JP2015227620A - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
JP2015227620A
JP2015227620A JP2014112581A JP2014112581A JP2015227620A JP 2015227620 A JP2015227620 A JP 2015227620A JP 2014112581 A JP2014112581 A JP 2014112581A JP 2014112581 A JP2014112581 A JP 2014112581A JP 2015227620 A JP2015227620 A JP 2015227620A
Authority
JP
Japan
Prior art keywords
current
fuel injection
injection valve
slope
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112581A
Other languages
English (en)
Other versions
JP6206329B2 (ja
Inventor
敬介 矢野東
Keisuke Yanoto
敬介 矢野東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014112581A priority Critical patent/JP6206329B2/ja
Priority to DE112015002569.3T priority patent/DE112015002569B4/de
Priority to PCT/JP2015/002272 priority patent/WO2015182042A1/ja
Priority to US15/314,121 priority patent/US9835105B2/en
Publication of JP2015227620A publication Critical patent/JP2015227620A/ja
Application granted granted Critical
Publication of JP6206329B2 publication Critical patent/JP6206329B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2044Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using pre-magnetisation or post-magnetisation of the coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】適切なる燃料噴射制御を実現できる内燃機関の燃料噴射制御装置を提供する。
【解決手段】燃料噴射弁30による燃料噴射に際し、開弁動作のための所定の高電圧を印加するとともに、それに引き続いて開弁維持のための所定の低電圧を印加して燃料噴射弁30を通電するECU40は、燃料噴射弁30に流れる通電電流を検出する電流検出部44と、燃料噴射弁30の通電開始後において、電流検出部44による検出電流が、予め定めた目標ピーク値に到達した場合に、燃料噴射弁30への印加電圧を高電圧から低電圧に切り替える駆動IC42と、燃料噴射弁30に高電圧を印加した状態で、検出電流の電流変化の傾きSLを算出し、その電流変化の傾きSLに基づいて、燃料噴射弁30に流れる実電流のピーク点のずれを是正する補正処理を実施するマイコン41と、を備える。
【選択図】 図5

Description

本発明は、内燃機関の燃料噴射制御装置に関する。
車両等に搭載される内燃機関の各気筒に燃料を噴射供給する燃料噴射弁として、例えば電磁ソレノイド式のものが知られている。この種の燃料噴射弁においては、燃料噴射弁本体に内蔵されるコイルへの通電時期及び通電時間を制御して、弁体(ニードル)を開弁方向に駆動させることで、燃料噴射時期及び燃料噴射量を制御している。
また、燃料噴射弁の駆動手法として、コイル印加電圧を、開弁当初は高電圧とし、その後低電圧に切り替えるものが提案されている。かかる技術では、高電圧の印加により開弁応答性を高め、その後に低電圧に切り替えることで燃料噴射弁を低電力駆動するようにしている。また、高電圧から低電圧への切替は、電流検出回路により検出される検出電流に基づき実施され、その検出電流が所定の目標ピーク値に到達したと判定された際に印加電圧の切替が行われるようになっている。
ところで、燃料噴射装置には機差ばらつきが存在するため、実際の駆動電流にばらつきが生じることが考えられ、こうした駆動電流のばらつきに起因して燃料噴射量にばらつきが生じることが懸念される。そこで特許文献1では、実駆動電流の機差ばらつき量をあらかじめ記憶手段に記憶しておき、その機差ばらつき量に基づいて目標の駆動電流を補正するようにしている。
特開2014−5740号公報
しかし、燃料噴射装置における機差のばらつきは一様でなく、また時間経過に伴い変化することが考えられる。そのため、燃料噴射量のばらつきを解消するには技術改善の余地があると考えられる。
また、燃料噴射量がばらつく要因としては、燃料噴射弁における実駆動電流にばらつきが生じる以外に、電流検出回路の検出ずれが生じることが考えられる。この場合、上記のごとく電流検出回路により検出される検出電流に基づき印加電圧が高電圧から低電圧に切り替えられる構成では、検出電流の誤差が原因で、電圧切替タイミングにずれが生じる。すなわち、実電流においてピーク点のずれが生じる。そのため、燃料噴射弁に対する投入エネルギのずれが生じることから、燃料噴射弁の開弁応答特性が変化し、燃料噴射量の過不足が生じることが懸念される。
本発明は上記従来技術に問題点に鑑み、より適切なる燃料噴射制御を実現できる内燃機関の燃料噴射制御装置を提供することを技術課題とする。
本発明における内燃機関の燃料噴射制御装置は、通電により開弁駆動される燃料噴射弁(30)を備える内燃機関(11)に適用され、前記燃料噴射弁による燃料噴射に際し、開弁動作のための所定の高電圧を印加するとともにそれに引き続いて開弁維持のための所定の低電圧を印加することで前記燃料噴射弁を通電する噴射弁駆動手段(42,43)を備えることを前提としている。そして、前記燃料噴射弁に流れる通電電流を検出する電流検出手段(44)と、前記燃料噴射弁に対する通電開始後において、前記電流検出手段による検出電流が、あらかじめ定めた目標ピーク値に到達した場合に、前記燃料噴射弁への印加電圧を前記高電圧から前記低電圧に切り替える電圧切替手段(42)と、前記燃料噴射弁に前記高電圧を印加した状態で、前記検出電流について電流変化の傾き(SL)を算出し、その電流変化の傾きに基づいて、前記燃料噴射弁に流れる実電流のピーク点のずれを是正するための補正処理を実施するピークずれ補正手段(41)と、を備えることを特徴とする。
電流検出手段による通電電流の検出値に誤差が含まれる場合には、燃料噴射弁への高電圧の印加時において燃料噴射弁の実電流にピーク点のずれが生じる。この場合、燃料噴射弁に対する投入エネルギのずれが生じることから、開弁応答特性が変化し、燃料噴射量の過不足が生じることが懸念される。この点、燃料噴射弁に高電圧を印加した状態で、検出電流について電流変化の傾きを算出し、その電流変化の傾きに基づいて、燃料噴射弁の実電流のピーク点のずれを是正するための補正処理を実施する構成とした。これにより、電流検出手段の検出誤差が生じている場合にも燃料噴射弁に対する投入エネルギのずれを抑制でき、ひいては燃料噴射制御の精度を高めることができる。
エンジン制御システムの概略構成を示す図。 ECUの構成を示すブロック図。 燃料噴射弁の構成及び状態を示す図。 燃料噴射弁の駆動動作を説明するためのタイムチャート。 ピーク電流補正処理の手順を示すフローチャート。 実電流の流れやすさ指標と基準値Tp_typとの関係を示す図。 ピーク電流補正を具体的に説明するためのタイムチャート。 ピーク電流補正を具体的に説明するためのタイムチャート。 第2実施形態のピーク電流補正を具体的に説明するためのタイムチャート。 第3実施形態のプレチャージ補正処理の手順を示すフローチャート。 第3実施形態のプレチャージ補正を具体的に説明するためのタイムチャート。
(第1実施形態)
以下、一実施形態について図面を参照して説明する。本実施形態は、車両用のガソリンエンジンを制御する制御システムとして具体化している。
まず、図1に基づいてエンジン制御システムの概略構成を説明する。
筒内噴射式の多気筒内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。サージタンク18には、エンジン11の各気筒21に空気を導入する吸気マニホールド20が接続され、エンジン11の各気筒21には、それぞれ筒内に燃料を直接噴射する電磁式の燃料噴射弁30が取り付けられている。エンジン11のシリンダヘッドには、気筒21毎に点火プラグ22が取り付けられ、各気筒21の点火プラグ22の火花放電によって筒内の混合気に着火される。
エンジン11の排気管23には、排出ガスに基づいて混合気の空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。
エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。クランク軸28の外周側には、クランク軸28が所定クランク角回転する毎にパルス信号を出力するクランク角センサ29が取り付けられ、このクランク角センサ29のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。
これら各種センサの出力は、ECU40に入力される。ECU40は、マイクロコンピュータを主体として構成された電子制御ユニットであり、各種センサの検出信号を用いて内燃機関の各種制御を実施する。ECU40が燃料噴射制御装置に相当する。ECU40は、エンジン運転状態に応じた燃料噴射量を算出して、燃料噴射弁30の燃料噴射を制御するとともに、点火プラグ22の点火時期を制御する。
図2に示すように、ECU40は、エンジン制御用のマイコン41(エンジン11の制御用のマイクロコンピュータ)や、インジェクタ駆動用の駆動IC42(燃料噴射弁30の駆動用IC)、通電操作部43、電流検出部44を備えている。マイコン41は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出するとともに、この要求噴射量に基づき算出される噴射時間から噴射パルスを生成し出力する。駆動IC42及び通電操作部43は、「噴射弁駆動手段」及び「電圧切替手段」に相当し、噴射パルスにより燃料噴射弁30を開弁駆動して、要求噴射量分の燃料を噴射させる。
通電操作部43は、具体的には低圧電源部51と高圧電源部52とを有するとともに、それら各電源部51,52のいずれかから燃料噴射弁30のコイル31に対して駆動電流を供給させるスイッチング素子53〜55を有している。この場合、低圧電源部51は、例えば12Vの低電圧V1を出力する低電圧出力回路よりなり、高圧電源部52は、例えば60〜65Vの高電圧V2(昇圧電圧)を出力する高電圧出力回路よりなる。高圧電源部52はバッテリ電圧を昇圧する昇圧回路を有している。スイッチング素子53,55がオンされることで、コイル31に低電圧V1が印加され、スイッチング素子54,55がオンされることで、コイル31に高電圧V2が印加される。
噴射パルスにより燃料噴射弁30が開弁駆動される際には、燃料噴射弁30のコイル31に対して低電圧V1と高電圧V2とが時系列で切り替えられて印加されるようになっている。この場合、開弁初期には高電圧V2が印加されることで、燃料噴射弁30の開弁応答性が確保されるとともに、それに引き続いて低電圧V1が印加されることで、燃料噴射弁30の開弁状態が保持される。
また本実施形態では、燃料噴射弁30の駆動態様として、燃料噴射弁30の弁体がフルリフト位置に到達する前のパーシャルリフト状態で弁体のリフトを終了させ、その状態で所望量の燃料を噴射するパーシャルリフト噴射を実施することとしており、そのパーシャルリフト噴射を図3を用いて簡単に説明する。なお、図3において(a)はフルリフト噴射時の動作を示し、(b)はパーシャルリフト噴射時の動作を示している。
図3に示すように、燃料噴射弁30は、通電により電磁力を生じさせるコイル31と、その電磁力によってプランジャ32(可動コア)と一体的に駆動されるニードル33(弁体)とを有しており、ニードル33が開弁位置に移動することで燃料噴射弁30が開弁状態となり、燃料噴射が行われる。図3(a)、(b)では噴射パルスの時間(通電期間)が相違しており、(a)に示すように噴射パルス幅が比較的長くなる場合(ニードルリフト量がフルリフト量となる場合)には、ニードル33がフルリフト位置(プランジャ32がストッパ34に突き当たる位置)に到達する。一方、(b)に示すように、噴射パルス幅が比較的短くなる場合(ニードルリフト量がパーシャルリフト量となる場合)には、ニードル33がフルリフト位置に到達しないパーシャルリフト状態(プランジャ32がストッパ34に突き当たる手前の状態)となる。そして、噴射パルスの立ち下がりに伴いコイル31の通電が停止されると、プランジャ32とニードル33とが閉弁位置に戻ることで燃料噴射弁30が閉弁状態となり、燃料噴射が停止される。
図2に戻り、電流検出部44は、燃料噴射弁30の開弁駆動時におけるコイル31の通電電流を検出するものであり、その検出結果は駆動IC42に逐次出力される。電流検出部44は周知構成であればよく、例えばシャント抵抗と増幅回路とを有するものとなっている。電流検出部44が「電流検出手段」に相当する。
次に、噴射パルスに基づき駆動IC42及び通電操作部43にて実施される燃料噴射弁30の駆動動作についてその詳細を図4により説明する。なお本実施形態では、噴射パルスがオンになる期間において、プレチャージと昇圧駆動と開弁維持駆動とが時系列で実施されるようになっている。プレチャージは、燃料噴射弁30の通電開始時に、高電圧V2の印加に先立ってコイル31に低電圧V1を印加するものであり、プレチャージの実施により、コイル電流の目標ピーク値への到達時間が短縮される。昇圧駆動は、開弁応答性を高めるべく実施され、昇圧駆動期間においてコイル31に高電圧V2が印加される。開弁維持駆動は、昇圧駆動に引き続いて実施され、コイル31に低電圧V1が印加される。まずは図4に実線で示す推移に基づいて、燃料噴射の基本動作について説明する。
図4において、時刻t0では、噴射パルスがオンになり、t0〜t1では低電圧V1によるプレチャージが実施される。プレチャージ期間はあらかじめ定められた時間であるとよい。プレチャージ期間では、スイッチング素子53を所定デューティ比で繰り返しオンオフさせてプレチャージを実施してもよい。
そして、時刻t1では、コイル31の印加電圧が低電圧V1から高電圧V2に切り替えられる。これにより、時刻t1〜t2の昇圧期間においてはt0〜t1の期間に比べてコイル電流が急峻に増加する。その後、時刻t2において、コイル電流が、あらかじめ定めた目標ピーク値Ipに到達すると、高電圧V2の印加が停止される。このとき、コイル電流が目標ピーク値Ipに到達するタイミング又はその直前のタイミングにおいてニードルリフトが開始され、そのニードルリフトに伴い燃料噴射が開始される。コイル電流が目標ピーク値Ipに到達したか否かの判定は、電流検出部44により検出された検出電流に基づいて実施される。つまり、昇圧期間(t1〜t2)では、駆動IC42において検出電流がIp以上になったか否かが判定され、検出電流≧Ipになった時点で通電操作部43によりコイル印加電圧の切替(V2の印加停止)が実施される。
時刻t2以降においては、V2の印加停止に伴いコイル電流が低下するが、あらかじめ定めた電流しきい値と電流検出部44による検出電流とに基づいて、コイル31に対して低電圧V1が断続的に印加される。なお、図4では、電流しきい値を2段階で定めており、コイル電流(検出電流)がしきい値以下となる都度、低電圧V1の印加が行われるようになっている。電流しきい値の切替(高→低の切替)は、ニードルリフトが所定のパーシャルリフト量になったと推定されるタイミングで実施されるとよい(図の時刻t3)。
その後、時刻t4で噴射パルスがオフになると、コイル31への電圧印加が停止され、コイル電流がゼロになる。そして、コイル通電の停止に伴いニードルリフトが終了され、それに合わせて燃料噴射が停止される。
燃料噴射弁30の開弁駆動に際しては、上記のとおりコイル電流の検出結果に基づいて印加電圧の切替が実施されるが、電流検出部44においては種々の要因により検出電流に誤差が含まれることがあると考えられる。例えば、シャント抵抗の個体差や経年劣化等により検出誤差が生じることが考えられる。かかる場合、実際のコイル電流(実電流)に対して検出電流に誤差が含まれていると、コイル電流が目標ピーク値Ipに到達するタイミングを適正に把握できず、結果として燃料噴射量の過不足が生じることが懸念される。
すなわち、図4において、コイル電流が目標ピーク値Ipに到達するタイミングを適正に把握できない場合には、正規のコイル電流波形D1に対して、破線で示すD2,D3のようにコイル電流波形のずれが生じる。この場合、電流波形D2のように本来のIp到達タイミング(時刻t2)よりも前の時刻taでIp到達したと認識されると、高電圧V2の印加停止のタイミング(昇圧駆動の終了タイミング)が早めになってしまう。これは、実電流に対して検出電流が大きくなる側にずれる場合に生じる事態である。よって、昇圧駆動期間における昇圧エネルギが少なくなり、ニードルリフト動作が遅くなることから、燃料噴射量が過少になってしまう。
また、電流波形D3のように本来のIp到達タイミング(時刻t2)よりも後の時刻tbでIp到達したと認識されると、高電圧V2の印加停止のタイミング(昇圧駆動の終了タイミング)が遅めになってしまう。これは、実電流に対して検出電流が小さくなる側にずれる場合に生じる事態である。よって、昇圧駆動期間における昇圧エネルギが過剰になり、ニードルリフト動作が速くなることから、燃料噴射量が過多になってしまう。
そこで本実施形態では、燃料噴射弁30に高電圧V2を印加した状態で(すなわち昇圧駆動期間において)、検出電流について電流変化の傾きを算出し、その電流変化の傾きに基づいて、燃料噴射弁30の実電流のピーク点のずれを是正するための補正処理を実施する。そしてこれにより、コイル電流の検出誤差が生じている場合において燃料噴射弁30に対する投入エネルギのずれ(過不足)を抑制するようにしている。
より具体的には、燃料噴射弁30に高電圧V2を印加した状態において、検出電流が目標ピーク値Ipに到達する時点(X1)と、検出電流が目標ピーク値Ipよりも小さい所定の中間値Ihに到達する時点(X2)とを電流判定点として、これら各判定点X1,X2での電流値とその各点の間の時間間隔とに基づいて電流傾きSLを算出する。また、電流傾きSLに基づいて目標ピーク値Ipを補正する。
ECU40の構成と絡めて言えば、マイコン41は、駆動IC42に対してあらかじめ定めた目標ピーク値Ipと中間値Ihとを通知する。また、駆動IC42は、昇圧駆動期間において検出電流が目標ピーク値Ipに到達するまでの時間であるピーク電流到達時間Tpと、検出電流が中間値Ihに到達するまでの時間である中間電流到達時間Thとを計測し、これらTp,Thをマイコン41に通知する。なお、到達時間Tp,Thは、噴射パルスがオンになってからの経過時間として計測されるとよい。そして、マイコン41は、各目標ピーク値Ip,中間値Ihと各到達時間Tp,Thとに基づいて電流傾きSLを算出するとともに、その電流傾きSLを用いてピーク電流補正値Kpeを算出する。また、マイコン41は、ピーク電流補正値Kpeにより目標ピーク値Ipを補正し、その補正後の目標ピーク値Ipを駆動IC42に通知する。
図5は、ピーク電流補正処理の手順を示すフローチャートであり、本処理はマイコン41により所定周期で繰り返し実施される。
図5において、ステップS11では、ピーク電流補正を実施するための実施条件が成立しているか否かを判定する。この実施条件には、ピーク電流到達時間Tpや中間電流到達時間Thが算出されていること、今回の車両走行時においてピーク電流補正が未実施であること等が含まれ、これらがすべて成立する場合に、実施条件が成立しているとの判定がなされる。また、エンジン運転状態が定常状態であること、アイドルでない所定状態であること(微小噴射状態でないこと)等を実施条件に含めてもよい。
その後、ステップS12では、ピーク電流到達時間Tpと中間電流到達時間Thとを取得する。続くステップS13では、次の式(1)を用い、コイル電流検出値の変化の傾き(電流傾きSL)を算出する。
SL=(Ip−Ih)/(Tp−Th) …(1)
その後、ステップS14では、ピーク電流到達時間の基準値Tp_typを算出する。この基準値Tp_typは、例えば図6の関係を用いて算出されるとよい。図6では、実電流の流れやすさ指標と基準値Tp_typとの関係が定められており、実電流が流れやすい状況であるほど、基準値Tp_typが小さい値として設定される。実電流の流れやすさ指標は、燃料噴射弁30(コイル31)の温度や印加電圧の影響に基づき定められるものである。なお、基準値Tp_typの変化要因ごとに複数の特性線を設定しておく構成であってもよい。
その後、ステップS15では、次の式(2)を用い、ピーク電流到達時間の誤差ΔTpを算出する。
ΔTp=Tp−Tp_typ …(2)
ステップS16では、次の式(3)、式(4)を用い、ピーク電流補正値Kpeの算出、及び補正後目標ピーク値Ipiの算出を実施する。
Kpe=ΔTp×SL …(3)
Ipi=Ip−Kpe …(4)
ステップS16で算出されたピーク電流補正値Kpe及び補正後目標ピーク値Ipiは、学習値としてバックアップ用メモリ(EEPROM等)に適宜記憶されてもよい。そして、補正後目標ピーク値Ipiが新たに駆動IC42に対して通知される。
次に、上記処理の実行例を図7及び図8に基づいて説明する。図7は、電流検出部44による検出電流が大きくなる側にずれた場合の例を示し、図8は、電流検出部44による検出電流が小さくなる側にずれた場合の例を示している。なお、検出電流波形について、実線が正常時の波形を示し、破線が検出ずれが生じている場合の波形を示している。なお図7,8においては、説明の簡略化のためにプレチャージ時期の記載を省略している。
図7では、コイル通電に際し、駆動IC42において、検出電流が所定の中間値Ih(X2)に到達した時の中間電流到達時間Thと、検出電流が目標ピーク値Ip(X1)に到達した時のピーク電流到達時間Tpとが計測される。そして、上記式(1)により電流傾きSLが算出される。また、上記式(2)によりピーク電流到達時間の誤差ΔTpが算出されるとともに、上記式(3)によりピーク電流補正値Kpeが算出される。そして、ピーク電流補正値Kpeにより、目標ピーク値Ipが増加側に補正される。
こうして目標ピーク値Ipが増補正されることにより、実電流のピークずれが抑制される。したがって、実電流に対して検出電流が大きくなる側にずれることに起因して燃料噴射量が過少になるといった不都合が抑制される。つまり、目標ピーク値Ipの増補正により、昇圧駆動期間における昇圧エネルギの不足が解消され、ニードルリフトの開弁応答性が高められる。これにより、燃料噴射量の不足を抑制できる。
また、図8では、図7との違いとして、ピーク電流補正値Kpeにより、目標ピーク値Ipが減少側に補正されている。こうして目標ピーク値Ipが減補正されることにより、やはり実電流のピークずれが抑制される。したがって、実電流に対して検出電流が小さくなる側にずれることに起因して燃料噴射量が過多になるといった不都合が抑制される。つまり、目標ピーク値Ipの減補正により、昇圧駆動期間における昇圧エネルギの過剰が解消され、ニードルリフトの開弁応答性が低くなる。これにより、燃料噴射量が過多になることを抑制できる。
上記によれば以下の優れた効果を奏することができる。
電流検出部44による検出電流に誤差が含まれる場合には、燃料噴射弁30への高電圧の印加時において燃料噴射弁30の実電流にピーク点のずれが生じる。この場合、燃料噴射弁30に対する投入エネルギのずれが生じることから、開弁応答特性(開弁速度)が変化し、燃料噴射量の過不足が生じることが懸念される。この点、燃料噴射弁30に高電圧を印加した状態で、検出電流について電流変化の傾きを算出し、その電流変化の傾きに基づいて、実電流のピーク点のずれを是正するための補正処理を実施する構成とした。これにより、検出電流の誤差が生じている場合にも燃料噴射弁30に対する投入エネルギのずれを抑制でき、ひいては燃料噴射制御の精度を高めることができる。
特に、微小噴射量になると、実電流のピークずれの影響が大きくなるが、上記構成によれば、微小噴射量のばらつき軽減の効果が期待できる。
電流傾きSLの算出時において、検出電流が目標ピーク値Ipに到達する時点と中間値Ihに到達する時点とを電流判定点(計測点)として、電流傾きSLを算出する構成とした。この場合、昇圧駆動期間内において2つの電流判定点を互いに極力離すことができ、電流傾きSLの算出精度を高めることができる。これにより、目標ピーク値Ipの補正の精度を高めることができる。
複数点の電流値(Ip,Ih)を定めておき、それら各電流値に到達する時間情報(Tp,Th)を用いて電流傾きSLを算出する構成とした。この場合、タイマ等の簡易な構成を用いて電流傾きSLを容易に算出できる。また、ピーク電流到達時間の基準値Tp_typを定めておくことで、時間誤差ΔTpの算出、及びそれを用いたピーク電流補正値Kpeの算出を簡易に実施できる。
燃料噴射弁30においては、コイル温度や印加電圧の値等に応じて実電流の変化の傾き(流れやすさ)に影響が及ぶ。この点を考慮し、ピーク電流到達時間の基準値Tp_typを可変に設定する構成とした。これにより、ピーク電流到達時間の誤差ΔTpを正しく算出でき、ひいてはピーク電流補正の精度を高めることができる。
本発明は、上記実施形態の記載内容に限定されず、次のように実施されてもよい。なお以下の説明において上記と同じ構成には同じ図番号を付し、詳述は省略する。
(第2実施形態)
上記第1実施形態では、検出電流の電流傾きSLを算出する場合に、検出電流が目標ピーク値Ipに到達する時点(X1)と、検出電流が中間値Ihに到達する時点(X2)とを電流判定点として、これら各判定点X1,X2での電流値とその各点の間の時間間隔とに基づいて電流傾きSLを算出するようにしたが、これを変更する。つまり本実施形態では、図9に示すように、検出電流の電流傾きSLを算出する場合に、検出電流が2つの中間値Ih1,Ih2に到達する時点(X11,X12)を電流判定点として、これら各判定点X11,X12での電流値とその各点の間の時間間隔とに基づいて電流傾きSLを算出する。
図9では、コイル通電に際し、駆動IC42において、検出電流が中間値Ih1,Ih2に到達した時の中間電流到達時間Th1,Th2がそれぞれ計測される。そして、マイコン41において、
SL=(Ih2−Ih1)/(Th2−Th1) …(5)
により電流傾きSLが算出され、
ΔTh=Th2−Th_typ …(6)
により中間電流到達時間の誤差ΔThが算出される。なお、式(6)のTh_typは中間電流到達時間の基準値であり、既述のTp_typと同様、図6の関係を用いて算出されるとよい。
また、Kpe=ΔTh×SL …(7)
によりピーク電流補正値Kpeが算出され、そのピーク電流補正値Kpeにより、目標ピーク値Ipが補正される。
上記構成によれば、検出電流が中間値Ih1,Ih2に到達する時点を電流判定点(計測点)として、電流傾きSLを算出するため、昇圧駆動期間内においてコイル電流が目標ピーク値Ipに到達する前に電流傾きSLを算出することができ、目標ピーク値Ipの補正をいち早く実施できる。つまり、ピーク電流補正値を算出するのと同じ回の燃料噴射で、ピーク値補正を実施できる。
(第3実施形態)
上記各実施形態では、補正処理として、電流傾きSLに基づいて目標ピーク値Ipを補正する処理を実施したのに対し、本実施形態では、補正処理として、電流傾きSLに基づいて昇圧駆動期間での実電流の増加変化の傾きを変更する処理を実施する。また本実施形態では、電流傾きSLとあらかじめ定めた基準の傾き値とから傾き誤差ΔSLを算出する構成と、その傾き誤差ΔSLに基づいて実電流の増加変化の傾きを変更する構成と、補正処理としてプレチャージ補正を実施する構成とを採用することとしている。
図10は、プレチャージ補正処理の手順を示すフローチャートであり、本処理はマイコン41により所定周期で繰り返し実施される。
図10において、ステップS21では、プレチャージ補正を実施するための実施条件が成立しているか否かを判定する。この実施条件には、ピーク電流到達時間Tpや中間電流到達時間Thが算出されていること、今回の車両走行時においてプレチャージ補正が未実施であること等が含まれ、これらがすべて成立する場合に、実施条件が成立しているとの判定がなされる。また、エンジン運転状態が定常状態であること、アイドルでない所定状態であること(微小噴射状態でないこと)等を実施条件に含めてもよい。
その後、ステップS22では、ピーク電流到達時間Tpと中間電流到達時間Thとを取得する。続くステップS23では、上記式(1)を用いて電流傾きSLを算出する。
その後、ステップS24では、次の式(8)を用い、検出電流の傾き誤差ΔSLを算出する。なお、SL_typは、電流傾きSLの基準値である。
ΔSL=SL/SL_typ …(8)
基準値SL_typは、上述の基準値Tp_typと同様、実電流の流れやすさ指標に基づき算出されるものであるとよい。この場合、実電流が流れやすい状況であるほど、電流傾きの基準値SL_typを大きくする(傾きを大きくする)とよい。
その後、ステップS25では、検出電流の傾き誤差ΔSLが、傾きの適正判断のために定めた所定範囲内に入っているか否かを判定する。そして、傾き誤差ΔSLが所定範囲内に入っていれば、ステップS26に進む。ステップS26では、昇圧駆動をあらかじめ定めた規定時間で終了する旨を判断する。これは通常処理に相当する。
また、傾き誤差ΔSLが所定範囲内に入っていなければ、ステップS27に進む。ステップS27では、プレチャージ補正を実施する。この場合、傾き誤差ΔSLが所定範囲外であってかつ下限値未満であれば、プレチャージ期間での投入エネルギを増加させるべくプレチャージ量を増補正する。また、傾き誤差ΔSLが所定範囲外であってかつ上限値よりも大きければ、プレチャージ期間での投入エネルギを減少させるべくプレチャージ量を減補正する。プレチャージ量の増補正及び減補正は、プレチャージ電流を増加/減少させること、プレチャージ期間を延長/短縮することの少なくともいずれかで実現されるとよい。なお、プレチャージ期間を延長/短縮する場合には、その延長分又は短縮分に応じて噴射パルスの長さを変更するとよい。
次に、上記処理の実行例を図11に基づいて説明する。図11は、電流検出部44による検出電流が小さくなる側にずれた場合の例を示している。なお、検出電流波形について、実線が正常時の波形を示し、破線が検出ずれが生じている場合の波形を示している。
図11(a)に示すように、検出電流が正常の場合には、電流傾きが基準値SL_typとなるのに対し、検出電流のずれが生じている場合には、電流傾きが基準値SL_typよりも小さくなっている。かかる場合に、傾き誤差ΔSL(=SL/SL_typ)に基づいてプレチャージ補正が実施される。これにより、図11(b)に示すように、検出電流の電流傾きSLが基準値SL_typに一致する。
こうしてプレチャージ補正が実施されることにより、実電流のピークずれが抑制される。したがって、実電流に対して検出電流が小さくなる側にずれることに起因して燃料噴射量が過多になるといった不都合が抑制される。
プレチャージ駆動時における投入エネルギの量が異なると、昇圧駆動時における実電流の増加変化の傾きが相違する。これを利用し、プレチャージによる投入エネルギ量を補正することで、実電流の増加変化の傾きを調整する構成とした。これにより、やはり燃料噴射制御の精度を高めることができる。
(他の実施形態)
・上記第1実施形態では、電流傾きSLを算出するための計測点を、検出電流が目標ピーク値Ipに到達する時点(X1)と中間値Ihに到達する時点(X2)とし、第2実施形態では、同じく電流傾きSLを算出するための計測点を、検出電流が2つの中間値Ih1,Ih2に到達する時点(X11,X12)とした。これらを組み合わせて、3点以上の計測点を用いる構成であってもよい。つまり、検出電流が目標ピーク値Ipに到達する時点と、2点以上の中間値に各々到達する時点とを計測点とし、これら各計測点での電流値とその各点の間の時間間隔とに基づいて電流傾きSLを算出する構成であってもよい。
・燃料噴射弁30の駆動方式としてプレチャージを行わないものであってもよい。この場合、第3実施形態で言えば、実電流の増加変化の傾きを変更させる処理として、プレチャージによる投入エネルギ量を補正する処理に代えて、高圧電源部52の高電圧V2を補正する処理を実施するとよい。
・高電圧V2を出力する高圧電源部52は、バッテリ電圧を昇圧する昇圧回路を有するものでなくてもよく、高電圧バッテリからなる構成であってもよい。
・実電流のピークずれ是正のための補正手段として、ピーク電流補正手段とプレチャージ補正手段との両方を具備する構成であってもよい。かかる場合には、ピーク電流補正手段により算出したピーク電流補正値と、プレチャージ補正手段により算出したプレチャージ補正値との両方を用いることや、いずれか一方を優先的に用いること等が可能である。また、ピーク電流補正の実施条件と、プレチャージ補正の実施条件とを個別に定めておき、これら各実施条件の成否に基づいて択一的に補正処理を実施するようにしてもよい。
11…エンジン(内燃機関)、30…燃料噴射弁、40…ECU、41…マイコン(ピークずれ補正手段)、42…駆動IC(噴射弁駆動手段、電圧切替手段)、43…通電操作部(噴射弁駆動手段)、44…電流検出部(電流検出手段)。

Claims (8)

  1. 通電により開弁駆動される燃料噴射弁(30)を備える内燃機関(11)に適用され、前記燃料噴射弁による燃料噴射に際し、開弁動作のための所定の高電圧を印加するとともにそれに引き続いて開弁維持のための所定の低電圧を印加することで前記燃料噴射弁を通電する噴射弁駆動手段(42,43)を備える内燃機関の燃料噴射制御装置(40)であって、
    前記燃料噴射弁に流れる通電電流を検出する電流検出手段(44)と、
    前記燃料噴射弁に対する通電開始後において、前記電流検出手段による検出電流が、あらかじめ定めた目標ピーク値に到達した場合に、前記燃料噴射弁への印加電圧を前記高電圧から前記低電圧に切り替える電圧切替手段(42)と、
    前記燃料噴射弁に前記高電圧を印加した状態で、前記検出電流について電流変化の傾き(SL)を算出し、その電流変化の傾きに基づいて、前記燃料噴射弁に流れる実電流のピーク点のずれを是正するための補正処理を実施するピークずれ補正手段(41)と、
    を備えることを特徴とする内燃機関の燃料噴射制御装置。
  2. 前記ピークずれ補正手段は、
    前記燃料噴射弁に前記高電圧を印加した状態において、少なくとも2つの計測点での前記燃料噴射弁の電流値とその各点の間の時間間隔とに基づいて、前記電流変化の傾きを算出する傾き算出手段と、
    前記補正処理として、前記傾き算出手段により算出した電流変化の傾きに基づいて、前記目標ピーク値を補正するピーク補正手段と、
    を備え、
    前記傾き算出手段は、前記電流検出手段の検出電流が前記目標ピーク値に到達する時点(X1)と、前記電流検出手段の検出電流が前記目標ピーク値よりも小さい所定の中間値に到達する時点(X2)とを前記計測点として、前記電流変化の傾きを算出するものである請求項1に記載の内燃機関の燃料噴射制御装置。
  3. 前記ピークずれ補正手段は、
    前記燃料噴射弁に前記高電圧を印加した状態において、少なくとも2つの計測点での前記燃料噴射弁の電流値とその各点の間の時間間隔とに基づいて、前記電流変化の傾きを算出する傾き算出手段と、
    前記補正処理として、前記傾き算出手段により算出した電流変化の傾きに基づいて、前記目標ピーク値を補正するピーク補正手段と、
    を備え、
    前記傾き算出手段は、前記電流検出手段の検出電流が前記目標ピーク値よりも小さい2点以上の所定の中間値にそれぞれ到達する時点(X11,X12)を前記計測点として、前記電流変化の傾きを算出するものである請求項1に記載の内燃機関の燃料噴射制御装置。
  4. 前記ピークずれ補正手段は、
    前記各計測点の間の時間間隔について実測値とあらかじめ定めた基準時間とから時間誤差(ΔTp、ΔTh)を算出する時間偏差算出手段と、
    前記電流変化の傾きと前記時間誤差との積に基づいて、前記目標ピーク値を補正するための補正値(Kpe)を算出する補正値算出手段と、
    を備える請求項2又は3に記載の内燃機関の燃料噴射制御装置。
  5. 前記燃料噴射弁の実電流の流れやすさの程度に応じて、前記基準時間を可変に設定する手段を備える請求項4に記載の内燃機関の燃料噴射制御装置。
  6. 前記ピークずれ補正手段は、
    前記電流変化の傾きとあらかじめ定めた基準の傾き値とから傾き誤差(ΔSL)を算出する傾き誤差算出手段と、
    前記補正処理として、前記傾き誤差に基づいて、前記燃料噴射弁に前記高電圧を印加した状態での前記実電流の増加変化の傾きを変更させる処理を実施する傾き補正手段と、
    を備える請求項1乃至5のいずれか1項に記載の内燃機関の燃料噴射制御装置。
  7. 前記燃料噴射弁の実電流の流れやすさの程度に応じて、前記基準の傾き値を可変に設定する手段を備える請求項6に記載の内燃機関の燃料噴射制御装置。
  8. 前記噴射弁駆動手段は、前記燃料噴射弁の通電開始時に、前記高電圧の印加に先立って前記低電圧の印加によるプレチャージを実施するものであり、
    前記ピークずれ補正手段は、前記電流変化の傾きに基づいて、前記プレチャージによる投入エネルギ量を補正する請求項1乃至7のいずれか1項に記載の内燃機関の燃料噴射制御装置。
JP2014112581A 2014-05-30 2014-05-30 内燃機関の燃料噴射制御装置 Active JP6206329B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014112581A JP6206329B2 (ja) 2014-05-30 2014-05-30 内燃機関の燃料噴射制御装置
DE112015002569.3T DE112015002569B4 (de) 2014-05-30 2015-04-27 Kraftstoffeinspritzsteuervorrichtung für eine interne Verbrennungsmaschine
PCT/JP2015/002272 WO2015182042A1 (ja) 2014-05-30 2015-04-27 内燃機関の燃料噴射制御装置
US15/314,121 US9835105B2 (en) 2014-05-30 2015-04-27 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112581A JP6206329B2 (ja) 2014-05-30 2014-05-30 内燃機関の燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2015227620A true JP2015227620A (ja) 2015-12-17
JP6206329B2 JP6206329B2 (ja) 2017-10-04

Family

ID=54698404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112581A Active JP6206329B2 (ja) 2014-05-30 2014-05-30 内燃機関の燃料噴射制御装置

Country Status (4)

Country Link
US (1) US9835105B2 (ja)
JP (1) JP6206329B2 (ja)
DE (1) DE112015002569B4 (ja)
WO (1) WO2015182042A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106436A (ja) * 2015-11-30 2017-06-15 株式会社デンソー 内燃機関の燃料噴射制御装置
DE112018005560T5 (de) 2017-11-24 2020-07-09 Hitachi Automotive Systems, Ltd. Kraftstoffeinspritzsteuervorrichtung und Kraftstoffeinspritzsteuerverfahren

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327195B2 (ja) 2015-04-27 2018-05-23 株式会社デンソー 制御装置
DE102015209566B3 (de) * 2015-05-26 2016-06-16 Continental Automotive Gmbh Ansteuerung von Kraftstoffinjektoren bei Mehrfacheinspritzungen
JP6477321B2 (ja) 2015-07-23 2019-03-06 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6581420B2 (ja) * 2015-07-31 2019-09-25 日立オートモティブシステムズ株式会社 燃料噴射装置の制御装置
US11346311B2 (en) 2015-11-30 2022-05-31 Denso Corporation Fuel injection control device for internal combustion engine
JP6485402B2 (ja) * 2016-04-27 2019-03-20 トヨタ自動車株式会社 内燃機関の制御装置
US10989154B2 (en) * 2016-05-03 2021-04-27 Vitesco Technologies GmbH Fuel injector with an idle stroke
EP3575590B1 (en) * 2017-03-03 2021-03-31 Mazda Motor Corporation Engine control device
JP6705427B2 (ja) * 2017-05-30 2020-06-03 株式会社デンソー 内燃機関の燃料噴射制御装置
US10443533B2 (en) * 2017-10-23 2019-10-15 GM Global Technology Operations LLC Mild hybrid powertrain with simplified fuel injector boost
JP2021085378A (ja) * 2019-11-28 2021-06-03 株式会社デンソー 噴射制御装置
JP7428094B2 (ja) * 2020-07-16 2024-02-06 株式会社デンソー 噴射制御装置
US11795886B2 (en) * 2021-12-13 2023-10-24 Caterpillar Inc. Reduced energy waveform for energizing solenoid actuator in fuel injector valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052631A (ja) * 2009-09-03 2011-03-17 Denso Corp 燃料噴射制御装置
JP2014055547A (ja) * 2012-09-12 2014-03-27 Denso Corp 燃料噴射制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381297A (en) * 1993-06-18 1995-01-10 Siemens Automotive L.P. System and method for operating high speed solenoid actuated devices
US5482022A (en) * 1994-06-21 1996-01-09 Kokusan Denki Co., Ltd. Fuel injection system for internal combustion engine
JP3905247B2 (ja) * 1999-05-13 2007-04-18 三菱電機株式会社 筒内噴射式インジェクタの制御装置
JP4353781B2 (ja) * 2003-02-27 2009-10-28 株式会社日本自動車部品総合研究所 ピエゾアクチュエータ駆動回路
JP4904139B2 (ja) * 2006-12-11 2012-03-28 日本電信電話株式会社 光スイッチの光出力安定化方法および装置
JP5851354B2 (ja) 2012-06-21 2016-02-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP5542884B2 (ja) * 2012-08-30 2014-07-09 三菱電機株式会社 車載エンジン制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052631A (ja) * 2009-09-03 2011-03-17 Denso Corp 燃料噴射制御装置
JP2014055547A (ja) * 2012-09-12 2014-03-27 Denso Corp 燃料噴射制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106436A (ja) * 2015-11-30 2017-06-15 株式会社デンソー 内燃機関の燃料噴射制御装置
DE112018005560T5 (de) 2017-11-24 2020-07-09 Hitachi Automotive Systems, Ltd. Kraftstoffeinspritzsteuervorrichtung und Kraftstoffeinspritzsteuerverfahren
US11384709B2 (en) 2017-11-24 2022-07-12 Hitachi Astemo, Ltd. Fuel injection control device and fuel injection control method

Also Published As

Publication number Publication date
DE112015002569T5 (de) 2017-02-23
JP6206329B2 (ja) 2017-10-04
US20170191437A1 (en) 2017-07-06
WO2015182042A1 (ja) 2015-12-03
US9835105B2 (en) 2017-12-05
DE112015002569B4 (de) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6206329B2 (ja) 内燃機関の燃料噴射制御装置
JP6314733B2 (ja) 内燃機関の燃料噴射制御装置
JP6477321B2 (ja) 内燃機関の燃料噴射制御装置
JP5838074B2 (ja) 内燃機関の燃料噴射制御装置
JP6413582B2 (ja) 内燃機関の制御装置
JP2013108422A (ja) 内燃機関の燃料噴射制御装置
JP2009074373A (ja) 内燃機関の燃料噴射制御装置
US10876486B2 (en) Fuel injection control device
JP2008128206A (ja) インジェクタ駆動方法及び駆動装置
JP6493334B2 (ja) 内燃機関の燃料噴射制御装置
WO2017094430A1 (ja) 内燃機関の燃料噴射制御装置
JP2013137028A (ja) 内燃機関の燃料噴射制御装置及び方法
JP6953862B2 (ja) 燃料噴射制御装置
JP2018189068A (ja) 内燃機関の燃料噴射制御装置
US11060474B2 (en) Fuel injection control device
JP7006155B2 (ja) 燃料噴射制御装置
WO2018096940A1 (ja) 燃料噴射制御装置
JP2015057552A (ja) 内燃機関の燃料噴射制御装置
JP2020094502A (ja) 制御装置
JP7035466B2 (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R151 Written notification of patent or utility model registration

Ref document number: 6206329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250