JP2015530638A - 基本及び高調波周波数の振動を最小限にするためのアクティブ振動バランサの駆動 - Google Patents

基本及び高調波周波数の振動を最小限にするためのアクティブ振動バランサの駆動 Download PDF

Info

Publication number
JP2015530638A
JP2015530638A JP2015523078A JP2015523078A JP2015530638A JP 2015530638 A JP2015530638 A JP 2015530638A JP 2015523078 A JP2015523078 A JP 2015523078A JP 2015523078 A JP2015523078 A JP 2015523078A JP 2015530638 A JP2015530638 A JP 2015530638A
Authority
JP
Japan
Prior art keywords
frequency
vibration
signal
adaptive filter
fundamental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015523078A
Other languages
English (en)
Inventor
ホリデー、エゼキエル・エス
Original Assignee
サンパワー・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンパワー・インコーポレーテッド filed Critical サンパワー・インコーポレーテッド
Publication of JP2015530638A publication Critical patent/JP2015530638A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本体機械の振動が、基本および選択された高調波周波数の平衡化信号でアクティブ振動バランサの駆動モータを駆動することにより、基本および高調波周波数で、低減される。振動が、機械的振動を示す信号を提供するために検知される。基本周波数と高調波周波数とに対する平衡化信号発生器が、各周波数に対する平衡化信号を生成するために、各周波数に対する適応フィルタの適応フィルタアルゴリズムで、検知された振動信号を処理する。各周波数に対する基準信号入力が、平衡化信号発生器に割り当てられた周波数で、各平衡化信号発生器の適応フィルタアルゴリズムに適用される。その周波数の全てに対する高調波周波数の平衡化信号が、加算され、駆動モータを駆動するために適用される。高調波周波数の平衡化信号は、各周波数での振動に抗して駆動電圧成分で駆動モータを駆動する。

Description

本発明は、アクティブ振動バランサが、本体機械により生じる力に抗して対向するつり合い(平衡化)力を生じさせるように、本体機械に結合されるアクティブ振動バランサを駆動する方法により、本体機械の機械的振動を低減または除去することに関する。特に、本発明は、本体機械の基本動作周波数のみならず、高調波周波数での機械的振動の低減または除去に関する。
多くの機械は、機械の一部の質量が一度以上繰り返して加速及び減速する移動の結果として振動する。ある環境下、この振動は、不快で、気を散し、あるいはいらいらさせるもので、ある場合は、振動は、他の機器の動作に干渉し、損傷をもたらす可能性がある。振動を低減する1つの方法は、振動する機械を中間振動ダンパー(振動のエネルギーの一部を吸収する装置または材料であってもよい)を介して別の質量のあるものに取り付けることである。しかし、その方法による振動の低減は部分的にのみであることから、除去または少なくとも最小にする効果的な方法は、振動する機械に振動バランサを取り付けることである。振動バランサは、振動に対抗する力、すなわち、振幅が等しいかほぼ等しいが、位相が反対の力を生じさせ、それによって生じた力は、振動による力を打ち消すか、ほぼ打ち消す。
振動バランサには、一般的にパッシブ振動バランサとアクティブ振動バランサの二つのタイプがあり、同調質量ダンパー、アクティブ質量ダンパーまたは振動吸収体として知られているものである。パッシブ振動バランサは、本質的に、振動する機械の動作周波数に同調するが、振動から生ずる力と180°位相が違う位相で、加速または減速する質量による力を振動する機械に適用する共振ばねおよび質量システムである。アクティブ振動バランサは、本質的に質量であり、バネに連結できるが、質量の運動は、振動を感知し、振動に抗して質量を駆動する制御システムによって制御される。
パッシブ振動バランサは、安価であるものの、同調する一つの共振周波数での振動に応答するのみであるという欠点をもつ。アクティブ振動バランサは、振動の周波数における小さな変化に応答することができ、振動をより打ち消す振幅で補償力を適用するが、アクティブ振動バランサは、高価で、必要な振幅および位相でアクティブ振動バランサを駆動するためのコントローラを必要とする。知りうる範囲で、パッシブでもアクティブでもないバランサは、振動する機械の基本動作周波数の高調波で振動の平衡(バランス)をとっている。
そこで、機械の振動を、機械の基本動作周波数とその基本周波数の高調波周波数で低減または除去するための方法及び装置を提供することを本発明の目的および特徴とする。
本発明は、振動する本体機械の基本動作周波数およびその動作周波数の選択された高調波周波数で振動する機械の振動を平衡化(バランス)する方法に関する。振動する本体機械の振動は、検知され、検知された振動信号が提供される。平衡化信号が、少なくとも動作周波数の基本周波数および動作周波数の選択された高調波周波数に対して生成され、好適には、高調波平衡化信号が、いくつかの選択された高調波周波数のそれぞれについて生成される。平衡化信号は、各適応フィルタの適応フィルタアルゴリズムで、検知された振動信号を処理することによって生成される。選択された各周波数に対する適応フィルタアルゴリズムは、直交位相をもち、割り当てられた選択周波数で正弦波的に変化する基準信号入力を有する。選択された周波数のすべてに対する高調波平衡化信号は加算され、アクティブ振動バランサの駆動モータを駆動するために適用される。各選択された周波数における各高調波平衡化信号は、それによって、選択された各周波数での振動に抗する選択された周波数のそれぞれに対する駆動電圧成分で駆動モータを駆動する。
図1は本発明の基本的な動作を示すブロック図である。 図2は、本発明の構成要素である、適応平衡化信号発生器の動作を示すブロック図である。 図3は本発明の実施形態を示す図である。 図4は本発明の別の実施形態を示す図である。 図5は本発明のさらに別の実施形態を示す図である。
図面に示された本発明の好適な実施形態の説明において、特定の用語が明瞭化のために、分類し直されている。しかしながら、本発明はそのように選択された特定の用語に限定されることを意図せず、各特定の用語は同様の目的を達成するために同様の方法で動作する全ての技術的等価物を含むことを理解されるべきである。
米国特許第7,511,459号が、参照のため本出願に組み込まれている。この従来技術の特許は、スターリング機械に駆動的に連結され、本発明の実施形態例とともに使用することができるリニアモータ/オルタネータを制御するための制御システムの一例を示している。具体的には、この特許は、その動作周波数で動作を制御するために、モータ/オルタネータの電機子の巻線に主要な電気的駆動電圧を適用するための主要な制御システムとして、ここで参照されるものの一例を開示している。
本発明の本来意図した適用例は、リニアモータ/オルタネータに駆動連結されたスターリング機械の振動の平衡化(バランス)をとることであるが、本発明はまた、他の振動する本体機械の振動を低減することにも適用可能である。本発明は、振動する本体機械の制御システムに独立して作動し、したがって、その制御システムに必ずしも依存しない。しかし、本発明と振動する本体機械の制御システムとの間の相互作用を本発明に加えることができ、本発明の1つの例示的な実施形態(図3)は、振動する本体機械の制御システムからの信号を利用する。
用語と従来の技術の基本原理
スターリング機械は、多くの場合、駆動リニアモータやリニアオルタネータにリンクされている。スターリングエンジンは、電力を生成するためにリニアオルタネータに結合された原動機であってよい。ヒートポンプモードで動作するスターリング機械は、リニア電気モータに連結され、そのモータにより駆動され、その熱交換器の1つからその熱交換器の他のものに熱エネルギーを送り込むことができる。熱を送り込むスターリング機械は、その目的が質量を冷却する場合は、クーラーと参照され、その目的が質量を加熱する場合はヒートポンプと参照される。スターリングヒート(熱)ポンプとスターリングクーラーは、異なる用語が適用される基本的に同じ機械である。両者とも1つの質量から他のものに熱エネルギーを伝達するものである。当然ながら、用語クーラー/ヒートポンプは基本的機械に適用されるとき、同等に使用することができる。スターリング機械は、エンジン(原動機)またはクーラー/ヒートポンプのいずれかであり得るので、用語スターリング「機械」は、一般的に、スターリングエンジン、スターリングクーラー/ヒートポンプの両方を含む。これらは、基本的に、機械的および熱的な二種類のパワーの間のいずれかの方向に力を伝達することができる同一のパワー変換器である。
同様に、電動リニアモータと電動リニアオルタネータの両方とも同じ基本的な装置である。これらは、ステータ(通常、電機子巻線を有する)、一つ以上の磁石(通常は、永久磁石)を含む往復動作する部材を有する。リニアモータ/オルタネータは、電力を生成するためのオルタネータとして動作するように、原動力により機械的に往復駆動させることができ、または機械的な往復出力を与えるモータとして動作するように交番電力源によって駆動させることができる。したがって、用語リニアモータ/オルタネータは、この基本的な電気機械装置を参照すために使用し得るものである。
前述した動作の二重性のため、エンジンとして動作するスターリング機械は、リニアオルタネータを駆動するために使用することができ、リニアモータは、ヒートポンプモードで動作するスターリング機械を駆動するために使用することができる。いずれの場合も、スターリング機械のパワーピストンは、通常、直接リニアモータまたはオルタネータの往復運動部材に連結される。また、リニア電気モータ、スターリングエンジンは、例えば、冷蔵庫においてガス圧縮するため、流体を圧送するための圧縮機のピストンのような他の負荷を駆動するために使用することができる。
本発明のこの記載は、アクティブ振動バランサのための駆動モータを示す。駆動モータによって駆動されるアクティブ振動バランサが従来技術において、よく知られている。リニアモータが、本発明とともに使用されるアクティブ振動バランサとともに使用するに特によく適しているが、本発明は、アクティブ振動バランサを駆動する他のモータに適用することができる。
本発明の実施形態とともに用いられる従来の技術
本発明の実施形態のすべては、本発明が振動を最小にするための振動する本体機械とともに使用することができる。振動する本体機械は、典型的に、振動する本体機械の動きを制御する制御システムを有する。本発明の実施形態は、振動する本体機械のための主要な制御システムに関連して説明及び図示されている。しかしながら、本発明は図示の振動する本体機械やそれらの制御システムに限定されない。本発明と振動する本体機械およびその制御システムの間の唯一の必要な連結というのは、アクティブ振動バランサが、振動する本体機械に、平衡化力を適用するために、機械的に連結されなければならないことであり、本発明は、また振動する本体機械に、その振動を検知するために、機械的に連結される振動センサを使用する。アクティブ振動バランサは、振動する本体機械に機械的に連結されていることから、センサは振動を検知するために、アクティブ振動バランサに連結することができる。
図1、図3、図4および図5のすべては、従来技術の主要な制御システムを含む。図1は本発明の基本原理を例示する。最新の従来技術の制御システムは、マイクロプロセッサ、マイクロコントローラまたはデジタル信号プロセッサ(DSP)のようなデジタルプロセッサを利用する。当業者に知られているように、デジタル制御回路の動作は、一般的に、デジタルプロセッサによって実行される制御アルゴリズムによる信号に対する数学的演算の観点から記述されている。「信号」は、デジタルデータ形式のアナログ信号の表示を含む。操作は、多くの場合、最新の回路のこれらの操作がアルゴリズムを実行するようにプログラムされたデジタルプロセッサによって代わりに実行されるにもかかわらず、このような操作を行うフィルタや信号発生器のような過去の先行アナログデバイスの観点から説明されている。
図1に示されているように、従来技術の主要な制御システムが、デジタル処理部10の上部を横切る経路にそって図示されている。従来技術では、主要な制御信号が、往復の動作の周波数で主要な制御システムによって生成され、原動機またはモータまたはスターリングエンジンに結合されたオルタネータの電機子巻線に、交流の主要な電気的駆動電圧を適用することにより、振動する本体機械を制御するパワーステージに適用される。ほとんどの制御システムに共通して、制御アルゴリズムに適用されるコマンド入力12がある。コマンド入力12[Acmd]は、基本駆動周波数で振動する本体機械の動作のパラメータに対して所望の値を表す。コマンド入力Acmdは、しばしばストローク距離(たとえば、ミリメートル単位)のような振幅またはモータ/オルタネータを駆動させるための電機子巻線の電圧を表す。主要な制御システムからの出力は、その基本動作周波数で、連結対のように、振動する本体機械の往復運動を制御する。
図1において、従来技術の制御アルゴリズムが制御アルゴリズム13として図示されている。制御アルゴリズム13の動作の結果は、デジタルアナログ変換器16を介して、振動する本体機械20を駆動するために必要な高出力に制御出力を変換するパワーステージ18に適用される。パワーステージは他の制御回路を含んでもよい。
例として、パワーステージ28の出力は、振動する本体機械のモータ/オルタネータの電機子巻線に適用されてもよい。モータ/オルタネータは、結合対(二つのコンポーネントは、共通の機械的支持体に取り付けられる)を形成するために、機械的なリンクによって、スターリング機械に駆動的に連結している)。実際には、オルタネータのケース、およびスターリング機械のケースは一体的に形成され、または互いに直接連結されている。
本発明
本発明の方法は、振動する本体機械の振動を、その本体機械の基本動作周波数と動作周波数の選択された高調波周波数とで、最小にするものである。その基本的概念は、それらの周波数での振動の振幅および位相を検知し、その時点で検知された振幅および位相をフィードバックすることである振動の検知は、どの振動も、排除または少なくとも最小化することが求められているエラーであるため、本質的にエラー検出である。正弦波的に変化する信号が、基本動作周波数と各選択された高調波周波数とで生成される。生成された正弦波的に変化する信号のそれぞれの振幅および位相は、周期的に変化し、各周波数に対する平衡化信号を生成し、維持するために更新され、適合される。各周波数の平衡化信号は加算され、アクティブ振動バランサを駆動する駆動モータを駆動するために一緒に連続して供給される。周期的に更新することによる各周波数に対する各平衡化信号の変化は、その平衡化信号をその時点で検知した振動に適合させ、その結果、各周波数に対する正弦波平衡化信号は、駆動モータに連続的に適用され、適切な位相、振幅および周波数で補償力を生成し、各周波数での検知された振動を最小にもっていく。これは、出力を駆動するために、エラーを必要とする標準的な閉ループ、負のフィードバック制御システムとは多少異なっている。ここでエラー(振動)は、ゼロに駆動されるが、一度ゼロに駆動されると、適合アルゴリズムが、振動の増加または減少を検知したとき(この場合、再度振動がゼロまたは最小値になるように、補償力が修正される。)を除き同じ補償力を維持する。
図1に示されているように、振動センサ30が、結合対が装着されたケースまたは支持体に装着して、連結された振動する本体機械20とアクティブ振動バランサ22に(たとえば結合対が取り付けられるケースまたは支持体に取り付けられことにより)、取り付けられる。振動センサ30は加速度計で、検知された振動を表す検知された振動信号を与えるために、結合対の振動を検知する。
振動センサ30からの検知された振動信号は、デジタルプロセッ10により処理するために、アナログ−デジタル変換器32を通して適用される。デジタル形式の、検知された振動信号は、符号34、36および38(それぞれは、異なる周波数に対して平衡化信号を生成するアルゴリズムである)として図示された複数の適応平衡化信号のそれぞれに適用される。したがって、基本周波数および各選択された高調波周波数のための適応平衡化信号発生器がある。各適応平衡化信号発生器は、一つの周波数に割り当てられ、応答する。本発明は、一つの周波数、または基本周波数と高調波周波数で振動のバランス(平衡化)をとるために実施することができるが、好適には、異なる複数の高調波周波数を平衡化する複数の平衡化信号発生器があることである。三つの平衡化信号発生器が、基本周波数ω、二つの高調波周波数2ω及びhω(ここで、ωは基本動作周波数で、hはh番目の高調波周波数のhである)に対して図示されているが、多数の高調波周波数および設計者により選択された高調波周波数に対する多数の平衡化信号発生器があってもよい。
以下でより詳細に説明するように、選択された各周波数に対する高調波平衡化信号は、適応フィルタのための適応フィルタアルゴリズムで検知された振動信号を処理することによって生成される。各選択された周波数での基準信号入力は、適応フィルタアルゴリズムに適用される。したがって、平衡化信号発生器34、36および38の各々は、割り当てられた周波数で振動をバランス(平衡化)させるための平衡化信号である出力34B、36Bおよび38Bを有している。
出力34B、36B及び38Bで平衡化信号の全てが加算され、その加算は駆動モータ24を制御するために使用される。その加算は、基本周波数でかつ選択された高調波周波数でのフーリエ成分を有する結果物である。その結果、その加算は、駆動モータ24の動きがそれらのフーリエ成分を有するように、駆動モータ24を駆動する。各周波数での各成分は、その成分の周波数で振動する本体機械20の振動により生じた力に対抗するための振幅および位相を有する。図1において、選択された各周波数に対する平衡化信号は、加算接合器40で加算され、その加算は、アナログ−デジタル変換器26を介して、パワーステージ28に、次にアクティブ振動バランサの駆動モータ24に適用される。したがって、平衡化信号の加算は、駆動モータ24のための電気駆動電圧を制御するフィードフォワード信号で、これにより、駆動モータ24は、選択された各周波数での振動に抗して選択された各周波数に対する駆動電圧成分で駆動される。したがって、各平衡化信号生成器は、実用的な範囲内で、割り当てられた周波数で振動を打ち消すための周波数、振幅および位相で駆動モータ24を駆動する周波数、振幅及び位相で加算接合器40に出力信号を与える。
適応フィルタ
高調波平衡化信号は、出力34B、36Bおよび38Bにおいて適応フィルタの使用によって部分的に生成される。適応フィルタ技術は、何十年も前から当業者には知られている。本発明で使用に好ましい適応フィルタアルゴリズムは、半世紀前に発明された最小平均二乗(LMS)フィルタアルゴリズムである。この技術で、本発明で使用できる種々の修正されたLMSアルゴリズム並びに他の適応フィルタアルゴリズムが開発された。これらのアルゴリズムは、SLMS(LMSの微修正)、NLMS(正規化された最小二乗平均フィルタ)、RLS(反復最小二乗アルゴリズム)を含む。LMSアルゴリズムは、本発明で使用するための相対的な単純性と適合性のために好ましい。LMSアルゴリズムは、エラー信号の最小二乗平均の生成に関連するフィルタ係数を求めることにより、所望のフィルタを模倣する。エラー信号は、所望の信号と実際の信号との差である。本発明では、所望の信号が振動しないので、エラー信号は検知された振動である。
適応フィルタが、基本的には、検出されたエラーに応答して、その適応アルゴリズムにより変化する可変フィルタである。適応フィルタは、その時点で検知されたエラーに基づいて適合される。エラー信号は、可変フィルタを修正または更新するアルゴリズムによって処理される。本発明では、可変フィルタは、単純な利得、すなわち、乗算器(増幅器)(その値は、検知されたエラーに応答して、アルゴリズムによって制御可能に変更される)である。可変フィルタの値は、検知されたエラーに応答して、設計者によって選択された、アルゴリズムにより制御された量、さらに設計者によって選択され、アルゴリズムにより制御された周期率で、増減されることにより、修正される。このように、アルゴリズムは、実際上エラーをゼロに近づけるように可変フィルタを増減し、エラーを実際上ゼロに維持するために、後続するエラー信号を顧慮して必要となるときに、可変フィルタの増減を続ける。LMSアルゴリズムのような適応フィルタアルゴリズムは、エラーをゼロにするために動作する、文献に記載されている標準的なアルゴリズムである。
本発明の適応平衡化信号発生器
平衡化されることが求められる各周波数に対して、特定の周波数に割り当てられている適応平衡化信号発生器がある。各適応平衡化信号発生器の目的は、検知された振動入力から、振動をその割り当てられた周波数で、対抗し、打ち消すアクティブ振動バランサの駆動モータに力を生じさせる信号を生成し、維持することである。図2は、図1においてブロックとして示されている適応平衡化信号発生器34、36または38を図示する。これら適応平衡化信号発生器は、それぞれが、それに割り当てられた異なる周波数で動作するよう適応されていることを除き、同一である。各適応平衡化信号発生器50(図2)は、直交位相をもち、正弦波的に変化する基準信号発生器52および54を含む。基準信号発生器52は、cos(hωt)を生成し、ここでhは1番目(基本)またはh番目の高調波周波数(平衡化信号発生器に割り当てられる)で、ωは結合対の基本動作周波数である。基準発生器54はsin(hωt)を生成する。直交関係にあるcosとsin関数を表すフェーザから可視化することができるように、直交位相をもつ正弦波信号は、加算され合成され得る成分である。加算結果は、任意の位相および任意の振幅で、これらの二つの直交する成分を単に変化させることである。図3に示されているように、基準発生器の振幅は、それらの振幅が、Acmdに比例するように、Acmdの関数として振幅を制御することによって制御することができる。これに代えて、図4および5に示されているように、基準発生器は、一定の振幅をもつ。正弦波基準信号発生器52および54の目的は、割り当てられた周波数で、直交位相をもち正弦的に変化するcosとsin基準信号を生成することである。
適応平衡化信号発生器50はまた、二つの適応フィルタ56および58を有する。適応フィルタ56は、その適応LMSアルゴリズムLMS0によって制御可能に変化させられる可変フィルタW0を有する。適応フィルタ58は、その適応LMSアルゴリズムLMS1によって可変可能に制御される可変フィルタW1を有する。
検知された振動信号は、一対の可変フィルタのそれぞれを制御する適応フィルタアルゴリズムに入力として適用される。具体的には、検知された振動信号e(n)は、適応フィルタアルゴリズムLMSとLMSに適用される。基準信号発生器52および54の出力はまた、適応フィルタアルゴリズムにより制御される一対の適応フィルタの一対の可変フィルタの各々に適用される。具体的には、基準信号発生器52(cos(hωt)を生成する)からの信号は、可変フィルタW0に適用され、基準信号発生器54(sin(hωt)を生成する)からの信号は可変フィルタW1に適用される。したがって、可変フィルタW0およびW1からの出力信号は、直交位相をもつ正弦波信号(それぞれは、可変フィルタW0およびW1のそれぞれの利得によって決定される振幅を有する)である。可変フィルタW0およびW1に対するそれぞれの利得は、それぞれの適応アルゴリズムLMS0およびLMS1により決定され、周期的に更新される。可変フィルタW0およびW1からの直交位相をもつ正弦波信号は、平衡化信号発生器に割り当てられた高調波周波数で加算接合器60から加算合成出力を提供する加算接合器60で加算(ベクトル/フェーザ合計)することができるフェーザ成分であり、ここで高調波周波数は、LMS0およびLMS1適応フィルタアルゴリズムによって決定され振幅および位相を有する。これらの適応フィルタアルゴリズムは、割り当てられた周波数に対する平衡化信号を生成する。平衡化信号は、アクティブ振動バランサの駆動モータの電機子巻線にフィードフォワードされるとき、適応平衡化信号発生器50に割り当てられた周波数で、振動に対抗する、本質的に打ち消すモータ力を生成するように、振幅および位相を有する。
適応フィルタのための設計パラメータは比較的単純である。アルゴリズム自体はこの分野において、容易に入手可能である。各可変フィルタを制御するアルゴリズムは、段階的に可変フィルタを更新する。設計者によって選択された2つのパラメータは、(1)更新レート(更新される頻度)と(2)更新の量(更新ごとに、可変フィルタの利得がどの程度変化するか)である。更新レートとは、LMSアルゴリズムが処理される頻度である。更新レートは、平衡化信号発生器に割り当てられる周波数の数倍に選択される通常、更新は、割り当てられた周波数の周期中、5から10回生ずる必要がある。各増分更新に対する可変フィルタの利得の変化量は、反復試行錯誤法によって最も多くなるように実験的に決定される。ある範囲にわたって、いくつかの更新量が個別に試行され、振動が低下したときの安定性、有効性および応答速度を観察する。各更新での変更の選択された量は、通常、フィードバックされたエラーの関数(エラーが小さくなると、変化量も小さくなる)であり、典型的には、エラー振幅に比例している。LMSまたは他の制御アルゴリズムは、エラーの符号に基づいて、変化の方向を決定する。
各正弦波的に変化するcosとsinの基準発生器52および54からの信号はまた、
Figure 2015530638
と乗算され、その積は、適応フィルタ56および58の適応フィルタアルゴリズムLMS0およびLMS1に入力される。
Figure 2015530638
は、平衡化信号発生器50の出力50Bから、検知された振動入力62への伝達関数である。伝達関数は、平衡化信号発生器50の外部の全システムに対する複雑な数学的表現である。周知のとおり、伝達関数は、入力で除算した出力の比で、この場合、平衡化信号発生器50の出力50Bにおける出力で除算した入力62における検知された信号入力である。
伝達関数は、適応フィルタアルゴリズムのLMS0およびLMS1で使用するための推定または予測された応答を提供する。伝達関数は、システムを表す伝達関数を提供するという意味では、モデルを形成する。伝達関数は、外部システムの応答がバランサ成分を含むという事実を説明する。それは、基本動作周波数での振動に対向する反力も発生させるバランサを備えたシステムの挙動を推定する。伝達関数は、一定の振動打消し信号が平衡化信号発生器50により適用されるときは、生ずるであろう振動を予想する。もちろん、システムが、動作中に、大きく変化することが予想される。しかし、LMSアルゴリズムは、振動をゼロに低減するために、可変フィルタW0およびW1の利得を変化させるべく、その方向性(増加または減少)を決定するためにその伝達関数信号を用いる。
Figure 2015530638
は、それが表す入力から出力までの経路に沿って各コンポーネントに対する伝達関数を決定することにより、さらに入力から出力への全伝達関数を得るために、一緒に乗算することにより、従来の方法で決定することができる。しかしながら、それは複雑で困難な数学的な手続であるので、このような伝達関数の数学的な展開に代えて、実験的な測定によりそれを得ることが可能であり、望ましい。
各周波数に対する各
Figure 2015530638
((各適応平衡化信号発生器の)各出力50Bおよび入力62が動作しない回路およびシステムから切り離されている)に対して、入力装置の正弦曲線が加算接合器40に適用される。振動センサ30(図1)により出力された、戻りエラー信号は、観測され、その振幅および位相が測定される。測定された導入入力信号で割った、測定戻り出力信号は、伝達関数である。入力と出力の両方は、単に、割り当てられた各周波数における振幅A、位相θおよび周波数である。したがって、機能ブロックの出力は、割り当てられた周波数の平衡化信号発生器の外部にあり、予測エラーe(n)を表すシステムからの出力期待値である。伝達関数は、選択された周波数での振動に対応する検知された振動信号で除算した、割り当てられた周波数に対する高調波平衡化信号を表す。
上述したように、平衡化信号発生器に割り当てられている、選択された周波数に対する高調波平衡化信号は、可変フィルタW0およびW1の直交出力を加算(フェーザ/ベクトル和)することによって得られる。その加算動作は、接合器60により加算することによって表されている。図1に示されているように、全ての周波数に対する複合平衡化信号は、全ての周波数に対する平衡化信号を加算することにより、さらに駆動モータ24に加算を適用することによって生成される。(図1において)そのことは、出力34B、36Bおよび38Bを加算接合器40に適用し、かつその加算(合計)を、デジタル-アナログ変換器26に適用することとして図示されている。
図3は、本発明の実施形態を示している。適応平衡化信号発生器334および336は、図1および図2に示されたものと同一である。しかし、図3の実施形態では、コマンド入力Acmdは、cos基準発生器352とsin基準発生器354のような全ての基準発生器に適用される。このことにより、基準信号の振幅はAcmdに比例して変化することになる。Acmdの関数として基準発生器の振幅を変化させることは、振幅フィードフォワード制御のさらなる利点を提供する。
図3、図4および図5はまた、より詳細に振動センサ330を図示する。振動は、好ましくは、加速度計370(増幅器372に出力を適用する)によって検知される。増幅された出力は、ローパスフィルタ374によってフィルタリングされる。ローパスフィルタ374のカットオフ周波数は、設計者が本発明の技術を使用して振動を最小限にしたいと考えている最も高い選択された高調波の周波数より上である。その目的は、最も高い選択された高調波周波数以上の周波数におけるノイズを除去することである。
デジタル−アナログ変換器332を介して、ローパスフィルタ374からデジタルプロセッサ310に適用される、検知された振動信号e(n)は、基本動作周波数およびフィルタカットオフ周波数以下の高調波周波数のすべてにおける振動の加算である複合アナログ信号である。その複合信号(デジタル形式)は、適応平衡化信号発生器の各々に適用され、従って、複合振動信号のフーリエ成分の全てを含む。しかしながら、それは、基準発生器52および54(図2)の周波数におけるフーリエ成分に唯一応答する適応フィルタアルゴリズムの固有の特性である。平衡化信号発生器の各々は、割り当てられた周波数の基準発生器を有するので、各平衡化信号発生器は割り当てられた周波数の(n)の成分に唯一応答する。結果として、各割り当てられた周波数に対してフーリエ成分を抽出するため複合振動信号e(n)をさらにフィルタリングする必要がない。振動する本体機械380を制御するために使用することができ、本発明に対する従来技術である制御システムは、本出願人の米国特許第7,511,459号に記載されている。
図4は、本発明の他の実施形態を図示し、その適応平衡化信号発生器434および436は、図1および図2に図示のものと同じである。図4の実施形態においては、コマンド入力Acmd(412)がcos基準発生器452およびsin基準信号発生器454のような基準信号発生器のいずれにも適用されないことを除き、図4の実施形態は図3の実施形態と同様である。結果として、生成した基準信号の振幅は常に単位値であるので、Acmdに比例する振幅フィードフォワードはない。図4では、振動する本体機械が線形モータにより駆動することができる冷凍機として示されている。
図5は、次の点を除き図4の実施形態と同様の本発明の実施形態を示す。図5は、たとえばオルタネータを駆動するのはスターリングエンジンであり、加算接合器581で、主要制御信号と加算されるフィードフォワード制御信号を与えるフィードバックレッグ580を有する、異なる従来の振動する本体機械と一体となった本発明を示す。
図面に関連して、この詳細な説明は、本発明の現在好ましい実施形態の説明として主に意図され、本発明が構築または利用できる唯一の形態を表すものではない。ここでの記述は、図示の実施形態に関連して、本発明を実施する設計、機能および方法について行われた。しかし、同じまたは同等の機能、特徴は、本発明の思想および範囲で実施できる異なる実施形態により達成でき、さらに種々の変改が本発明または特許請求の範囲から逸脱することなくなし得ることは分かるであろう。

Claims (7)

  1. 駆動モータにより駆動されるアクティブ振動バランサに機械的に連結され、基本動作周波数で動作する、振動する本体機械の振動を平衡化する方法であって、前記基本動作周波数および前記基本動作周波数の高調波周波数で、前記連結された振動する本体機械およびバランサの振動を最小にする方法であって、
    (a)前記連結された振動する本体機械およびバランサの振動を検知し、検知された振動を表す検知振動信号を与える工程と、
    (b)前記基本動作周波数と選択された高調波周波数とのそれぞれに対する適応フィルタの適応フィルタアルゴリズムでもって、前記検知された振動信号を処理することにより、前記基本動作周波数と前記基本周波数動の少なくともひとつの選択された高調波周波数とに対する平衡化信号を生成する工程と、
    ここで、前記適応フィルタアルゴリズムは、前記基本動作周波数に対し、かつ前記選択された高調波周波数のそれぞれに対する基準信号入力を有し、
    (c)前記生成した平衡化信号を加算し、該加算信号を前記アクティブ振動バランサの駆動モータに適用し、前記基本動作周波数で、かつ前記選択された高調波周波数のそれぞれでの振動に抗して、前記基本動作周波数にかつ前記選択された高調波周波数のそれぞれに対する駆動電圧成分で前記駆動モータを駆動する工程と、
    を含む方法。
  2. 前記平衡化信号を生成する工程がさらに、前記基本動作周波数に対し、さらに前記選択された高調波周波数のそれぞれに対して、
    (i)前記基本動作周波数でかつ前記選択された高調波周波数のそれぞれで、一対の直交位相をもち、正弦波的に変化するcosおよびsin基準信号を生成し、これら信号を、適応フィルタアルゴリズムにより制御される一対の適応フィルタの一対の可変フィルタのそれぞれに適用する工程と、
    (ii)前記検知された振動信号を、前記一対の可変フィルタのそれぞれを制御する適応フィルタアルゴリズムに入力する工程と、
    (iii)前記選択された周波数での振動に対応する前記検知された振動信号で除算された、前記選択された周波数のそれぞれに対する平衡化信号を表す伝達関数を、前記正弦波的に変化するcosおよびsin基準信号のそれぞれに乗算し、さらに前記乗算された基準信号を前記適応フィルタに対する適用フィルタアルゴリズムに入力する工程と、
    (iv)前記可変フィルタの出力を加算し、前記選択された周波数に対する平衡化信号を与える工程と、
    を含む、請求項1に記載の方法。
  3. 当該方法が複数の前記選択された高調波周波数に対して実施される、請求項2に記載の方法。
  4. 前記一対の直交位相をもち、正弦波的に変化するcosおよびsin基準信号のそれぞれの振幅が、前記振動する本体機械の制御器へのコマンド入力に比例して、制御可能に変化する、請求項3に記載の方法。
  5. 可変フィルタのそれぞれが、その適応フィルタアルゴリズムにより制御される利得をもつ振幅乗算器である、請求項4に記載の方法。
  6. 前記適応フィルタアルゴリズムが最小二乗アルゴリズムである、請求項5に記載の方法。
  7. 前記適応フィルタアルゴリズムが、平衡化信号が発生する周波数の五倍から十倍の範囲で、可変フィルタを変化させる周期的な更新率を有する、請求項6に記載の方法。
JP2015523078A 2012-07-16 2013-05-17 基本及び高調波周波数の振動を最小限にするためのアクティブ振動バランサの駆動 Pending JP2015530638A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/549,712 US8800302B2 (en) 2012-07-16 2012-07-16 Driving an active vibration balancer to minimize vibrations at the fundamental and harmonic frequencies
US13/549,712 2012-07-16
PCT/US2013/041547 WO2014014557A1 (en) 2012-07-16 2013-05-17 Driving an active vibration balancer to minimize vibrations at the fundamental and harmonic frequencies

Publications (1)

Publication Number Publication Date
JP2015530638A true JP2015530638A (ja) 2015-10-15

Family

ID=49912775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523078A Pending JP2015530638A (ja) 2012-07-16 2013-05-17 基本及び高調波周波数の振動を最小限にするためのアクティブ振動バランサの駆動

Country Status (8)

Country Link
US (1) US8800302B2 (ja)
EP (1) EP2872795A4 (ja)
JP (1) JP2015530638A (ja)
KR (1) KR101550264B1 (ja)
CN (1) CN104395637B (ja)
CA (1) CA2874944A1 (ja)
HK (1) HK1202143A1 (ja)
WO (1) WO2014014557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193408A (ja) * 2018-04-24 2019-10-31 富士電機株式会社 振動抑制装置及びリニアモータ制御装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860381B2 (en) * 2012-07-16 2014-10-14 Sunpower, Inc. Balancing vibrations at harmonic frequencies by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine
US10416691B2 (en) * 2014-08-15 2019-09-17 Raytheon Company Adaptive phase control of cryocooler active vibration cancellation
CN109163794B (zh) * 2018-08-15 2021-11-12 瑞声科技(新加坡)有限公司 线性振动马达带宽的检测方法
KR102608614B1 (ko) * 2018-09-21 2023-12-04 삼성전자주식회사 전자 장치 및 이의 제어 방법
CN109387279B (zh) * 2018-12-19 2020-10-16 南京工程学院 一种对汽轮机发电机末级振动信号进行检测的检测电路
CN109839830B (zh) * 2019-03-05 2020-11-13 清华大学 一种三相交流电机的功率级模拟控制方法及装置
WO2020258202A1 (zh) * 2019-06-28 2020-12-30 瑞声声学科技(深圳)有限公司 马达参数追踪方法及系统
CN114070136B (zh) * 2020-08-04 2023-09-15 美的威灵电机技术(上海)有限公司 基于振动信号的电机的控制方法、电机和存储介质
US20230090794A1 (en) * 2021-09-23 2023-03-23 Richtek Technology Corporation Electronic device and control method
CN117589496B (zh) * 2024-01-15 2024-03-22 湖南大学 一种斯特林发动机换热器测试装置及其测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501344A (ja) * 1986-10-07 1989-05-11 アダプティブ コントロール リミテッド 能動的振動制御装置もしくはそれに関連する改良
GB2255256B (en) * 1991-04-12 1994-11-02 W S Atkins Engineering Science Method of and apparatus for reducing vibrations
JPH07260277A (ja) * 1993-12-22 1995-10-13 Hughes Aircraft Co 能動的振動制御装置を有する低温冷却システム
JPH08272378A (ja) * 1995-03-31 1996-10-18 Tokai Rubber Ind Ltd 周期性信号の適応制御方法
US5836165A (en) * 1996-10-30 1998-11-17 Hughes Electronics Adaptive feedforward vibration control system and method
US20040119434A1 (en) * 2001-04-19 2004-06-24 Dadd Michael W. System and method for monitoring and control

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509971A (en) * 1968-01-02 1970-05-05 Boeing Co Vibration control system
US4339960A (en) 1980-06-30 1982-07-20 Sunpower, Inc. Drive mechanism for Stirling engine displacer and piston and other reciprocating bodies
EP0091926B1 (en) 1981-10-21 1987-08-26 Sound Attenuators Limited Improved method and apparatus for cancelling vibrations
US5313399A (en) * 1992-01-21 1994-05-17 The Charles Stark Draper Laboratories, Inc. Adaptive synchronous vibration suppression apparatus
US5392607A (en) * 1993-07-08 1995-02-28 Hughes Aircraft Company Stirling-cycle cyrogenic cooler using adaptive feedforward vibration control
EP1088126B1 (en) * 1998-04-14 2004-11-10 Tulga Simsek A machine and a method for balancing such a machine
JP2002005227A (ja) 2000-06-19 2002-01-09 Tokai Rubber Ind Ltd アクティブマウント制御装置の制御データ設定方法及びデータ記録媒体
JP4437531B2 (ja) 2004-02-20 2010-03-24 アイシン精機株式会社 能動型防振制御システムにおける制御データの設定方法及び制御方法
FR2902479B1 (fr) 2006-06-19 2008-09-26 Peugeot Citroen Automobiles Sa Procede et systeme de controle antivibratoire et antibruit pour un groupe motopropulseur d'un vehicule.
US7511459B2 (en) 2007-06-11 2009-03-31 Sunpower, Inc. Controller computing a virtual tuning capacitor for controlling a free-piston stirling engine driving a linear alternator
IT1396906B1 (it) * 2009-05-21 2012-12-20 Piaggio & C Spa Metodo di controllo di un ammortizzatore di sterzo elettronicamente modulabile per un veicolo a due ruote ed apparato implementante lo stesso

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501344A (ja) * 1986-10-07 1989-05-11 アダプティブ コントロール リミテッド 能動的振動制御装置もしくはそれに関連する改良
GB2255256B (en) * 1991-04-12 1994-11-02 W S Atkins Engineering Science Method of and apparatus for reducing vibrations
JPH07260277A (ja) * 1993-12-22 1995-10-13 Hughes Aircraft Co 能動的振動制御装置を有する低温冷却システム
JPH08272378A (ja) * 1995-03-31 1996-10-18 Tokai Rubber Ind Ltd 周期性信号の適応制御方法
US5836165A (en) * 1996-10-30 1998-11-17 Hughes Electronics Adaptive feedforward vibration control system and method
US20040119434A1 (en) * 2001-04-19 2004-06-24 Dadd Michael W. System and method for monitoring and control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193408A (ja) * 2018-04-24 2019-10-31 富士電機株式会社 振動抑制装置及びリニアモータ制御装置
JP7214976B2 (ja) 2018-04-24 2023-01-31 富士電機株式会社 振動抑制装置及びリニアモータ制御装置

Also Published As

Publication number Publication date
CA2874944A1 (en) 2014-01-23
US8800302B2 (en) 2014-08-12
CN104395637B (zh) 2016-03-02
KR101550264B1 (ko) 2015-09-04
KR20150030278A (ko) 2015-03-19
WO2014014557A1 (en) 2014-01-23
HK1202143A1 (zh) 2015-09-18
US20140013842A1 (en) 2014-01-16
EP2872795A1 (en) 2015-05-20
EP2872795A4 (en) 2016-04-13
CN104395637A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
US8860381B2 (en) Balancing vibrations at harmonic frequencies by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine
JP2015530638A (ja) 基本及び高調波周波数の振動を最小限にするためのアクティブ振動バランサの駆動
JP5522037B2 (ja) 制振装置および車両
KR101433732B1 (ko) 선형 발전기를 구동하는 자유 피스톤형 스털링 엔진을 제어하기 위한 가상 동조 커패시터를 컴퓨팅하는 제어기
JP5522038B2 (ja) 制振装置および車両
JP5761818B2 (ja) 電気機械システムにおける電気機械振動を減衰させる方法およびそのような方法を使用する振動減衰システム
KR20040020852A (ko) 진동 억제 기능을 가지는 자기 베어링 장치, 진동 추정기능을 가지는 자기 베어링 장치 및 이 자기 베어링장치를 탑재한 펌프 장치
JP5207353B2 (ja) 振動制御方法及び振動制御装置
JP5696601B2 (ja) アクティブ制振装置、アクティブ制振装置の制御方法
JP7214976B2 (ja) 振動抑制装置及びリニアモータ制御装置
CN110190797B (zh) 振动控制系统和洗衣机
Holliday Driving an active vibration balancer to minimize vibrations at the fundamental and harmonic frequencies
JP5440319B2 (ja) 電動アクチュエータ駆動装置及びこれを備えた制振装置
JP2020051593A (ja) 制振装置、制振装置を備えた車両及び制振装置の安定度判定方法
JP5353657B2 (ja) 制振装置及びこれを搭載した車両
JP7089173B2 (ja) 制振装置、制振装置を備えた車両及び制振装置の位相誤差推定方法
Geoffriault et al. H∞ Control for Vibrations of a Wound Rotor Synchronous Machine
JP2016205501A (ja) 振動低減装置
JP2020070895A (ja) 制振装置
JP2011038910A (ja) シャシーダイナモメータシステム

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160302