JP2016001097A - 冷媒回収方法、冷凍空調装置、及び冷媒回収システム - Google Patents

冷媒回収方法、冷凍空調装置、及び冷媒回収システム Download PDF

Info

Publication number
JP2016001097A
JP2016001097A JP2014121774A JP2014121774A JP2016001097A JP 2016001097 A JP2016001097 A JP 2016001097A JP 2014121774 A JP2014121774 A JP 2014121774A JP 2014121774 A JP2014121774 A JP 2014121774A JP 2016001097 A JP2016001097 A JP 2016001097A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant recovery
region
pressure
recovery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014121774A
Other languages
English (en)
Other versions
JP6296449B2 (ja
Inventor
匡裕 近石
Masahiro Chikaishi
匡裕 近石
昇 和田
Noboru Wada
昇 和田
稲永 康隆
Yasutaka Inanaga
康隆 稲永
一宏 小松
Kazuhiro Komatsu
一宏 小松
佳道 古川
Yoshimichi Furukawa
佳道 古川
真吾 小堀
Shingo Kobori
真吾 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2014121774A priority Critical patent/JP6296449B2/ja
Publication of JP2016001097A publication Critical patent/JP2016001097A/ja
Application granted granted Critical
Publication of JP6296449B2 publication Critical patent/JP6296449B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】従来よりも効率的に冷媒回収を行うことができる冷媒回収方法を得る。【解決手段】ビル用マルチエアコン10の冷媒回路内のガス冷媒を吸引して圧縮し、圧縮した冷媒を凝縮して回収する冷媒回収方法であって、冷媒回路を複数の領域に分割し、複数の領域のうちの1つに冷媒回収部21を連通させてガス冷媒を吸引する工程を備え、冷媒回収部21が連通する領域を切り換えて、冷媒回収部21が連通していた領域とは異なる領域からガス冷媒を吸引する工程を繰り返す。【選択図】図1

Description

本発明は、冷媒回収方法、該冷媒回収方法が用いられる冷凍空調装置、及び、該冷媒回収方法に用いられる冷媒回収システムに関する。
ビル用マルチエアコン等に代表される一般的な冷凍空調装置に使用される各種冷媒は、地球温暖化係数及びオゾン層破壊係数が大きいため、大気中への排出が規制されている。そのため、冷媒を交換する際、あるいは、冷凍空調装置(又は構成機器)を廃棄する際には、大気への漏洩を防止しつつ、冷凍空調装置の冷媒回路内に充填されている冷媒を回収することが義務付けられている。
従来の冷媒回収方法においては、冷媒回路内の冷媒の回収は、一般的な冷媒回収装置を使用する。詳しくは、従来の冷媒回収方法に用いられる冷媒回収装置は、ガス冷媒を冷媒回路内から吸引して圧縮する圧縮機と、その後段に設けた凝縮器で構成される。つまり、従来の冷媒回収方法は、冷凍空調装置の冷媒回路からガス冷媒を冷媒回収装置内の圧縮機によって吸引し、高温高圧化する。そして、高温高圧化されたガス冷媒は、冷媒回収装置内の凝縮器によって液化され、この液体冷媒を冷媒回収容器に充填(つまり回収)する。回収した冷媒量は、重量計により測定され、回収量及び回収率が算出できる。このように冷媒の回収そのものは、従来の冷媒回収方法により容易に行うことができる。
しかしながら、従来の冷媒回収方法によって冷媒回路内の冷媒を回収する際、ガス冷媒の回収の進行に伴い、冷媒回路内のガス冷媒が低温凝縮し、冷媒が液体状態で冷媒回路内に滞留するため、ガス冷媒としての回収が困難となる。そのため、冷媒回収完了までに多大な時間を要し、回収効率が悪いことが問題視されている。定められた回収作業工程において、回収時間として長時間のスケジュールを割り当てることは現実的に困難であり、また、そのような風潮が、未回収の冷媒を増加させる要因にもなりうる。このため、冷媒回収の高効率化及び高速化が望まれている。
図11は、従来の冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を示すグラフである。同図において、縦軸は、冷媒回収量及び冷媒回路内圧力を表しており、横軸は回収時間を表している。
冷媒回収作業の初期においては、冷媒回収量、冷媒回路内圧力ともに回収時間に対してほぼ直線的な変化が見られ、冷媒回収量は増加し、冷媒回路内圧力は低下している。これらの直線の傾きは、冷媒回路及び当該冷媒回路から冷媒回収装置までのコンダクタンスと、冷媒回収装置の圧縮機の能力とによってほぼ決定される冷媒回収速度を示しており、理想的な回収状態であることを示している。
一方、冷媒回収作業の後期においては、冷媒回収量及び冷媒回路内圧力の変化は、回収時間に対して鈍化し、なだらかな推移に移行する。もともと冷媒回路内の冷媒は、気液混相状態で存在している。冷媒回収装置でガス冷媒を回収する際、冷媒はその温度での気液平衡を保とうとするため液体冷媒が気化する。このときに発生する気化熱のため周囲の熱が奪われるため、ガス冷媒の吸引を継続すると冷媒が低温凝縮し、冷媒が液体状態で冷媒回路内に滞留してしまい、ガス冷媒としての回収が困難となる。この結果、特に冷媒回路内の圧力が低下した場合、冷媒回収装置で回収できるガス冷媒が少なくなる一方で、冷媒回路内には依然として液冷媒が残存する状態となる。以上のように、冷媒の滞留が顕著になると、その後、ガス冷媒の回収速度が急激に低下し、回収時間に対して冷媒回収量が鈍化し、わずかずつしか冷媒を回収できない状態に陥る。このような冷媒の滞留は、冷媒回路内のアキュムレータや熱交換機等、冷媒回路のあらゆるところに発生する。
そこで、特許文献1には、冷媒回収作業効率の向上を図った冷媒回収方法が提案されている。特許文献1に記載の冷媒回収方法は、冷媒回収前に室外機に液冷媒を集約する、いわゆるポンプダウンを行い、その後、室内機側からガス冷媒を効率的に回収するという方法である。すなわち、特許文献1に記載の冷媒回収方法は、ポンプダウンにより液冷媒を室外機に集めた後、室内機側と室外機側とを分けて、室内機に存在するガス冷媒を低圧タンク内に回収する方法である。このとき、窒素等の外部ガスを併用することで冷媒回収作業効率の向上が可能とされている。
また、冷媒回収に関する省令においては、冷媒類の圧力区分に応じ、冷媒回収口における圧力が、一定時間が経過した後に指定された圧力以下になるよう吸引することが定められている。したがって、所定量の冷媒を確実に回収するためには、ゆっくり適切な圧力で吸引し、所定圧力に到達すると、一旦、回収を停止し、冷媒回路内の圧力上昇を確認しながら、再度回収するといった工程を繰り返し実施するように指導されている。
図12は、このような冷媒回収装置の停止及び駆動を繰り返す従来の冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を示すグラフである。
冷媒回収量と冷媒回路内圧力の時間変化量が低下した時点で、冷媒回路内の圧力を向上させるべく、冷媒回収装置を停止して冷媒回収装置と冷媒回路の連通箇所を閉じる。冷媒回収装置を停止して冷媒回路を空間的に閉じると、気化熱は発生しないため冷媒の低温凝縮の進展は抑えられ、外気からの入熱により冷媒回路内の圧力は上昇に転じる。冷媒回収装置停止後、冷媒回路内の圧力が所定の圧力まで回復したら冷媒回収装置を駆動し、冷媒回収を再開する。回収すべき冷媒量に到達するまでこれらを繰り返し実施する。図12に示すように、回収すべき冷媒量に達するまでの時間は図11の例に比して速くなる。
特開2002−147903号公報(段落[0018],[0019])
実際の冷媒回収作業ではポンプダウンを実施しない場合も多く、特許文献1のように回収対象(室内機側)からガス冷媒を回収し続ける手法をとった場合、冷媒回路内に残存している液冷媒の滞留を促進してしまうため、冷媒回収効率が低下する。すなわち、特許文献1の冷媒回収方法では、ガス冷媒を常時回収するため、気化熱により、内在する液冷媒の回路内での滞留が促進されてしまい冷媒回収効率(速度)が悪くなるという課題があった。
また、冷媒回収装置の停止及び駆動を繰り返し液冷媒の気化を促進する冷媒回収方法は、冷媒回収装置を停止する期間があるため、当然この期間は冷媒回収量が増えず、効率的な冷媒回収方法とはいえない。また、冷媒回収装置が停止する期間中の冷媒回路内の圧力上昇速度が遅いほど回収装置の停止期間が長くなる。このように、この回収方法においては、冷媒回収作業の確実性のみが重要視されているため、作業時間の長時間化を回避することはできず、冷媒回収作業の容易さに反して、極めて作業効率が悪いという課題があった。
本発明は、上述のような課題を解決するためになされたものであり、従来よりも効率的に冷媒回収を行うことができる冷媒回収方法、冷凍空調装置、及び冷媒回収システムを得ることを目的とする。
本発明に係る冷媒回収方法は、冷媒回路内の冷媒を吸引して圧縮し、圧縮した冷媒を凝縮して回収する冷媒回収方法であって、前記冷媒回路を複数の領域に分割し、複数の前記領域のうちの1つに冷媒回収システムを連通させて冷媒を吸引する工程を備え、前記冷媒回収システムが連通する前記領域を切り換えて、前記冷媒回収システムが連通していた前記領域とは異なる前記領域から冷媒を吸引する工程を繰り返すものである。
本発明によれば、冷媒回路の複数の領域に分割し、領域を切り換えながら冷媒回収を行う。このため、本発明は、従来のように冷媒回収装置を停止することなく冷媒回収できるため冷媒回収効率(速度)を向上できる。また、本発明は、領域区画により、冷媒回路内の圧力上昇速度を向上できるため、このことによっても冷媒回収効率(速度)を向上できる。
本発明の実施の形態1に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。 本発明の実施の形態1に係る冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を示すグラフである。 本発明の実施の形態1における冷媒回収部と連通する領域を説明する図である。 本発明の実施の形態1における弁の切り換えを説明する図である。 本発明の実施の形態2に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。 本発明の実施の形態2に係る継手を示す断面図である。 本発明の実施の形態2に係る継手の連通状態を説明するための図である。 本発明の実施の形態2に係るビル用マルチエアコン及び冷媒回収システムの別の一例を示す構成図である。 本発明の実施の形態3に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。 本発明の実施の形態4に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。 従来の冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を示すグラフである。 冷媒回収装置の停止及び駆動を繰り返す従来の冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を示すグラフである。
以下、本発明に係る冷媒回収方法、該冷媒回収方法が用いられる冷凍空調装置、及び、該冷媒回収方法に用いられる冷媒回収システムについて説明する。なお、以下の各実施の形態では、冷凍空調装置としてビル用マルチエアコンを例にして本発明を説明する。また、以下の各実施の形態では、冷媒回路を実現する機器は基本要素のみ説明するが、室内機及び室外機の熱交換器の数を限定するものではなく、バルブ等の付属構成機器や配管経路等があってもよい。さらに当然ながら、本発明は、ビル用マルチエアコンだけではなく、冷媒を使用する冷凍空調装置全般の冷媒回収に適用できる。
実施の形態1.
図1は、本発明の実施の形態1に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。なお、図1中、実線は冷媒が流れる冷媒配管を表し、破線は入出力制御線を示す。
図1に示すように、本実施の形態1に係るビル用マルチエアコン10は、室外機11、及び、該室外機に例えば並列接続された室内機1,2を有している。室外機11は、冷媒回路用圧縮機14、四方弁15、室外熱交換器12(冷房運転時には凝縮器となり、暖房運転時には蒸発器となる熱交換器)、熱交換部27、アキュムレータ13、及び、オイルセパレータ26を備えている。室内機1は、室内熱交換器3(冷房運転時には蒸発器となり、暖房運転時には凝縮器となる熱交換器)、及び、膨張弁5を備えている。室内機2は、室内熱交換器4(冷房運転時には蒸発器となり、暖房運転時には凝縮器となる熱交換器)、及び、膨張弁6を備えている。
つまり、本実施の形態1に係るビル用マルチエアコン10の冷媒回路は、冷媒回路用圧縮機14、オイルセパレータ26、四方弁15、室外熱交換器12、熱交換部27、膨張弁5,6、室内熱交換器3,4、及び、アキュムレータ13が冷媒配管で接続されて構成されている。
また、本実施の形態1に係るビル用マルチエアコン10の冷媒回路には、冷媒回路内を流れる冷媒の圧力を検知する圧力検知部51,52、及び、弁101,102,201,202が設けられている。そして、圧力検知部51,52、及び、弁101,102,201,202は、入出力制御線を介してビル用マルチエアコン10の制御部50と接続されている。つまり、制御部50は、圧力検知部51,52の検知値に基づいて、弁101,102,201,202を開閉するものである。なお、制御部50は、例えば室外機11に設置されている。
本実施の形態1における冷媒回収システムは、冷媒回収部21を備えている。この冷媒回収部21は、圧縮機19、及び、該圧縮機19の吐出側に接続された凝縮器20を備えている。冷媒回収部21の圧縮機19の吸入側は、ビル用マルチエアコン10の冷媒回路に形成されたサービスポートに接続されている。なお、ビル用マルチエアコンには、通常、高圧側のサービスポート16及び低圧側のサービスポート17が設けられている。このため、本実施の形態1においても、冷媒回収部21の圧縮機19の吸入側を、マニホールド18を介して、サービスポート16,17に接続している。なお、サービスポートは1つ又は3つ以上でもよい。また、サービスポートが複数ある場合には、冷媒回収部21の圧縮機19の吸入側を少なくとも1つのサービスポートに接続すればよい。また、冷媒回収部21の凝縮器20には、冷媒回収容器22が接続されている。
次に、本実施の形態1に係る冷媒回収方法(冷媒回収動作)について説明する。
冷媒回収開始時、サービスポート16,17を介して冷媒回収部21と接続されたビル用マルチエアコン10の冷媒回路において、弁101,102,201,202は開状態となっている。このため、冷媒回収部21は、冷媒回路の全域と連通している。この冷媒回収の状態を通常モードと称する。この状態で冷媒回収部21内の圧縮機19を駆動し、冷媒回収を開始する。これにより、冷媒回路内の全領域からガス冷媒がサービスポート16,17に向かって流れる。圧縮機19で吸引され高温高圧化したガス冷媒は、凝縮器20において液化凝縮され、冷媒回収容器22に液化冷媒として回収される。
図2は、本発明の実施の形態1に係る冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を示すグラフである。なお、図2では、本実施の形態1に係る冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を太い実線で示している。また、図2に示す細い実線は、冷媒回収装置の停止及び駆動を繰り返す従来の冷媒回収方法による冷媒回収時の冷媒回収量及び冷媒回路内圧力の時間変化を示している。
冷媒回収初期においては、冷媒回収量及び冷媒回路内の圧力は回収時間に対しほぼ直線的な変化を示す。いわば冷媒回収部21内の圧縮機19の能力が有効に利用できる回収期間である。仮にこのまま冷媒回収を進めると、先に説明したように冷媒回収量及び冷媒回路内の圧力が回収時間に対して鈍化する回収後期に移行する。すなわち冷媒の滞留が進展し、特に冷媒回路内の圧力が低下した場合、冷媒回収部21で回収できるガス冷媒が少なくなる一方で冷媒回路内には依然として液冷媒が残存する状態となる。
そこで、本実施の形態1においては、冷媒回収量及び冷媒回路内の圧力の時間変化が鈍化する領域において、制御部50は、弁102,202を開状態から閉状態に切り換え、弁101,201は開状態を保つ。これらの弁を切り換えた時点以降における冷媒回収システムの状態を切換モードと称する。これらの弁の切り換えタイミングは圧力検知部51,52にて検知される圧力が規定値を下回ったタイミングで規定される。また、圧力検知部51,52からの信号を受けた制御部50は、各弁へ開閉状態を指定する信号を送ることで各弁の開閉が実現される。なお、切り換えタイミングの規定には、前述の圧力値による判断の他、圧力の時間変化、すなわち、図2における圧力曲線の傾き変化を用いてもよい。換言すると、これらの弁の切り換えタイミングは、圧力検知部51,52にて検知される圧力の単位時間当たりの変化量が規定変化量を下回ったタイミングで規定されてもよい。また、図には示さないが、弁202とアキュムレータ13との間から熱交換部27へ伸びる配管に備えられているバルブは切換モード移行後、閉状態となる。
冷媒回収システムの状態を切換モードに切り換えた直後においては、上述のように、弁102,202が閉状態、弁101,201が開状態である。このため、図3において太線で示すように、冷媒回収部21と連通する冷媒回路の領域(つまり冷媒回収が行われる領域)は、室内熱交換器3,4及び室外熱交換器12が位置する配管側の領域となる(この領域を領域Aと称する)。一方、冷媒回路のうち、冷媒回路用圧縮機14及びアキュムレータ13が位置する配管側の領域は冷媒回収部21と連通しない(この領域を領域Bと称する)。すなわちこの状態においては、領域Aのガス冷媒が冷媒回収部21の圧縮機19で吸引され、通常モードに引き続いて冷媒回収が進行する。
一方で、領域Bは冷媒回収部21と切り離され、空間的に閉じた領域となる。このため、冷媒回収に伴う気化熱は発生せず、外部からの入熱により領域B内部の液冷媒の気化が促進され、圧力は増加に転じる。また、弁102,202は閉状態にあるため、領域Bは冷媒回路全領域の容積に比して小さい。このため、領域B内の圧力上昇速度は冷媒回収部21と連通する領域を区画しない場合に比して速い。したがって、領域Bが冷媒回収部21を効果的に使用できる所定圧力に回復するまでの時間が、冷媒回路全領域に対して圧力上昇を待つ従来の場合に要する時間より短縮できる。
このように、冷媒回収量(速度)が鈍化した場合において、弁101,102,201,202の開閉状態を切り換えて冷媒回路を領域A及び領域Bに分割し、領域Aからの冷媒回収を継続することで、冷媒回収部21を停止することなく冷媒回収を遂行できる。また、冷媒回路を領域A及び領域Bに分割することで、冷媒回収部21と遮断した領域Bは冷媒回路容積が小さくなるため、外部からの入熱による領域B内の圧力上昇速度が速く、冷媒回収部21を効果的に使用できる圧力への到達が速い。
領域Bの圧力が規定値まで回復したら、つまり、圧力検知部52の検知値が規定値まで上昇した後、制御部50は、弁101,201を開状態から閉状態に切り換え、弁102,202を閉状態から開状態に切り換える。この状態においては、領域Aが空間的に閉じた領域となるため、回収にともなう気化熱は発生せず、外部入熱により領域内部に残存している液冷媒の気化が促進され圧力は次第に増加する。また、領域Bは冷媒回収部21と連通し、切換前に液冷媒の気化が促進され圧力が向上していた状態からの冷媒回収が可能となる。なお、領域Aの圧力が規定値を下回った後、領域Bに冷媒回収部21を連通させてもよい。また、領域Aの圧力の単位時間当たりの変化量が規定変化量を下回った後、領域Bに冷媒回収部21を連通させてもよい。
つまり、図4に示すように、弁101,102,201,202を切り換えて冷媒回収部21と連通する領域を連続的に切り換える一連の動作によって、冷媒回収部21を停止することなく冷媒回収を実施できる。このため、図2に示すように冷媒回収量は常に増える。また、冷媒回路を複数に分割することにより、冷媒回収部21に連通していない領域の圧力の上昇速度が複数の領域に分割されていない冷媒回路に比して速いため、冷媒回収部21を効果的に使用できる圧力領域までの回復が速く、冷媒回収効率を向上できる。これらを繰り返すことで、目的の回収対象量までの到達時間を速くできる。
以上、本実施の形態1においては、冷媒回路を複数の領域に分割し、複数の領域のうちの1つに冷媒回収部21を連通させてガス冷媒を吸引する工程を備え、冷媒回収部21が連通する領域を切り換えて、冷媒回収部21が連通していた領域とは異なる領域からガス冷媒を吸引する工程を繰り返す。これにより、冷媒回収速度鈍化時においても、冷媒回収部21を停止することなく冷媒を回収できる。また、領域区画により圧力上昇する冷媒回路体積が小さくなるため、滞留する液冷媒の気化による圧力上昇速度が速くなり、その後の冷媒回収を効率的に行える。このため、冷媒回収部21を完全に停止し、冷媒回路の全領域の圧力上昇を待つ従来の手法に比して、冷媒回収の高効率化(高速化)が実現でき、従来に比して、冷媒回収作業の短時間化が実現できる。
なお、本実施の形態1ではサービスポートが2つの場合で説明したが、サービスポートが複数ある場合にも応用できる。また、本実施の形態1では冷媒回路を2つの領域に分割したが、冷媒回路を3つ以上に分割しても勿論よい。例えば、冷媒回収部21と連通していない領域の少なくとも1つの圧力が規定値まで上昇した後、規定値まで上昇した領域の1つに冷媒回収部21を連通させればよい。
実施の形態2.
本発明の冷媒回収方法を実現できるビル用マルチエアコン及び冷媒回収システムの構成は、図1に示した構成に限定されるものではない。例えば、以下のようにビル用マルチエアコン及び冷媒回収システムを構成してもよい。なお、本実施の形態2で記載されていない構成は実施の形態1と同様とし、実施の形態1と同様の構成には実施の形態1と同じ符号を付している。
図5は、本発明の実施の形態2に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。なお、図5中、実線は冷媒が流れる冷媒配管を表し、破線は入出力制御線を示す。
本実施の形態2に係るビル用マルチエアコン10及び冷媒回収システムは、実施の形態1とほぼ同様の構成であるが、領域A,Bの切り換えを行う構成が異なる。詳しくは、実施の形態1の弁101,102,201,202に換えて、本実施の形態2では、サービスポート16,17に接続される継手96,97を備えている。なお、領域A及び領域Bの定義は、実施の形態1と同様であり、室内熱交換器3,4及び室外熱交換器12が位置する配管側の領域を領域A、冷媒回路用圧縮機14及びアキュムレータ13が位置する配管側の領域を領域Bとする。
すなわち、図5に示すように、本実施の形態2に係るビル用マルチエアコン10は、室外機11に設けられた冷媒回路用圧縮機14、四方弁15、室外熱交換器12、熱交換部27、アキュムレータ13、オイルセパレータ26及び圧力検知部51,52と、室内機1,2に設けられた室内熱交換器3,4及び膨張弁5,6を備えている。そして、本実施の形態2に係るビル用マルチエアコン10の冷媒回路は、弁101,102,201,202が設けられていない構成となっている。
また、本実施の形態2における冷媒回収システムは、圧縮機19及び凝縮器20を有する冷媒回収部21と、継手96,97とを備えている。なお、ビル用マルチエアコンには、通常、高圧側のサービスポート16及び低圧側のサービスポート17が設けられている。このため、本実施の形態2においても、サービスポート16,17に継手96,97を接続し、継手96,97及びマニホールド18を介して、サービスポート16,17に冷媒回収部21を接続している。
ここで、マニホールド18のサービスポートへの接続は継手96,97の構成について説明する。なお、継手96及び継手97は同様の構成となっている。このため、以下では、継手96の構成について説明する。
図6は、本発明の実施の形態2に係る継手を示す断面図である。なお、図6は、サービスポート16(17)に継手96(97)を接続した状態の断面図である。また、図6には、Z方向から継手96(97)を観察したZ矢視図も記載している。
図6に示すように、継手96(97)は、胴部1001、ナット1002、セパレータ1003及び回転軸1004を備えている。略円筒形状の胴部1001の一方の端部には、その外側に、サービスポート16(17)と接続可能なナット1002が設けられている。また、胴部1001の他方の端部には、マニホールド18と接続するための冷媒配管と接続できる接続ねじ(雄ねじ)が形成されている。なお、図6では、冷媒配管と胴部1001とを接続するための構成を接続ねじとしているが、冷媒配管と胴部1001とを接続できる構成であればよい。また、ナット1002とサービスポート16(17)とを接続する構成も、雌ねじに限定されるわけではなく、ナット1002とサービスポート16(17)とを接続できる構成であればよい。
継手96(97)の胴部1001の内部には流路切り換え用のセパレータ1003が内蔵されている。セパレータ1003は回転軸1004と連結しており、回転軸1004の回転により、マニホールド18側と連通する領域を切り換えることができる。
図7は、本発明の実施の形態2に係る継手の連通状態を説明するための図である。なお、この図7は、図6のZ方向から継手96(97)を観察した図である。
すなわち、図7中の状態aではマニホールド18は領域Aとのみ連通し、状態bでは領域Bとのみ連通する。また、状態c,dでは、領域A及び領域Bの両方と連通する。また、セパレータ1003は金属又は弾性体で構成され、サービスポート16(17)近傍の配管と隙間なく接触する。さらに回転軸1004の回転状態は、制御部50からの出力信号により切り換えることができる。
次に、本実施の形態2に係る冷媒回収方法(冷媒回収動作)について説明する。
冷媒回収開始時、サービスポート16,17を介して冷媒回収部21と接続されたビル用マルチエアコン10の冷媒回路において、継手96(97)内部の回転軸1004の状態は、状態c又は状態dとなっている。このため、冷媒回収部21は、冷媒回路の全域と連通している。この冷媒回収の状態を通常モードと称する。この状態で冷媒回収部21内の圧縮機19を駆動し、冷媒回収を開始する。これにより、冷媒回路内の全領域からガス冷媒がサービスポート16,17に向かって流れる。圧縮機19で吸引され高温高圧化したガス冷媒は、凝縮器20において液化凝縮され、冷媒回収容器22に液化冷媒として回収される。
実施の形態1と同様に、冷媒回収初期においては、冷媒回収量及び冷媒回路内の圧力は回収時間に対しほぼ直線的な変化を示す。いわば冷媒回収部21内の圧縮機19の能力が有効に利用できる回収期間である。冷媒回収量及び冷媒回路内の圧力の時間変化が鈍化した状態になると、制御部50は、継手96(97)内部の回転軸1004の状態を状態aに切り換える。すなわちこの時、冷媒回収部21は領域Aとのみ連通する。回転軸1004の状態を切り換えた時点以降における冷媒回収システムの状態を切換モードと称する。
回転軸1004の切り換えタイミングは圧力検知部51,52にて検知される圧力が規定値を下回ったタイミングで規定される。また、圧力検知部51,52からの信号を受けた制御部50は、継手96(97)へ回転状態を指定する信号を送ることで回転軸の状態が規定される。なお、切り換えタイミングの規定には、前述の圧力値による判断の他、圧力の時間変化、すなわち、図2における圧力曲線の傾き変化を用いてもよい。換言すると、切り換えタイミングは、圧力検知部51,52にて検知される圧力の単位時間当たりの変化量が規定変化量を下回ったタイミングで規定されてもよい。また、図には示さないが、弁202とアキュムレータ13との間から熱交換部27へ伸びる配管に備えられているバルブは切換モード移行後、閉状態となる。
冷媒回収システムの状態を切換モードに切り換えた直後においては、冷媒回収部21と領域Aとが連通する一方、領域Bには冷媒回収部21が連通しない。この状態においては、領域Aのガス冷媒が冷媒回収部21の圧縮機19で吸引され、通常モードに引き続いて冷媒回収が進行する。一方で、領域Bは冷媒回収部21と切り離され、空間的に閉じた領域となる。このため、冷媒回収に伴う気化熱は発生せず、外部からの入熱により領域B内部の液冷媒の気化が促進され、圧力は増加に転じる。また、回転軸1004が状態aにあるため、領域Bは冷媒回路全領域の容積に比して小さい。このため、領域B内の圧力上昇速度は冷媒回収部21と連通する領域を区画しない場合に比して速い。したがって、領域Bが冷媒回収部21を効果的に使用できる所定圧力に回復するまでの時間が、冷媒回路全領域に対して圧力上昇を待つ従来の場合に要する時間より短縮できる。
このように、冷媒回収量(速度)が鈍化した場合において、継手96(97)内部の回転軸1004の状態を切り換えて冷媒回路を領域A及び領域Bに分割し、領域Aからの冷媒回収を継続することで、冷媒回収部21を停止することなく冷媒回収を遂行できる。また、冷媒回路を領域A及び領域Bに分割することで、冷媒回収部21と遮断した領域Bは冷媒回路容積が小さくなるため、外部からの入熱による領域B内の圧力上昇速度が速く、冷媒回収部21を効果的に使用できる圧力への到達が速い。
領域Bの圧力が規定値まで回復したら、つまり、圧力検知部52の検知値が規定値まで上昇した後、制御部50は、継手96(97)内部の回転軸1004の状態を状態bに切り換える。この状態においては、領域Aが空間的に閉じた領域となるため、回収にともなう気化熱は発生せず、外部入熱により領域内部に残存している液冷媒の気化が促進され圧力は次第に増加する。また、領域Bは冷媒回収部21と連通し、切換前に液冷媒の気化が促進され圧力が向上していた状態からの冷媒回収が可能となる。なお、領域Aの圧力が規定値を下回った後、領域Bに冷媒回収部21を連通させてもよい。また、領域Aの圧力の単位時間当たりの変化量が規定変化量を下回った後、領域Bに冷媒回収部21を連通させてもよい。
つまり、実施の形態1と同様に、切換モード移行後に冷媒回収部21と連通する領域を連続的に切り換える一連の動作によって、冷媒回収部21を停止することなく冷媒回収を実施できる。このため、図2に示すように冷媒回収量は常に増える。また、冷媒回路を複数に分割することにより、冷媒回収部21に連通していない領域の圧力の上昇速度が複数の領域に分割されていない冷媒回路に比して速いため、冷媒回収部21を効果的に使用できる圧力領域までの回復が速く、冷媒回収効率を向上できる。これらを繰り返すことで、目的の回収対象量までの到達時間を速くできる。
以上、本実施の形態2においても、冷媒回路を複数の領域に分割し、複数の領域のうちの1つに冷媒回収部21を連通させてガス冷媒を吸引する工程を備え、冷媒回収部21が連通する領域を切り換えて、冷媒回収部21が連通していた領域とは異なる領域からガス冷媒を吸引する工程を繰り返す。これにより、冷媒回収速度鈍化時においても、冷媒回収部21を停止することなく冷媒を回収できる。また、領域区画により圧力上昇する冷媒回路体積が小さくなるため、滞留する液冷媒の気化による圧力上昇速度が速くなり、その後の冷媒回収を効率的に行える。このため、冷媒回収部21を完全に停止し、冷媒回路の全領域の圧力上昇を待つ従来の手法に比して、冷媒回収の高効率化(高速化)が実現でき、従来に比して、冷媒回収作業の短時間化が実現できる。
また、本実施の形態2においては、サービスポート16,17に接続された継手96,97によって、冷媒回収部21が接続される領域の切り換えを行う。このため、冷媒回路で領域が区画できない場合においても、冷媒回収部21と連通する領域を連続的に切り換えることが可能となる。
なお、本実施の形態2では、ビル用マルチエアコン10の制御部50で継手96,97を制御した。これに限らず、図8に示すように、冷媒回収システムに、継手96,97を制御する制御部53と、サービスポート16,17から冷媒回収部21の圧縮機19へ至る冷媒配管に設けられた圧力検知部54(圧縮機19と連通する領域の圧力を検知する圧力検知部)とを備えてもよい。圧縮機19に連通している領域の圧力に基づいて、継手96,97を制御して圧縮機19に連通する前記領域を切り換えることにより、冷媒回収システム単体で本発明の冷媒回収方法を実施できる。ここで、制御部53が、本発明の冷媒回収側制御部に相当する。
実施の形態3.
実施の形態1又は実施の形態2で示したビル用マルチエアコン10の冷媒回路における液冷媒の滞留が顕著となる箇所に、当該箇所を加熱する加熱源を設けることにより、冷媒回収作業をさらに高効率化(高速化)することが可能となる。なお、本実施の形態3で記載されていない構成は上記の実施の形態のいずれかと同様とし、上記の実施の形態と同様の構成には上記の実施の形態と同じ符号を付している。また、以下では、実施の形態1で説明したビル用マルチエアコン10及び冷媒回収システムを例にして説明する。
図9は、本発明の実施の形態3に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。なお、図9中、実線は冷媒が流れる冷媒配管を表し、破線は入出力制御線を示す。
冷媒回収時の気化熱により促進される液冷媒の滞留は冷媒回路の各所で発生する。特に滞留が顕著となる箇所としてアキュムレータや熱交換器が知られている。そこで、図9に示すように本実施の形態3に係るビル用マルチエアコン10は、冷媒回路における液冷媒の滞留が顕著となる箇所に、当該箇所を加熱する加熱源を設けている。具体的には、アキュムレータ13を加熱する加熱源300、室外熱交換器12を加熱する加熱源301、室内熱交換器3を加熱する加熱源302、及び、室内熱交換器4を加熱する加熱源303を設けている。これら加熱源300〜303も、制御部50の入力信号を受けた動作が可能である。加熱源は特にその機種を制限しないが、ヒータや加温流体の循環機構、放射熱発生源等が考えられる。加熱源300〜303の出力に制限はないが、回収現場での電源容量の制約から合計最大1.5kW程度の出力が現実的である。なお、本実施の形態3では、冷媒回収中、加熱源300〜303は、基本的に常時ONとしており、弁101,102,201,202の開閉とは連動しない構成としている。
すなわち、図9に示すように、本実施の形態3に係るビル用マルチエアコン10は、室外機11に設けられた冷媒回路用圧縮機14、四方弁15、室外熱交換器12、熱交換部27、アキュムレータ13、オイルセパレータ26、圧力検知部51,52、弁101,102,201,202及び加熱源300,301と、室内機1,2に設けられた室内熱交換器3,4、膨張弁5,6及び加熱源302,303を備えている。
また、本実施の形態3における冷媒回収システムは、圧縮機19及び凝縮器20を有する冷媒回収部21を備えている。なお、ビル用マルチエアコンには、通常、高圧側のサービスポート16及び低圧側のサービスポート17が設けられている。このため、本実施の形態3においても、マニホールド18を介して、サービスポート16,17に冷媒回収部21を接続している。
次に、本実施の形態3に係る冷媒回収方法(冷媒回収動作)について説明する。
冷媒回収開始時、実施の形態1と同様に、サービスポート16,17を介して冷媒回収部21と接続されたビル用マルチエアコン10の冷媒回路において、弁101,102,201,202は開状態となっている。このため、冷媒回収部21は、冷媒回路の全域と連通している。この冷媒回収の状態を通常モードと称する。この状態で冷媒回収部21内の圧縮機19を駆動し、冷媒回収を開始する。開始と同時に、制御部50より加熱源300〜303へ駆動信号が送られ、各加熱源300〜303はその動作を開始する。通常モードでの冷媒回収においても、当然ながら気化熱により冷媒回路内の冷媒温度が低下し、冷媒の液化を促す。しかしながら、加熱源300〜303の駆動により、冷媒滞留の進展を抑制することができる。なお、加熱源300〜303の駆動は、冷媒回路内の圧力が過度に上昇しない範囲であれば、冷媒回収開始前から実施してもよい。
冷媒回収が進み、圧力検知部51,52にて検知される圧力が既定値を下回ったタイミングで、通常モードから切換モードに移行する。すなわち、制御部50は、弁102,202を開状態から閉状態に切り換え、弁101,201は開状態を保つ。弁101,201,102,202の切り換えタイミングは圧力検知部51,52にて検知される圧力が既定値を下回ったタイミングで規定される。また、圧力検知部51,52からの信号を受けた制御部50は、各弁101,201,102,202へ開閉状態を指定する信号を送ることで弁101,201,102,202の開閉が実現される。なお、切り換えタイミングの規定には、前述の圧力値による判断の他、圧力の時間変化、すなわち、図2における圧力曲線の傾き変化を用いてもよい。換言すると、これらの弁の切り換えタイミングは、圧力検知部51,52にて検知される圧力の単位時間当たりの変化量が規定変化量を下回ったタイミングで規定されてもよい。また、図には示さないが、弁202とアキュムレータ13との間から熱交換部27へ伸びる配管に備えられているバルブは切換モード移行後、閉状態となる。
切換モードに移行した後においても、基本的に各加熱源300〜303は、駆動し続けるのがよい。すなわち、冷媒回収部21と連通する領域については、加熱源により気化する液冷媒の量を促進でき、単位時間あたりの冷媒回収量を増加できる。また、冷媒回収部21と連通せず空間的に閉じた領域に内在する液冷媒は、外気入熱に加えて加熱源により気化が促進され、領域内の圧力上昇速度が速くなり、冷媒回収部21での効率的な回収に備えることができる。なお、空間的に閉じた領域においては、加熱源により領域内の圧力が過度に上昇しないように、制御部50により各加熱源の出力が制御される。
以上、本実施の形態3においても、冷媒回路を複数の領域に分割し、複数の領域のうちの1つに冷媒回収部21を連通させてガス冷媒を吸引する工程を備え、冷媒回収部21が連通する領域を切り換えて、冷媒回収部21が連通していた領域とは異なる領域からガス冷媒を吸引する工程を繰り返す。これにより、冷媒回収速度鈍化時においても、冷媒回収部21を停止することなく冷媒を回収できる。また、領域区画により圧力上昇する冷媒回路体積が小さくなるため、滞留する液冷媒の気化による圧力上昇速度が速くなり、その後の冷媒回収を効率的に行える。このため、冷媒回収部21を完全に停止し、冷媒回路の全領域の圧力上昇を待つ従来の手法に比して、冷媒回収の高効率化(高速化)が実現でき、従来に比して、冷媒回収作業の短時間化が実現できる。
また、本実施の形態3においては、液冷媒の滞留が顕著な箇所に加熱源300〜303を設置することにより、領域区画した冷媒回路内の圧力上昇速度をさらに速くでき、冷媒回収作業をさらに高効率化(高速化)することができる。なお、加熱源300〜303のうちの少なくとも1つを備えていれば、当該効果を得ることができる。
実施の形態4.
領域区画した冷媒回路内の圧力上昇速度を向上させるため、実施の形態1〜実施の形態3の構成に、下記のようにガス供給部を接続してもよい。なお、本実施の形態4で記載されていない構成は上記の実施の形態のいずれかと同様とし、上記の実施の形態と同様の構成には上記の実施の形態と同じ符号を付している。また、以下では、実施の形態1で説明したビル用マルチエアコン10及び冷媒回収システムを例にして説明する。
図10は、本発明の実施の形態4に係るビル用マルチエアコン及び冷媒回収システムを示す構成図である。なお、図10中、実線は冷媒が流れる冷媒配管を表し、破線は入出力制御線を示す。
本実施の形態4に係る冷媒回収システムは、実施の形態1で示した冷媒回収システムの構成に加えて、ガス供給部500及び混合ガス分離回収部600を備えている。ガス供給部500は、ガス供給経路501を介して、冷媒回路のサービスポート16に接続されている。ガス供給経路501には、該ガス供給経路501を開閉する(連通状態を変更する)弁71が設けられている。また、混合ガス分離回収部600は、ポンプ601、及び、該ポンプ601の吐出側に接続された分離部602を備えている。ポンプ601の吸入側は、混合ガス吸入経路603を介して、冷媒回路のサービスポート17に接続されている。混合ガス吸入経路603には、該混合ガス吸入経路603を開閉する(連通状態を変更する)弁81が設けられている。
ここで、弁71が本発明の開閉弁に相当する。
すなわち、図10に示すように、本実施の形態4に係るビル用マルチエアコン10は、室外機11に設けられた冷媒回路用圧縮機14、四方弁15、室外熱交換器12、熱交換部27、アキュムレータ13、オイルセパレータ26、圧力検知部51,52及び弁101,102,201,202と、室内機1,2に設けられた室内熱交換器3,4及び膨張弁5,6を備えている。
また、本実施の形態4における冷媒回収システムは、冷媒回収部21、ガス供給部500及び混合ガス分離回収部600を備えている。なお、ビル用マルチエアコンには、通常、高圧側のサービスポート16及び低圧側のサービスポート17が設けられている。本実施の形態4においても、マニホールド18及びガス吸入経路23,24を介して、サービスポート16,17に冷媒回収部21を接続している。このため、サービスポート16とガス供給部500とが連通しているときに、サービスポート16と冷媒回収部21との連通を遮断するため、ガス吸入経路23には、該ガス吸入経路23を開閉する弁72が設けられている。また、サービスポート17と混合ガス分離回収部600とが連通しているときに、サービスポート17と冷媒回収部21との連通を遮断するため、ガス吸入経路24には、該ガス吸入経路23を開閉する弁82が設けられている。
また、ガス冷媒とガス供給部500から供給されたガスとを分離する分離部602を冷媒回収部21に設けることにより、例えば圧縮機19の吐出側に凝縮器20と分離部602とを並列接続することにより、混合ガス吸入経路603、弁81及び混合ガス分離回収部600も不要となる。
弁71,72,81,82の開閉状態は制御部50からの信号により制御される。なお、図8に示すように制御部53を備えている場合、制御部53によって弁71,72,81,82の開閉状態を制御してもよい。
次に、本実施の形態4に係る冷媒回収方法(冷媒回収動作)について説明する。
冷媒回収開始時、弁71,81は閉状態、弁72,82は開状態である。すなわち、冷媒回路は、サービスポート16,17を介して冷媒回収部21に連絡された状態である。また、冷媒回路中の、弁101,201,102,202は回収開始時においては開状態である。この冷媒回収システムの状態を通常モードと称する。この状態で冷媒回収部21内の圧縮機19を駆動し、冷媒回収を開始する。
冷媒回収が進み、圧力検知部51,52にて検知される圧力が既定値を下回ったタイミングで、通常モードから切換モードに移行する。すなわち、制御部50は、弁102,202を開状態から閉状態に切り換え、弁101,201は開状態を保つ。弁101,201,102,202の切り換えタイミングは圧力検知部51,52にて検知される圧力が既定値を下回ったタイミングで規定される。また、圧力検知部51,52からの信号を受けた制御部50は、各弁101,201,102,202へ開閉状態を指定する信号を送ることで弁101,201,102,202の開閉が実現される。なお、切り換えタイミングの規定には、前述の圧力値による判断の他、圧力の時間変化、すなわち、図2における圧力曲線の傾き変化を用いてもよい。換言すると、これらの弁の切り換えタイミングは、圧力検知部51,52にて検知される圧力の単位時間当たりの変化量が規定変化量を下回ったタイミングで規定されてもよい。また、図には示さないが、弁202とアキュムレータ13との間から熱交換部27へ伸びる配管に備えられているバルブは切換モード移行後、閉状態となる。
冷媒回収システムの状態を切換モードに切り換えた直後においては、上述のように、弁102,202が閉状態、弁101,201が開状態である。このため、冷媒回収部21と連通する冷媒回路の領域(つまり冷媒回収が行われる領域)は、室内熱交換器3,4及び室外熱交換器12が位置する配管側の領域となる(この領域を領域Aと称する)。一方、冷媒回路のうち、冷媒回路用圧縮機14及びアキュムレータ13が位置する配管側の領域は冷媒回収部21と連通しない(この領域を領域Bと称する)。すなわちこの状態においては、領域Aのガス冷媒が冷媒回収部21の圧縮機19で吸引され、通常モードに引き続いて冷媒回収が進行する。
一方で、領域Bは冷媒回収部21と切り離され、空間的に閉じた領域となる。このため、冷媒回収に伴う気化熱は発生せず、外部からの入熱により領域B内部の液冷媒の気化が促進され、圧力は増加に転じる。また、弁102,202は閉状態にあるため、領域Bは冷媒回路全領域の容積に比して小さい。このため、領域B内の圧力上昇速度は冷媒回収部21と連通する領域を区画しない場合に比して速い。したがって、領域Bが冷媒回収部21を効果的に使用できる所定圧力に回復するまでの時間が、冷媒回路全領域に対して圧力上昇を待つ従来の場合に要する時間より短縮できる。
このように、冷媒回収量(速度)が鈍化した場合において、弁101,102,201,202の開閉状態を切り換えて冷媒回路を領域A及び領域Bに分割し、領域Aからの冷媒回収を継続することで、冷媒回収部21を停止することなく冷媒回収を遂行できる。また、冷媒回路を領域A及び領域Bに分割することで、冷媒回収部21と遮断した領域Bは冷媒回路容積が小さくなるため、外部からの入熱による領域B内の圧力上昇速度が速く、冷媒回収部21を効果的に使用できる圧力への到達が速い。
領域Bの圧力が規定値まで回復したら、つまり、圧力検知部52の検知値が規定値まで上昇した後、制御部50は、弁101,201を開状態から閉状態に切り換え、弁102,202を閉状態から開状態に切り換える。この状態においては、領域Aが空間的に閉じた領域となるため、回収にともなう気化熱は発生せず、外部入熱により領域内部に残存している液冷媒の気化が促進され圧力は次第に増加する。また、領域Bは冷媒回収部21と連通し、切換前に液冷媒の気化が促進され圧力が向上していた状態からの冷媒回収が可能となる。なお、領域Aの圧力が規定値を下回った後、領域Bに冷媒回収部21を連通させてもよい。また、領域Aの圧力の単位時間当たりの変化量が規定変化量を下回った後、領域Bに冷媒回収部21を連通させてもよい。
つまり、弁101,102,201,202を切り換えて冷媒回収部21と連通する領域を連続的に切り換える一連の動作によって、冷媒回収部21を停止することなく冷媒回収を実施できる。このため、図2に示すように冷媒回収量は常に増える。また、冷媒回路を複数に分割することにより、冷媒回収部21に連通していない領域の圧力の上昇速度が複数の領域に分割されていない冷媒回路に比して速いため、冷媒回収部21を効果的に使用できる圧力領域までの回復が速く、冷媒回収効率を向上できる。これらを繰り返すことで、目的の回収対象量までの到達時間を速くできる。
この一連の動作において、領域A及び領域Bの容積によっては、冷媒回収を行っていない領域が冷媒回収部21を効果的に使用できる圧力に未到達である一方、冷媒回収を行っている領域での冷媒回収部21の回収速度が低下し、冷媒回収効率が悪い場合が考えられる。このような場合においては、弁71,81を閉状態から開状態に、弁72,82を開状態から閉状態に切り換える。さらに、ガス供給部500からサービスポート16を経由してガスを導入し、サービスポート17から導入ガスとガス冷媒の混合ガスを導出する。導出された混合ガスは混合ガス分離回収部600内のポンプ601にて吸引され混合ガス分離回収部600内の分離部602に導入される。冷媒回収部21を使用した回収では回収速度が低下し回収効率が悪い場合、このように外部ガスを導入して混合ガス化することで領域内の圧力を向上させて回収速度を向上することができる。
なお、分離部602については、混合ガスから冷媒を分離回収することができればよく、特にその方法を限定しない。吸着剤や膜分離あるいは冷却液化により冷媒を分離回収できる。また、冷媒回収部21による冷媒回収とガス供給部500及び混合ガス分離回収部を使用した冷媒回収との切り換えに弁71,72,81,82を使用したが、三方バルブを用いてもよい。
以上、本実施の形態4においても、冷媒回路を複数の領域に分割し、複数の領域のうちの1つに冷媒回収部21を連通させてガス冷媒を吸引する工程を備え、冷媒回収部21が連通する領域を切り換えて、冷媒回収部21が連通していた領域とは異なる領域からガス冷媒を吸引する工程を繰り返す。これにより、冷媒回収速度鈍化時においても、冷媒回収部21を停止することなく冷媒を回収できる。また、領域区画により圧力上昇する冷媒回路体積が小さくなるため、滞留する液冷媒の気化による圧力上昇速度が速くなり、その後の冷媒回収を効率的に行える。このため、冷媒回収部21を完全に停止し、冷媒回路の全領域の圧力上昇を待つ従来の手法に比して、冷媒回収の高効率化(高速化)が実現でき、従来に比して、冷媒回収作業の短時間化が実現できる。
また、本実施の形態4のように、冷媒回収速度が遅くなった場合には、冷媒回収部21による回収からガス供給部500及び混合ガス分離回収部600を使用した冷媒回収に切り換えることで冷媒回収速度を向上できる。
1,2 室内機、3,4 室内熱交換器、5,6 膨張弁、10 ビル用マルチエアコン、11 室外機、12 室外熱交換器、13 アキュムレータ、14 冷媒回路用圧縮機、15 四方弁、16,17 サービスポート、18 マニホールド、19 圧縮機、20 凝縮器、21 冷媒回収部、22 冷媒回収容器、23,24 ガス冷媒吸入経路、26 オイルセパレータ、27 熱交換部、50 制御部、51,52 圧力検知部、53 制御部、54 圧力検知部、71,72,81,82 弁、96,97 継手、101,102,201,202 弁、300〜303 加熱源、500 ガス供給部、501 ガス供給経路、600 混合ガス分離回収部、601 ポンプ、602 分離部、603 混合ガス吸入経路、1001 胴部、1002 ナット、1003 セパレータ、1004 回転軸。

Claims (18)

  1. 冷媒回路内の冷媒を吸引して圧縮し、圧縮した冷媒を凝縮して回収する冷媒回収方法であって、
    前記冷媒回路を複数の領域に分割し、複数の前記領域のうちの1つに冷媒回収システムを連通させて冷媒を吸引する工程を備え、
    前記冷媒回収システムが連通する前記領域を切り換えて、前記冷媒回収システムが連通していた前記領域とは異なる前記領域から冷媒を吸引する工程を繰り返すことを特徴とする冷媒回収方法。
  2. 冷媒回収中、前記冷媒回路の凝縮器、蒸発器及びアキュムレータのうちの少なくとも1つを加熱することを特徴とする請求項1に記載の冷媒回収方法。
  3. 冷媒が吸引される前記領域にガスを導入することを特徴とする請求項1又は請求項2に記載の冷媒回収方法。
  4. 前記冷媒回収システムと連通していない前記領域の少なくとも1つの圧力が規定値まで上昇した後、規定値まで上昇した前記領域の1つに前記冷媒回収システムを連通させることを特徴とする請求項1〜請求項3のいずれか一項に記載の冷媒回収方法。
  5. 前記冷媒回収システムが連通する前記領域の圧力が規定値を下回った後に、前記冷媒回収システムが連通する前記領域を切り換えることを特徴とする請求項1〜請求項3のいずれか一項に記載の冷媒回収方法。
  6. 前記冷媒回収システムが連通する前記領域における圧力の単位時間当たりの変化量が規定変化量を下回った後に、前記冷媒回収システムが連通する前記領域を切り換えることを特徴とする請求項1〜請求項3のいずれか一項に記載の冷媒回収方法。
  7. 冷媒回収システムが接続される少なくとも1つのサービスポートが設けられ、少なくとも冷媒回路用圧縮機、凝縮器、膨張弁及び蒸発器を有する冷媒回路と、
    前記冷媒回路に設けられ、前記冷媒回路を複数の領域に分割する複数の弁と、
    複数の前記領域の圧力を検知する圧力検知部と、
    冷媒回収動作の際、複数の前記弁を開閉して前記領域のうちの1つを前記サービスポートに連通させ、前記領域の圧力に基づいて、複数の前記弁を開閉して前記サービスポートに連通する前記領域を切り換える制御部と、
    を備えたことを特徴とする冷凍空調装置。
  8. 凝縮器及び蒸発器のうちの少なくとも一方を加熱する加熱源を備えたことを特徴とする請求項7に記載の冷凍空調装置。
  9. 前記制御部は、前記サービスポートと連通していない前記領域の少なくとも1つの圧力が規定値まで上昇した後、規定値まで上昇した前記領域の1つに前記サービスポートを連通させることを特徴とする請求項7又は請求項8に記載の冷凍空調装置。
  10. 前記制御部は、前記サービスポートに連通する前記領域の圧力が規定値を下回った後に、前記サービスポートに連通する前記領域を切り換えることを特徴とする請求項7又は請求項8に記載の冷凍空調装置。
  11. 前記制御部は、前記サービスポートに連通する前記領域における圧力の単位時間当たりの変化量が規定変化量を下回った後に、前記サービスポートに連通する前記領域を切り換えることを特徴とする請求項7又は請求項8に記載の冷凍空調装置。
  12. 前記サービスポートが複数設けられた請求項7〜請求項11のいずれか一項に記載の冷凍空調装置に接続される冷媒回収システムであって、
    前記サービスポートの少なくとも1つに接続されるガス供給経路と、
    前記ガス供給経路に接続されるガス供給部と、
    前記ガス供給経路が接続される前記サービスポートとは異なる少なくとも1つの前記サービスポートに接続されるガス冷媒吸入経路と、
    前記ガス冷媒吸入経路に接続され、前記領域の1つから冷媒を吸引して圧縮する少なくとも1つの圧縮機と、
    前記圧縮機で圧縮された冷媒を凝縮する凝縮器と、
    前記制御部に制御され、前記ガス供給経路を開閉する開閉弁と、
    を備えたことを特徴とする冷媒回収システム。
  13. 請求項1〜請求項6のいずれか一項に記載の冷媒回収方法に用いられる冷媒回収システムであって、
    前記冷媒回路のサービスポートに接続され、前記冷媒回路を複数の前記領域に分割する少なくとも1つの継手と、
    該継手に接続され、前記領域の1つから冷媒を吸引して圧縮する圧縮機と、
    前記圧縮機で圧縮された冷媒を凝縮する凝縮器と、
    を備えたことを特徴とする冷媒回収システム。
  14. 前記サービスポートが複数設けられた冷凍空調装置の冷媒回路に接続される冷媒回収システムであり、
    前記サービスポートの少なくとも1つに接続されるガス供給経路と、
    前記ガス供給経路に接続されるガス供給部と、
    前記ガス供給経路が接続される前記サービスポートとは異なる少なくとも1つの前記サービスポートと前記圧縮機とを接続するガス冷媒吸入経路と、
    前記ガス供給経路を開閉する開閉弁と、
    を備えたことを特徴とする請求項13に記載の冷媒回収システム。
  15. 冷媒回路のサービスポートに接続され、前記冷媒回路を複数の領域に分割する少なくとも1つの継手と、
    該継手に接続され、前記領域の1つから冷媒を吸引して圧縮する圧縮機と、
    前記圧縮機で圧縮された冷媒を凝縮する凝縮器と、
    前記圧縮機と連通している前記領域の圧力を検知する圧力検知部と、
    前記継手を制御して前記領域のうちの1つを前記圧縮機に連通させ、前記圧縮機に連通している前記領域の圧力に基づいて、前記継手を制御して前記圧縮機に連通する前記領域を切り換える冷媒回収側制御部と、
    を備えたことを特徴とする冷媒回収システム。
  16. 前記サービスポートが複数設けられ前記冷媒回路に接続される冷媒回収システムであり、
    前記サービスポートの少なくとも1つに接続されるガス供給経路と、
    前記ガス供給経路に接続されるガス供給部と、
    前記ガス供給経路が接続される前記サービスポートとは異なる少なくとも1つの前記サービスポートと前記圧縮機とを接続するガス冷媒吸入経路と、
    前記冷媒回収側制御部に制御され、前記ガス供給経路を開閉する開閉弁と、
    を備えたことを特徴とする請求項15に記載の冷媒回収システム。
  17. 前記冷媒回収側制御部は、前記圧縮機に連通している前記領域の圧力が規定値を下回った後に、前記サービスポートに連通する前記領域を切り換えることを特徴とする請求項15又は請求項16に記載の冷媒回収システム。
  18. 前記冷媒回収側制御部は、前記圧縮機に連通している前記領域における圧力の単位時間当たりの変化量が規定変化量を下回った後に、前記サービスポートに連通する前記領域を切り換えることを特徴とする請求項15又は請求項16に記載の冷媒回収システム。
JP2014121774A 2014-06-12 2014-06-12 冷媒回収方法、冷凍空調装置、及び冷媒回収システム Active JP6296449B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121774A JP6296449B2 (ja) 2014-06-12 2014-06-12 冷媒回収方法、冷凍空調装置、及び冷媒回収システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121774A JP6296449B2 (ja) 2014-06-12 2014-06-12 冷媒回収方法、冷凍空調装置、及び冷媒回収システム

Publications (2)

Publication Number Publication Date
JP2016001097A true JP2016001097A (ja) 2016-01-07
JP6296449B2 JP6296449B2 (ja) 2018-03-20

Family

ID=55076779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121774A Active JP6296449B2 (ja) 2014-06-12 2014-06-12 冷媒回収方法、冷凍空調装置、及び冷媒回収システム

Country Status (1)

Country Link
JP (1) JP6296449B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186841A (ja) * 2019-05-13 2020-11-19 三菱電機ビルテクノサービス株式会社 冷媒回収システム及び冷媒回収システム制御方法
JP2021025766A (ja) * 2019-07-31 2021-02-22 ダイキン工業株式会社 冷凍装置及び当該冷凍装置の冷媒配管
WO2022113211A1 (ja) * 2020-11-25 2022-06-02 ダイキン工業株式会社 冷媒回収装置
CN115443397A (zh) * 2020-04-27 2022-12-06 大金工业株式会社 制冷剂回收控制装置以及制冷剂回收控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257898A (ja) * 1993-03-09 1994-09-16 Fujitsu General Ltd 電気冷蔵庫の冷媒回収方法
JPH1047814A (ja) * 1996-07-30 1998-02-20 Hitoyoshi Aizawa 熱交換装置の冷媒回収方法
JPH1151512A (ja) * 1997-07-30 1999-02-26 Hitoyoshi Aizawa 熱交換装置およびその処理方法
JP2002147903A (ja) * 2000-11-09 2002-05-22 Toshiba Kyaria Kk 空気調和機の冷媒回収方法および装置
JP2014085082A (ja) * 2012-10-26 2014-05-12 Mk Seiko Co Ltd 冷媒処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257898A (ja) * 1993-03-09 1994-09-16 Fujitsu General Ltd 電気冷蔵庫の冷媒回収方法
JPH1047814A (ja) * 1996-07-30 1998-02-20 Hitoyoshi Aizawa 熱交換装置の冷媒回収方法
JPH1151512A (ja) * 1997-07-30 1999-02-26 Hitoyoshi Aizawa 熱交換装置およびその処理方法
JP2002147903A (ja) * 2000-11-09 2002-05-22 Toshiba Kyaria Kk 空気調和機の冷媒回収方法および装置
JP2014085082A (ja) * 2012-10-26 2014-05-12 Mk Seiko Co Ltd 冷媒処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186841A (ja) * 2019-05-13 2020-11-19 三菱電機ビルテクノサービス株式会社 冷媒回収システム及び冷媒回収システム制御方法
JP2021025766A (ja) * 2019-07-31 2021-02-22 ダイキン工業株式会社 冷凍装置及び当該冷凍装置の冷媒配管
CN115443397A (zh) * 2020-04-27 2022-12-06 大金工业株式会社 制冷剂回收控制装置以及制冷剂回收控制系统
WO2022113211A1 (ja) * 2020-11-25 2022-06-02 ダイキン工業株式会社 冷媒回収装置

Also Published As

Publication number Publication date
JP6296449B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
AU2008208346B2 (en) Air conditioner
US10088206B2 (en) Air-conditioning apparatus
US10724777B2 (en) Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
EP3885670B1 (en) Refrigeration cycle apparatus
EP2889554A1 (en) Air conditioning system and method of controlling the same
JP5077414B2 (ja) 冷凍装置の室外ユニット
JP2011149659A (ja) 空気調和機
JP2013257121A (ja) 冷凍装置
JP5908183B1 (ja) 空気調和装置
US10598413B2 (en) Air-conditioning apparatus
JP6296449B2 (ja) 冷媒回収方法、冷凍空調装置、及び冷媒回収システム
JP2010139157A (ja) 冷凍装置
WO2017037771A1 (ja) 冷凍サイクル装置
JP2011085320A (ja) ヒートポンプ装置
JP2010175190A (ja) 空気調和機
US20190360725A1 (en) Refrigeration apparatus
JP2014190649A (ja) 冷凍サイクル装置
WO2016046927A1 (ja) 冷凍サイクル装置及び空気調和装置
JP2017142017A (ja) 空気調和装置
JP6615363B2 (ja) 冷凍サイクル装置
JP2001280767A (ja) 冷凍装置
JP2011257038A (ja) 空気調和装置
JP5473581B2 (ja) 空気調和装置
JP2007132647A (ja) 空気調和装置
JP5999163B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6296449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250