JP2015228447A - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method Download PDF

Info

Publication number
JP2015228447A
JP2015228447A JP2014114102A JP2014114102A JP2015228447A JP 2015228447 A JP2015228447 A JP 2015228447A JP 2014114102 A JP2014114102 A JP 2014114102A JP 2014114102 A JP2014114102 A JP 2014114102A JP 2015228447 A JP2015228447 A JP 2015228447A
Authority
JP
Japan
Prior art keywords
electrode
substrate
wire
chip
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014114102A
Other languages
Japanese (ja)
Inventor
智史 細野
Tomohito Hosono
智史 細野
春日井 浩
Hiroshi Kasugai
浩 春日井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014114102A priority Critical patent/JP2015228447A/en
Publication of JP2015228447A publication Critical patent/JP2015228447A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/4848Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49433Connecting portions the connecting portions being staggered outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/85051Forming additional members, e.g. for "wedge-on-ball", "ball-on-wedge", "ball-on-ball" connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device in which a semiconductor chip mounted on a substrate and a substrate electrode on the substrate are connected by wire bonding and which can properly inhibit wire meandering and wire sweep even when a length of wire for connecting a chip electrode and the substrate electrode is increased.SOLUTION: A semiconductor device manufacturing method comprises the steps of: providing a relay electrode 50 at a place on one surface 11 of a substrate 10 and outside a semiconductor chip 20 and between a chip electrode 21 and a substrate electrode 30, in which a width W1 of the relay electrode 50 in a maximum dimension direction is smaller than a width W2 of the substrate electrode 30 and smaller than a width W3 of a tip 110 of a capillary 100; connecting an intermediate part of a wire 40 to the relay electrode 50 by a stitch bonding method without cutting a wire 40 after a primary bonding process; and finally, performing a secondary bonding process.

Description

本発明は、基板上に搭載された半導体チップと基板上の基板電極とをワイヤボンディングにより接続してなる半導体装置の製造方法に関し、特にワイヤボンディング方法に関する。   The present invention relates to a method for manufacturing a semiconductor device in which a semiconductor chip mounted on a substrate and a substrate electrode on the substrate are connected by wire bonding, and more particularly to a wire bonding method.

従来より、この種の半導体装置としては、一般に、基板と、基板の一面に搭載され表面にチップ電極を有する半導体チップと、基板の一面にて半導体チップの外側に設けられた基板電極と、チップ電極と基板電極とを結線するワイヤと、を備えたものが提案されている。   Conventionally, as this type of semiconductor device, generally, a substrate, a semiconductor chip mounted on one surface of the substrate and having a chip electrode on the surface, a substrate electrode provided on the outer surface of the semiconductor chip on one surface of the substrate, and a chip An apparatus including a wire for connecting an electrode and a substrate electrode has been proposed.

ここで、ワイヤは、ワイヤボンディングにより形成されたものであって、一端がチップ電極に接続されたチップ接続点とされ、他端が基板電極に接続された基板接続点とされたものである。そして、基板の一面上から視たときのワイヤの平面形状は、通常は、チップ接続点と基板接続点とを結ぶ直線状をなすものとされ、一方、ワイヤの側面形状は、当該両接続点の間で基板の一面上に凸となるループ形状をなすものとされている。   Here, the wire is formed by wire bonding, and one end is a chip connection point connected to the chip electrode, and the other end is a substrate connection point connected to the substrate electrode. The planar shape of the wire when viewed from one surface of the substrate is usually a straight line connecting the chip connection point and the substrate connection point, while the side surface shape of the wire is the connection point between the two points. It is supposed to form a loop shape that is convex on one surface of the substrate.

このような半導体装置において、ワイヤ長が大きくなると、ワイヤの平面形状が蛇行した形状となったり、さらにワイヤをモールド樹脂で封止する構成においては、モールド樹脂によるワイヤ流れが発生したりする等の懸念がある。   In such a semiconductor device, when the wire length is increased, the planar shape of the wire becomes a meandering shape, and in the configuration in which the wire is sealed with the mold resin, a wire flow due to the mold resin is generated. There are concerns.

一方で、特許文献1には、このような半導体装置において、半導体チップ上にさらに中継電極を設け、ワイヤの途中部分を中継電極に接続することにより、1本のワイヤを2個のループに分割したものが提案されている。   On the other hand, in Patent Document 1, in such a semiconductor device, a relay electrode is further provided on the semiconductor chip, and a middle portion of the wire is connected to the relay electrode, thereby dividing one wire into two loops. What has been proposed.

特開平5−243317号公報JP-A-5-243317

しかしながら、上記従来のものでは、1本のワイヤにおける個々のループ長は短くなるが、半導体チップの範囲内においてワイヤを2個のループに分割しているにすぎない。そのため、チップ電極と基板電極との距離が大きい場合には、ワイヤ長を分割する効果が小さい。   However, in the above-described conventional one, the length of each loop in one wire is shortened, but the wire is only divided into two loops within the range of the semiconductor chip. Therefore, when the distance between the chip electrode and the substrate electrode is large, the effect of dividing the wire length is small.

この場合、基板の一面上のうち半導体チップの外側であって且つチップ電極および基板電極の間の部位に、基板電極と同様の中継電極を設けることが考えられるが、この場合、中継電極による基板の一面上のスペースに制約が生じる。   In this case, it is conceivable that a relay electrode similar to the substrate electrode is provided outside the semiconductor chip on one surface of the substrate and between the chip electrode and the substrate electrode. The space on one side is limited.

本発明は、上記問題に鑑みてなされたものであり、基板上に搭載された半導体チップと基板上の基板電極とをワイヤボンディングにより接続してなる半導体装置において、チップ電極と基板電極との距離が大きくワイヤ長が大きくなった場合であっても、ワイヤの蛇行やワイヤ流れを適切に抑制できるようにすることを目的とする。   The present invention has been made in view of the above problems, and in a semiconductor device in which a semiconductor chip mounted on a substrate and a substrate electrode on the substrate are connected by wire bonding, the distance between the chip electrode and the substrate electrode. Even when the wire length is large, the object is to appropriately suppress the meandering of the wire and the wire flow.

上記目的を達成するため、請求項1に記載の発明は、基板(10)と、基板の一面(11)に搭載され表面にチップ電極(21)を有する半導体チップ(20)と、基板の一面にて半導体チップの外側に設けられた基板電極(30)と、ワイヤボンディングにより形成されたものであって、一端がチップ電極に接続されたチップ接続点(41)とされ、他端が基板電極に接続された基板接続点(42)とされることで、チップ電極と基板電極とを結線するワイヤ(40)と、を備える半導体装置の製造方法であって、次のような工程を有するものである。   To achieve the above object, the invention described in claim 1 includes a substrate (10), a semiconductor chip (20) mounted on one surface (11) of the substrate and having a chip electrode (21) on the surface, and one surface of the substrate. And a substrate electrode (30) provided outside the semiconductor chip, and formed by wire bonding, one end being a chip connection point (41) connected to the chip electrode, and the other end being a substrate electrode A method for manufacturing a semiconductor device comprising a wire (40) for connecting a chip electrode and a substrate electrode by being a substrate connection point (42) connected to the substrate, and having the following steps It is.

・用意部材として、半導体チップが搭載された基板であって、チップ電極および基板電極の一方がワイヤボンディングにおける一次側電極とされ、他方がワイヤボンディングにおける二次側電極とされたもの、を用意する用意工程。   Prepare a substrate on which a semiconductor chip is mounted as a preparation member, one of which is a primary electrode in wire bonding and the other is a secondary electrode in wire bonding. Preparation process.

・先端部(110)に開口する内孔(120)を有するワイヤボンディング用のキャピラリ(100)を用い、当該内孔に挿入されるとともに当該先端部にて当該内孔から導出されたワイヤを、キャピラリの先端部によって一次側電極に押し当てて接合する一次ボンディング工程。   -Using a wire bonding capillary (100) having an inner hole (120) opened at the tip (110), the wire inserted into the inner hole and led out from the inner hole at the tip, A primary bonding step in which the tip of the capillary is pressed against the primary electrode and joined.

・キャピラリの内孔からワイヤを引き出しながら、キャピラリによってワイヤを二次側電極まで引き回し、キャピラリの先端部によってワイヤを二次側電極に押し当ててステッチボンディングによって接合する二次ボンディング工程。請求項1の製造方法は、上記の各工程を備え、さらに、以下の各特徴を有するものである。   A secondary bonding step of drawing the wire from the inner hole of the capillary while drawing the wire to the secondary electrode by the capillary, pressing the wire against the secondary electrode by the tip of the capillary, and joining by stitch bonding. The manufacturing method of Claim 1 is provided with each said process, and also has the following each characteristics.

・用意工程では、用意部材として、基板の一面上のうち半導体チップの外側であってチップ電極および基板電極の間の部位に、1個以上の中継電極(50)が設けられるとともに、当該中継電極の最大寸法方向の幅(W1)が、基板電極におけるワイヤの延びる方向の幅(W2)よりも小さく、且つ、キャピラリの先端部における前記ワイヤの引き出し方向の幅(W3)よりも小さくされたもの、を用意すること。   In the preparation step, as the preparation member, one or more relay electrodes (50) are provided on the surface of the substrate outside the semiconductor chip and between the chip electrode and the substrate electrode, and the relay electrode The width (W1) in the maximum dimension direction of the substrate is smaller than the width (W2) of the substrate electrode in the wire extending direction and smaller than the width (W3) of the capillary tip in the wire drawing direction. Prepare.

・一次ボンディング工程の後、ワイヤを切断せずに、キャピラリの先端部でワイヤの押し当てを行うステッチボンディング法により、1個以上の中継電極のすべてに対してワイヤの中間部を接続し、最後に二次ボンディング工程を行ってワイヤカットを行うことにより、ワイヤを、チップ接続点と基板接続点との間において、1個以上の中継電極との接続点(43)により形成された複数個のループを備える1本の連続した形状をなすものとすること。請求項1の発明は、以上の各点を備えることを特徴としている。   ・ After the primary bonding process, the middle part of the wire is connected to all of one or more relay electrodes by the stitch bonding method in which the wire is pressed at the tip of the capillary without cutting the wire. A wire is cut by performing a secondary bonding step on the wire, thereby connecting the wire between the chip connection point and the substrate connection point with a plurality of connection points (43) formed with one or more relay electrodes. It shall be one continuous shape with a loop. The invention of claim 1 is characterized by comprising the above points.

それによれば、ワイヤの両端であるチップ接続点、基板接続点がそれぞれ接続されるチップ電極、基板電極の中間にて、半導体チップの外側の基板の一面上に、1個以上の中継電極を設け、ワイヤの中間部が中継電極に接続されたものとなる。そして、これにより、ワイヤは1本の連続した状態を維持したまま、複数のループに分割されたものとなる。そのため、個々のループにおけるワイヤ長を短くすることができ、全体のワイヤ長が大きくても、上記したワイヤの蛇行およびワイヤ流れを防止できる。   According to this, at least one relay electrode is provided on one surface of the substrate outside the semiconductor chip, in the middle of the chip connection point that is both ends of the wire, the chip electrode to which the substrate connection point is respectively connected, and the substrate electrode. The intermediate portion of the wire is connected to the relay electrode. Thus, the wire is divided into a plurality of loops while maintaining one continuous state. Therefore, the wire length in each loop can be shortened, and the above-described meandering and wire flow of the wire can be prevented even when the entire wire length is large.

また、中継電極の最大寸法方向の幅を、上記基板電極の幅および上記キャピラリの先端部の幅よりも小さくすることで、中継電極の平面サイズを大幅に小さくすることができる。そのため、中継電極による基板の一面上のスペースの制約を低減できる。   In addition, the planar size of the relay electrode can be greatly reduced by making the width of the relay electrode in the maximum dimension direction smaller than the width of the substrate electrode and the width of the tip of the capillary. Therefore, it is possible to reduce the restriction of the space on the one surface of the substrate due to the relay electrode.

ここで、中継電極の最大寸法方向の幅は、上記キャピラリの先端部の幅よりも小さいが、ワイヤの中間部を中継電極にステッチボンディングするときは、キャピラリの先端部のうちのワイヤの引き出し方向に沿ってワイヤが位置する部分のみにて、ワイヤを中継電極に押し付ければよい。   Here, the width in the maximum dimension direction of the relay electrode is smaller than the width of the tip portion of the capillary, but when the middle portion of the wire is stitch-bonded to the relay electrode, the wire drawing direction in the tip portion of the capillary The wire may be pressed against the relay electrode only at the portion where the wire is positioned along the line.

そのため、本発明では、中継電極の最大寸法方向の幅を上記キャピラリの先端部の幅よりも小さいものとしたとしても、中継電極へのワイヤ接続が適切に行える。そのため、中継電極の平面サイズを、基板電極に対して大幅に小さいサイズとすることが可能となるのである。   Therefore, in the present invention, even if the width in the maximum dimension direction of the relay electrode is smaller than the width of the tip portion of the capillary, wire connection to the relay electrode can be performed appropriately. Therefore, the planar size of the relay electrode can be made significantly smaller than the substrate electrode.

このように、本発明の製造方法によれば、チップ電極と基板電極との距離が大きくワイヤ長が大きくなった場合であっても、ワイヤの蛇行やワイヤ流れを適切に抑制することができる。   As described above, according to the manufacturing method of the present invention, even when the distance between the chip electrode and the substrate electrode is large and the wire length is large, the meandering of the wire and the wire flow can be appropriately suppressed.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

(a)は本発明の第1実施形態にかかる半導体装置の概略断面図、(b)は(a)に示される半導体装置の上視概略平面図である。(A) is a schematic sectional drawing of the semiconductor device concerning 1st Embodiment of this invention, (b) is the upper-view schematic plan view of the semiconductor device shown by (a). 図1に示される半導体装置の製造方法を断面的に示す工程図である。FIG. 2 is a process diagram showing a cross-sectional view of the method for manufacturing the semiconductor device shown in FIG. 図2に続く半導体装置の製造方法を断面的に示す工程図である。FIG. 3 is a cross-sectional process diagram illustrating a method for manufacturing the semiconductor device following FIG. 2; 図2(b)中のキャピラリ部分の拡大図である。It is an enlarged view of the capillary part in FIG.2 (b). 図3(a)中のキャピラリ部分の拡大図である。It is an enlarged view of the capillary part in Fig.3 (a). 本発明の第2実施形態にかかる半導体装置の製造方法の要部を断面的に示す工程図である。It is process drawing which shows the principal part of the manufacturing method of the semiconductor device concerning 2nd Embodiment of this invention in cross section. (a)は本発明の第3実施形態にかかる半導体装置の概略断面図、(b)は(a)に示される半導体装置の上視概略平面図である。(A) is a schematic sectional drawing of the semiconductor device concerning 3rd Embodiment of this invention, (b) is the upper-view schematic plan view of the semiconductor device shown by (a). 本発明の第4実施形態にかかる半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device concerning 4th Embodiment of this invention. 本発明の第5実施形態にかかる半導体装置の概略平面図である。It is a schematic plan view of the semiconductor device concerning 5th Embodiment of this invention.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.

(第1実施形態)
本発明の第1実施形態にかかる半導体装置S1について、図1を参照して述べる。この半導体装置S1は、たとえば自動車などの車両に搭載され、車両用の各種電子装置を駆動するための装置として適用されるものである。
(First embodiment)
The semiconductor device S1 according to the first embodiment of the present invention will be described with reference to FIG. This semiconductor device S1 is mounted on a vehicle such as an automobile, for example, and is applied as a device for driving various electronic devices for the vehicle.

本実施形態の半導体装置S1は、大きくは、基板10と、基板10の一面11に搭載された半導体チップ20と、基板10の一面11にて半導体チップ20の外側に設けられた基板電極30と、半導体チップ20と基板電極30とを結線するワイヤ40と、を備えて構成されている。   The semiconductor device S1 of the present embodiment is broadly divided into a substrate 10, a semiconductor chip 20 mounted on one surface 11 of the substrate 10, and a substrate electrode 30 provided outside the semiconductor chip 20 on the one surface 11 of the substrate 10. And a wire 40 for connecting the semiconductor chip 20 and the substrate electrode 30 to each other.

基板10は、板状をなすもので、一方の板面を一面11とするものである。図1(a)では、基板10の厚さ方向のうち一面11側の一部が示されている。この基板10としては、たとえば樹脂やセラミックよりなる多層配線基板が挙げられる。ここでは、基板10はエポキシ樹脂等の樹脂よりなる配線基板とされている。   The substrate 10 has a plate shape, and one plate surface is the one surface 11. In FIG. 1A, a part on the one surface 11 side in the thickness direction of the substrate 10 is shown. As this board | substrate 10, the multilayer wiring board which consists of resin or a ceramic is mentioned, for example. Here, the substrate 10 is a wiring substrate made of a resin such as an epoxy resin.

半導体チップ20は、シリコン半導体等の半導体よりなるもので典型的な半導体プロセスにより形成されたものである。たとえば半導体チップ20としては、ICチップやトランジスタ等などが挙げられる。この半導体チップ20は、たとえばAgペーストや導電性接着剤等の図示しないダイマウント材を介して、基板10の一面11に対して固定されている。   The semiconductor chip 20 is made of a semiconductor such as a silicon semiconductor and is formed by a typical semiconductor process. For example, the semiconductor chip 20 includes an IC chip, a transistor, and the like. The semiconductor chip 20 is fixed to the one surface 11 of the substrate 10 via a die mount material (not shown) such as an Ag paste or a conductive adhesive.

そして、半導体チップ20における基板10とは反対側の表面には、チップ電極21が設けられている。このチップ電極21は、ワイヤ40が接続されるワイヤパッドとして機能するものであり、限定するものではないが、たとえばアルミニウム等の導体よりなるものである。   A chip electrode 21 is provided on the surface of the semiconductor chip 20 opposite to the substrate 10. The chip electrode 21 functions as a wire pad to which the wire 40 is connected, and is not limited, but is made of a conductor such as aluminum.

基板電極30は、ワイヤ40が接続されるワイヤパッドとして機能するものであり、通常のパッド材料よりなるものである。限定するものではないが、たとえば、基板電極30は、基板10の一面11側からCu、Ni、Auが積層されたもの、いわゆるAu/Ni/Cu積層膜や、基板10の一面11側からCu、Ni、Pd、Auが積層されたもの、いわゆるAu/Pd/Ni/Cu積層膜等よりなる。   The substrate electrode 30 functions as a wire pad to which the wire 40 is connected, and is made of a normal pad material. Although not limited thereto, for example, the substrate electrode 30 is formed by stacking Cu, Ni, Au from the one surface 11 side of the substrate 10, a so-called Au / Ni / Cu laminated film, or Cu from the one surface 11 side of the substrate 10. , Ni, Pd, and Au are laminated, so-called Au / Pd / Ni / Cu laminated film or the like.

本実施形態の基板10においては、基板10の内部には、基板10の一面11まで到達するビアホール12が設けられており、基板電極30は、ビアホール12を覆うように基板10の一面11に設けられている。これにより、基板電極30は、ビアホール12と電気的に接続されて一体化されたものとされている。   In the substrate 10 of the present embodiment, a via hole 12 reaching the surface 11 of the substrate 10 is provided inside the substrate 10, and the substrate electrode 30 is provided on the surface 11 of the substrate 10 so as to cover the via hole 12. It has been. As a result, the substrate electrode 30 is electrically connected to the via hole 12 and integrated.

ここで、ビアホール12は、基板10の厚さ方向の一部を貫通するものでもよいし、基板10の厚さ方向の全体を貫通するものであってもよい。このビアホール12は、Cu等を用いたフィルドビア等よりなるもので、基板10の表裏両板面間の電気的接続を行ったり、放熱を行ったりする役目を有するものである。   Here, the via hole 12 may penetrate a part of the substrate 10 in the thickness direction, or may penetrate the whole substrate 10 in the thickness direction. The via hole 12 is made of a filled via using Cu or the like, and has a function of performing electrical connection between the front and back plate surfaces of the substrate 10 or heat dissipation.

そして、半導体チップ20のチップ電極21と基板電極30とは、ワイヤ40により電気的に接続されている。ここで、ワイヤ40は、一端がチップ電極21に接続されたチップ接続点41とされ、他端が基板電極30に接続された基板接続点42とされることで、チップ電極21と基板電極30とを結線している。このワイヤ40は、AuやCuあるいはAg等よりなるものでワイヤボンディングにより形成されている。   The chip electrode 21 of the semiconductor chip 20 and the substrate electrode 30 are electrically connected by a wire 40. Here, the wire 40 has one end as a chip connection point 41 connected to the chip electrode 21, and the other end as a substrate connection point 42 connected to the substrate electrode 30, whereby the chip electrode 21 and the substrate electrode 30. Are connected. The wire 40 is made of Au, Cu, Ag, or the like, and is formed by wire bonding.

ここでは、図1(b)に示されるように、基板10の一面11上から視たときのワイヤ40の平面形状は、チップ接続点41と基板接続点42との間で当該両点を結ぶ直線状をなすものとされている。   Here, as shown in FIG. 1B, the planar shape of the wire 40 when viewed from the top surface 11 of the substrate 10 connects the two points between the chip connection point 41 and the substrate connection point 42. It is supposed to form a straight line.

そして、本実施形態では、基板10の一面11上のうち半導体チップ20の外側であってチップ電極21および基板電極30の間の部位に、中継電極50が設けられている。ここでは、1個の中継電極50が設けられている。この中継電極50は、上記した基板電極30と同様の材質よりなるものにできる。   In the present embodiment, the relay electrode 50 is provided on the surface 11 of the substrate 10 outside the semiconductor chip 20 and between the chip electrode 21 and the substrate electrode 30. Here, one relay electrode 50 is provided. The relay electrode 50 can be made of the same material as the substrate electrode 30 described above.

そして、中継電極50の最大寸法方向の幅W1は、図1に示されるように、基板電極30におけるワイヤ40の延びる方向の幅W2よりも小さい。且つ、中継電極50の最大寸法方向の幅W1は、後述する図4に示されるように、キャピラリ100の先端部110におけるワイヤ40の引き出し方向の幅W3よりも小さい。   The width W1 of the relay electrode 50 in the maximum dimension direction is smaller than the width W2 of the substrate electrode 30 in the direction in which the wire 40 extends, as shown in FIG. The width W1 in the maximum dimension direction of the relay electrode 50 is smaller than the width W3 in the lead-out direction of the wire 40 at the distal end portion 110 of the capillary 100, as shown in FIG.

図1では、中継電極50は平面円形であり、その最大寸法方向の幅W1は直径に相当するものであるが、たとえば中継電極50が平面四角形の場合には、最大寸法方向の幅W1は対角線長さに相当するものとなる。   In FIG. 1, the relay electrode 50 is a plane circle, and the width W1 in the maximum dimension direction corresponds to the diameter. For example, when the relay electrode 50 is a plane square, the width W1 in the maximum dimension direction is a diagonal line. It corresponds to the length.

また、基板電極30におけるワイヤ40の延びる方向の幅W2は、図1(b)に示されるように、基板10の一面11上から視たときのワイヤ40の延びる方向に沿った幅である。さらに言えば、このワイヤ40の延びる方向とは、基板接続点42とこれに隣り合う後述の中継接続点43とを結ぶ直線方向に相当する。   Further, the width W2 of the substrate electrode 30 in the extending direction of the wire 40 is a width along the extending direction of the wire 40 when viewed from the one surface 11 of the substrate 10, as shown in FIG. Furthermore, the direction in which the wire 40 extends corresponds to a linear direction connecting the board connection point 42 and a relay connection point 43 described later adjacent thereto.

なお、この基板電極30の幅W2は、後述する図4に示される、キャピラリ100の先端部110におけるワイヤ40の引き出し方向の幅W3よりも大きいものである。このように、中継電極50は、基板電極30に比べて平面サイズが大幅に小さいものとされている。   Note that the width W2 of the substrate electrode 30 is larger than the width W3 of the leading end portion 110 of the capillary 100 in the drawing direction of the wire 40 shown in FIG. Thus, the relay electrode 50 has a significantly smaller planar size than the substrate electrode 30.

そして、ワイヤ40の中間部は、ステッチボンディング法により中継電極50に対して接続されている。ここで、ワイヤ40における中継電極50との接続点を、中継接続点43ということにする。これにより、ワイヤ40は、チップ接続点41と基板接続点42との間において中継接続点43により形成された複数個(ここでは2個)のループを備える1本の連続した形状をなすものとされている。   And the intermediate part of the wire 40 is connected with respect to the relay electrode 50 by the stitch bonding method. Here, the connection point between the wire 40 and the relay electrode 50 is referred to as a relay connection point 43. As a result, the wire 40 has one continuous shape including a plurality of (two in this case) loops formed by the relay connection point 43 between the chip connection point 41 and the substrate connection point 42. Has been.

次に、図2〜図5も参照して、本実施形態の半導体装置S1の製造方法について述べる。まず、図2(a)に示されるように、用意部材として、半導体チップ20が搭載された基板10を用意する用意工程を行う。この用意部材は、ビアホール12と一体化された基板電極30および中継電極50を有する基板10に対して、半導体チップ20をマウントすることにより形成される。   Next, a method for manufacturing the semiconductor device S1 of this embodiment will be described with reference to FIGS. First, as shown in FIG. 2A, a preparation process is performed for preparing the substrate 10 on which the semiconductor chip 20 is mounted as a preparation member. This preparation member is formed by mounting the semiconductor chip 20 on the substrate 10 having the substrate electrode 30 and the relay electrode 50 integrated with the via hole 12.

ここで、この用意部材におけるチップ電極21および基板電極30のうち一方が、ワイヤ40を形成するワイヤボンディングにおける一次ボンディング側の一次側電極とされ、他方が、ワイヤカットが行われる二次ボンディング側の二次側電極とされる。   Here, one of the tip electrode 21 and the substrate electrode 30 in the preparation member is a primary electrode on the primary bonding side in wire bonding for forming the wire 40, and the other is on the secondary bonding side in which wire cutting is performed. The secondary electrode is used.

本実施形態では、チップ電極21が一次側電極、基板電極30が二次側電極とされている。つまり、この場合、形成後のワイヤ40においては、チップ接続点41が、ワイヤボンディングにおける一次接合部とされ、基板接続点42が、ワイヤボンディングにおける二次接合部とされるものである。   In the present embodiment, the chip electrode 21 is a primary side electrode, and the substrate electrode 30 is a secondary side electrode. That is, in this case, in the formed wire 40, the chip connection point 41 is a primary joint in wire bonding, and the substrate connection point 42 is a secondary joint in wire bonding.

そして、図2(a)〜図3(b)に示されるように、ステッチボンディング用のキャピラリ100を用いて、ワイヤボンディングを行い、ワイヤ40を形成する。ここで、キャピラリ100は、通常のステッチボンディング装置により駆動されるものであり、ワイヤ40に対して、引き回し、押し付け、および、超音波振動の付与等の接合動作を行えるものである。   Then, as shown in FIGS. 2A to 3B, wire bonding is performed using the stitch bonding capillary 100 to form the wire 40. Here, the capillary 100 is driven by a normal stitch bonding apparatus, and can perform bonding operations such as drawing, pressing, and application of ultrasonic vibration to the wire 40.

具体的に、図2〜図5に示されるように、キャピラリ100は、先端部110に開口する内孔120を有する筒状のものであり、ここでは内孔120を中空部とし、先端部110が円形とされた典型的な円筒状をなすものである。そして、ワイヤ40は、内孔120に挿入されて先端部110から引き出されるようになっている。   Specifically, as shown in FIGS. 2 to 5, the capillary 100 has a cylindrical shape having an inner hole 120 that opens to the distal end portion 110. Here, the inner hole 120 is a hollow portion, and the distal end portion 110. Is a typical cylindrical shape with a circular shape. The wire 40 is inserted into the inner hole 120 and pulled out from the distal end portion 110.

ここで、図4には、キャピラリ100の先端部110におけるワイヤ40の引き出し方向の幅W3が示されている。この幅W3は、内孔120からワイヤ40が引き出されていく方向に沿った先端部110の幅である。本実施形態では、先端部110は円形であるから、ワイヤ40の引き出し方向が異なっても、この幅W3は、常に先端部110の直径に相当するものとなる。   Here, FIG. 4 shows a width W3 of the distal end portion 110 of the capillary 100 in the drawing direction of the wire 40. This width W3 is the width of the distal end portion 110 along the direction in which the wire 40 is drawn from the inner hole 120. In the present embodiment, since the tip portion 110 is circular, the width W3 always corresponds to the diameter of the tip portion 110 even if the drawing direction of the wire 40 is different.

ここで、上記用意工程で用意された用意部材においては、上述したが、図2(a)に示されるように、中継電極50の最大寸法方向の幅W1が、基板電極30におけるワイヤ40の延びる方向の幅W2よりも小さい。さらに、上述したが、図4に示されるように、この中継電極50の最大寸法方向の幅W1は、キャピラリ100の先端部110におけるワイヤ40の引き出し方向の幅W3(ここでは先端部110の直径相当)よりも小さいものとされている。   Here, in the preparation member prepared in the preparation step, as described above, the width W1 in the maximum dimension direction of the relay electrode 50 extends the wire 40 in the substrate electrode 30 as shown in FIG. It is smaller than the width W2 in the direction. Further, as described above, as shown in FIG. 4, the width W1 in the maximum dimension direction of the relay electrode 50 is the width W3 in the lead-out direction of the wire 40 at the tip portion 110 of the capillary 100 (here, the diameter of the tip portion 110). Equivalent).

このようにして用意された用意部材に対して、まず、図2(a)に示されるように、本実施形態では上記のキャピラリ100を用いて、一次ボンディング工程を行う。ここでは、一次側電極であるチップ電極21に対して一次ボンディングを行う。   As shown in FIG. 2A, first, a primary bonding process is performed on the prepared member prepared in this manner using the capillary 100 described above. Here, primary bonding is performed on the chip electrode 21 which is a primary side electrode.

この一次ボンディング工程では、キャピラリ100の内孔120に挿入されるとともに先端部110にて内孔120から導出されたワイヤ40を、キャピラリ100の先端部110によってチップ電極21に押し当てて接合する。   In this primary bonding step, the wire 40 inserted into the inner hole 120 of the capillary 100 and led out from the inner hole 120 at the distal end portion 110 is pressed against the chip electrode 21 by the distal end portion 110 of the capillary 100 and joined.

具体的には、図示しないが、キャピラリ100の先端部110にて内孔120から導出されたワイヤ40の先端に放電加工によりイニシャルボールを形成し、このボールをチップ電極21に押し付けて超音波振動させることにより、当該接合がなされる。これにより、ワイヤ40におけるチップ接続点41が形成される。   Specifically, although not shown, an initial ball is formed by electric discharge machining at the tip of the wire 40 led out from the inner hole 120 at the tip portion 110 of the capillary 100, and this ball is pressed against the chip electrode 21 to cause ultrasonic vibration. By doing so, the joining is performed. Thereby, the chip connection point 41 in the wire 40 is formed.

この一次ボンディング工程の後、中継ボンディング工程を行う。この工程では、図2(a)から図2(b)に示されるように、キャピラリ100の内孔120からワイヤ40を引き出しながら、キャピラリ100によってワイヤ40を切断することなく、中継電極50まで引き回す。   After this primary bonding step, a relay bonding step is performed. In this step, as shown in FIGS. 2A to 2B, the wire 40 is pulled out from the inner hole 120 of the capillary 100 to the relay electrode 50 without being cut by the capillary 100. .

そして、図2(b)、図4に示されるように、キャピラリ100の先端部110でワイヤ40の押し当てを行うステッチボンディング法により、中継電極50に対してワイヤ40の中間部を接続する。これが中継ボンディング工程であり、これによりワイヤ40における中継接続点43が形成される。   Then, as shown in FIGS. 2B and 4, the intermediate portion of the wire 40 is connected to the relay electrode 50 by a stitch bonding method in which the wire 40 is pressed by the tip portion 110 of the capillary 100. This is a relay bonding process, whereby a relay connection point 43 in the wire 40 is formed.

次に、ワイヤ40を形成するための最終工程である二次ボンディング工程を行う。この工程では、図2(c)から図3(a)に示されるように、キャピラリ100の内孔120からワイヤ40を引き出しながら、キャピラリ100によってワイヤ40を、二次側電極としての基板電極30まで引き回す。   Next, a secondary bonding process which is a final process for forming the wire 40 is performed. In this step, as shown in FIG. 2C to FIG. 3A, the wire 40 is pulled out from the inner hole 120 of the capillary 100 by the capillary 100 and the substrate electrode 30 as the secondary electrode is drawn. Route around.

そして、図3(a)および図5に示されるように、キャピラリ100の先端部110によってワイヤ40を基板電極30に押し当ててステッチボンディングによって接合する。これにより、ワイヤ40における基板接続点42を形成し、その後は、キャピラリ100の先端部110の押し付けによりワイヤカットを行う。以上により、本実施形態のワイヤ40が完成する。   Then, as shown in FIGS. 3A and 5, the wire 40 is pressed against the substrate electrode 30 by the tip 110 of the capillary 100 and joined by stitch bonding. Thereby, the board | substrate connection point 42 in the wire 40 is formed, and wire cutting is performed by pressing the front-end | tip part 110 of the capillary 100 after that. Thus, the wire 40 of the present embodiment is completed.

このように、本実施形態のワイヤボンディング工程では、上記した一次ボンディング工程、中継ボンディング工程、二次ボンディング工程を順次行う。これにより、ワイヤ40は、チップ接続点41と基板接続点42との間において、中継接続点43を設けることにより形成された複数個のループを備えた1本の連続した形状をなすものとして、できあがる。   Thus, in the wire bonding process of this embodiment, the above-described primary bonding process, relay bonding process, and secondary bonding process are sequentially performed. As a result, the wire 40 forms a single continuous shape having a plurality of loops formed by providing the relay connection point 43 between the chip connection point 41 and the substrate connection point 42. It ’s done.

ところで、本実施形態によれば、ワイヤ40の両端であるチップ接続点41、基板接続点42がそれぞれ接続されるチップ電極21、基板電極30の中間にて、半導体チップ20の外側の基板10の一面11上に、中継電極50を設け、ワイヤ40の中間部を中継電極50に接続している。   By the way, according to the present embodiment, the chip connection point 41 and the substrate connection point 42 which are both ends of the wire 40 are respectively connected to the substrate 10 outside the semiconductor chip 20 between the chip electrode 21 and the substrate electrode 30. A relay electrode 50 is provided on the one surface 11, and an intermediate portion of the wire 40 is connected to the relay electrode 50.

これにより、ワイヤ40は1本の連続した状態を維持したまま、中継接続点43によって複数のループ(ここでは2個)に分割されたものとなる。そのため、個々のループにおけるワイヤ長を短くすることができ、全体のワイヤ長が大きくても、上記したようなワイヤ40の蛇行およびワイヤ40の流れを防止することができる。   Thereby, the wire 40 is divided into a plurality of loops (here, two) by the relay connection point 43 while maintaining one continuous state. Therefore, the wire length in each loop can be shortened, and the meandering of the wire 40 and the flow of the wire 40 as described above can be prevented even when the overall wire length is large.

また、中継電極50の最大寸法方向の幅W1を、上記した基板電極30の幅W2および上記したキャピラリ100の先端部110の幅W3よりも小さくすることで、中継電極50の平面サイズを大幅に小さくすることができる。そのため、中継電極50による基板10の一面11上のスペースの制約を低減できる。   Further, the width W1 in the maximum dimension direction of the relay electrode 50 is made smaller than the width W2 of the substrate electrode 30 and the width W3 of the tip portion 110 of the capillary 100, thereby greatly increasing the planar size of the relay electrode 50. Can be small. Therefore, the space restriction on the first surface 11 of the substrate 10 by the relay electrode 50 can be reduced.

ここで、中継ボンディング工程と二次ボンディング工程とにおけるステッチボンディングの相違点について、上記図4および図5を参照して具体的に述べておく。   Here, the difference in stitch bonding between the relay bonding process and the secondary bonding process will be specifically described with reference to FIG. 4 and FIG.

図5に示されるように、二次ボンディングを行う基板電極30では、キャピラリ100の先端部110のうちワイヤ40の引き出し方向に沿った内孔120の両側部分を、基板電極30に押し付けることでワイヤカットを行う。そのため、基板電極30の幅W2は、キャピラリ100の先端部110の幅W3よりも大きい必要がある。   As shown in FIG. 5, in the substrate electrode 30 that performs the secondary bonding, the both ends of the inner hole 120 along the drawing direction of the wire 40 in the tip portion 110 of the capillary 100 are pressed against the substrate electrode 30. Make a cut. Therefore, the width W2 of the substrate electrode 30 needs to be larger than the width W3 of the tip portion 110 of the capillary 100.

一方、図4に示されるように、中継ボンディングを行う中継電極50では、ワイヤカットしないので、キャピラリ100の先端部110のうちワイヤ40の引き出し方向に沿った内孔120の片側部分のみで、ワイヤ40を中継電極50に押し付ければよい。   On the other hand, as shown in FIG. 4, in the relay electrode 50 that performs relay bonding, the wire is not cut, so that only the one side portion of the inner hole 120 along the lead-out direction of the wire 40 in the tip portion 110 of the capillary 100 is used. 40 may be pressed against the relay electrode 50.

つまり、ワイヤ40の中間部を中継電極50にステッチボンディングするときは、キャピラリ100の先端部110のうちのワイヤ40の引き出し方向に沿ってワイヤ40が位置する部分のみにて、ワイヤ40を中継電極50に押し付ければよい。そのため、中継電極50の最大寸法方向の幅W1は、このワイヤ40の押し付け領域を確保するものであれば、キャピラリ100の先端部110の幅W3よりも小さくてもかまわない。   That is, when the intermediate portion of the wire 40 is stitch-bonded to the relay electrode 50, the wire 40 is connected to the relay electrode only at the portion of the distal end portion 110 of the capillary 100 where the wire 40 is positioned along the drawing direction of the wire 40. 50 may be pressed. Therefore, the width W1 in the maximum dimension direction of the relay electrode 50 may be smaller than the width W3 of the distal end portion 110 of the capillary 100 as long as the pressing area of the wire 40 is ensured.

このように、本実施形態では、中継電極50の最大寸法方向の幅W1を上記したキャピラリ100の先端部110の幅W3よりも小さいものとしたとしても、中継電極50へのワイヤ接続が適切に行える。そのため、中継電極50の平面サイズを、基板電極30に対して、大幅に小さいサイズとすることができるのである。   As described above, in this embodiment, even when the width W1 of the relay electrode 50 in the maximum dimension direction is smaller than the width W3 of the tip portion 110 of the capillary 100, the wire connection to the relay electrode 50 is appropriately performed. Yes. Therefore, the planar size of the relay electrode 50 can be made significantly smaller than the substrate electrode 30.

こうして、本実施形態の製造方法によれば、チップ電極21と基板電極30との距離が大きくワイヤ40の長さが大きくなった場合であっても、基板10の一面11に中継電極50を設け、ワイヤの蛇行やワイヤ流れを適切に抑制することができる。そして、中継電極50の平面サイズを大幅に小さいものとすることで、中継電極50による基板10の一面11上のスペースの制約を極力低減できるのである。   Thus, according to the manufacturing method of this embodiment, the relay electrode 50 is provided on the one surface 11 of the substrate 10 even when the distance between the chip electrode 21 and the substrate electrode 30 is large and the length of the wire 40 is large. The meandering of the wire and the wire flow can be appropriately suppressed. Then, by making the planar size of the relay electrode 50 significantly small, the space restriction on the one surface 11 of the substrate 10 by the relay electrode 50 can be reduced as much as possible.

本実施形態における好ましい形態について、次に述べておく。上記用意工程では、基板10として、ワイヤ40におけるチップ接続点41、中継接続点43、および、基板接続点42について個々の隣り合う接続点間の距離が同一となるように、中継電極50が配置されたものを用意することが望ましい。   A preferred embodiment in the present embodiment will be described next. In the above preparation process, the relay electrode 50 is arranged as the substrate 10 so that the distance between the adjacent connection points of the chip connection point 41, the relay connection point 43, and the substrate connection point 42 on the wire 40 is the same. It is desirable to prepare what has been prepared.

つまり、本実施形態の場合、基板10の一面11上から視たときのチップ接続点41と基板接続点42間のワイヤ40の長さが、中継接続点43により2等分されるように、中継電極50が配置されることが望ましい。ここで、接続点間の距離が同一であることとは、完全同一に限定するものではなく、ワイヤ40の径や各接続点の潰れ幅の範囲内の誤差を含むものである。   That is, in the case of this embodiment, the length of the wire 40 between the chip connection point 41 and the substrate connection point 42 when viewed from the one surface 11 of the substrate 10 is divided into two equal parts by the relay connection point 43. It is desirable that the relay electrode 50 is disposed. Here, the fact that the distances between the connection points are the same is not limited to being completely the same, but includes errors within the range of the diameter of the wire 40 and the collapse width of each connection point.

このような中継接続点43によってワイヤ40を等分割する場合、ワイヤ40は1本の連続した状態を維持したまま、同じワイヤ長を持つ複数のループに等分割されたものとなり、1個のループにおけるワイヤ長を効率的に短くできる、という利点がある。   When the wire 40 is equally divided by such a relay connection point 43, the wire 40 is equally divided into a plurality of loops having the same wire length while maintaining one continuous state. There is an advantage that the wire length can be efficiently shortened.

また、本実施形態においては、上述したが、基板10において、基板10の内部には、基板10の一面11まで到達するビアホール12が設けられており、基板電極30は、ビアホール12と一体化されたものとされている。   Further, in the present embodiment, as described above, in the substrate 10, the via hole 12 reaching the one surface 11 of the substrate 10 is provided inside the substrate 10, and the substrate electrode 30 is integrated with the via hole 12. It is said that

このようにビアホール12と一体化された基板電極30は、ワイヤ40が接続される領域とビアホール12を覆う領域とが連続した領域とされるものであるため、平面サイズが大きくなりやすい。また、通常、基板電極30は、基板10の一面11上にて半導体チップ20の周りに、複数個設けられているが、ビアホール12が一体化された複数個の基板電極30において、当該基板電極30同士の距離を大きく採る必要がある。   Since the substrate electrode 30 integrated with the via hole 12 in this manner is a region in which the region to which the wire 40 is connected and the region covering the via hole 12 are continuous, the planar size tends to increase. Usually, a plurality of substrate electrodes 30 are provided around the semiconductor chip 20 on the one surface 11 of the substrate 10. In the plurality of substrate electrodes 30 in which the via holes 12 are integrated, the substrate electrodes It is necessary to take a large distance between 30.

このような理由から、基板10の一面11上にて半導体チップ20の周りに、ビアホール12が一体化された複数個の基板電極30を配置する場合、半導体チップ20と各基板電極30との距離を大きく採る必要がある。   For this reason, when a plurality of substrate electrodes 30 in which the via holes 12 are integrated are arranged around the semiconductor chip 20 on the one surface 11 of the substrate 10, the distance between the semiconductor chip 20 and each substrate electrode 30. It is necessary to take large.

このことは、すなわち、チップ電極21と基板電極30との間の距離、つまりワイヤ長が大きくなることにつながる。そのため、このようなビアホール12が一体化された基板電極30を採用する場合、本実施形態のような中継電極50を採用してワイヤ長を分割する構成とすることは、有効である。   This leads to an increase in the distance between the chip electrode 21 and the substrate electrode 30, that is, the wire length. Therefore, when adopting the substrate electrode 30 in which the via hole 12 is integrated, it is effective to adopt a configuration in which the wire length is divided by using the relay electrode 50 as in the present embodiment.

また、中継電極50と基板電極30とは、同一のワイヤ40で接続されるものであるから、当該両電極は基板10に設けられた配線等により互いに電気的に接続されていてもよい。しかし、そのような両電極間を接続する配線等を設けることは、手間や構成の複雑化を招く可能性がある。   In addition, since the relay electrode 50 and the substrate electrode 30 are connected by the same wire 40, the both electrodes may be electrically connected to each other by a wiring or the like provided on the substrate 10. However, providing such a wiring for connecting both electrodes may lead to complexity and complexity.

そのような点を考慮すれば、ビアホール12と一体化された基板電極30の場合、中継電極50は、ビアホール12とは電気的に独立したものであることが望ましい。また、中継電極50は、基板電極30も含めて基板10にて構成される電気回路とは電気的に独立したダミー電極であってもよい。つまり、中継電極50は、当該中継電極以外の構成要素とは電気的に独立したダミー電極であってもよい。   In consideration of such a point, in the case of the substrate electrode 30 integrated with the via hole 12, it is desirable that the relay electrode 50 is electrically independent from the via hole 12. Further, the relay electrode 50 may be a dummy electrode that is electrically independent of the electric circuit configured by the substrate 10 including the substrate electrode 30. That is, the relay electrode 50 may be a dummy electrode that is electrically independent from components other than the relay electrode.

(第2実施形態)
本発明の第2実施形態かかる半導体装置の製造方法について、上記第1実施形態との相違点を中心として図6を参照して述べる。本実施形態の製造方法は、用意工程までは上記第1実施形態と同一であるが、ワイヤボンディング工程における接合順序が相違するものである。
(Second Embodiment)
A method of manufacturing a semiconductor device according to the second embodiment of the present invention will be described with reference to FIG. 6 focusing on differences from the first embodiment. The manufacturing method of the present embodiment is the same as that of the first embodiment up to the preparation step, but the bonding order in the wire bonding step is different.

上記第1実施形態の製造方法では、用意工程にて用意された用意部材におけるチップ電極21および基板電極30のうちチップ電極21が一次側電極、基板電極30が二次側電極とされていた。   In the manufacturing method of the first embodiment, among the chip electrode 21 and the substrate electrode 30 in the preparation member prepared in the preparation step, the chip electrode 21 is the primary side electrode and the substrate electrode 30 is the secondary side electrode.

これに対して、本実施形態では、用意部材におけるチップ電極21および基板電極30のうち基板電極30を一次側電極とし、チップ電極21を二次側電極とするものである。つまり、本実施形態の場合、形成後のワイヤ40においては、チップ接続点41が、ワイヤボンディングにおける二次接合部とされ、基板接続点42が、ワイヤボンディングにおける一次接合部とされるものである。   On the other hand, in this embodiment, among the chip electrode 21 and the substrate electrode 30 in the prepared member, the substrate electrode 30 is a primary electrode, and the chip electrode 21 is a secondary electrode. That is, in this embodiment, in the wire 40 after formation, the chip connection point 41 is a secondary joint in wire bonding, and the substrate connection point 42 is a primary joint in wire bonding. .

そして、本実施形態のワイヤボンディング工程では、一次ボンディング工程の前に、図6(a)に示されるように、チップ電極21の上に、ワイヤ40と接続されるバンプ60を形成しておく。このバンプ60は、キャピラリ100を用いたボールボンディングにより形成されるもので、ワイヤ40と同一材料よりなる。   In the wire bonding process of this embodiment, bumps 60 connected to the wires 40 are formed on the chip electrodes 21 as shown in FIG. 6A before the primary bonding process. The bump 60 is formed by ball bonding using the capillary 100 and is made of the same material as the wire 40.

このバンプ60を形成した後、本実施形態においては、基板電極30を一次側電極とし、チップ電極21を二次側電極として、上記第1実施形態と同様、一次ボンディング工程、中継ボンディング工程、二次ボンディング工程を順次行う。これにより、図6(b)に示されるように、ワイヤ40ができあがる。ここで、チップ接続点41はバンプ60上に形成される。   After this bump 60 is formed, in this embodiment, the substrate electrode 30 is used as the primary electrode and the chip electrode 21 is used as the secondary electrode, as in the first embodiment, and the primary bonding process, the relay bonding process, Next bonding process is performed sequentially. Thereby, as shown in FIG. 6B, the wire 40 is completed. Here, the chip connection point 41 is formed on the bump 60.

このように、本実施形態は、上記第1実施形態に比べて、ワイヤボンディングの接続順序をチップ電極21と基板電極30とで逆にしたものであり、この順序変更以外については、上記第1実施形態と同様の作用効果が発揮されることはもちろんである。   As described above, in this embodiment, the wire bonding connection order is reversed between the chip electrode 21 and the substrate electrode 30 as compared to the first embodiment. Of course, the same effect as the embodiment is exhibited.

(第3実施形態)
本発明の第3実施形態について、上記第1実施形態との相違点を中心として図7を参照して述べる。本実施形態の製造方法は、用意工程にて用意される用意部材における中継電極50の数を複数個としたことが、上記第1実施形態と相違するものである。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG. 7 focusing on differences from the first embodiment. The manufacturing method of this embodiment is different from the first embodiment in that the number of relay electrodes 50 in the preparation member prepared in the preparation process is plural.

上記第1実施形態では、用意部材における中継電極50は、基板10の一面11にてチップ電極21および基板電極30の間に1個設けられたものであった。これに対して、本実施形態のように、中継電極50を、チップ電極21および基板電極30の間に複数個、図7では、2個設けられたものとしてもよい。   In the first embodiment, one relay electrode 50 in the preparation member is provided between the chip electrode 21 and the substrate electrode 30 on the one surface 11 of the substrate 10. On the other hand, as in the present embodiment, a plurality of relay electrodes 50 may be provided between the chip electrode 21 and the substrate electrode 30, two in FIG.

ここで、複数個の中継電極50のそれぞれについて、最大寸法方向の幅W1が、基板電極30の幅W2よりも小さく、且つ、キャピラリ100の先端部110の幅W3よりも小さいことは、もちろんである。   Here, for each of the plurality of relay electrodes 50, the width W1 in the maximum dimension direction is smaller than the width W2 of the substrate electrode 30 and smaller than the width W3 of the tip portion 110 of the capillary 100. is there.

この場合、ワイヤボンディング工程では、チップ電極21を一次側電極とし、基板電極30を二次側電極として、上記第1実施形態と同様、一次ボンディング工程、中継ボンディング工程、二次ボンディング工程を順次行う。ただし、本実施形態では、中継ボンディング工程を複数回、図7の例では2回、繰り返して行う。これにより、図7に示されるように、ワイヤ40ができあがる。   In this case, in the wire bonding process, the chip electrode 21 is used as the primary electrode and the substrate electrode 30 is used as the secondary electrode, and the primary bonding process, the relay bonding process, and the secondary bonding process are sequentially performed as in the first embodiment. . However, in this embodiment, the relay bonding process is repeated a plurality of times, and twice in the example of FIG. Thereby, as shown in FIG. 7, the wire 40 is completed.

このように、本実施形態は、上記第1実施形態に比べて、中継電極50を複数個とし、それに伴って中継ボンディング工程を複数回行うようにしたものであり、このこと以外については、上記第1実施形態と同様の作用効果が発揮されることはもちろんである。そして、中継電極50は、図7のような2個以外にも、3個以上であってもよい。   As described above, the present embodiment has a plurality of relay electrodes 50 as compared with the first embodiment, and the relay bonding process is performed a plurality of times along with this. Of course, the same effect as the first embodiment is exhibited. The number of relay electrodes 50 may be three or more in addition to the two as shown in FIG.

また、本実施形態においても、上記第1実施形態と同様、用意工程では、基板10として、ワイヤ40におけるチップ接続点41、中継接続点43、および、基板接続点42について個々の隣り合う接続点間の距離が同一となるように、中継電極50が配置されたものを用意することが望ましい。   Also in the present embodiment, as in the first embodiment, in the preparation process, as the substrate 10, the chip connection points 41, the relay connection points 43, and the substrate connection points 42 on the wires 40 are adjacent to each other. It is desirable to prepare a device in which the relay electrodes 50 are arranged so that the distance between them is the same.

ここで、図7の例では、基板10の一面11上から視たときのチップ接続点41と基板接続点42間のワイヤ40の長さが、2個の中継接続点43により3等分されるように、2個の中継電極50が配置されることが望ましい。さらに言えば、この好ましい形態によれば、当該ワイヤ40の長さは、中継電極50が3個ならば4等分、n個(nは1以上の整数)なら(n+1)等分、というように等分割される。   Here, in the example of FIG. 7, the length of the wire 40 between the chip connection point 41 and the substrate connection point 42 when viewed from the top surface 11 of the substrate 10 is divided into three equal parts by the two relay connection points 43. Thus, it is desirable that the two relay electrodes 50 be arranged. Furthermore, according to this preferred embodiment, the length of the wire 40 is divided into four equal parts if there are three relay electrodes 50, and (n + 1) equal parts if n (n is an integer of 1 or more). Equally divided.

なお、本実施形態は、中継電極50を複数個とし、それに伴って中継ボンディング工程を複数回行うようにしたものであるから、本実施形態においても、第2実施形態のような接続順序を採用したワイヤボンディング方法と組み合わせてもよいことは、もちろんである。   In the present embodiment, a plurality of relay electrodes 50 are used, and the relay bonding process is performed a plurality of times. Accordingly, the connection order as in the second embodiment is also adopted in this embodiment. Of course, it may be combined with the wire bonding method.

(第4実施形態)
本発明の第4実施形態かかる半導体装置の製造方法について、上記第1実施形態との相違点を中心として、図8を参照して述べる。本実施形態の製造方法は、上記第1実施形態の製造方法におけるワイヤボンディング工程に一部の工程を追加したところが相違するものである。
(Fourth embodiment)
A semiconductor device manufacturing method according to the fourth embodiment of the present invention will be described with reference to FIG. 8 focusing on the differences from the first embodiment. The manufacturing method of this embodiment is different from the wire bonding step in the manufacturing method of the first embodiment in that a part of the process is added.

図8に示されるように、本実施形態のワイヤボンディング工程では、チップ電極21を一次側電極とし、基板電極30を二次側電極としてワイヤ40を形成する。ここで、本実施形態では、一次ボンディング工程の前に、中継電極50の上に、バンプ60を形成しておく。このバンプ60は、キャピラリ100を用いたボールボンディングにより形成されるもので、ワイヤ40と同一材料よりなる。   As shown in FIG. 8, in the wire bonding step of this embodiment, the wire 40 is formed using the chip electrode 21 as the primary electrode and the substrate electrode 30 as the secondary electrode. Here, in this embodiment, the bump 60 is formed on the relay electrode 50 before the primary bonding step. The bump 60 is formed by ball bonding using the capillary 100 and is made of the same material as the wire 40.

このバンプ60を形成した後、本実施形態においては、基板電極30を一次側電極とし、チップ電極21を二次側電極として、上記第1実施形態と同様、一次ボンディング工程、中継ボンディング工程、二次ボンディング工程を順次行う。ここで、中継ボンディング工程は、中継電極50上のバンプ60に対して行われる。これにより、図8に示されるように、ワイヤ40ができあがる。   After this bump 60 is formed, in this embodiment, the substrate electrode 30 is used as the primary electrode and the chip electrode 21 is used as the secondary electrode, as in the first embodiment, and the primary bonding process, the relay bonding process, Next bonding process is performed sequentially. Here, the relay bonding process is performed on the bump 60 on the relay electrode 50. Thereby, as shown in FIG. 8, the wire 40 is completed.

このように、本実施形態は、上記第1実施形態に比べて、中継電極50上に予めバンプ60を形成することを追加しただけのものであるから、上記第1実施形態と同様の作用効果が発揮されることはもちろんである。   As described above, the present embodiment is the same as the first embodiment because the bump 60 is formed on the relay electrode 50 in advance as compared with the first embodiment. Of course, will be demonstrated.

また、図8では、一次ボンディング工程の前において、中継電極50上にバンプ60を形成したが、このバンプ60は、中継電極50とともに、さらに基板電極30上にも形成してもよい。また、一次ボンディング工程の前において、バンプ60は、基板電極30上のみに形成してもよい。   In FIG. 8, the bump 60 is formed on the relay electrode 50 before the primary bonding step. However, the bump 60 may be formed on the substrate electrode 30 together with the relay electrode 50. Further, the bump 60 may be formed only on the substrate electrode 30 before the primary bonding step.

また、本実施形態は、一次ボンディング工程の前に中継電極50または基板電極30上にバンプ60を形成する工程を追加したものであるから、上記第1実施形態だけでなく、上記第2実施形態や、上記第3実施形態とも組み合わせが可能であることは、言うまでもない。   In addition, since the present embodiment adds a step of forming bumps 60 on the relay electrode 50 or the substrate electrode 30 before the primary bonding step, not only the first embodiment but also the second embodiment. Needless to say, the third embodiment can be combined.

(第5実施形態)
本発明の第5実施形態かかる半導体装置の製造方法について、上記第1実施形態との相違点を中心として、図9を参照して述べる。本実施形態の製造方法は、上記第1実施形態に対して、基板電極30の配置構成を一部変更したところが相違するものである。
(Fifth embodiment)
A semiconductor device manufacturing method according to the fifth embodiment of the present invention will be described with reference to FIG. 9, focusing on the differences from the first embodiment. The manufacturing method of the present embodiment is different from the first embodiment in that the arrangement configuration of the substrate electrode 30 is partially changed.

上記第1実施形態では、上記図1に示したように、複数個の基板電極30は、実質的に直線的に配列されていた。それに対して、図9に示されるように、本実施形態では、複数個の基板電極30は、千鳥状に配置されている。   In the first embodiment, as shown in FIG. 1, the plurality of substrate electrodes 30 are arranged substantially linearly. On the other hand, as shown in FIG. 9, in the present embodiment, the plurality of substrate electrodes 30 are arranged in a staggered manner.

これにより、図9に示されるように、ワイヤ40は、ワイヤ長が長く中継電極50による分割を必要とするものと、ワイヤ長が短く中継電極50を不要とするものとに分かれている。また、このような千鳥状の配置によれば、多数の基板電極30を、スペース的に効率良く配置することが可能となる。   Accordingly, as shown in FIG. 9, the wire 40 is divided into a wire having a long wire length that requires division by the relay electrode 50 and a wire having a short wire length that does not require the relay electrode 50. In addition, according to such a staggered arrangement, a large number of substrate electrodes 30 can be arranged efficiently in a space.

ここで、図9では、中継電極50を設けていないワイヤ40については、チップ電極21およびチップ接続点41の一部を省略してある。   Here, in FIG. 9, a part of the chip electrode 21 and the chip connection point 41 is omitted for the wire 40 not provided with the relay electrode 50.

(他の実施形態)
なお、上記した各実施形態では、基板10の一面11上から視たときのワイヤ40の平面形状は、チップ接続点41と基板接続点42とを結ぶ直線状をなすものとされ、中継接続点43もこの直線上に位置するものであった。これに対して、このワイヤ40の平面形状としては、ワイヤ40における中継接続点43を屈曲点として曲がった形状であってもよい。つまり、1本のワイヤ40について、中継接続点43を屈曲点としてワイヤの延びる方向が異なったものとしてもよい。
(Other embodiments)
In each of the embodiments described above, the planar shape of the wire 40 when viewed from the top surface 11 of the substrate 10 is a straight line connecting the chip connection point 41 and the substrate connection point 42, and the relay connection point 43 was also located on this straight line. On the other hand, the planar shape of the wire 40 may be a shape bent with the relay connection point 43 in the wire 40 as a bending point. That is, one wire 40 may have different wire extending directions with the relay connection point 43 as a bending point.

また、上記各図では示されていないが、基板10の一面11上には、半導体チップ20、基板電極30およびワイヤ40とともに基板10の一面11を封止するモールド樹脂が、設けられていてもよい。この場合、上記したワイヤ流れの問題が発生する構成となるが、上記した各実施形態によれば、当該ワイヤ流れは防止できる。   Although not shown in each of the above drawings, a mold resin for sealing one surface 11 of the substrate 10 together with the semiconductor chip 20, the substrate electrode 30, and the wire 40 may be provided on the one surface 11 of the substrate 10. Good. In this case, the problem of the wire flow described above occurs, but according to each of the embodiments described above, the wire flow can be prevented.

また、基板10としては多層基板に限定されるものではなく、たとえば単層基板であってもよい。また、基板電極30としては、ビアホール12と一体化されないものであってもよい。さらに言うならば、基板10としてはビアホール12を持たないものであってもよい。   Further, the substrate 10 is not limited to a multilayer substrate, and may be a single layer substrate, for example. Further, the substrate electrode 30 may not be integrated with the via hole 12. In other words, the substrate 10 may not have the via hole 12.

また、上記各実施形態では、キャピラリ100は円筒状であり、キャピラリ100の先端部110におけるワイヤ引き出し方向の幅W3は、先端部110の直径に相当するものであったが、この先端部110が楕円形であったり、多角形等であったりしてもよい。この場合についても、ワイヤ引き出し方向の幅W3は、当該方向に沿った幅とすればよいことはもちろんである。   Further, in each of the above embodiments, the capillary 100 is cylindrical, and the width W3 in the wire drawing direction at the tip portion 110 of the capillary 100 corresponds to the diameter of the tip portion 110. It may be oval or polygonal. Also in this case, it is needless to say that the width W3 in the wire drawing direction may be a width along the direction.

また、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能であり、また、上記各実施形態は、上記の図示例に限定されるものではない。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。   Further, the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims. The above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible, and the above embodiments are not limited to the illustrated examples. Absent. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.

10 基板
11 基板の一面
20 半導体チップ
21 チップ電極
30 基板電極
40 ワイヤ
41 ワイヤにおけるチップ接続点
42 ワイヤにおける基板接続点
43 ワイヤにおける中継接続点
50 中継電極
100 キャピラリ
110 キャピラリの先端部
120 キャピラリの内孔
W1 中継電極の最大寸法方向の幅
W2 基板電極におけるワイヤの延びる方向の幅
W3 キャピラリの先端部におけるワイヤの引き出し方向の幅
DESCRIPTION OF SYMBOLS 10 Substrate 11 One side of substrate 20 Semiconductor chip 21 Chip electrode 30 Substrate electrode 40 Wire 41 Chip connection point in wire 42 Substrate connection point in wire 43 Relay connection point in wire 50 Relay electrode 100 Capillary 110 Capillary tip 120 Capillary inner hole 120 W1 Width in the maximum dimension direction of the relay electrode W2 Width in the wire extending direction on the substrate electrode W3 Width in the wire drawing direction at the tip of the capillary

Claims (5)

基板(10)と、
前記基板の一面(11)に搭載され表面にチップ電極(21)を有する半導体チップ(20)と、
前記基板の一面にて前記半導体チップの外側に設けられた基板電極(30)と、
ワイヤボンディングにより形成されたものであって、一端が前記チップ電極に接続されたチップ接続点(41)とされ、他端が前記基板電極に接続された基板接続点(42)とされることで、前記チップ電極と前記基板電極とを結線するワイヤ(40)と、を備える半導体装置の製造方法であって、
用意部材として、前記半導体チップが搭載された前記基板であって、前記チップ電極および前記基板電極の一方が前記ワイヤボンディングにおける一次側電極とされ、他方が前記ワイヤボンディングにおける二次側電極とされたもの、を用意する用意工程と、
先端部(110)に開口する内孔(120)を有する前記ワイヤボンディング用のキャピラリ(100)を用い、
当該内孔に挿入されるとともに当該先端部にて当該内孔から導出された前記ワイヤを、前記キャピラリの先端部によって前記一次側電極に押し当てて接合する一次ボンディング工程と、
前記キャピラリの内孔から前記ワイヤを引き出しながら、前記キャピラリによって前記ワイヤを前記二次側電極まで引き回し、前記キャピラリの先端部によって前記ワイヤを前記二次側電極に押し当ててステッチボンディングによって接合する二次ボンディング工程と、を備え、
前記用意工程では、前記用意部材として、前記基板の一面上のうち前記半導体チップの外側であって前記チップ電極および前記基板電極の間の部位に、1個以上の中継電極(50)が設けられるとともに、
当該中継電極の最大寸法方向の幅(W1)が、前記基板電極における前記ワイヤの延びる方向の幅(W2)よりも小さく、且つ、前記キャピラリの前記先端部における前記ワイヤの引き出し方向の幅(W3)よりも小さくされたもの、を用意し、
前記一次ボンディング工程の後、前記ワイヤを切断せずに、前記キャピラリの先端部で前記ワイヤの押し当てを行うステッチボンディング法により、前記1個以上の中継電極のすべてに対して前記ワイヤの中間部を接続し、最後に前記二次ボンディング工程を行ってワイヤカットを行うことにより、
前記ワイヤを、前記チップ接続点と前記基板接続点との間において、前記1個以上の中継電極との接続点(43)により形成された複数個のループを備える1本の連続した形状をなすものとすることを特徴とする半導体装置の製造方法。
A substrate (10);
A semiconductor chip (20) mounted on one surface (11) of the substrate and having a chip electrode (21) on the surface;
A substrate electrode (30) provided outside the semiconductor chip on one surface of the substrate;
It is formed by wire bonding, and one end is a chip connection point (41) connected to the chip electrode, and the other end is a substrate connection point (42) connected to the substrate electrode. A method of manufacturing a semiconductor device comprising: a wire (40) for connecting the chip electrode and the substrate electrode,
As the preparation member, the substrate on which the semiconductor chip is mounted, wherein one of the chip electrode and the substrate electrode is a primary electrode in the wire bonding, and the other is a secondary electrode in the wire bonding. A preparation process for preparing a thing,
Using the wire bonding capillary (100) having an inner hole (120) opening at the tip (110),
A primary bonding step in which the wire inserted into the inner hole and led out from the inner hole at the tip is pressed against the primary electrode by the tip of the capillary and joined;
While pulling out the wire from the inner hole of the capillary, the wire is routed to the secondary electrode by the capillary, and the wire is pressed against the secondary electrode by the tip of the capillary and joined by stitch bonding. A next bonding step,
In the preparation step, as the preparation member, one or more relay electrodes (50) are provided on one surface of the substrate outside the semiconductor chip and between the chip electrode and the substrate electrode. With
The width (W1) in the maximum dimension direction of the relay electrode is smaller than the width (W2) in the direction in which the wire extends in the substrate electrode, and the width (W3) in the wire drawing direction at the tip of the capillary. ) Prepare something smaller than
After the primary bonding step, an intermediate portion of the wire is applied to all of the one or more relay electrodes by a stitch bonding method in which the wire is pressed at the tip of the capillary without cutting the wire. By connecting the wire, and finally performing the secondary bonding step to perform wire cutting,
The wire has a continuous shape including a plurality of loops formed by connection points (43) to the one or more relay electrodes between the chip connection point and the substrate connection point. A method for manufacturing a semiconductor device.
前記用意工程では、前記基板として、前記ワイヤにおける前記チップ接続点、前記中継電極との接続点、および、前記基板接続点について個々の隣り合う接続点間の距離が同一となるように、前記1個以上の中継電極が配置されたものを用意することを特徴とする請求項1に記載の半導体装置の製造方法。   In the preparing step, as the substrate, the chip connection point in the wire, the connection point with the relay electrode, and the distance between the adjacent connection points with respect to the substrate connection point are the same. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a device in which at least one relay electrode is arranged is prepared. 前記基板において、前記基板の内部には、前記基板の一面まで到達するビアホール(12)が設けられており、
前記基板電極は、前記ビアホールと一体化されたものであることを特徴とする請求項1または2に記載の半導体装置の製造方法。
In the substrate, a via hole (12) reaching the one surface of the substrate is provided inside the substrate,
The method of manufacturing a semiconductor device according to claim 1, wherein the substrate electrode is integrated with the via hole.
前記1個以上の中継電極は、前記ビアホールとは電気的に独立したものであることを特徴とする請求項3に記載の半導体装置の製造方法。   4. The method of manufacturing a semiconductor device according to claim 3, wherein the one or more relay electrodes are electrically independent from the via hole. 前記1個以上の中継電極は、前記基板にて構成される電気回路とは電気的に独立したダミー電極であることを特徴とする請求項1ないし4のいずれか1つに記載の半導体装置の製造方法。   5. The semiconductor device according to claim 1, wherein the one or more relay electrodes are dummy electrodes that are electrically independent of an electric circuit configured by the substrate. 6. Production method.
JP2014114102A 2014-06-02 2014-06-02 Semiconductor device manufacturing method Pending JP2015228447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114102A JP2015228447A (en) 2014-06-02 2014-06-02 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114102A JP2015228447A (en) 2014-06-02 2014-06-02 Semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2015228447A true JP2015228447A (en) 2015-12-17

Family

ID=54885761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114102A Pending JP2015228447A (en) 2014-06-02 2014-06-02 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2015228447A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186600A (en) * 2017-04-24 2018-11-22 三菱電機株式会社 Semiconductor device
WO2018235511A1 (en) * 2017-06-22 2018-12-27 三菱電機株式会社 Semiconductor module
JP2019121612A (en) * 2017-12-28 2019-07-22 新電元工業株式会社 Electronic device
WO2021234803A1 (en) * 2020-05-19 2021-11-25 三菱電機株式会社 Semiconductor module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186600A (en) * 2017-04-24 2018-11-22 三菱電機株式会社 Semiconductor device
WO2018235511A1 (en) * 2017-06-22 2018-12-27 三菱電機株式会社 Semiconductor module
CN110800104A (en) * 2017-06-22 2020-02-14 三菱电机株式会社 Semiconductor module
JPWO2018235511A1 (en) * 2017-06-22 2020-05-21 三菱電機株式会社 Semiconductor module
US10978364B2 (en) 2017-06-22 2021-04-13 Mitsubishi Electric Corporation Semiconductor module
JP2019121612A (en) * 2017-12-28 2019-07-22 新電元工業株式会社 Electronic device
JP7050487B2 (en) 2017-12-28 2022-04-08 新電元工業株式会社 Electronic device
WO2021234803A1 (en) * 2020-05-19 2021-11-25 三菱電機株式会社 Semiconductor module
JPWO2021234803A1 (en) * 2020-05-19 2021-11-25
JP7214050B2 (en) 2020-05-19 2023-01-27 三菱電機株式会社 semiconductor module
EP4156252A4 (en) * 2020-05-19 2023-08-09 Mitsubishi Electric Corporation Semiconductor module

Similar Documents

Publication Publication Date Title
JP4600576B2 (en) Semiconductor device and manufacturing method thereof
JP2015159147A (en) semiconductor device
JP6481527B2 (en) Semiconductor device
JP2015228447A (en) Semiconductor device manufacturing method
JP2004103843A (en) Electronic element and electronic device using the same
JP2006245090A (en) Package for semiconductor and manufacturing method thereof
WO2014203739A1 (en) Semiconductor device and method for manufacturing same
JPWO2016117075A1 (en) Semiconductor module
JP2008270301A (en) Semiconductor device
JP6521104B2 (en) Inductor component and method of manufacturing the same
JP2014103183A (en) Electronic circuit, manufacturing method of the same, and electronic component
JP4923760B2 (en) Semiconductor package and manufacturing method thereof
JP6581886B2 (en) Semiconductor device
JP5913432B2 (en) Chip light emitting device
JP4942452B2 (en) Circuit equipment
JP2018186207A5 (en)
JPWO2020138210A1 (en) Substrate for mounting electronic devices and electronic devices
JP5048627B2 (en) Lead frame and semiconductor device
JP6111973B2 (en) Semiconductor device
JP6029237B2 (en) Lead frame, semiconductor device, and method of manufacturing semiconductor device
JP2007141969A (en) Tape wiring substrate, its manufacturing method, and semiconductor device
JP2016197636A (en) Molded package
JP2006303086A (en) Semiconductor device
JP7089343B2 (en) Semiconductor light emitting device
JP2008147427A (en) Electronic component device and electronic component mounting method