成機器21〜24、24aは、1つの筐体内に収容されており、ヒートポンプユニットとして一体的に構成されている。さらに、このヒートポンプユニットは、室内に配置されている。なお、図1では、図示の明確化のために、ヒートポンプサイクル20の各構成機器21〜24、24a等を家屋Hと異なる位置に示している。このことは、後述する図5においても同様である。
次に、第1、第2水循環回路30a、30bについて説明する。第1水循環回路30aは、水−冷媒熱交換器22の水通路22bとタンク31との間で熱媒体を循環させる熱媒体循環回路である。本実施形態では、熱媒体として、エチレングリコール水溶液からなる不凍液を採用している。この他にも、熱媒体として、水を採用してもよい。タンク31は、水−冷媒熱交換器22にて加熱された熱媒体を貯留する熱媒体貯留手段である。
より具体的には、タンク31は、耐食性に優れた金属(例えば、ステンレス)にて中空円柱状に形成され、軸方向が略鉛直方向に延びる縦長形状に形成されている。さらに、タンク31は、外周を断熱材で覆う断熱構造あるいは二重タンクによる真空断熱構造等を有しており、高温の熱媒体を長時間保温しながら貯留することができる。なお、タンク31は、前述したヒートポンプユニットとともに、室内に配置されている。
また、第1水循環回路30aには、タンク31の下方側の熱媒体を吸入して水−冷媒熱交換器22の水通路22bへ圧送する第1水ポンプ32が配置されている。第1水ポンプ32は、制御装置50から出力される制御電圧によって回転数(水圧送能力)が制御される電動ポンプである。
そして、制御装置50が第1水ポンプ32を作動させると、タンク31の下方側の熱媒体が第1水ポンプ32→水−冷媒熱交換器22の水通路22b→タンク31の上方側の順に流れる。このため、タンク31内の熱媒体には、上方側から下方側へ向かって、温度が徐々に低下する温度分布が生じやすい。
第2水循環回路30bは、タンク31とヒータコア34との間で熱媒体を循環させる熱媒体循環回路である。ヒータコア34は、給気ダクト40a内の空気通路に配置されており、室内へ送風される送風空気と熱媒体とを熱交換させて送風空気を加熱する加熱用の熱交換器である。
また、第2水循環回路30bには、ヒータコア34から流出した熱媒体を吸入してタンク31の下方側へ圧送する第2水ポンプ33が配置されている。第2水ポンプ33の基本的構成は、第1水ポンプ32と同様である。そして、制御装置50が第2水ポンプ33を作動させると、タンク31の上方側の高温の熱媒体がヒータコア34→第2水ポンプ33→タンク31の下方側の順に流れる。
次に、給気ダクト40aおよび排気ダクト40bについて説明する。給気ダクト40aは、室内へ送風される送風空気(給気)を流通させる空気通路を形成する通風管であり、排気ダクト40bは、換気のために室内から排出される送風空気(排気)を流通させる空気通路を形成する通風管である。
このような給気ダクト40aおよび排気ダクト40bとしては、金属製のものを採用してもよいし、樹脂製のものを採用してもよい。さらに、内部を流通する送風空気と外部との断熱性を有する採用することが好ましい。
給気ダクト40aの空気流れ最上流側には、換気熱交換器41の給気用通路が接続されている。また、排気ダクト40bには、換気熱交換器41の排気用通路が接続されている。換気熱交換器41は、室内の換気を行う際に、給気用通路を流通する給気と排気用通路を流通する排気とを熱交換させる熱交換器である。
従って、換気熱交換器41では、暖房システム10の作動時に、高温の排気(室内から排出された空気)と低温の給気(室外から吸入される外気)とを熱交換させて、給気(外気)を加熱することができる。つまり、換気熱交換器41は、暖房システム10の作動時に、暖房時に排気とともに室外へ排出されてしまう熱エネルギを回収して給気を加熱することで、換気による室内の温度低下を抑制する機能を果たす。
このような換気熱交換器41としては、伝熱性に優れる複数の金属板(例えば、アルミニウム板や銅板)の板面同士を互いに平行に積層配置し、隣り合う金属板間に排気用通路と吸気通路とを交互に形成し、それぞれの排気用通路および給気用通路の内部に排気と給気との熱交換を促進するインナーフィンを配置することによって構成された熱交換器等を採用することができる。
また、給気ダクト40a内の空気通路には、換気熱交換器41を介して空気通路内へ導入された外気を、給気として室内に向けて送風する給気ファン42aが配置されている。給気ファン42aは、換気熱交換器41を介して制御装置50から出力される制御電圧によって回転数(送風能力)が制御される電動送風機である。
一方、排気ダクト40b内の空気通路には、換気のために室内から排出された排気を、換気熱交換器41の排気用通路へ向けて送風する排気ファン42bが配置されている。排気ファン42bの基本的構成は、給気ファン42aと同様である。なお、図1では、給気や排気の流れを太破線矢印で示している。
ここで、本実施形態では、図1に示すように、給気ダクト40a内の空気通路のうち、ヒータコア34の空気流れ下流側に給気ファン42aを配置しているが、もちろん、ヒータコア34の空気流れ上流側や換気熱交換器41の給気用通路の空気流れ上流側に給気ファン42aを配置してもよい。
同様に、本実施形態では、排気ダクト40b内の空気通路のうち、換気熱交換器41の排気用通路の空気流れ上流側に排気ファン42bを配置しているが、もちろん、換気熱交換器41の排気用通路の空気流れ下流側に排気ファン42bを配置してもよい。
また、排気ダクト40bの空気流れ最下流側には、排気をヒートポンプサイクル20の空気熱交換器24側へ向けて排出するヒートポンプ側排気口44が設けられている。さらに、排気ダクト40bの空気流れ最下流側には、外気を空気熱交換器24側へ導入する外気導入口が設けられている。この外気導入口には、外気導入口を開閉するヒートポンプ側ドア43が配置されている。
ヒートポンプ側ドア43は、ヒートポンプ側ドア駆動用の電動式のアクチュエータ43aによって駆動される。このアクチュエータ43aは、制御装置50から出力される制御信号によって、その作動が制御される。
そして、制御装置50が、外気導入口を開くように(図1の実線で示す位置に)ヒートポンプ側ドア43の作動を制御した際には、外気と排気との混合気体が空気熱交換器24側へ導かれる。一方、制御装置50が、外気導入口を閉じるように(図1の細破線で示す位置に)ヒートポンプ側ドア43の作動を制御した際には、排気に外気が混ざり合うことなく排気のみが空気熱交換器24側へ導かれる。
ここで、暖房システム10では、室内の空気温度が外気よりも高い温度となるように給気を加熱するので、排気は外気よりも高い温度となる。従って、本実施形態の排気は、特許請求の範囲に記載された熱源空気に対応しており、さらに、本実施形態の排気ダクト40bは、特許請求の範囲に記載された熱源空気導入手段を構成している。
次に、図2のブロック図を用いて、本実施形態の暖房システム10の電気制御部の概要について説明する。制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器の作動を制御する。
制御装置50の出力側には、ヒートポンプサイクル20の圧縮機21の電動モータ、電気式膨張弁23、送風ファン24a、第1水ポンプ32、第2水ポンプ33、給気ファン42a、排気ファン42b、ヒートポンプ側ドア駆動用のアクチュエータ43a等の各種制御対象機器が接続されている。
一方、制御装置50の入力側には、空気熱交換器24へ導かれる空気の温度(すなわち、空気熱交換器24にて低圧冷媒と熱交換する空気の流入空気温度)Taiを検出する空気温度検出手段としての空気温度センサ51、空気熱交換器24から流出した直後の冷媒の温度(低圧冷媒温度)TLを検出する冷媒温度検出手段としての低圧冷媒温度センサ52、タンク31内の熱媒体温度を検出するタンク内温度センサ53、外気温を検出する外気温センサ54等が接続されており、これらのセンサ群の検出信号が制御装置50に入力される。
さらに、制御装置50の入力側には、室内に配置されたリモコン(操作パネル)60が接続されている。このリモコン60には、暖房システム10の作動を要求する作動要求信号および停止を要求する停止要求信号を出力する作動スイッチ、室内の目標室内温度Tsetを設定する温度設定スイッチ、室内への目標風量Qaを設定する風量設定スイッチ等が設けられており、これらのスイッチの操作信号が制御装置50へ入力される。
ここで、本実施形態の制御装置50は、その出力側に接続された各種制御対象機器を制御する制御手段が一体的に構成されたものであるが、制御装置50のうちそれぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
例えば、制御装置50のうち、ヒートポンプサイクルの圧縮機21の冷媒吐出能力(回転数)を制御する構成(ハードウェアおよびソフトウェア)が、吐出能力制御手段50aを構成し、電気式膨張弁23の絞り開度を制御する構成が、絞り開度制御手段50bを構成し、ヒートポンプ側ドア43(具体的には、ヒートポンプ側ドア駆動用のアクチュエータ43a)の作動を制御する構成が、熱源空気導入制御手段50cを構成している。
さらに、吐出能力制御手段50a、絞り開度制御手段50b、熱源空気導入制御手段50c等を制御装置50に対して別の装置で構成してもよい。
次に、上記構成における本実施形態の暖房システム10の作動について説明する。暖房システム10に外部から電源が供給された状態で、リモコン60の作動スイッチが投入されると、制御装置50が予め記憶回路に記憶している制御処理(制御プログラム)を実行する。
この制御処理のメインルーチンでは、制御装置50が、リモコン60の操作信号およびセンサ群51〜54の検出信号を読み込み、読み込まれた操作信号および検出信号に基づいて、出力側に接続された各種制御対象機器へ出力される制御信号あるいは制御電圧を決定する。
例えば、ヒートポンプサイクル20の圧縮機21(具体的には、圧縮機21の電動モータ)へ出力される制御信号については、リモコン60の温度設定スイッチによって設定された目標室内温度Tset、風量設定スイッチによって設定された目標風量Qa、および外気温センサ54によって検出された外気温Tam等に基づいて、予め制御装置50に記憶された制御マップを参照して決定される。
より具体的には、この制御マップでは、目標室内温度Tsetの上昇、目標風量Qaの上昇、および外気温Tamの低下に伴って、圧縮機21の冷媒吐出能力が増加するように制御信号が決定される。
電気式膨張弁23へ出力される制御信号については、圧縮機21の吐出口側から電気式膨張弁23の入口側へ至るサイクルの高圧冷媒の圧力が目標高圧に近づくように決定される。目標高圧は、外気温Tamおよび圧縮機21の冷媒吐出能力から推定される圧縮機21の吐出冷媒温度に基づいて、予め制御装置に記憶された制御マップを参照して決定される。
より具体的には、この制御マップでは、ヒートポンプサイクル20の成績係数(COP)が極大値に近づくように電気式膨張弁23へ出力される制御信号が決定される。
送風ファン24aへ出力される制御電圧については、予め定めた所定の送風能力が発揮されるように決定される。第1、第2水ポンプ32、33へ出力される制御電圧については、予め定めた所定の水圧送能力が発揮されるように決定される。給気ファン42aおよび排気ファン42bへ出力される制御電圧については、リモコン60の風量設定スイッチによって設定された目標風量Qaの増加に伴って、給気ファン42aおよび排気ファン42bの送風能力を増加させるように決定される。
さらに、制御処理のメインルーチンでは、ヒートポンプ側ドア駆動用のアクチュエータ43aへ出力される制御信号については、外気導入口を開くように決定される。
そして、制御装置50は、上記の如く決定した制御信号および制御電圧を各種制御対象機器へ出力する。その後、リモコン60の作動スイッチによって暖房システム10の作動停止が要求されるまで、所定の制御周期毎に、検出信号および操作信号の読み込み→各種制御対象機器へ出力される制御信号および制御電圧の決定→各種制御対象機器への制御信号および制御電圧の出力といった制御ルーチンが繰り返される。
従って、制御装置50が制御プログラムを実行すると、ヒートポンプサイクル20の圧縮機21から吐出された高圧冷媒が、水−冷媒熱交換器22の冷媒通路22aへ流入して、第1水循環回路30aの第1水ポンプ32によって水通路22bへ圧送された熱媒体と熱交換する。これにより、水通路22bを流通する熱媒体が加熱される。
水−冷媒熱交換器22の冷媒通路22aから流出した高圧冷媒は、電気式膨張弁23にて減圧される。電気式膨張弁23にて減圧された冷媒は、空気熱交換器24へ流入し、送風ファン24aから送風された空気から吸熱して蒸発する。
ここで、制御処理のメインルーチンが実行されている際には、ヒートポンプ側ドア43が外気導入口を開いているので、送風ファン24aは、空気熱交換器24へ排気と外気が混ざり合った空気を空気熱交換器24へ送風する。空気熱交換器24から流出した冷媒は、圧縮機21へ吸入されて再び圧縮される。
一方、水−冷媒熱交換器22の水通路22bにて加熱された熱媒体は、タンク31の上方側へ圧送されてタンク31内に貯留される。さらに、タンク31内の上方側に貯留された熱媒体は、第2水循環回路30bの第2水ポンプ33の吸入作用によって、ヒータコア34へ流入する。
ヒータコア34へ流入した熱媒体は、給気ファン42aによって吸引されて給気ダクト40aを流通する給気と熱交換する。これにより、給気が加熱され、室内の暖房がなされる。ヒータコア34から流出した熱媒体は、第2水ポンプ33に吸入されて、タンク31内の下方側に圧送される。
また、室内へ供給された空気は、換気のために、排気ファン42bに吸引されて、排気ダクト40bを介して空気熱交換器24側へ排出される。この際、排気は、換気熱交換器41の排気用通路を流通して、換気熱交換器41の給気用通路を流通する給気と熱交換する。これにより、ヒータコア34へ流入する給気が加熱される。
本実施形態の暖房システム10は、以上の如く作動して、室内の換気を行いながら、室内の暖房を行うことができる。
ここで、本実施形態の暖房システム10のヒートポンプサイクル20のように、空気熱交換器24にて低圧冷媒と外気とを熱交換させて低圧冷媒を蒸発させる構成では、空気熱交換器24における冷媒蒸発温度が着霜温度(具体的には、0℃)以下になってしまうと、空気熱交換器24に着霜が生じてしまうおそれがある。
このような着霜は、空気熱交換器24の外気通路を閉塞させて、空気熱交換器24の熱交換性能を著しく低下させてしまうので、空気熱交換器24における冷媒の吸熱量を減少させてしまう。その結果、ヒートポンプサイクル20の熱媒体の加熱能力(すなわち、水−冷媒熱交換器22における熱媒体の加熱能力)が低下してしまい、室内の充分な暖房を行うために必要な温度となるように給気を加熱することができなくなってしまう。
なお、本実施形態の水−冷媒熱交換器22における熱媒体の加熱能力は、水−冷媒熱交換器22の冷媒通路22a入口側冷媒のエンタルピから冷媒通路22a出口側冷媒のエンタルピを減算したエンタルピ差ΔHと、水−冷媒熱交換器22を流通する高圧冷媒の流量(質量流量)QHとを積算した値(ΔH×QH)によって定義することができる。
そこで、本実施形態の暖房システム10では、制御装置50が図3のフローチャートに示す制御処理を実行することによって、空気熱交換器24に着霜が生じた際に、これを除霜するための除霜運転を行っている。
図3のフローチャートに示す制御処理は、上述したメインルーチンの制御処理のサブルーチンとして、所定の周期毎に実行される。また、図3のフローチャートの各制御ステップは、制御装置50が有する各種の機能実現手段を構成している。
まず、ステップS1では、空気熱交換器24に着霜が生じているか否かを判定する。具体的には、本実施形態のステップS1では、外気温Tamから低圧冷媒温度センサ52によって検出された低圧冷媒温度TLを減算した温度差(Tam−TL)が、予め定めた基準温度差以上となっている際に、空気熱交換器24に着霜が生じていると判定する。従って、制御ステップS1は、特許請求の範囲に記載された着霜判定手段を構成している。
さらに、この本実施形態のステップS1では、実際に空気熱交換器24に着霜が生じているか否かを判定するために、空気熱交換器24に着霜が生じ得る運転条件になっているか否かを判定している。換言すると、ステップS1では、空気熱交換器24に着霜が生じている可能性があるか否かを判定していると表現することもできる。
そして、ステップS1にて、空気熱交換器24に着霜が生じていると判定された際には、ステップS2へ進み、空気熱交換器24に着霜が生じていると判定されなかった際には、メインルーチンへ戻る。
ステップS2では、空気温度センサ51によって検出された流入空気温度Taiが予め定めた基準流入空気温度KTai以下となっているか否かが判定される。この基準流入空気温度KTaiは、熱源空気を空気熱交換器24側へ導いた際に、空気熱交換器24を速やかに除霜可能な温度に設定されている。
つまり、流入空気温度Taiが基準流入空気温度KTaiより高くなっている際には、熱源空気を空気熱交換器24側へ導くことによって速やかに空気熱交換器24を除霜することができる。具体的には、本実施形態では、基準流入空気温度KTaiを5℃に設定している。
そして、ステップS2にて、流入空気温度Taiが基準流入空気温度KTai以下になっていると判定された際には、ステップS3へ進み、流入空気温度Taiが基準流入空気温度KTai以下になっていないと判定された際には、ステップS5へ進む。
ステップS3では、第1除霜運転が実行される。本実施形態の第1除霜運転では、電気式膨張弁23の絞り開度を増加させる。より具体的には、電気式膨張弁23の絞り開度を全開とする。
これにより、第1除霜運転では、圧縮機21を作動させた状態で、ステップS1にて空気熱交換器24に着霜が生じていると判定された際に空気熱交換器24内に存在している低圧冷媒(以下、残留低圧冷媒と記載する。)よりも高温の冷媒が、空気熱交換器24へ流入する。
続くステップS4では、再び低圧冷媒温度TLを読み込んで、読み込まれた低圧冷媒温度TLが予め定めた基準低圧冷媒温度KTL以上となっているか否かが判定される。ここで、基準低圧冷媒温度KTLは、空気熱交換器24内の低圧冷媒が高温の冷媒に置換されたことを確認できるように設定されている。具体的には、本実施形態では、基準低圧冷媒温度KTLを0℃に設定している。
そして、ステップS4にて、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となっていると判定された際には、ステップS5へ進み、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となっていないと判定された際には、ステップS3へ戻る。ステップS5では、圧縮機21の作動を停止させて、ステップS6へ進む。
ステップS6では、第2除霜運転が実行される。本実施形態の第2除霜運転では、圧縮機21を停止させた状態で、ヒートポンプ側ドア43が外気導入口を閉じるように、熱源空気導入制御手段50cがヒートポンプ側ドア43の作動を制御する。これにより、排気のみが空気熱交換器24側へ導かれる。換言すると、外気が混ざり合うことによって温度低下していない排気が空気熱交換器24側へ導かれる。
続くステップS7では、空気熱交換器24の除霜の完了を待って、メインルーチンへ戻る。具体的には、ステップS7では、第2除霜運転の実行開始から、除霜が完了するように予め定めた待機時間Txの経過を待って、メインルーチンへ戻るようにしてもよいし、空気熱交換器24自体の温度を検出する温度検出手段を設け、空気熱交換器24自体の温度が基準終了温度以上となった際に、メインルーチンへ戻るようにしてもよい。
従って、本実施形態の暖房システム10では、着霜判定手段を構成するステップS1にて空気熱交換器24に着霜が生じていると判定され、さらに、流入空気温度Taiが基準流入空気温度KTaiより高くなっている際には、圧縮機21を停止させた状態で、熱源空気(排気)を空気熱交換器24側へ導くことができる。
この場合は、流入空気温度Taiが基準流入空気温度KTaiより高くなっているので、熱源空気(排気)の有する熱によって、空気熱交換器24に着いた霜を速やかに融解して、空気熱交換器24の速やかな除霜を実現することができる。
これに対して、ステップS1にて空気熱交換器24に着霜が生じていると判定され、さらに、流入空気温度Taiが基準流入空気温度KTai以下になっている際には、熱源空気を空気熱交換器24側へ導いても、熱源空気の有する熱によって、空気熱交換器24の速やかな除霜を実現できなくなってしまうおそれがある。
ここで、ヒートポンプサイクル20の空気熱交換器24の除霜を完了させるために必要な熱量は、単に、空気熱交換器24に生じた霜を融解するために必要な熱量だけではなく、空気熱交換器24本体等を加熱するための熱量も必要となる。
さらに、本発明者らが、空気熱交換器24の除霜を完了させるために必要な熱量についてより詳細に調査したところ、空気熱交換器24本体等を加熱するために必要な熱量のうち、空気熱交換器24内に滞留している低圧冷媒を加熱するために必要な熱量の割合が多いことが判っている。
そこで、本実施形態の暖房システム10では、ステップS1にて空気熱交換器24に着霜が生じていると判定され、さらに、流入空気温度Taiが基準流入空気温度KTai以下になっている際には、第1除霜運転を実行した後に、第2除霜運転を実行している。
この第1除霜運転では、電気式膨張弁23の絞り開度を増加させることによって、残留低圧冷媒よりも高温の冷媒を空気熱交換器24へ流入させるので、空気熱交換器24内の冷媒を残留低圧冷媒よりも高温の冷媒に置換することができる。従って、空気熱交換器24の除霜を完了させるために必要な熱量を低減させることができる。
さらに、第1除霜運転の実行中に、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となった際には、第2除霜運転へ移行するので、第1除霜運転の実行時間を不必要に長時間化させてしまうことなく、空気熱交換器24内の冷媒を確実に残留低圧冷媒よりも高温の冷媒に置き換えることができる。
これに加えて、第2除霜運転では、上述の如く、ヒートポンプ側ドア43が外気導入口を閉じるので、排気ダクト40bを介して空気熱交換器24側へ導かれた排気に外気が混ざり合ってしまうことがない。従って、外気が混ざり合うことによって温度低下していない排気(熱源空気)を空気熱交換器24側へ導くことができ、空気熱交換器24の効率的な除霜を行うことができる。
その結果、流入空気温度Taiが基準流入空気温度KTai以下になっている際に、第1除霜運転を実行することなく熱源空気を空気熱交換器24側へ導く場合に対して、除霜時間(すなわち、第1除霜運転の開始から、空気熱交換器24の除霜を完了するまでの時間)の短縮化を図ることができる。
また、本実施形態の暖房システム10では、第1除霜運転時に、電気式膨張弁23の絞り開度を増加させるので、極めて容易に、残留低圧冷媒よりも高温の冷媒を、空気熱交換器24へ流入させることができる。
また、本実施形態の暖房システム10では、ヒートポンプサイクル20によって加熱された熱媒体をタンク31に貯留し、ヒータコア34にてタンク31に貯留された熱媒体を熱源として給気を加熱している。従って、除霜運転の実行中に圧縮機21を停止させても、タンク31に貯留された熱媒体の有する熱によって室内の暖房を継続することができる。
さらに、本実施形態の暖房システム10では、除霜時間の短縮化を図ることができるので、容量の小さいタンク31を採用することができ、暖房システム10全体としての小型化を図ることもできる。さらに、本実施形態の熱源空気(排気)は、熱媒体を介して間接的にヒートポンプサイクル20によって加熱された空気であるから、第2除霜運転時には、確実に、残留低圧冷媒よりも高温の排気を空気熱交換器24側へ導くことができる。
(第2実施形態)
本実施形態では、第1実施形態に対して、図4のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。より具体的には、本実施形態では、ステップS3にて第1除霜運転が実行された後に、続くステップS41にて、第1除霜運転の実行開始からの経過時間Taが予め定めた基準経過時間KTa以上になっているか否かを判定する。
ここで、基準経過時間KTaは、第1除霜運転の開始から基準経過時間KTaの経過を待つことによって、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となるように設定されている。このような基準経過時間KTaは、予め実験的に得られた既定値を用いてもよいし、外気温Tamに基づいて制御装置50に記憶されている制御マップを参照して決定してもよい。
そして、図4のステップS41にて、経過時間Taが基準経過時間KTa以上となっていると判定された際には、ステップS5へ進み、経過時間Taが基準経過時間KTa以上となっていないと判定された際には、ステップS3へ戻る。その他の構成および作動は、第1実施形態と同様である。従って、本実施形態の暖房システム10においても、第1実施形態と同様の効果を得ることができる。
さらに、本実施形態では、暖房システム10の構成を第1実施形態と同様とした例を説明したが、第1実施形態で説明したステップS4に代えて、ステップS41に変更することで、低圧冷媒温度TLを読み込む必要がなくなる。従って、低圧冷媒温度センサ52を廃止してもよい。
このように低圧冷媒温度センサ52を廃止する場合、着霜判定手段を構成するステップS1では、外気温Tamが予め定めた基準着霜温度(例えば、−5℃以下)となっている際に空気熱交換器24に着霜が生じていると判定してもよい。
(第3実施形態)
本実施形態では、第1実施形態に対して、図5の全体構成図に示すように、ヒートポンプサイクル20の電気式膨張弁23の上流側の冷媒を、電気式膨張弁23を迂回させて空気熱交換器24の冷媒入口側へ導くバイパス通路25、およびバイパス通路25を開閉する開閉手段としての開閉弁26を追加した例を説明する。開閉弁26は、制御装置50から出力される制御電圧によって開閉作動する電磁弁である。
そして、本実施形態では、第1除霜運転時に、制御装置50が開閉弁26を開くことによって、残留低圧冷媒よりも高温の冷媒を、空気熱交換器24へ流入させている。その他の構成および作動は、第1実施形態と同様である。従って、本実施形態の暖房システム10においても、第1実施形態と同様の効果を得ることができる。
ここで、図5では、水−冷媒熱交換器22の上流側の高圧冷媒を、空気熱交換器24の冷媒入口側へ導くように、バイパス通路25を配置した例を示したが、もちろん、水−冷媒熱交換器22の下流側の高圧冷媒を、空気熱交換器24の冷媒入口側へ導くように、バイパス通路25を配置してもよい。
(第4実施形態)
第1実施形態で説明したように、暖房システム10では、ヒートポンプサイクル20の空気熱交換器24の除霜を行うために、第1除霜運転および第2除霜運転を実行することができる。そして、第1除霜運転では、主に空気熱交換器24本体および空気熱交換器24内に滞留する冷媒の温度を上昇させることができる。また、第2除霜運転では、主に空気熱交換器24の外部から霜を融解することができる。
換言すると、第1除霜運転を実行することで、主に空気熱交換器24本体および空気熱交換器24内に滞留している低圧冷媒を加熱するために必要な熱量を確保しやすい。また、第2除霜運転を実行することで、主に霜を融解するために必要な熱量を確保しやすい。
従って、第1除霜運転および第2除霜運転の実行順序を変更することや、第1除霜運転および第2除霜運転を同時に実行すること等によって、空気熱交換器24の除霜を、より一層速やかに完了させるための除霜制御を実現することができる。そこで、本実施形態では、図6のフローチャートに示すように、第1実施形態に対して、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS2にて、流入空気温度Taiが基準流入空気温度KTai以下になっていると判定された際には、ステップS31へ進み、流入空気温度Taiが基準流入空気温度KTai以下になっていないと判定された際には、ステップS5へ進む。
ステップS31では、第1除霜運転および第2除霜運転の双方が実行されて、ステップS4へ進む。すなわち、本実施形態のステップS31では、圧縮機21の作動を停止させることなく、第1除霜運転として電気式膨張弁23の絞り開度を増加させる。さらに、第2除霜運転としてヒートポンプ側ドア43が外気導入口を閉じるようにヒートポンプ側ドア43の作動を制御する。
ステップS4では、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となっていると判定された際には、ステップS5へ進み、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となっていないと判定された際には、ステップS31へ戻る。ステップS5では、圧縮機21の作動を停止させて、ステップS6へ進む。
ステップS6では、第1実施形態と同様に第2除霜運転が実行される。すなわち、ステップS6では、第1除霜運転を停止し、さらに、圧縮機21を停止させた状態で、第2除霜運転のみが実行される。その他の構成および作動は、第1実施形態と同様である。従って、本実施形態の暖房システム10においても、第1実施形態と同様の効果を得ることができる。
ここで、寒冷地等に設置される暖房システム10においては、熱源空気の温度が低くなりやすい。このため、空気熱交換器24の除霜を行う際に、第1除霜運転のみを実行するだけでは、除霜運転時による消費電力が大きくなってしまいやすい。一方、第2除霜運転のみを実行するだけでは、除霜時間が長時間化してしまい、室内の暖房を行うことのできない時間も長くなってしまいやすい。
これに対して、本実施形態では、制御ステップS31にて説明したように、第1除霜運転および第2除霜運転を同時に実行している。
従って、主に空気熱交換器24本体および空気熱交換器24内の冷媒の温度を0℃以上に加熱するために第1除霜運転を実行することができる。同時に、主に空気熱交換器24に着いた霜を融解するために第2除霜運転を実行することができる。従って、霜を融解するために必要な熱量、および空気熱交換器24内に滞留している低圧冷媒を加熱するために必要な熱量を速やかに確保することができる。
その結果、本実施形態の暖房システム10によれば、除霜時間(すなわち、第1、第2除霜運転の開始から、空気熱交換器24の除霜を完了するまでの時間)を、より一層、短縮化させることができる。
さらに、制御ステップS31にて第1除霜運転のみを実行する場合に対して、圧縮機21の作動時間を短縮化することができる。従って、空気熱交換器24を除霜するために消費される圧縮機21の消費動力を低減できる。
また、制御ステップS4〜S6にて説明したように、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となった際には、第1除霜運転を停止し、圧縮機21を停止させた状態で、第2除霜運転のみを実行している。従って、除霜のために圧縮機21の消費動力が増加してしまうことを効果的に抑制することができる。
(第5実施形態)
本実施形態では、第1実施形態に対して、図7のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS1にて、空気熱交換器24に着霜が生じていると判定された際には、ステップS32へ進み、空気熱交換器24に着霜が生じていると判定されなかった際には、メインルーチンへ戻る。ステップS32では、第1除霜運転が実行される。すなわち、ステップS32では、圧縮機21の作動を停止させることなく、第1除霜運転として電気式膨張弁23の絞り開度を増加させる。
続くステップS2にて、流入空気温度Taiが基準流入空気温度KTai以下になっていると判定された際には、ステップS4へ進み、流入空気温度Taiが基準流入空気温度KTai以下になっていないと判定された際には、ステップS5へ進む。そして、ステップS4では、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となるのを待って、ステップS5へ進む。その他の構成および作動は、第1実施形態と同様である。
本実施形態のように、第1除霜運転および第2除霜運転を切り換えても、第1実施形態と同様に除霜時間の短縮化を図ることができる。
(第6実施形態)
本実施形態では、第1実施形態に対して、図8のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS1にて、空気熱交換器24に着霜が生じていると判定された際には、ステップS61へ進み、空気熱交換器24に着霜が生じていると判定されなかった際には、メインルーチンへ戻る。
ステップS61では、第2除霜運転が実行される。すなわち、ステップS61では、圧縮機21の作動を停止させることなく、第2除霜運転としてヒートポンプ側ドア43が外気導入口を閉じるようにヒートポンプ側ドア43の作動を制御する。
ステップS2以降の制御は第1実施形態と同様である。このため、本実施形態のステップS3では、第1除霜運転および第2除霜運転の双方が実行されることになる。また、ステップ6では、第2除霜運転のみが実行されることになる。その他の構成および作動は、第1実施形態と同様である。
本実施形態のように、第1除霜運転および第2除霜運転を切り換えても、第1実施形態と同様に除霜時間の短縮化を図ることができる。さらに、本実施形態では、空気熱交換器24の着霜が生じていると判定されると第2除霜運転を開始するので、熱源空気の温度を上昇させることができ、より一層、除霜時間の短縮化を図ることができる。
(第7実施形態)
本実施形態では、第1実施形態に対して、図9のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS1にて、空気熱交換器24に着霜が生じていると判定された際には、ステップS33へ進み、空気熱交換器24に着霜が生じていると判定されなかった際には、メインルーチンへ戻る。
ステップS33では、第1除霜運転および第2除霜運転の双方が実行される。すなわち、本実施形態のステップS33では、圧縮機21の作動を停止させることなく、第1除霜運転として電気式膨張弁23の絞り開度を増加させる。さらに、第2除霜運転としてヒートポンプ側ドア43が外気導入口を閉じるようにヒートポンプ側ドア43の作動を制御する。
続くステップS2にて、流入空気温度Taiが基準流入空気温度KTai以下になっていると判定された際には、ステップS4へ進み、流入空気温度Taiが基準流入空気温度KTai以下になっていないと判定された際には、ステップS5へ進む。そして、ステップS4では、低圧冷媒温度TLが基準低圧冷媒温度KTL以上となるのを待って、ステップS5へ進む。
続くステップS6では、第1実施形態と同様に第2除霜運転が実行される。すなわち、ステップS6では、第1除霜運転を停止し、さらに、圧縮機21を停止させた状態で、第2除霜運転のみが実行される。その他の構成および作動は、第1実施形態と同様である。
本実施形態のように、第1除霜運転および第2除霜運転を切り換えても、第1実施形態と同様に除霜時間の短縮化を図ることができる。
(第8実施形態)
本実施形態では、第4実施形態に対して、図10のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS31にて第1除霜運転および第2除霜運転が実行されるとステップS41へ進む。ステップS41では、第2実施形態と同様に、第1除霜運転の実行開始からの経過時間Taが予め定めた基準経過時間KTa以上になっているか否かを判定する。
そして、ステップS41にて、経過時間Taが基準経過時間KTa以上となっていると判定された際には、ステップS5へ進み、経過時間Taが基準経過時間KTa以上となっていないと判定された際には、ステップS31へ戻る。その他の構成および作動は、第4実施形態と同様である。従って、本実施形態の暖房システム10においても、第4実施形態と同様の効果を得ることができる。
(第9実施形態)
本実施形態では、第5実施形態に対して、図11のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS2にて、流入空気温度Taiが基準流入空気温度KTai以下になっていると判定された際に、ステップS41へ進む。ステップS41では、経過時間Taが基準経過時間KTa以上となるのを待って、ステップS5へ進む。その他の構成および作動は、第5実施形態と同様である。
本実施形態のように、第1除霜運転および第2除霜運転を切り換えても、第5実施形態と同様に除霜時間の短縮化を図ることができる。
(第10実施形態)
本実施形態では、第6実施形態に対して、図12のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS3にて第1除霜運転が実行されるとステップS41へ進む。ステップS41では、第2実施形態と同様に、第2実施形態と同様に、第1除霜運転の実行開始からの経過時間Taが予め定めた基準経過時間KTa以上になっているか否かを判定する。
そして、ステップS41にて、経過時間Taが基準経過時間KTa以上となっていると判定された際には、ステップS5へ進み、経過時間Taが基準経過時間KTa以上となっていないと判定された際には、ステップS3へ戻る。その他の構成および作動は、第6実施形態と同様である。従って、本実施形態の暖房システム10においても、第6実施形態と同様の効果を得ることができる。
(第11実施形態)
実施形態では、第7実施形態に対して、図13のフローチャートに示すように、除霜運転を行うために実行されるサブルーチンの内容を変更した例を説明する。
より具体的には、本実施形態では、ステップS2にて、流入空気温度Taiが基準流入空気温度KTai以下になっていると判定された際に、ステップS41へ進む。ステップS41では、経過時間Taが基準経過時間KTa以上となるのを待って、ステップS5へ進む。その他の構成および作動は、第7実施形態と同様である。
本実施形態のように、第1除霜運転および第2除霜運転を切り換えても、第5実施形態と同様に除霜時間の短縮化を図ることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、本発明に係るヒートポンプ装置を、暖房システム10に適用した例を説明したが、本発明に係るヒートポンプ装置の適用はこれに限定されない。
例えば、水−冷媒熱交換器22にて給湯水を加熱し、加熱された湯を浴槽や台所等に給湯するヒートポンプ給湯機に適用してもよい。この場合は、上述の実施形態のヒータコア34を廃止することができる。さらに、上述の実施形態において、ヒートポンプサイクル20の加熱対象流体として不凍液に代えて給湯水を採用し、タンク31に貯留された湯を浴槽や台所等に給湯する構成にしてもよい。
さらに、圧縮機21から吐出された高圧冷媒と室内へ送風される送風空気とを熱交換させて送風空気を加熱する暖房システムに適用してもよい。
また、上述の実施形態では、熱媒体を供給する暖房端末としてヒータコア34を採用した例を説明したが、熱媒体の有する熱を熱源とする暖房端末はこれに限定されない。例えば、暖房端末として、床暖房装置やラジエータヒータを採用してもよい。さらに、これらの暖房端末に、水−冷媒熱交換器22にて加熱された熱媒体を直接供給するようにしてもよい。この場合は、タンク31を配置することができる。
(2)上述の実施形態では、熱源空気として排気、すなわちヒートポンプサイクル20にて熱媒体を介して間接的に加熱された空気を採用した例を説明したが、熱源空気はこれに限定されない。ヒートポンプサイクル20にて直接的に加熱された空気を採用してもよいし、他の熱源によって外気よりも高温に加熱された空気を採用してもよい。
(3)ヒートポンプ装置(暖房システム10)を構成する構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、上述の実施形態では、圧縮機21として電動圧縮機を採用した例を説明したが、圧縮機21はこれに限定されない。例えば、圧縮機として、プーリ、ベルト等を介して内燃機関(エンジン)から伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。エンジン駆動式の圧縮機としては、吐出容量を変化させることによって冷媒吐出能力を調整可能な可変容量型圧縮機等を採用することができる。
上述の実施形態では、換気熱交換器41として、伝熱性および透湿性を有する材質で形成された板状部材を積層配置することによって構成された、いわゆる全熱交換器を採用してもよい。このような全熱交換器では、排気と給気との間で温度のみならず湿度の交換を行うこともできる。
(4)着霜判定手段を構成するステップS1における判定条件は、上述の実施形態に開示された条件に限定されない。例えば、低圧冷媒温度TLが予め定めた基準低圧冷媒温度以下となっている際に空気熱交換器24に着霜が生じていると判定してもよい。
また、予め定めた運転時間経過後に着霜が生じていると判定してもよい。さらに、タンク31が満水となってヒートポンプサイクル20を停止させたときに着霜が生じてていると判定してもよい。これは、タンク31が満水となる時間は予め予測可能であるため、タンク31が満水となった際に、予め定めた運転時間が経過したとみなすことができるからである。
(5)第1除霜運転時に残留低圧冷媒よりも高温の冷媒を空気熱交換器24へ流入させる手段は、上述の実施形態に開示されたものに限定されない。
例えば、通常運転時には、圧縮機21→水−冷媒熱交換器22→電気式膨張弁23→空気熱交換器24→圧縮機21の順に冷媒を循環させる冷媒回路に切り替え、除霜運転時には、圧縮機21→空気熱交換器24→電気式膨張弁23→圧縮機21の順に冷媒を循環させる冷媒回路に切り替える冷媒回路切替手段(四方弁等)を採用して、残留低圧冷媒よりも高温の冷媒を空気熱交換器24へ流入させるようにしてもよい。
(6)上述の実施形態では、排気ダクト40bに形成された外気導入口を開閉するヒートポンプ側ドア43を採用した例を説明したが、ヒートポンプ側ドア43はこれに限定されない。
例えば、排気ダクト40bの排気流出口の開口面積および外気導入口の開口面積を同時に連続的に変化させるドアを採用してもよい。このようなドアでは、排気のみを空気熱交換器24側へ導くことや、外気のみを空気熱交換器24側へ導くことができる。さらに、空気熱交換器24側へ導かれる空気における排気と外気との混合割合を調整することもできる。
(7)上述の実施形態のヒートポンプサイクル20では、冷媒として二酸化炭素を採用し、超臨界冷凍サイクルを構成した例を説明したが、これに限らず、冷媒としてフロン系冷媒、HC系冷媒等を採用して、サイクルの高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成してもよい。
(8)また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第2、第4〜第11実施形態で説明した制御処理を、第3実施形態で説明した構成の暖房システム10に適用してもよい。
20 ヒートポンプサイクル
21 圧縮機
22 水−冷媒熱交換器(放熱器)
23 電気式膨張弁(減圧手段)
24 室外熱交換器(蒸発器)
40a 給気ダクト
40b 排気ダクト
43 ヒートポンプ側ドア
51 空気温度センサ(空気温度検出手段)
52 低圧冷媒温度センサ(冷媒温度検出手段)

Claims (10)

  1. 冷媒を圧縮して吐出する圧縮機(21)、前記圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させる放熱器(22)、前記放熱器(22)から流出した冷媒を減圧させる減圧手段(23)、および前記減圧手段(23)にて減圧された低圧冷媒と空気とを熱交換させて前記低圧冷媒を蒸発させる蒸発器(24)を有するヒートポンプサイクル(20)と、
    外気よりも高温の熱源空気を前記蒸発器(24)側へ導く熱源空気導入手段(40b)と、
    前記蒸発器(24)に着霜が生じているか否かを判定する着霜判定手段(S1)と、を備え、
    前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定された際に、前記蒸発器(24)の除霜を行うための除霜運転を実行し、
    前記除霜運転として、前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定された際の前記低圧冷媒よりも高温の冷媒を前記蒸発器(24)へ流入させる第1除霜運転、および前記熱源空気導入手段(40b)によって前記熱源空気を前記蒸発器(24)側へ導く第2除霜運転を実行可能であることを特徴とするヒートポンプ装置。
  2. 前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定された際に、前記第1除霜運転、および前記第2除霜運転の少なくとも一方を実行することを特徴とする請求項1に記載のヒートポンプ装置。
  3. 前記蒸発器(24)にて前記低圧冷媒と熱交換する前記空気の流入空気温度(Tai)を検出する空気温度検出手段(51)を備え、
    前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定され、さらに、前記空気温度検出手段(51)によって検出された前記流入空気温度(Tai)が予め定めた基準流入空気温度(KTai)以下になっている際には、前記圧縮機(21)を作動させた状態で、前記第1除霜運転および前記第2除霜運転の双方を実行することを特徴とする請求項1または2に記載のヒートポンプ装置。
  4. 前記蒸発器(24)から流出した冷媒の低圧冷媒温度(TL)を検出する冷媒温度検出手段(52)を備え、
    前記第1除霜運転および前記第2除霜運転の双方が実行されている際に、さらに、前記低圧冷媒温度(TL)が予め定めた基準低圧冷媒温度(KTL)以上となった際には、前記圧縮機(21)を停止させた状態で、前記第2除霜運転を実行することを特徴とする請求項3に記載のヒートポンプ装置。
  5. 冷媒を圧縮して吐出する圧縮機(21)、前記圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させる放熱器(22)、前記放熱器(22)から流出した冷媒を減圧させる減圧手段(23)、および前記減圧手段(23)にて減圧された低圧冷媒と空気とを熱交換させて前記低圧冷媒を蒸発させる蒸発器(24)を有するヒートポンプサイクル(20)と、
    外気よりも高温の熱源空気を前記蒸発器(24)側へ導く熱源空気導入手段(40b)と、
    前記蒸発器(24)にて前記低圧冷媒と熱交換する前記空気の流入空気温度(Tai)を検出する空気温度検出手段(51)と、
    前記蒸発器(24)から流出した冷媒の低圧冷媒温度(TL)を検出する冷媒温度検出手段(52)と、
    前記蒸発器(24)に着霜が生じているか否かを判定する着霜判定手段(S1)と、を備え、
    前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定され、さらに、前記空気温度検出手段(51)によって検出された前記流入空気温度(Tai)が予め定めた基準流入空気温度(KTai)以下になっている際には、前記圧縮機(21)を作動させた状態で、前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定された際の前記低圧冷媒よりも高温の冷媒を前記蒸発器(24)へ流入させる第1除霜運転を実行し、
    さらに、前記第1除霜運転の実行中に、前記低圧冷媒温度(TL)が予め定めた基準低圧冷媒温度(KTL)以上となった際には、前記圧縮機(21)を停止させた状態で、前記熱源空気導入手段(40b)によって前記熱源空気を前記蒸発器(24)側へ導く第2除霜運転を実行することを特徴とするヒートポンプ装置。
  6. 前記第2除霜運転は、前記第1除霜運転の実行開始から予め定めた基準経過時間(KTa)が経過した際に、実行されることを特徴とする請求項5に記載のヒートポンプ装置。
  7. 冷媒を圧縮して吐出する圧縮機(21)、前記圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させる放熱器(22)、前記放熱器(22)から流出した冷媒を減圧させる減圧手段(23)、および前記減圧手段(23)にて減圧された低圧冷媒と空気とを熱交換させて前記低圧冷媒を蒸発させる蒸発器(24)を有するヒートポンプサイクル(20)と、
    外気よりも高温の熱源空気を前記蒸発器(24)側へ導く熱源空気導入手段(40b)と、
    前記蒸発器(24)にて前記低圧冷媒と熱交換する前記空気の流入空気温度(Tai)を検出する空気温度検出手段(51)と、
    前記蒸発器(24)に着霜が生じているか否かを判定する着霜判定手段(S1)と、を備え、
    前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定され、さらに、前記空気温度検出手段(51)によって検出された前記流入空気温度(Tai)が予め定めた基準流入空気温度(KTai)以下になっている際には、前記圧縮機(21)を作動させた状態で、前記着霜判定手段(S1)によって前記蒸発器(24)に着霜が生じていると判定された際の前記低圧冷媒よりも高温の冷媒を前記蒸発器(24)へ流入させる第1除霜運転を実行し、
    さらに、前記第1除霜運転の実行開始から予め定めた基準経過時間(KTa)を経過した際には、前記圧縮機(21)を停止させた状態で、前記熱源空気導入手段(40b)によって前記熱源空気を前記蒸発器(24)側へ導く第2除霜運転を実行することを特徴とするヒートポンプ装置。
  8. 前記第1除霜運転時には、前記減圧手段(23)の絞り開度を増加させることを特徴とする請求項1ないし7のいずれか1つに記載のヒートポンプ装置。
  9. 前記ヒートポンプサイクル(20)は、前記減圧手段(23)の上流側の冷媒を、前記減圧手段(23)を迂回させて前記蒸発器(24)の冷媒入口側へ導くバイパス通路(25)、および前記バイパス通路(25)を開閉する開閉手段(26)を有し、
    前記第1除霜運転時には、前記開閉手段(26)が前記バイパス通路(25)を開くことを特徴とする請求項1ないし7のいずれか1つに記載のヒートポンプ装置。
  10. 前記加熱対象流体は、熱媒体であり、
    さらに、前記放熱器にて加熱された熱媒体を貯留する熱媒体貯留手段(31)を備え、
    前記熱源空気は、前記熱媒体貯留手段(31)に貯留された熱媒体を熱源として加熱された空気であることを特徴とする請求項1ないし9のいずれか1つに記載のヒートポンプ装置。
JP2015111931A 2014-06-19 2015-06-02 ヒートポンプ装置 Pending JP2016020805A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015111931A JP2016020805A (ja) 2014-06-19 2015-06-02 ヒートポンプ装置
PCT/JP2015/003006 WO2015194167A1 (ja) 2014-06-19 2015-06-16 ヒートポンプ装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014126234 2014-06-19
JP2014126234 2014-06-19
JP2015111931A JP2016020805A (ja) 2014-06-19 2015-06-02 ヒートポンプ装置

Publications (1)

Publication Number Publication Date
JP2016020805A true JP2016020805A (ja) 2016-02-04

Family

ID=54935172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111931A Pending JP2016020805A (ja) 2014-06-19 2015-06-02 ヒートポンプ装置

Country Status (2)

Country Link
JP (1) JP2016020805A (ja)
WO (1) WO2015194167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023492A (zh) * 2019-11-28 2020-04-17 合肥通用制冷设备有限公司 一种全新风温湿度控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE540118C2 (sv) * 2016-06-16 2018-04-03 Flaekt Woods Ab Sätt och anordning för att minska eller eliminera sänkningenav tilluftstemperaturen under avfrostning av en förångare v id ett luftbehandlingsaggregat
SE540832C2 (sv) * 2017-04-28 2018-11-27 Flaektgroup Sweden Ab Luftbehandlingsanordning med delvis indirekt anordnad värmepump och metod att vid sådan reducera sänkningen av tilluftstemperaturen under avfrostningsdrift
CN110470017A (zh) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459648A (en) * 1977-10-21 1979-05-14 Hitachi Ltd Air conditioner
JPS6144258A (ja) * 1984-08-08 1986-03-03 株式会社 鷺宮製作所 ヒ−トポンプ暖房運転時における室外熱交換器の除霜システム
JPH10115477A (ja) * 1996-10-09 1998-05-06 Daikin Ind Ltd 空気調和機
JP2000111099A (ja) * 1998-09-30 2000-04-18 Fujitsu General Ltd 空気調和機の室外機
JP2005077051A (ja) * 2003-09-03 2005-03-24 Sharp Corp ヒートポンプ式給湯機
JP2008057910A (ja) * 2006-09-01 2008-03-13 Mitsubishi Electric Corp ヒートポンプ給湯装置
JP2010169317A (ja) * 2009-01-23 2010-08-05 Hitachi Appliances Inc ヒートポンプ給湯機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459648A (en) * 1977-10-21 1979-05-14 Hitachi Ltd Air conditioner
JPS6144258A (ja) * 1984-08-08 1986-03-03 株式会社 鷺宮製作所 ヒ−トポンプ暖房運転時における室外熱交換器の除霜システム
JPH10115477A (ja) * 1996-10-09 1998-05-06 Daikin Ind Ltd 空気調和機
JP2000111099A (ja) * 1998-09-30 2000-04-18 Fujitsu General Ltd 空気調和機の室外機
JP2005077051A (ja) * 2003-09-03 2005-03-24 Sharp Corp ヒートポンプ式給湯機
JP2008057910A (ja) * 2006-09-01 2008-03-13 Mitsubishi Electric Corp ヒートポンプ給湯装置
JP2010169317A (ja) * 2009-01-23 2010-08-05 Hitachi Appliances Inc ヒートポンプ給湯機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023492A (zh) * 2019-11-28 2020-04-17 合肥通用制冷设备有限公司 一种全新风温湿度控制方法
CN111023492B (zh) * 2019-11-28 2021-04-27 合肥通用制冷设备有限公司 一种全新风温湿度控制方法

Also Published As

Publication number Publication date
WO2015194167A1 (ja) 2015-12-23

Similar Documents

Publication Publication Date Title
JP5983451B2 (ja) 暖房システム
US10753645B2 (en) Refrigeration cycle apparatus
JP5982017B2 (ja) 二元冷凍サイクル装置
US20190360725A1 (en) Refrigeration apparatus
JP2011144960A (ja) 空気調和機および空気調和機の除霜運転方法
WO2013065233A1 (ja) 冷凍サイクル装置およびそれを備えた空気調和機
WO2015194167A1 (ja) ヒートポンプ装置
JP5831467B2 (ja) 暖房システム
JP5481838B2 (ja) ヒートポンプサイクル装置
JP5831466B2 (ja) 暖房システム
JP2009264717A (ja) ヒートポンプ温水システム
JP2011247547A (ja) 冷凍サイクル装置
JP2015098986A (ja) ヒートポンプサイクル装置
JP2012007751A (ja) ヒートポンプサイクル装置
JP2020153604A (ja) 冷凍サイクル装置
JP5381749B2 (ja) 冷凍サイクル装置
JP2009264716A (ja) ヒートポンプ温水システム
KR20110117974A (ko) 히트펌프식 급탕장치
JP2016114319A (ja) 暖房システム
JP2002340439A (ja) ヒートポンプ式給湯器
JP2009300028A (ja) エジェクタ式冷凍サイクル
JP2012002426A (ja) ヒートポンプサイクル
JP5842718B2 (ja) 冷凍サイクル装置
JP7445141B2 (ja) 空気調和装置
JP5935742B2 (ja) ヒートポンプ式給湯機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108