JP2010169317A - ヒートポンプ給湯機 - Google Patents

ヒートポンプ給湯機 Download PDF

Info

Publication number
JP2010169317A
JP2010169317A JP2009012464A JP2009012464A JP2010169317A JP 2010169317 A JP2010169317 A JP 2010169317A JP 2009012464 A JP2009012464 A JP 2009012464A JP 2009012464 A JP2009012464 A JP 2009012464A JP 2010169317 A JP2010169317 A JP 2010169317A
Authority
JP
Japan
Prior art keywords
refrigerant
water
heat exchanger
heat transfer
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009012464A
Other languages
English (en)
Inventor
Tetsuya Kitamura
哲也 北村
Hiroshi Kusumoto
寛 楠本
Koichi Sakamoto
浩一 坂本
Kazuo Iyama
和生 居山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009012464A priority Critical patent/JP2010169317A/ja
Publication of JP2010169317A publication Critical patent/JP2010169317A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】本発明は、高圧側冷媒圧力の上昇を抑制して圧縮機の負荷を低減させることができる簡易な構造の熱交換器、及び、該熱交換器を備えるヒートポンプ給湯機を提供することを目的とする。
【解決手段】本発明に係るヒートポンプ給湯機は、圧縮機1と、水冷媒熱交換器2と、空気冷媒熱交換器4と、貯湯タンク11とを備え、前記水冷媒熱交換器2,82は、前記圧縮機1から吐出された冷媒を流通させる吐出側冷媒伝熱管2a,82aと水伝熱管2b,82bとがそれぞれ螺旋状に巻き且つ互いに径方向に重なるように配置して構成され、前記圧縮機1へ吸い込まれる冷媒を流通させる吸込側冷媒伝熱管6a,86aを前記吐出側冷媒伝熱管2a,82aと径方向に重なるように配置することにより、吐出側冷媒伝熱管2a,82a及び吸込側冷媒伝熱管6a内の冷媒同士を熱交換する内部熱交換器6,86が構成される。
【選択図】図5

Description

本発明は、ヒートポンプ給湯機に関するもので、特に貯湯タンクの全量沸上げ手段に関するものである。
ヒートポンプ給湯機は、大容量の貯湯タンクを設け、夜間の安価な割引電力を使ってヒートポンプ運転を行い、夜中のうちに湯を沸上げて貯湯タンクに貯蔵しておき、上記貯蔵した湯を日中に使う貯湯式が一般的である。
貯湯式ヒートポンプ給湯機の最近の公知例としては、特許文献1がある。
ところで、湯の沸上げにおいては、水冷媒熱交換器の水側入口温度が高くなった場合に(例えば35℃以上)、蒸発器の乾き度も高くなり、高圧側の設計圧力の許容値を超えてしまう恐れがある。このような状況は、例えば、夏期の沸上げやタンクの全量沸上げを行った場合など、温度に対し給水温度が高い場合に発生し得るものである。また、特許文献1では、貯湯タンク内の水の温度を所定温度(例えば60℃以上)に維持する保温運転において、このような状況が発生するものとされている。
圧縮機が過負荷状態となる理由を、タンクの全量沸上げの場合を例に説明する。全量沸上げにおいては、沸上げ終了近くなると、タンク内における上側の高温水と下側の冷水とが混ざり合った中間温度の混合層の水温が沸上げ温度に近い高温となって水冷媒熱交換器に入るため、水冷媒熱交換器における冷媒と給水との温度差が少なくなり、水冷媒熱交換器における冷媒の放熱不足から圧縮機が過負荷状態となる。さらに、高温での沸上げでは、加熱能力を上げるため圧縮機の回転数を増すので、高圧となって一層過負荷状態になり易い。ヒートポンプ給湯機のコンパクト化のために小容量貯湯タンクを採用したり、タンク容量を有効活用するために全量沸上げや高温沸上げ(例えば90℃)を行う場合には、この問題は特に重要課題となる。
こういった事情に鑑みて、特許文献1では、新たに内部熱交換器を設け、水冷媒熱交換器の出口側冷媒と圧縮機の吸込側冷媒の間で熱交換させることにより、高圧側冷媒圧力の上昇を抑制することとしている。
2007−198699号公報
前記特許文献1は、この課題を解決するための一つの手段として提案されたものであるが、水冷媒熱交換器とは別個に、新たな内部熱交換器及び断熱材等を設ける必要がある。更に水冷媒熱交換器と減圧装置間の高圧側に第一開閉弁,第二開閉弁を設けるため、2個の高価な高圧用冷媒開閉弁を必要とし、部品費,取付け作業費などのコストアップと共に、部品設置面積が増大するなどの課題がある。
そこで、本発明は、高圧側冷媒圧力の上昇を抑制して圧縮機の負荷を低減させることができる簡易な構造の熱交換器、及び、該熱交換器を備えるヒートポンプ給湯機を提供することを目的とする。
本発明は、冷媒を圧縮する圧縮機と、該圧縮機から吐出された冷媒と熱交換させることにより水を加熱する水冷媒熱交換器と、該水冷媒熱交換器の後段に配置される減圧装置と、該減圧装置の後段に配置される空気冷媒熱交換器と、前記水冷媒熱交換器によって加熱された水を貯湯する貯湯タンクとを備え、前記水冷媒熱交換器は、前記圧縮機から吐出された冷媒を流通させる吐出側冷媒伝熱管と水伝熱管とがそれぞれ螺旋状に巻き且つ互いに径方向に重なるように配置して構成され、前記圧縮機へ吸い込まれる冷媒を流通させる吸込側冷媒伝熱管を前記吐出側冷媒伝熱管と径方向に重なるように配置することにより、吐出側冷媒伝熱管及び吸込側冷媒伝熱管内の冷媒同士を熱交換する内部熱交換器が構成されることを特徴とする。
また、前記内部熱交換器を構成する吸込側冷媒伝熱管は、吐出側冷媒伝熱管のうち水伝熱管内の水との熱交換によって冷媒が低温となっている低温部に対応して配置される構成が好ましい。
また、前記水伝熱管は、前記螺旋状の吐出側冷媒伝熱管の内側に配置され、前記吸込側冷媒伝熱管は、前記螺旋状の吐出側冷媒伝熱管の外側に配置されるものであってもよい。
また、前記水伝熱管は、吐出側冷媒伝熱管のうち水伝熱管内の水と熱交換すべく冷媒が高温となっている高温部に対応して配置され、前記吸込側冷媒伝熱管は、吐出側冷媒伝熱管のうち水伝熱管内の水との熱交換によって冷媒が低温となっている低温部に対応して配置される構成が好ましい。
また、前記内部熱交換器の吸込側冷媒伝熱管は、前記空気冷媒熱交換器と圧縮機とを接続する接続配管から分岐し、且つ、その分岐点よりも後段側で前記接続配管に合流するように接続され、前記空気冷媒熱交換器を通過した冷媒が前記内部熱交換器を経由して圧縮機に吸い込まれる状態と、前記内部熱交換器をバイパスして圧縮機に吸い込まれる状態とを切換可能に構成される構成が好ましい。
また、前記水冷媒熱交換器を経由した湯が所定の基準より高温となる状態では、前記空気冷媒熱交換器を通過した冷媒が前記内部熱交換器を経由して圧縮機に吸い込まれる状態とし、前記水冷媒熱交換器を経由した湯が所定の基準より低温となる状態では、前記空気冷媒熱交換器を通過した冷媒が前記内部熱交換器をバイパスして圧縮機に吸い込まれる状態とする構成が好ましい。
また、冷媒を圧縮する圧縮機から吐出された冷媒を流通させる吐出側冷媒伝熱管と、被加熱水を流通させる水伝熱管とがそれぞれ螺旋状に巻き且つ径方向に重なるように配置して構成される水冷媒熱交換部と、前記圧縮機へ吸い込まれる冷媒を流通させる吸込側冷媒伝熱管と、前記吐出側冷媒伝熱管とがそれぞれ螺旋状に巻き且つ径方向に重なるように配置することにより、吐出側冷媒伝熱管及び吸込側冷媒伝熱管内の冷媒同士を熱交換するように構成される内部熱交換部とを備える構成が好ましい。
本発明によれば、簡易な構造で高圧側冷媒圧力の上昇を抑制して、圧縮機の負荷を低減させることができる。
本発明の実施形態に係るヒートポンプ給湯機におけるヒートポンプ冷媒回路,貯湯回路,給湯回路,運転制御手段、及び部品の概略構成を示す模式図である。 本発明の第1実施例に係るヒートポンプ給湯機における湯水使用時のタンク給湯運転及びその後のタンク沸上げ運転の一実施例を示すフローチャートである。 本発明の第1実施例に係るヒートポンプ給湯機における直接回路31aと内部熱交換回路31bとの相違について説明するためのモリエル線図である。 本発明の第1実施例に係るヒートポンプ給湯機における水冷媒熱交換器と内部熱交換器の一体化を図った三重巻き一体形構造の一例を示す上面図である。 図4の水冷媒熱交換器と内部熱交換器の一体化を図った三重巻き一体形構造の一例を示す正面断面図である。 本発明の第2実施例に係るヒートポンプ給湯機における水冷媒熱交換器と内部熱交換器の一体化を図った二重巻き一体形構造の一例を示す上面図である。 図6の水冷媒熱交換器と内部熱交換器の一体化を図った二重巻き一体形構造の一例を示す正面断面図である。
本発明の実施形態に係るヒートポンプ給湯機は、冷媒を圧縮する圧縮機1と、該圧縮機1から吐出された冷媒と熱交換させることにより水を加熱する水冷媒熱交換器2と、該水冷媒熱交換器2の後段に配置される減圧装置3と、該減圧装置3の後段に配置される空気冷媒熱交換器4と、前記水冷媒熱交換器2によって加熱された水を貯湯する貯湯タンク11とを備え、前記水冷媒熱交換器2,82は、前記圧縮機1から吐出された冷媒を流通させる吐出側冷媒伝熱管2a,82aと水伝熱管2b,82bとがそれぞれ螺旋状に巻き且つ互いに径方向に重なるように配置して構成され、前記圧縮機1へ吸い込まれる冷媒を流通させる吸込側冷媒伝熱管6a,86aを前記吐出側冷媒伝熱管2a,82aと径方向に重なるように配置することにより、吐出側冷媒伝熱管2a,82a及び吸込側冷媒伝熱管6a内の冷媒同士を熱交換する内部熱交換器6,86が構成される。
また、前記内部熱交換器6を構成する吸込側冷媒伝熱管6aは、吐出側冷媒伝熱管2aのうち水伝熱管2b,82b内の水との熱交換によって冷媒が低温となっている低温側部分(若しくは、低温部)に対応して配置される。
また、前記内部熱交換器6,86の吸込側冷媒伝熱管6a,86aは、前記空気冷媒熱交換器4と圧縮機1とを接続する接続配管から分岐し、且つ、その分岐点よりも後段側で前記接続配管に合流するように接続され、前記空気冷媒熱交換器4を通過した冷媒が前記内部熱交換器6,86を経由して圧縮機1に吸い込まれる状態と、前記内部熱交換器6,86をバイパスして圧縮機1に吸い込まれる状態とを切換可能に構成される。
また、前記水冷媒熱交換器2を経由した湯が所定の基準より高温となる状態では、前記空気冷媒熱交換器4を通過した冷媒が前記内部熱交換器6,86を経由して圧縮機1に吸い込まれる状態とし、前記水冷媒熱交換器2を経由した湯が所定の基準より低温となる状態では、前記空気冷媒熱交換器4を通過した冷媒が前記内部熱交換器6,86をバイパスして圧縮機1に吸い込まれる状態とする。
なお、上記のような水冷媒熱交換器2,82及び内部熱交換器6,86は、組み合わさって一つの熱交換器7,87を構成するものとも特定することができる。該熱交換器7は、冷媒を圧縮する圧縮機1から吐出された冷媒を流通させる吐出側冷媒伝熱管2a,82aと、被加熱水を流通させる水伝熱管2b,82bとがそれぞれ螺旋状に巻き且つ径方向に重なるように配置して構成される水冷媒熱交換部7a,87aと、前記圧縮機1へ吸い込まれる冷媒を流通させる吸込側冷媒伝熱管6a,86aと、前記吐出側冷媒伝熱管2a,82aとがそれぞれ螺旋状に巻き且つ径方向に重なるように配置することにより、吐出側冷媒伝熱管2a,82a及び吸込側冷媒伝熱管6a,86a内の冷媒同士を熱交換するように構成される内部熱交換部7b,87bとを備える。
以下、本発明の第1実施例について、図1〜図5を用いて説明する。第1実施例に係るヒートポンプ給湯機は、前記水伝熱管2bが前記螺旋状の吐出側冷媒伝熱管2aの内側に配置され、前記吸込側冷媒伝熱管6aが前記螺旋状の吐出側冷媒伝熱管2aの外側に配置されるものである。
図1は、貯湯式ヒートポンプ給湯機の部品構成を示す。貯湯式ヒートポンプ給湯機は、ヒートポンプユニット30及び貯湯ユニット40からなり、ヒートポンプ冷媒回路31,貯湯回路41,タンク給湯回路42、及び運転制御手段50を備えて構成されている。
ヒートポンプ冷媒回路31は、圧縮機1,水冷媒熱交換器2,減圧装置(膨張弁)3,空気冷媒熱交換器4,冷媒切換弁5,内部熱交換器6を、それぞれ冷媒配管を介して順次接続して構成されており、その中に冷媒が封入されている。
圧縮機1は、容量制御が可能で、通常のタンク沸上げ温度(約65℃)の場合は中速回転数で運転し、高温(約90℃)の場合は高速回転数で沸上げを行う。具体的には、圧縮機1は、PWM制御,電圧制御(例えばPAM制御)及びこれらの組み合わせ制御により、低速(例えば700回転/分)から高速(例えば7000回転/分)まで回転数制御ができるようになっている。
水冷媒熱交換器2は、吐出側冷媒伝熱管2a及び水伝熱管2bを備えており、吐出側冷媒伝熱管2aと水伝熱管2bとの間で熱交換を行うように構成されている。また、水冷媒熱交換器2の吐出側冷媒伝熱管2aには、圧縮機1と冷媒切換弁5間の吸込側冷媒伝熱管(低圧冷媒配管)6aを添わせ、吐出側冷媒伝熱管2aと吸込側冷媒伝熱管6aとの間で熱交換を行う内部熱交換器6を構成することにより、水冷媒熱交換器2と内部熱交換器6との一体化を図っている。
前記水伝熱管2b,吐出側冷媒伝熱管2a、及び吸込側冷媒伝熱管6aは、それぞれ螺旋状に巻くことによって筒形状に形成され、これら筒形状を有する各伝熱管は軸心を一致させて配置される。また、各伝熱管2a,2bは、その軸線方向が鉛直方向に沿うように配置される。
減圧装置3としては一般に電動膨張弁が使用され、水冷媒熱交換器2を経て送られてくる中温高圧冷媒を減圧し、蒸発し易い低圧冷媒として空気冷媒熱交換器4へ送る。また、減圧装置3は冷媒通路の絞り量を変えてヒートポンプ冷媒回路内の冷媒循環量を調節する働きや、冬期着霜時には前記絞り量を全開にして中温冷媒を空気冷媒熱交換器4に多量に送って霜を溶かす除霜装置の役目も行う。
空気冷媒熱交換器4は送風ファン(図示せず)の回転により外気を取入れ空気と冷媒との熱交換を行い、外気から熱を吸収する役目を行う。
冷媒切換弁5は比較的安価な低圧冷媒用三方向切換弁で、運転制御手段50の信号によって、A−B間を開、A−C間を閉として空気冷媒熱交換器4から流れてくる低温低圧冷媒をそのまま圧縮機1に循環させる直接回路(バイパス回路)31aと、A−B間を閉、A−C間を開として内部熱交換器6を通して中低温低圧冷媒としてから圧縮機1へ循環させる内部熱交換回路31bとの切換動作を行う。
給湯回路40はタンク貯湯,タンク給湯,風呂湯張り,風呂追焚き等を行うための水循環回路を備えて構成されおり、ヒートポンプ冷媒回路31の運転はタンク貯湯時のみ行い、タンク給湯,風呂湯張り,風呂追焚き時には貯湯タンク11内の高温水を使用して行う。
貯湯回路41はタンク沸上げ運転によって貯湯タンク11に高温水を貯めるための水回路で、貯湯タンク11,タンク循環ポンプ12,水熱交流量センサ13,水伝熱管2b,給湯混合弁14のA−B側,貯湯タンク11が水配管を介して順次接続され構成されている。
タンク給湯回路42は、給水金具32,減圧弁8,給水水量センサ9,給水側逆止弁10,貯湯タンク11,給湯混合弁14のB−C側,湯水混合弁15,流量調整弁16,出湯金具17が水配管を介して順次接続され構成されている。
なお、給水金具32は水道などの給水源に接続され、出湯金具17は台所に配置される蛇口等の使用端末18に接続されている。
風呂湯張り回路は、給水金具32,減圧弁8,給水水量センサ9,給水側逆止弁10,貯湯タンク11,給湯混合弁14,湯水混合弁15,流量調整弁16,風呂注湯弁19,フロースイッチ20,風呂循環ポンプ21,水位センサ22,風呂入出湯金具23,風呂循環アダプター24,浴槽25が水配管を介して順次接続され構成されている。
風呂追焚回路は、浴槽25,風呂循環アダプター24,風呂入出湯金具23,水位センサ22,風呂循環ポンプ21,フロースイッチ20,風呂用熱交換器27の風呂水伝熱管27b,風呂出湯金具26,風呂循環アダプター24,浴槽25が水配管を介して順次接続され構成されている。
なお、風呂追焚き時には、上記風呂追焚回路による浴槽水の水循環と共に、温水開閉弁28の開放及び温水循環ポンプ29の運転を行い、貯湯タンク11内の高温部側面から高温水を風呂用熱交換器27に設けられた温水伝熱管27aに循環させ、温水伝熱管27aと風呂水伝熱管27bとの間で熱交換し、風呂追焚きを行う。
次に、運転制御手段50は、台所リモコン51及び風呂リモコン52の操作設定により、ヒートポンプ冷媒回路31の運転・停止並びに圧縮機1の回転数制御を行うと共に、冷媒切換弁5の切換動作,減圧装置3の冷媒絞り量調整,タンク循環ポンプ12,風呂循環ポンプ21,温水循環ポンプ29の運転・停止及び給湯混合弁14,湯水混合弁15,流量調整弁16,風呂注湯弁19,温水開閉弁28を制御することにより、貯湯運転,タンク給湯運転,風呂湯張り運転,風呂追焚運転を行う。
また、ヒートポンプ給湯機には、圧縮機1の吐出温度を検知するための吐出温度サーミスタ1aや貯湯タンク11の貯湯温度や貯湯量を検知するためのタンクサーミスタ11a〜11eの他にも、各部の温度を検知するサーミスタ(図示せず)や圧縮機1の吐出圧力を検知する圧力センサ(図示せず)、浴槽25内の水位を検出する水位センサ22等が設けられ、各検出信号は運転制御手段50に入力されるように構成されている。運転制御手段50はこれらの信号に基づいて各機器を制御するものである。
また、温水開閉弁28は、水冷媒熱交換器2と風呂用熱交換器27の間に設けられ、風呂追焚き時は開いて風呂追い焚き運転を行い、それ以外の時は水回路を閉じて水冷媒熱交換器2から風呂用熱交換器27への熱の漏洩を防ぐためのものである。また、給水側逆止弁10は、一方向にのみに水を流し、逆流を防止するものである。
次に、本実施例のヒートポンプ給湯機の運転動作について、図1のヒートポンプ冷媒回路31及び給湯回路40を参照にしながら図2のフローチャートに基づいて説明する。
図2は、1日のヒートポンプ給湯機の一般的な使用状態を示すもので、使用端末18等を開けて湯水を使用する場合の給湯運転から、一日の給湯使用が終わり夜間にタンク沸戻し運転を行うまでの運転動作を示すフローチャートの一実施例である。
使用端末18を開けて湯水使用が始まる(ステップ61)と、運転制御手段50は、給湯混合弁14のAB間を閉じてBC間を開くように作動させ、水道等の給水源の圧力によって、給水金具32,減圧弁8,給水水量センサ9,給水側逆止弁10,貯湯タンク11,給湯混合弁14,湯水混合弁15,流量調整弁16,出湯金具17,使用端末18のタンク給湯回路42によりタンク給湯運転を開始する(ステップ62)。
この場合、ヒートポンプ運転は行わず、夜間に貯湯された貯湯タンク11から高温水を出湯し、湯水混合弁15で水を加えて適温水として給湯するものである。即ち、湯水混合弁15によって貯湯タンク11の高温水(例えば65℃)に給水(例えば17℃)を加えて適温水(例えば42℃)にすると共に、流量調整弁16によって流量を調整して出湯金具17から使用端末18へ給湯する。
次に、使用端末18が閉じられ湯水使用が終了する(ステップ63)と、タンク給湯運転は停止する(ステップ64)。
同様にして、湯水使用の繰り返しや貯湯タンク11の高温水を用いた風呂湯張り,風呂追い焚き等が行われ、1日の給湯が終了する(ステップ65)と、例えば23時に貯湯タンク11内の残湯量をタンクサーミスタ11a〜11eによって測定し残湯量の判定を行う(ステップ66)。残湯量が規定値以上であればタンク沸上げは不要としてヒートポンプは停止状態のまま貯湯運転はせず(ステップ67)、規定値未満であれば、夜間の規定時刻に貯湯運転を開始する(ステップ68)。
貯湯運転は、図1において、貯湯タンク11の下側の冷水(例えば17℃)がタンク循環ポンプ12によって循環し、水冷媒熱交換器2で加熱され高温水(例えば65℃)となって貯湯タンク11の上側から貯湯されるので、貯湯が進むにつれて上側の高温水と下側の冷水との交じり合った中間温度の混合層11kは順次下側に押し下げられる。やがて冷水がなくなると混合層の中間温水が給水としてタンク循環ポンプ12側に供給され、混合層11kが全て循環してしまうと、貯湯タンク11内は全量高温水となりタンク沸上げが完了し貯湯運転を終了する。
貯湯運転開始時(ステップ68)の転制御手段は、冷媒切換弁5のAB間を開、AC間を閉とし、圧縮機1,水冷媒熱交換器2の吐出側冷媒伝熱管2a,減圧装置3,空気冷媒熱交換器4,冷媒切換弁5のA−B,圧縮機1の順に冷媒を循環させる直接回路31aを用いたヒートポンプ冷媒回路で運転する。
しかし、貯湯タンクの沸上げ終了近くになり、混合層11kの中間温水が給水として循環するようになると、水冷媒熱交換器2における冷媒から給水への放熱が少なくなるため、ヒートポンプ冷媒回路40は過負荷状態となり、加熱能力が低下して沸上げ完了時間が長くなると共に、吐出圧力が規定値を超え過負荷保護装置が作動して運転停止する恐れが生じる。
そこで、貯湯運転開始(ステップ68)後、給水温度を判定し(ステップ69)、規定値未満の場合は直接回路31aのまま貯湯運転を継続し、沸上げ終了近くになり混合層11kの中間温水が循環して規定値以上になった場合は、冷媒切換弁5を作動させてA−B間を閉、A−C間を開とし、圧縮機1,水冷媒熱交換器2の吐出側冷媒伝熱管2a,減圧装置3,空気冷媒熱交換器4,冷媒切換弁5のA−C,内部熱交換器6,圧縮機1の順に冷媒を循環させる内部熱交換回路31bを用いたヒートポンプ冷媒回路(ステップ70)で運転を継続し、全量沸上げ判定(ステップ71)において、全量沸上げを完了してからヒートポンプ運転を停止し貯湯運転を終了する(ステップ72)。
次に、直接回路31aと内部熱交換回路31bについて、図3のモリエル線図によって説明する。
図3は、ヒートポンプ冷媒回路31の冷媒として使用される二酸化炭素(CO2)の特性を示すモリエル線図で、縦軸は圧力、横軸はエンタルピを示す。曲線Aは二酸化炭素の状態を示す飽和曲線で、曲線の左側は液状態,曲線の内側は気液混合状態,右側は気体状態である。
線図Bは、貯湯タンクの沸上げ終了近くになり、混合層11kの中間温水が循環され始め、水冷媒熱交換器2に入る給水温度が規定温度以上となった場合における直接回路31aによるヒートポンプ冷媒回路の運転状態を示すもので、E4からE1への圧縮機1による圧縮から、水冷媒熱交換器2による放熱(E1〜E2)→減圧装置3による減圧(E2〜E3)→空気冷媒熱交換器4による蒸発(E3〜E4)→圧縮(E4〜E1)のヒートポンプサイクルを繰り返しながら、放熱部で水を加熱する。
線図Cは、前記の給水温度が規定温度以上となった場合における内部熱交換回路31bによるヒートポンプ冷媒回路の運転状態を示すもので、圧縮機1による圧縮(F4〜F1)→、水冷媒熱交換器2及び内部熱交換器6による放熱(F1〜F2)→減圧装置3による減圧(F2〜F3)→空気冷媒熱交換器4及び内部熱交換器6による蒸発(F3〜F4)→圧縮(F4〜F1)のヒートポンプサイクルを繰り返しながら、放熱部で水を加熱する。また、内部熱交換器6は、放熱の後半部F5と蒸発の後半部F6との間で熱交換を行う。
曲線Dは等温線であり、冷水を沸上げるための放熱温度は、規定の沸上げ温度(65〜90℃)以上でなければならず、圧縮直後の吐出温度E1,F1はそれに応じた高温にする必要がある。
線図Bの直接回路31aの場合は、高温入水時においてもヒートポンプサイクルが運転できるように、水温の上昇と共に給水流量を絞るような制御を行わなければならない。このため、入水温度の上昇にともなって加熱能力が低下し、沸上げ完了までに多くの時間を要する結果となっている。
即ち、水冷媒熱交換器2の出口部E2温度が入水温度の上昇にともなって上昇し、空気冷媒熱交換器4に流入する冷媒の乾き度が増大する。空気冷媒熱交換器4の入口部E3での乾き度増大により空気冷媒熱交換器4の保有する液冷媒量が減少するが、ヒートポンプサイクル内の冷媒量は一定なので、空気冷媒熱交換器4以外の高圧側における冷媒量が増大しサイクル内の圧力が上昇する。
さらに入水温度が上昇すると、空気冷媒熱交換器4の出口部E4の冷媒が湿り状態に遷移して圧縮機効率が低下し、吐出圧力P1が上昇し規定圧力Pmaxを超える恐れが生じる。また、吐出温度E1は、流入する湿り冷媒で冷却されるため、設定温度よりも低い温度となってしまう。
即ち、直接回路31aにおいては、給水温度上昇→水冷媒熱交換器2の出口E2温度上昇→空気冷媒熱交換器4出口部E4冷媒の湿り状態化→圧縮機効率低下,吐出温度E1低下、及び吐出圧力P1上昇→減圧装置3絞り量の増大→加熱能力低下→沸上げ完了までの長時間化の課題をもたらすものである。
次に、この課題を解決する内部熱交換回路31bについて、図3の線図Cで説明する。内部熱交換回路31bにおいては、内部熱交換器6により放熱の出口側F5と蒸発の出口側F6との間で熱交換を行うので、入水温度が上昇した場合においても、水冷媒熱交換器2はF1からF2まで十分に放熱することができる。そのため、空気冷媒熱交換器4には乾き度の小さい冷媒F3が流入し、空気冷媒熱交換器4において十分な冷媒量を保有することができる。
また、内部熱交換器6により蒸発の後半部F6において吸熱するため、空気冷媒熱交換器4出口部F4の冷媒は乾き状態となり、圧縮機1に流入する冷媒も乾き状態にできる。そのため、圧縮機1の吐出温度F1の低下を解消し、吐出圧力P2と吐出温度F1を必要とする高温高圧状態に保つことができる。
従って、内部熱交換回路31bにおいては、高温入水時における加熱能力低下などの課題を解決し、沸上げ完了時間を直接回路31aに比べて大幅に短縮することができる。
なお、直接回路31aと内部熱交換回路31bとの切り換え条件は、貯湯運転の沸上げ終了時に限らず、夏期の沸上げ温度に対し給水温度が高い場合などにおいても活用できる。
また、図3のヒートポンプサイクルは、圧縮機1として温度よりも圧力に余裕が少ない場合の一例であり、直接回路31aと内部熱交換回路31bとの切り換え条件は、ヒートポンプサイクルによって異なるが、本実施形態は内部熱交換回路31bの構成に関するものであり、切り換え条件がどのような場合においても適用可能で、かつ、大きな効果を得ることができる。
図4、図5は、水冷媒熱交換器2と内部熱交換器6を一体化した構造の一例を示し、図4,図5ともに上側の断熱材を外した状態を示す。
図4は上面図、図5は正面断面図であり、水冷媒熱交換器2は、水伝熱管2bの外周に吐出側冷媒伝熱管2aを上下一体にして巻き付けた構造とし、加熱される側の水は水伝熱管2bの下から上に向かって流れ、加熱する側の冷媒は吐出側冷媒伝熱管2aの上から下に向かって流れる。従って、給水は温められながら上昇し、最も熱い冷媒で加熱された後貯湯タンク11に貯湯される。
即ち、水伝熱管2b及び吐出側冷媒伝熱管2aは、軸線方向一方側(具体的には、鉛直方向下方側)が低温且つ他方側が高温となる。前記吸込側冷媒伝熱管6aは、低温の軸線方向一方側(具体的には、鉛直方向上方側)に配置される。
なお、貯湯温度は、給湯温度の設定値及び給水温度に応じて、運転制御手段50が給水の循環流量,圧縮機1の加熱能力等を調整して規定温度となるように制御するものである。
内部熱交換器6は、前記水冷媒熱交換器2の吐出側冷媒伝熱管2aの外周に、入口側高温部を除いて吸込側冷媒伝熱管6aを巻き付け、さらに、その外周を断熱材6b,6c及び上側断熱材(図示せず)で囲って構成される。
なお、前記入口側高温部を除くのは、吐出側冷媒伝熱管2aの入口側を水伝熱管2b出口部と熱交換させるためにできるだけ高温にしておきたいことと、圧縮機1から吐出された直後の部分で100℃以上にもなるため、この部分と熱交換すると吸込側冷媒伝熱管6a内の冷媒温度が上昇し過ぎてしまうためである。
内部熱交換器6の吸込側冷媒伝熱管6a内の冷媒循環は、下側から上側に循環し、前記水冷媒熱交換器2の吐出側冷媒伝熱管2aと熱交換して温度上昇した後に最上部から圧縮機1の吸い込み側に循環する。
即ち、水冷媒熱交換器2と内部熱交換器6とは、水伝熱管2b,吐出側冷媒伝熱管2a,吸込側冷媒伝熱管6aの三重巻き一体形構造となっており、かつ、水冷媒熱交換器2の給水、及び内部熱交換器6の吸込側冷媒は、共に吐出側冷媒伝熱管2aに対し、対向流となって吐出側冷媒伝熱管2aの高温側で加熱された後に流出するように構成されている。
次に、本発明の第2実施例について、図6,図7を用いて説明する。第2実施例に係るヒートポンプ給湯機は、前記水伝熱管82bが吐出側冷媒伝熱管82aのうち水伝熱管82b内の水と熱交換すべく冷媒が高温となっている高温側部分(若しくは、高温部)に対応して配置され、前記吸込側冷媒伝熱管86aが吐出側冷媒伝熱管82aのうち水伝熱管82b内の水との熱交換によって冷媒が低温となっている低温部に対応して配置されるものである。
図6,図7は、水冷媒熱交換器82と内部熱交換器86の一体化構造を二重巻きとした場合の一例を示し、図6,図7ともに上側の断熱材を外した状態を示す。
図6は上面図、図7は正面断面図で、水冷媒熱交換器82は、吐出側冷媒伝熱管82aを上下一体にして巻き付け、吐出側冷媒伝熱管82aの全体及び82bの入口側高温部の外周に水伝熱管82bを巻き付けて構成する。
また、内部熱交換器86は、前記水冷媒熱交換器82の吐出側冷媒伝熱管82bの入口側高温部を除いた外周に吸込側冷媒伝熱管86aを巻き付け、更に全体を断熱材86b,86cで囲って構成する。
水冷媒熱交換器82は、加熱される側の水は水伝熱管82bの下から上に向かって循環し、加熱する側の冷媒は吐出側冷媒伝熱管82aの上から下に向かって循環する。従って、給水は温められながら上昇し、吐出側冷媒伝熱管82aの入口側高温部の最も熱い冷媒で加熱された後貯湯タンク11に貯湯される。
即ち、水伝熱管2b及び吐出側冷媒伝熱管82aは、軸線方向一方側(具体的には、鉛直方向下方側)が低温且つ他方側が高温となる。前記吸込側冷媒伝熱管86aは、低温の軸線方向一方側(具体的には、鉛直方向上方側)に配置される。また、水伝熱管2b及び吸込側冷媒伝熱管86aは、吐出側冷媒伝熱管82aよりもそれぞれ短く形成される。具体的には、水伝熱管2b及び吸込側冷媒伝熱管86aを足した長さが吐出側冷媒伝熱管82aの長さと同等に形成される。そして、水伝熱管2b及び吸込側冷媒伝熱管86aは、軸線方向に並んで配置される。
内部熱交換器86の吸込側冷媒伝熱管86a内の冷媒は、下側から上側に流れ、前記水冷媒熱交換器2の吐出側冷媒伝熱管82aと熱交換して温度上昇した後に最上部から圧縮機1の吸い込み側に流れる。
即ち、水冷媒熱交換器82と内部熱交換器86とは、吐出側冷媒伝熱管82aと、水伝熱管82b及び吸込側冷媒伝熱管86aとの二重巻き一体形構造となっており、かつ、水冷媒熱交換器82の給水、及び内部熱交換器86の吸込側冷媒は、共に吐出側冷媒伝熱管82aに対し、対向流となって吐出側冷媒伝熱管82aの高温側で加熱された後に流出するように構成されている。
即ち、図6,図7に示す二重巻き構造においても図4,図5に示す三重巻き構造とほぼ同様の熱交換を行うことができる。
なお、前記実施例においては、水伝熱管2b,82bを角形管、他の冷媒管を丸形としたが、水冷媒熱交換器2,82の吐出側冷媒伝熱管2a,82aを共通として水冷媒熱交換器2,82と内部熱交換器6,86の一体化を図る上で、管形状や配置構造に拘束されるものではない。
本実施形態に係るヒートポンプ給湯機によれば、簡易な構造で高圧側冷媒圧力の上昇を抑制して、圧縮機1の負荷を低減させることができる。即ち、ヒートポンプ冷媒回路の低圧側に直接回路31aと内部熱交換回路31bを設けて冷媒切換弁5により切り換え可能とするものである。従って、高温給水時においても高温加熱運転性能を維持することができる。このため、例えばタンク全量沸上げも可能となる。
また、ヒートポンプ冷媒回路31において、空気冷媒熱交換器4と圧縮機1との間に冷媒切換弁5を介して内部熱交換器6を通る内部熱交換回路31bと、空気冷媒熱交換器4と圧縮機1との間に冷媒切換弁5を介して直接接続する直接回路31aとを並列に設け、かつ、水冷媒熱交換器の吐出側冷媒伝熱管2a,82aに吸い込み側冷媒配管を添わせて内部熱交換器6を形成することにより水冷媒熱交換器82と内部熱交換器6を一体化するものである。従って、断熱材も共用化することができ、安価でコンパクトな内部熱交換回路31bを提供することができる。
また、円筒状に巻き付けた水伝熱管2bの外周に吐出側冷媒伝熱管2aを巻き付けて形成し、内部熱交換器6は、前記吐出側冷媒伝熱管2aの入口側の高温部を除いた外周に圧縮機1の吸込側冷媒伝熱管6aを巻き付けて形成し、水冷媒熱交換器2及び内部熱交換器6を三重巻き一体形構造とすれば、内部熱交換器6は、水冷媒熱交換器2の吐出側冷媒伝熱管2aの入口側高温部とは熱交換しない構造となる。従って、水冷媒熱交換器2の吐出側冷媒伝熱管2aの入口側高温部は全熱量を給水の加熱に使用することができるので、水冷媒熱交換器2と内部熱交換器6との一体化による沸上げ温度低下の恐れを払拭することができ、かつ水冷媒熱交換器2の吐出側冷媒伝熱管2aも吐出側冷媒伝熱管2aの高温部により過熱される恐れを解消することができる。
また、円筒状に巻き付けた吐出側冷媒伝熱管82aの高温側に水伝熱管82bを巻き付けて形成し、内部熱交換器86は、前記吐出側冷媒伝熱管82aの低温側に圧縮機1の吸込側冷媒伝熱管86aを巻き付けて形成することにより、水冷媒熱交換器82及び内部熱交換器86を二重巻き一体形構造としても、同様の効果を奏することができる。
また、前記水冷媒熱交換器82は、水伝熱管2b,82bの下端部を貯湯タンク下側に接続し上端部を貯湯タンクの上側に接続して、給水を下部から上部に向かって循環させ、吐出側冷媒伝熱管82aの上端部を圧縮機1側に接続し下端部を減圧装置3側に接続して、高温冷媒を上部から下部に向かって循環させ、かつ、前記内部熱交換器86は、吸込側冷媒伝熱管86aの下端部を冷媒切換弁5側に接続し上端部を圧縮機1側に接続して、吸い込み側冷媒を下部から上部に向かって循環させることにより、給水と吐出側冷媒及び吐出側冷媒と吸込側冷媒のそれぞれが対向流となるように構成したものである。従って、水冷媒熱交換器82及び内部熱交換器86において、加熱する吐出側冷媒と吸熱する給水、及び加熱する吐出側冷媒と吸熱する吸込側冷媒とがそれぞれ対向流となるので、熱交換性能の向上を図ることができる。
また、前記ヒートポンプ冷媒回路31は、圧縮機1と空気冷媒熱交換器4との間に三方向の冷媒切換弁5を設け、前記冷媒切換弁5と圧縮機1との間に前記内部熱交換器86の吸込側冷媒伝熱管6aを接続し、空気冷媒熱交換器4,冷媒切換弁5,圧縮機1の直接回路31aと、空気冷媒熱交換器4,冷媒切換弁5,内部熱交換器6,圧縮機1の内部熱交換回路31bとを並列に設けたものである。従って、1個の冷媒切換弁5によって直接回路31aと内部熱交換回路31bとを切り換えることができ、従来に較べて切換弁の信頼性向上,部品費低減,コンパクト化を図ることができる。
また、前記運転制御手段は、ヒートポンプ冷媒回路31において、通常は、冷媒切換弁5の空気冷媒熱交換器4側と圧縮機1側間を開き、空気冷媒熱交換器4側と内部熱交換器6側間を閉じて直接回路31aとし、給水温度が規定値を超えた場合は、冷媒切換弁5の空気冷媒熱交換器4側と圧縮機1側間を閉じ、空気冷媒熱交換器4側と内部熱交換器6側間を開いて内部熱交換回路31bとするものである。従って、通常は直接回路31aとし、給水温度が規定温度を超えた場合は内部熱交換回路31bとすることにより、加熱運転効率優先と沸上げ温度優先の使い分けができる。従って、加熱運転効率の低下を最小限としてタンク全量沸上げを行うことができる。
1 圧縮機
2,82 水冷媒熱交換器
2a,82a 吐出側冷媒伝熱管
2b,82b 水伝熱管
3 減圧装置
4 空気冷媒熱交換器
5 冷媒切換弁
6,86 内部熱交換器
6a,86a 吸込側冷媒伝熱管
7,87 熱交換器
7a,87a 水冷媒熱交換部
7b,87b 内部熱交換部
11 貯湯タンク
12 タンク循環ポンプ
14 給湯混合弁
15 湯水混合弁
16 流量調整弁
17 出湯金具
18 使用端末
19 風呂注湯弁
21 風呂循環ポンプ
25 浴槽
27 風呂熱交換器
29 温水循環ポンプ
31 ヒートポンプ冷媒回路
41 貯湯回路
42 タンク給湯回路
50 運転制御手段
51 台所リモコン
52 風呂リモコン

Claims (7)

  1. 冷媒を圧縮する圧縮機と、該圧縮機から吐出された冷媒と熱交換させることにより水を加熱する水冷媒熱交換器と、該水冷媒熱交換器の後段に配置される減圧装置と、該減圧装置の後段に配置される空気冷媒熱交換器と、前記水冷媒熱交換器によって加熱された水を貯湯する貯湯タンクとを備え、
    前記水冷媒熱交換器は、前記圧縮機から吐出された冷媒を流通させる吐出側冷媒伝熱管と水伝熱管とがそれぞれ螺旋状に巻き且つ互いに径方向に重なるように配置して構成され、
    前記圧縮機へ吸い込まれる冷媒を流通させる吸込側冷媒伝熱管を前記吐出側冷媒伝熱管と径方向に重なるように配置することにより、吐出側冷媒伝熱管及び吸込側冷媒伝熱管内の冷媒同士を熱交換する内部熱交換器が構成されることを特徴とするヒートポンプ給湯機。
  2. 前記内部熱交換器を構成する吸込側冷媒伝熱管は、吐出側冷媒伝熱管のうち水伝熱管内の水との熱交換によって冷媒が低温となっている低温部に対応して配置されることを特徴とする請求項1に記載のヒートポンプ給湯機。
  3. 前記水伝熱管は、前記螺旋状の吐出側冷媒伝熱管の内側に配置され、
    前記吸込側冷媒伝熱管は、前記螺旋状の吐出側冷媒伝熱管の外側に配置されることを特徴とする請求項1又は2に記載のヒートポンプ給湯機。
  4. 前記水伝熱管は、吐出側冷媒伝熱管のうち水伝熱管内の水と熱交換すべく冷媒が高温となっている高温部に対応して配置され、
    前記吸込側冷媒伝熱管は、吐出側冷媒伝熱管のうち水伝熱管内の水との熱交換によって冷媒が低温となっている低温部に対応して配置されることを特徴とする請求項1又は2に記載のヒートポンプ給湯機。
  5. 前記内部熱交換器の吸込側冷媒伝熱管は、前記空気冷媒熱交換器と圧縮機とを接続する接続配管から分岐し、且つ、その分岐点よりも後段側で前記接続配管に合流するように接続され、
    前記空気冷媒熱交換器を通過した冷媒が前記内部熱交換器を経由して圧縮機に吸い込まれる状態と、前記内部熱交換器をバイパスして圧縮機に吸い込まれる状態とを切換可能に構成されることを特徴とする請求項1から4のいずれか一項に記載のヒートポンプ給湯機。
  6. 前記水冷媒熱交換器を経由した湯が所定の基準より高温となる状態では、前記空気冷媒熱交換器を通過した冷媒が前記内部熱交換器を経由して圧縮機に吸い込まれる状態とし、
    前記水冷媒熱交換器を経由した湯が所定の基準より低温となる状態では、前記空気冷媒熱交換器を通過した冷媒が前記内部熱交換器をバイパスして圧縮機に吸い込まれる状態とすることを特徴とする請求項5に記載のヒートポンプ給湯機。
  7. 冷媒を圧縮する圧縮機から吐出された冷媒を流通させる吐出側冷媒伝熱管と、被加熱水を流通させる水伝熱管とがそれぞれ螺旋状に巻き且つ径方向に重なるように配置して構成される水冷媒熱交換部と、
    前記圧縮機へ吸い込まれる冷媒を流通させる吸込側冷媒伝熱管と、前記吐出側冷媒伝熱管とがそれぞれ螺旋状に巻き且つ径方向に重なるように配置することにより、吐出側冷媒伝熱管及び吸込側冷媒伝熱管内の冷媒同士を熱交換するように構成される内部熱交換部とを備えることを特徴とする熱交換器。
JP2009012464A 2009-01-23 2009-01-23 ヒートポンプ給湯機 Pending JP2010169317A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012464A JP2010169317A (ja) 2009-01-23 2009-01-23 ヒートポンプ給湯機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012464A JP2010169317A (ja) 2009-01-23 2009-01-23 ヒートポンプ給湯機

Publications (1)

Publication Number Publication Date
JP2010169317A true JP2010169317A (ja) 2010-08-05

Family

ID=42701642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012464A Pending JP2010169317A (ja) 2009-01-23 2009-01-23 ヒートポンプ給湯機

Country Status (1)

Country Link
JP (1) JP2010169317A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021868A (ja) * 2009-07-15 2011-02-03 Atago Seisakusho:Kk ヒートポンプ式給湯機の熱交換器
WO2015194167A1 (ja) * 2014-06-19 2015-12-23 株式会社デンソー ヒートポンプ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424362Y2 (ja) * 1984-03-12 1992-06-09
JP2004044896A (ja) * 2002-07-11 2004-02-12 Daikin Ind Ltd 給湯用熱交換器
JP2005061667A (ja) * 2003-08-08 2005-03-10 Denso Corp 熱交換器
JP2005337700A (ja) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd 冷媒冷却回路
JP2007198699A (ja) * 2006-01-30 2007-08-09 Mitsubishi Electric Corp ヒートポンプ式給湯機
JP2007263487A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 冷凍装置
JP2008256282A (ja) * 2007-04-05 2008-10-23 Toshiba Carrier Corp ヒートポンプ式給湯機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424362Y2 (ja) * 1984-03-12 1992-06-09
JP2004044896A (ja) * 2002-07-11 2004-02-12 Daikin Ind Ltd 給湯用熱交換器
JP2005061667A (ja) * 2003-08-08 2005-03-10 Denso Corp 熱交換器
JP2005337700A (ja) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd 冷媒冷却回路
JP2007198699A (ja) * 2006-01-30 2007-08-09 Mitsubishi Electric Corp ヒートポンプ式給湯機
JP2007263487A (ja) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 冷凍装置
JP2008256282A (ja) * 2007-04-05 2008-10-23 Toshiba Carrier Corp ヒートポンプ式給湯機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021868A (ja) * 2009-07-15 2011-02-03 Atago Seisakusho:Kk ヒートポンプ式給湯機の熱交換器
WO2015194167A1 (ja) * 2014-06-19 2015-12-23 株式会社デンソー ヒートポンプ装置
JP2016020805A (ja) * 2014-06-19 2016-02-04 株式会社デンソー ヒートポンプ装置

Similar Documents

Publication Publication Date Title
JP3742356B2 (ja) ヒートポンプ給湯機
JP5082536B2 (ja) ヒートポンプ給湯装置
JP2007263517A (ja) ヒートポンプ給湯機
JP2007093207A (ja) ヒートポンプ給湯装置
JP2008232462A (ja) ヒートポンプ貯湯式給湯暖房装置
JP3909311B2 (ja) ヒートポンプ給湯機
JP5034569B2 (ja) ヒートポンプ給湯機
JP2009127938A (ja) ヒートポンプ給湯機
JP2010169317A (ja) ヒートポンプ給湯機
JP2005315480A (ja) ヒートポンプ式給湯機
JP2007322084A (ja) ヒートポンプ給湯機
JP3864378B2 (ja) ヒートポンプ給湯機
JP4790538B2 (ja) 貯湯式給湯暖房装置
JP3896378B2 (ja) ヒートポンプ給湯機
JP3890322B2 (ja) ヒートポンプ式給湯機
JP4740284B2 (ja) ヒートポンプ給湯機
JP4262657B2 (ja) ヒートポンプ給湯機
JP3897038B2 (ja) ヒートポンプ給湯機
JP3909312B2 (ja) ヒートポンプ給湯機
JP3870963B2 (ja) ヒートポンプ給湯機
JP3897039B2 (ja) ヒートポンプ給湯機
JP4045266B2 (ja) ヒートポンプ給湯機
JP3858919B2 (ja) ヒートポンプ給湯機
JP4185948B2 (ja) ヒートポンプ給湯機
JP3909310B2 (ja) ヒートポンプ給湯機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205