JP2016007876A - ハイブリッド自動車 - Google Patents

ハイブリッド自動車 Download PDF

Info

Publication number
JP2016007876A
JP2016007876A JP2014128032A JP2014128032A JP2016007876A JP 2016007876 A JP2016007876 A JP 2016007876A JP 2014128032 A JP2014128032 A JP 2014128032A JP 2014128032 A JP2014128032 A JP 2014128032A JP 2016007876 A JP2016007876 A JP 2016007876A
Authority
JP
Japan
Prior art keywords
battery
temperature
internal combustion
combustion engine
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014128032A
Other languages
English (en)
Other versions
JP6330510B2 (ja
Inventor
潤 齋藤
Jun Saito
潤 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2014128032A priority Critical patent/JP6330510B2/ja
Publication of JP2016007876A publication Critical patent/JP2016007876A/ja
Application granted granted Critical
Publication of JP6330510B2 publication Critical patent/JP6330510B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】簡易な構成で環境に応じた電池の加熱制御を実行する。
【解決手段】ハイブリッド自動車は、内燃機関と、内燃機関の動作に基づいて発電する発電機と、電動機と、電動機の電源となる電池を収納すると共に内燃機関の排熱のみに基づいて内部の空気が加熱される電池収納部とを備え、少なくとも内燃機関の稼動を伴う走行モードで走行する。当該走行モード時に、電池の温度が、内燃機関の排熱に基づいて加熱される空気をファンにより電池に送風する第1温度から送風を停止して且つ電池の加熱を停止する第2温度の間の温度を示す場合に、走行速度が電池の温度に影響を与える所定の走行速度を超えるときには、ヒータを駆動すると共にヒータ及び内燃機関の排熱に基づいて加熱される空気をファンにより電池セルに送風する。
【選択図】図5

Description

本発明は、ハイブリッド自動車に関する。
ハイブリッド自動車は、駆動原の一つである電動機に電圧を供給する電池を搭載している。この電池は、例えば、低温時には本来の性能を発揮することが困難になる性質を有している。電池が本来の性能を発揮することが困難な状態になると、電動機に供給する電圧が不安定になり、運転フィーリングの低下を招来する可能性がある。
このような事態を回避するために、一般に、ハイブリッド自動車では低温時に電池を加熱する技術が用いられている。
例えば、電池を収納する電池収納体と、エンジンを収納するエンジン収容体と、電池収納体とエンジン収納体とを連通乃至遮断する電磁弁と、エンジン収納体内から電池収納体内へ流れる送風を発生するファンと、電池及びエンジンの外周の温度を検出する2つの温度センサと、2つの温度センサで検出された温度に基づきファンを制御するマイクロコンピュータとを備えたハイブリッド自動車が知られている(下記特許文献1参照)。
特開平9−130917号公報
上記特許文献1に記載の技術によると、制御部が低温時等に電磁弁及びファンを制御することによってエンジン収納体内で暖められた空気を電池収納体内へ送風し、電池収納内の電池を暖めることができる。しかしながら、電池を暖めるにはエンジン収納体内から電池収納体内に送風する構成及び電磁弁を制御する構成が必要になる。このため、電池を加熱する構成についてより簡易な構成となるように検討する余地がある。
また、ハイブリッド自動車が高速走行するときには、風の影響により電池収納部が冷却される。特に、寒冷地等で高速走行する場合はより顕著に冷却される。このように電池収納部が冷却される環境においては、電池収納部内の電池の温度も低下し、電池の性能を発揮するのに十分な温度を維持できない事態も生じる。しかしながら、このような観点を考慮した電池の加熱制御については、上記特許文献1には開示されていない。
本発明は、上記事情に鑑みてなされたものであり、簡易な構成で環境に応じた電池の加熱制御を実行することができるハイブリット自動車を提供することを目的とする。
本発明の一態様によるハイブリット自動車は、内燃機関と、内燃機関の動作に基づいて発電する発電機と、電動機と、電動機の電源となる電池を収納すると共に内燃機関の排熱に基づいて内部の空気が加熱される電池収納部とを備え、少なくとも内燃機関の稼動を伴う走行モードで走行する。また、ハイブリッド自動車は、電池の温度を検出する温度検出手段と、電池を電力を用いて加熱制御する加熱手段と、空気を電池に送風する送風手段と、走行速度を検出する走行速度検出手段と、走行モードにおける走行を制御すると共に、加熱手段及び送風手段の駆動を制御する制御部とを備える。そして、上述の走行モード時に、制御部は、温度検出手段により検出される温度が、内燃機関の排熱のみに基づいて加熱される空気を送風手段により電池に送風する第1温度から送風手段を停止して且つ電池の加熱を停止する第2温度の間の温度を示す場合に、走行速度検出手段により検出される走行速度が電池の温度に影響を与える所定の走行速度を超えるときには、加熱手段を駆動すると共に加熱手段及び内燃機関の排熱に基づいて加熱される空気を送風手段により電池に送風することを特徴とする。
このハイブリッド自動車によると、電池の温度と走行速度とに基づいて、内燃機関の排熱による加熱、又は加熱手段及び内燃機関の排熱による加熱に加熱制御を切り替えることができるため、簡易な構成で環境に応じた電池の加熱制御を実行することができる。また、電池の温度が第1温度から第2温度の間の温度であり、且つ、走行速度が所定の走行速度以下である場合は、加熱手段を駆動せずに内燃機関の排熱のみを利用して電池の加熱制御を実行するため、省電力を図ることもできる。
さらに、上述の制御部は、温度検出手段で検出される温度が、第1温度より低く、且つ、加熱手段及び内燃機関の排熱に基づく加熱では電池の加熱が不十分になる第3温度以下の温度を示す場合に、内燃機関の駆動回転数を上昇させるようにしてもよい。
このように構成すると、低温時の環境が、例えば―20℃のような低温にあるとき、言い換えれば、加熱手段及び通常の内燃機関の駆動回転の排熱に基づいて加熱される空気を用い方法では電池の加熱が不十分である場合でも、内燃機関の駆動回転数を向上させて排熱温度を上昇させることにより、電池収納部内の空気を更に加熱することができる。このように、加熱手段及び通常の駆動回転数による内燃機関の排熱による加熱よりも高い温度の空気で電池を加熱することができるため、上述のような低温時においても、電池の性能を発揮することができないという事態を回避することが可能になる。
本発明のハイブリッド自動車によれば、簡易な構成で環境に応じた電池の加熱制御を実行することができる。
本発明の実施形態に係る電池セルの温度制御に関する概略的な構成の一例を示すブロック図である。 同実施形態に係る走行速度及び電池セル温度に基づくPTCヒータの駆動/停止の一例を示す図である。 同実施形態に係る走行速度及び電池セル温度に基づくブロワファンの駆動/停止の一例を示す図である。 同実施形態に係る温度制御の一例を示すフローチャートである。 同実施形態に係る走行速度に基づく温度制御を説明するための図である。
以下、本発明の一実施形態について図面を参照しながら説明する。
図1は、ハイブリッド自動車100の電池セル(電池)の温度制御に関する概略的な構成の一例を示すブロック図である。なお、ハイブリッド自動車100の他の構成については従来のハイブリッド自動車と同様な構成である。
図1に示すように、ハイブリッド自動車100は、内燃機関であるエンジン1、及び電動機11の電源となる電池パック(電池収納部)2を備えている。また、ハイブリッド自動車100は、制御部であるHEV−ECU(Electric Circuit Unit)3、M/G(モータ・ジェネレータ)インバータ4、ジェネレータ(発電機)5、エンジン−ECU6、AC(エア・コンディション)−ECU7、及びBMU(バッテリ・マネジメント・ユニット)8を備えている。さらに、ハイブリッド自動車100は、走行速度検出手段であるABS(アンチロック・ブレーキシステム)9及び車輪10を備えている。
また、電池パック2は、略直方体のケース内に、複数の電池セル21、温度検出手段であるCMU(セル・マネジメント・ユニット)22、エバポレータ温度センサ23、エバポレータ24、電池セル21を電力を用いて加熱制御する加熱手段であるPTC(Positive Temperature Coefficient)ヒータ25、PTCヒータ温度センサ26、送風手段であるブロアファン27、及び空気撹拌器28を収納している。
HEV−ECU3は、電池セル21の温度制御、及びハイブリッド自動車100内のM/Gインバータ4、エンジン−ECU6、BMU8等の各部の制御を行う。例えば、HEV−ECU3は、M/Gインバータ4にジェネレータトルク要求を出力し、エンジン−ECU6にエンジントルク要求を出力し、BMU8にPTCヒータ駆動要求及びブロアファン駆動要求を出力する。また、HEV−ECU3は、AC−ECU7を介してエバポレータ温度センサ23からエバポレータ温度を受信し、BMU8を介してCMU22から電池セル温度Tを受信する。HEV−ECU3が実行する電池セル21の温度制御の詳細については図4を参照して後述する。
M/Gインバータ4は、HEV−ECU3から受け取るジェネレータトルク要求に基づいてジェネレータ5に駆動信号を出力する。ジェネレータ5は、エンジン1の駆動回転に基づいて発電を行う。
エンジン−ECU6は、HEV−ECU3から受け取るエンジントルク要求に基づいてエンジン1を所定の駆動回転数で駆動する。
AC−ECU7は、エバポレータ温度センサ23により検出されたエバポレータ温度を受信すると、当該エバポレータ温度をHEV−ECU3に出力する。
BMU8は、HEV−ECU3からPTCヒータ駆動要求を受信すると、PTCヒータ25に駆動信号を出力することによりPTCヒータ25を駆動させ、HEV−ECU3からブロワファン駆動要求を受信すると、ブロアファン27に駆動信号を出力することによりブロワファン27を駆動させる。また、BMU8は、CMU22から電池セル21の電池セル温度Tを受信すると、受信した電池セル温度TをHEV−ECU3に出力する。
ABS9は、車輪10の回転を検出する回転速度センサを有しており、当該回転速度センサにより検出される車輪10の回転速度に基づいてブレーキ圧を弱めたり強めたりすることにより車輪10のホイールロックを防止する。これにより、急ブレーキ時でもタイヤのロックを防止することができる。また、ABS9は、回転速度センサにより検出される車輪10の回転速度に基づいて走行速度を算出し、算出した走行速度をHEV−ECU3に出力する。
電池パック2は、エンジン1の排熱によって内部の空気が加熱される位置に配置される。本実施形態においては、略直方体形状である電池パック2のケースの一面がエンジン1と対向するように、電池パック2がエンジン1の近傍に配置される。このように電池パック2がエンジン1の近傍に配置されることにより、エンジン1が駆動回転したときに生じる加熱の影響を電池パック2が受け、電池パック2内の前記一面近傍の空気を加熱することが可能になる。エンジン1から電池パック2へ向かう白抜きの矢印は、排熱が電池パック2内の空気を加熱する状態を模式的に示している。
次に、電池パック2の内部構造の一例について説明する。
図1に示すように、電池パック2内の前記一面側、言い換えれば、エンジン1の位置する側(以下、エンジン側という。)からエンジン1の位置する側と反対の側(以下、エンジン反対側という。)へ向けて、エバポレータ温度センサ23、エバポレータ24、PTCヒータ25、PTCヒータ温度センサ26、ブロアファン27、及び空気撹拌器28が設けられている。また、空気撹拌器28は電池パック2の略中央に配置されており、空気撹拌器28の両側面からエンジン反対側に向けて電池セル21がそれぞれ5個ずつ配置されている。さらに、電池セル21には、CMU22が設けられている。
電池セル21は、電力を蓄積する。電池セル1は、電源ケーブル(図示省略)がハイブリッド自動車100に接続されたときに、外部の電源から電源ケーブルを介して供給される電力を蓄積し、また、電動機11の動作時には、電動機から発生する回生エネルギを蓄積する。
CMU22は、複数の電池セル21の電圧、温度を監視することによって電池の性能を効率良く引き出し、電池を効率良く使用するための監視を行う。また、CMU22は、電池セル21の電池セル温度TをBMU8に出力する。
エバポレータ温度センサ23は、電池パック2内のエバポレータ24近傍に配置されており、検出したエバポレータ温度をAC−ECU7に出力する。エバポレータ23は、電池パック2内の電池セル21を冷却する場合に冷却源として用いられる。
PTCヒータ温度センサ26は、電池パック2内のPTCヒータ25近傍に配置されており、検出したPTCヒータ温度をBMU8に出力する。PTCヒータ25は、電池パック2内の電池セル21を加熱する場合に熱源として用いられる。
ブロアファン27は、エバポレータ23により冷却された冷気、又はPTCヒータ25やエンジン1の排熱により加熱された空気(暖気)を空気撹拌器28を介して電池セル21に送風する。
空気撹拌器28は、ブロアファン27により送風された冷気又は暖気をエンジン反対側へ向けて送風するための第1送風口28a、及び両側面に配置されている電池セル21に対して送風するための複数の第2送風口28bが設けられている。第2送風口28bは、それぞれ空気撹拌器28の両側面、且つ、電池セル21間に空気を送風するように設けられている。
なお、電池パック2内に示す白抜きの矢印は、ブロワファン27が駆動したときに電池パック2内で撹拌される空気の流れを示している。
次に、ハイブリッド自動車100の走行モードについて説明する。ハイブリッド自動車100は、少なくとも電動機11及びエンジン1を用いた走行モードを有すればよいが、本実施形態では、走行モードとして、EV走行モード、シリーズ走行モード、パラレル走行モードの3つの走行モードを有する場合で説明する。
EV走行モードは駆動源として電動機11のみを用いる走行であり、シリーズ走行モード及びパラレル走行モードはハイブリッド走行である。シリーズ走行モードは、電動機11及びジェネレータ5を用いて走行する走行モードであり、より詳細には、電動機11による走行をエンジン1がジェネレータ5のみを駆動(アイドル駆動)して発電することによってアシストする走行モードであり、パラレル走行モードはエンジン1による走行を電動機11がアシストする走行モードである。
HEV−ECU3は、走行状況、電池パック2の電池セル21の電池残量、及び環境(気温等)等の走行条件に基づいて3つの走行モードから走行モードを選択する。例えば、気温が非常に低温である場合は、HEV−ECU3によりシリーズ走行モードが選択される。
次に、PTCヒータ25の駆動/停止を切り替える閾値について説明する。図2は走行速度V及び電池セル温度Tに基づくPTCヒータ25の駆動/停止の一例を示す図である。
図2において、横軸は電池セル温度Tを示し、縦軸は走行速度Vを示している。
また、横軸には、第3温度である電池セル温度T_B0、第1温度である電池セル温度T_B1、及び第2温度である電池セル温度T_B2(T_B0<T_B1<T_B2)を示している。
電池セル温度T_B0は、T_B1より低く、且つ、PTCヒータ25による加熱及びエンジン1が通常の駆動回転数で駆動した場合に生じる排熱による加熱では電池セル21の加熱が不十分になる温度を示している。例えば、電池セル温度T_B0は、−20℃である。電池セル温度T_B1は、エンジン1の排熱に基づいて加熱される空気を用いて電池セル21を加熱する温度を示している。電池セル温度T_B2は、電池セル21の加熱が必要でない温度を示している。
また、縦軸に示す走行速度V_HTRは、電池パック2を冷却するハイブリッド自動車100の走行速度を示している。ハイブリッド自動車100が高速で走行している場合や風速が非常強い場合は、風の影響により電池パック2が冷却される場合がある。このような場合、電池パック2の冷却に伴い電池セル21も冷却されるため電池セル21の温度が低下し、電池セル21の性能が劣化する可能がある。このように性能が劣化する可能性のある所定の走行速度を走行速度V_HTRとして、PTCヒータ25の駆動/停止を切り替える閾値としている。
図2に示すように、エリアA(電池セル温度≦TB_0)においては、PTCヒータ25を駆動させることに加え、エンジン1の駆動回転数をアップさせる制御が行われる。エリアB(TB_0≦電池セル温度T<TB_1、及びT_B1≦電池セル温度T<TB_2、且つ走行速度V>V_THR)においては、PTCヒータ25を駆動させる制御が行われる。エリアC(T_B1≦温度T<TB_2、且つ走行速度V≦V_THR、及び温度TB_2≦電池セル温度T)においては、PTCヒータ25の駆動を停止する制御が行われる。
次に、ブロワファン27の駆動/停止を切り替える閾値について説明する。図3は走行速度V及び電池セル温度Tに基づくブロワファン27の駆動/停止の一例を示す図である。
図3において、横軸は電池セル温度Tを示し、縦軸は走行速度Vを示している。
PTCヒータ25の制御(参照:図2)の場合と同様に、横軸には、電池セル温度T_B0、電池セル温度T_B1、及び電池セル温度T_B2を示しており、縦軸には、走行速度V_THRを示している。
図3に示すように、エリアX(電池セル温度T≦温度T_B2)はブロアファン27を駆動し、エリアY(温度T_B2<電池セル温度T)はブロアファン27の駆動を停止する。また、ブロアファン27の駆動/停止は、走行速度Vには依存しないように設定されている。
次に、シリーズ走行モード時に、HEV−ECU3が実行する電池セル21の温度制御について説明する。図4は、HEV−ECU3が実行する温度制御の一例を示すフローチャートである。
図4に示すように、まず、HEV−ECU3は、ハイブリッド自動車100がシリーズ走行モードで走行中か否かを判断する(ST101)。シリーズ走行モード中でないと判断した場合(ST101:NO)、処理はリターンとなる。したがって、シリーズ走行モードであるか否かの判断が繰り返される。
一方、シリーズ走行モード中であると判断した場合(ST101:YES)、HEV−ECU3は、CMU22から受信する電池セル温度Tに基づいて、当該電池セル温度Tが温度T_B0以下であるか否かを判断する(ST102)。
電池セル温度Tが温度T_B0以下であると判断した場合(ST102:YES)、HEV−ECU3は、通常のエンジン1の駆動回転数よりアップした駆動回転数(アイドルアップ)となるエンジントルク要求をエンジン−ECU6に出力する(ST103)。例えば、通常のエンジン1の駆動回転数が所定時間当たり1000回転だとすると、エンジン1の駆動回転数は同所定時間当たり1500回転となるようにアップする。
一方、電池セル温度Tが温度T_B0以下でないと判断した場合(ST102:NO)、HEV−ECU3は、通常のエンジン1の駆動回転数となるエンジントルク要求をエンジン−ECU6に出力する(ST104)。
ステップST103又はST104の処理を終えると、HEV−ECU3は、電池セル温度Tが温度T_B1以下であるか否かを判断する(ST105)。電池セル温度TがT_B1以下であると判断した場合(ST105:YES)、HEV−ECU3は、BMU8にPTCヒータ駆動要求を出力する(ST106)。このPTCヒータ駆動要求に基づいて、BMU8はPTCヒータ25を駆動する。
次に、HEV−ECU3は、BMU8にブロワファン駆動要求を出力する(ST107)。このブロワファン駆動要求に基づいて、BMU8はブロワファン27を駆動する。ブロアファン27が駆動することにより、エンジン1の駆動回転に基づく排熱、及びPTCヒータ25によって加熱された空気が空気撹拌器28を介して電池セル21に送風され、電池セル21が加熱される。
一方、ステップST105において、電池セル温度Tが温度T_B1以下でないと判断した場合(ST105:NO)、HEV−ECU3は、電池セル温度Tが温度T_B2以下であるか否かを判断する(ST108)。
電池セル温度Tが温度T_B2以下であると判断した場合(ST108:YES)、HEV−ECU3は、ABS9から取得する現在の走行速度Vが、走行速度V_THR以上であるか否かを判断する(ST109)。
現在の走行速度が走行速度V_THR以上であると判断すると(ST109:YES)、HEV−ECU3は、上述したステップST106、ST107の各処理を実行する。つまり、HEV−ECU3は、PTCヒータ25及びブロワファン27を駆動する制御を実行する。
また、現在の走行速度が走行速度V_THR以上でないと判断すると(ST109:NO)、HEV−ECU3は、BMU8へのPTCヒータ駆動要求の出力を停止し(ST110)、また、HEV−ECU3は、BMU8にブロアファン駆動要求を出力する(ST111)。これにより、PTCヒータ25の駆動は停止する一方、ブロワファン27は駆動する。ブロアファン27が駆動することにより、エンジン1の駆動回転に基づく排熱により加熱された空気が空気撹拌器28を介して電池セル21に送風され、電池セル21が加熱される。
また、ステップST108において、電池セル温度Tが温度T_B2以下でないと判断した場合(ST108:NO)、HEV−ECU3は、BMU8へのPTCヒータ駆動要求の出力を停止し(ST112)、また、HEV−ECU3は、BMU8へのブロアファン駆動要求の出力を停止する(ST111)。つまり、PTCヒータ25及びブロワファン27は共に駆動を停止する。なお、ブロアファン27の駆動が停止することにより、電池パック2内の空気の撹拌が停止する。
上述のステップST107、ST111、及びST113のいずれかの処理が終了すると、処理はステップST101へ戻る。つまり、シリーズ走行モード中は、上述したステップST101からST113の処理が繰り返される。
以上のように説明したハイブリッド自動車100によると、走行速度Vと電池セル温度Tとに基づいて、PTCヒータ25の加熱やエンジン1の排熱による加熱を切り替えて電池セル21の加熱制御を実行できるため、簡易な構成で環境に応じた電池セル21の加熱制御をすることができる。
つまり、図5に示すように、電池セル温度T_B1≦電池セル温度T<電池セル温度T_B2においては、ブロアファン27を駆動しつつも、走行速度が走行速度V_THRを超えたか否かでPTCヒータ25の駆動/停止を切り替えることができる。これにより、本来、PTCヒータ25を駆動せずに電池セル21の加熱制御を実行する温度であっても走行速度が走行速度V_THRを超えた場合には、PTCヒータ25を駆動させて電池パック2内の空気をより加熱することが可能になり、電池セル21をより加熱することができる。したがって、風等の影響を受け、電池パック2が冷却されるような環境に変化しても、環境に応じて電池セル21の加熱制御を適切に実行することが可能になる。
また、ハイブリッド自動車100は、電池セル温度T≦T_B0である場合、エンジン1の駆動回転数を通常よりアップさせるため、エンジン1の駆動回転に基づく排熱を大きくすることができる。これにより、電池パック2の空気の温度をより加熱することができ、PTCヒータ25の加熱及び通常のエンジン1の駆動回転による排熱によって加熱された空気では、電池セル21の加熱が不十分になる場合にも、適切に電池セル21の加熱制御を実行することが可能になる。
なお、上記実施形態では、本発明の走行モードとしてシリーズ走行モードが選択される場合で説明したが、これに限るものではなく、パラレル走行モードにも適用することができ、さらに言えば、本発明は、エンジン(内燃機関)1の稼働を伴う走行モードに適用することができる。
その他、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…エンジン、2…電池パック、3…HEV−ECU、4…M/Gインバータ、5…ジェネレータ、6…エンジンECU、7…AC−ECU、8…BMU、9…ABS、10…車輪、11…電動機、21…電池セル、22…CMU、23…エバポレータ温度センサ、24…エバポレータ、25…PTCヒータ、26…PTCヒータ温度センサ、27…ブロワファン、28…空気撹拌器、T…電池セル温度、V…走行速度

Claims (2)

  1. 内燃機関と、前記内燃機関の動作に基づいて発電する発電機と、電動機と、前記電動機の電源となる電池を収納すると共に前記内燃機関の排熱に基づいて内部の空気が加熱される電池収納部とを備え、少なくとも前記内燃機関の稼動を伴う走行モードで走行するハイブリッド自動車であって、
    前記電池の温度を検出する温度検出手段と、
    前記電池を電力を用いて加熱制御する加熱手段と、
    空気を前記電池に送風する送風手段と、
    走行速度を検出する走行速度検出手段と、
    前記走行モードにおける走行を制御すると共に、前記加熱手段及び前記送風手段の駆動を制御する制御部とを備え、
    前記走行モード時に、
    前記制御部は、
    前記温度検出手段により検出される温度が、前記内燃機関の排熱のみに基づいて加熱される空気を前記送風手段により前記電池に送風する第1温度から前記送風手段を停止して且つ前記電池の加熱を停止する第2温度の間の温度を示す場合に、前記走行速度検出手段により検出される走行速度が前記電池の温度に影響を与える所定の走行速度を超えるときには、前記加熱手段を駆動すると共に前記加熱手段及び前記内燃機関の排熱に基づいて加熱される空気を前記送風手段により前記電池に送風することを特徴とするハイブリッド自動車。
  2. 前記制御部は、
    前記温度検出手段で検出される温度が、前記第1温度より低く、且つ、前記加熱手段及び前記内燃機関の排熱に基づく加熱では前記電池の加熱が不十分な第3温度以下の温度を示す場合、前記内燃機関の駆動回転数を上昇させることを特徴とする請求項1に記載のハイブリッド自動車。
JP2014128032A 2014-06-23 2014-06-23 ハイブリッド自動車 Active JP6330510B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128032A JP6330510B2 (ja) 2014-06-23 2014-06-23 ハイブリッド自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128032A JP6330510B2 (ja) 2014-06-23 2014-06-23 ハイブリッド自動車

Publications (2)

Publication Number Publication Date
JP2016007876A true JP2016007876A (ja) 2016-01-18
JP6330510B2 JP6330510B2 (ja) 2018-05-30

Family

ID=55225767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128032A Active JP6330510B2 (ja) 2014-06-23 2014-06-23 ハイブリッド自動車

Country Status (1)

Country Link
JP (1) JP6330510B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113940A (ja) * 2008-11-06 2010-05-20 Sumitomo Wiring Syst Ltd 電線布線用ヘッド装置及び電線布線装置
JP2014032920A (ja) * 2012-08-06 2014-02-20 Toyota Industries Corp 温度調節装置
JP2014084798A (ja) * 2012-10-24 2014-05-12 Volvo Lastvagnar Aktiebolag 蓄電モジュールの温度調整装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113940A (ja) * 2008-11-06 2010-05-20 Sumitomo Wiring Syst Ltd 電線布線用ヘッド装置及び電線布線装置
JP2014032920A (ja) * 2012-08-06 2014-02-20 Toyota Industries Corp 温度調節装置
JP2014084798A (ja) * 2012-10-24 2014-05-12 Volvo Lastvagnar Aktiebolag 蓄電モジュールの温度調整装置

Also Published As

Publication number Publication date
JP6330510B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6119870B2 (ja) バッテリ温調装置
JP5259752B2 (ja) 車両走行用モータの制御装置及びそれを搭載した車両
JP5673452B2 (ja) 組電池の温度調節装置
JP7232638B2 (ja) 電気自動車における温調制御システム
CN106240343B (zh) 车载二次电池的冷却装置
US10124651B2 (en) Systems and methods for controlling electrically powered heating devices within electrified vehicles
JP6156259B2 (ja) ハイブリッド車両およびその制御方法
US9863671B2 (en) Heat pump assisted engine cooling for electrified vehicles
JP5747701B2 (ja) 組電池の温度調節装置
JP2008103108A (ja) 電池の保温システム、電池を動力源とする自動車
JP6466787B2 (ja) 車載二次電池の冷却装置
JP2016107818A (ja) ハイブリッド車両の暖機装置
JP2010163095A (ja) 車両の制御装置
JP4887621B2 (ja) 充放電制御装置および車両
JP2005163545A (ja) ハイブリッド電気自動車のエンジン制御装置
JP4626161B2 (ja) 車両に搭載された電気機器の冷却装置
JP6330510B2 (ja) ハイブリッド自動車
JP6330511B2 (ja) ハイブリッド自動車
JP6948270B2 (ja) 産業車両用の燃料電池システム
JP6778056B2 (ja) 電動車両の空調装置
JP2007151222A (ja) 電気自動車の制御装置
JP6097975B2 (ja) 車両の冷却装置
JP7043251B2 (ja) ハイブリッド車
JP5880818B2 (ja) ハイブリッド車両及びその制御方法
JP2014108682A (ja) 車両用空調システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350