JP2015222241A - 光源位置計測方法、光源位置計測装置および球体位置計測方法 - Google Patents

光源位置計測方法、光源位置計測装置および球体位置計測方法 Download PDF

Info

Publication number
JP2015222241A
JP2015222241A JP2014107463A JP2014107463A JP2015222241A JP 2015222241 A JP2015222241 A JP 2015222241A JP 2014107463 A JP2014107463 A JP 2014107463A JP 2014107463 A JP2014107463 A JP 2014107463A JP 2015222241 A JP2015222241 A JP 2015222241A
Authority
JP
Japan
Prior art keywords
light source
light
image
plane mirror
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014107463A
Other languages
English (en)
Inventor
浩平 渡邉
Kohei Watanabe
浩平 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2014107463A priority Critical patent/JP2015222241A/ja
Publication of JP2015222241A publication Critical patent/JP2015222241A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】光源の位置を正確に計測できる光源位置計測方法および光源位置計測装置を提供すること。球体の中心位置を精度良く検出できる球体位置計測方法を提供すること。【解決手段】平面鏡52での第1のリングライト12からの反射光が第1および第2のカメラ11,16の各々に入光する双方入光状態になるような位置および姿勢に、平面鏡52を配置する。そのた状態において、平面鏡52での第1のリングライト12からの反射光に基づき、平面鏡52による第1のリングライト12の反射像56の位置を算出する。算出された反射像56の位置と、平面鏡52の位置および姿勢とに基づいて、第1のリングライト12の三次元座標を算出する。【選択図】図15

Description

この発明は、光源位置計測方法、光源位置計測装置および球体位置計測方法に関する。
深溝玉軸受やアンギュラ玉軸受等の玉軸受では、内輪と外輪との間の相対回転に伴って玉が周方向に転動(公転)する。玉軸受を設計したり、玉軸受の使用条件を定めたりするのに当たって、公転中の玉の挙動を解析することは重要である。
下記の特許文献1には、公転中の玉の挙動を解析すべく、回転状態にある玉軸受を撮像し、そのときの撮像画像に基づいて玉の位置を測定する玉位置計測方法が記載されている。特許文献1では、玉軸受の回転軸線上に中心を有する円環状の照射面を有するリングライトを配置し、かつ撮像カメラを、そのレンズが玉軸受の回転軸線上に位置するように配置し、この状態で、玉が公転状態にある玉軸受をリングライトによって照明しながら、当該玉軸受を、レンズを介して前記の回転軸線に沿う方向から撮像している。リングライトの照射面からの光が玉の表面で反射されるので、撮像画像に、玉表面におけるリングライトの反射光画像が写り込む。撮像画像に含まれるリングライトの反射光画像の位置を特定し、この特定した反射光画像に基づいて玉の中心の位置を演算により求めることにより、公転中の玉の位置を測定している。
特開2012−98177号公報
しかしながら、特許文献1に記載の手法では、所定の平面(径方向および周方向の二方向を含む平面)における、球体(玉)の中心の位置を算出できる(球体の二次元位置の計測は行える)が、球体の三次元位置の計測は行えない。
本願発明者は、円軌道上を公転する球体を、第1および第2のリングライトによって照明しながら、球体に対し第1および第2の撮像方向のそれぞれに配置された第1および第2のカメラから同時に撮像し、このときの球体表面における第1のリングライトの反射光画像に基づいて演算した、第1の撮像方向から見た球体の中心位置と、このときの球体表面における第2のリングライトの反射光画像に基づいて演算した、第2の撮像方向から見た球体の中心位置とに基づいて、球体の中心の三次元位置を計測する手法(特願2013−162704号)を提案している。
また、本願発明者らは、この手法において、第1および第2の撮像方向から見た球体の中心位置を、補正すること(特願2013−187442号)も提案している。
しかしながら、このような補正に用いる式は、リングライトと球体との間の距離を変数として含んでいるので、第1および第2のカメラに対する光源の相対位置が正確に把握できていないと、球体の中心位置の検出精度が低下してしまう。
そこで、この発明の目的の一つは、光源の位置を正確に計測できる光源位置計測方法および光源位置計測装置を提供することである。
また、この発明の他の目的は、球体の中心位置を精度良く検出できる球体位置計測方法を提供することである。
前記の目的を達成するための請求項1に記載の発明は、光源(12,17)を発光させる光源発光ステップ(S11)と、平面鏡(52)を、互いに別個に設けられた第1および第2のカメラ(11,16)に対向し、かつ前記平面鏡での前記光源からの反射光が当該第1および第2のカメラの各々に入光する双方入光状態になるような位置および姿勢に配置する平面鏡配置ステップ(S12)と、前記双方入光状態において、前記平面鏡による前記光源の反射像の位置を算出する反射像位置算出ステップ(S13)と、算出された前記反射像の位置と、当該平面鏡の位置および姿勢とに基づいて、前記光源の位置を算出する光源位置算出ステップ(S15)とを含む、光源位置計測方法を提供する。
なお、この項において、括弧内の数字等は、後述の実施形態における対応構成要素の参照符合を表すものであるが、これらの参照符号により特許請求の範囲を実施形態に限定する趣旨ではない。
請求項2に記載の発明は、前記平面鏡の位置および姿勢を算出する平面鏡位置姿勢算出ステップ(S14)をさらに含む、請求項1に記載の光源位置計測方法である。
請求項3に記載の発明は、前記平面鏡位置姿勢算出ステップは、少なくとも3か所にマーカが配置された前記平面鏡を前記第1および第2のカメラにより撮像し、この撮像画像に基づいて前記平面鏡の位置および姿勢を算出する、請求項2に記載の光源位置計測方法である。
請求項4に記載の発明は、前記平面鏡配置ステップおよび前記反射像位置算出ステップを、前記平面鏡の位置および姿勢を変更させながら複数回実行し、これら複数回の前記光源の前記位置の算出結果を平均化する、請求項1〜3のいずれか一項にに記載の光源位置計測方法である。
請求項5に記載の発明は、光源(12,17)の位置を計測するための光源位置計測装置(51)であって、互いに別個に設けられた第1および第2のカメラ(11,16)と、前記第1および第2のカメラに対向配置された平面鏡(52)と、前記平面鏡の位置および姿勢を変更する位置姿勢変更手段(53,54)と、前記光源および前記位置姿勢変更手段を制御して、前記光源を発光させる光源発光ステップ(S11)と、前記平面鏡を、前記第1および第2のカメラに対向し、かつ前記平面鏡での前記光源からの反射光が当該第1および第2のカメラの各々に入光する双方入光状態になるような位置および姿勢に配置する平面鏡配置ステップ(S12)と、前記双方入光状態において、前記平面鏡による前記光源の反射像の位置を算出する反射像位置算出ステップ(S13)と、算出された前記反射像の位置と、当該平面鏡の位置および姿勢とに基づいて、前記光源の位置を算出する光源位置算出ステップ(S15)とを実行する制御手段とを含む、光源位置計測装置を提供する。
請求項6に記載の発明は、円軌道(31A,32A)上を公転する球体の位置を計測する方法であって、請求項1〜4のいずれか一項に記載の前記光源位置計測方法と、前記光源によって前記球体を照明する照明ステップ(S6)と、前記照明ステップと並行して、公転している前記球体を、所定の第1の基準線(L)上に配置された第1のカメラ(11)により、前記第1の基準線に沿う所定の第1の撮像方向(D1)から撮像する第1の撮像ステップ(S7)と、前記照明ステップと並行して、公転している前記球体を、所定の第2の基準線(L)上に配置された第2のカメラ(16)により、前記第2の基準線に沿う所定の第2の撮像方向(D2)から撮像する第2の撮像ステップ(S7)と、前記第1の撮像ステップで撮像された第1の撮像画像(40)に含まれる、前記球体表面における前記光源の反射光の画像である第1の反射光画像(41)の位置を、前記第1の基準線に垂直な平面の直交座標系である第1の直交座標系(u−v座標系)で特定し、当該第1の直交座標系において特定された前記第1の反射光画像の位置に基づいて、前記第1のカメラと前記球体とを結ぶ直線上に前記球体の中心の位置があると仮定した場合の、前記第1の直交座標系における第1の仮定中心位置(O)を算出し、当該前記第1の仮定中心位置を、前記光源位置に基づく値である第1の補正値に基づいて補正して、前記第1の直交座標系における前記球体の中心の位置を算出する第1の直交座標系位置算出ステップと、前記第2の撮像ステップで撮像された第2の撮像画像(43)に含まれる、前記球体表面における前記光源の反射光の画像である第2の反射光画像(44)の位置を、前記第2の基準線に垂直な平面の直交座標系である第2の直交座標系(u´−v´座標系)で特定し、前記第2の直交座標系において特定された前記第2の反射光画像の位置に基づいて、前記第2のカメラと前記球体とを結ぶ直線上に前記球体の中心の位置があると仮定した場合の、前記第2の直交座標系における第2の仮定中心位置(O)を算出し、当該第2の仮定中心位置を、前記光源位置に基づく値である第2の補正値に基づいて補正して、前記第2の直交座標系における前記球体の中心の位置を算出する第2の直交座標系位置算出ステップと、前記第1の直交座標系位置算出ステップおよび前記第2の直交座標系位置算出ステップの算出結果に基づいて、前記球体の中心の三次元座標を算出する三次元位置算出ステップとを含む、球体位置計測方法を提供する。
請求項7に記載の発明は、前記光源は、所定の第1の基準線(L)上に中心を有する円環状の第1のリングライト(12)と、前記第1基準線とは異なる第2の基準線(L)上に中心を有する第2のリングライト(17)とを含む、請求項6に記載の球体位置計測方法である。
請求項1によれば、平面鏡の位置および姿勢を、当該平面鏡での光源からの反射光が第1および第2のカメラの各々に入光する状態になるように配置する。この状態において、平面鏡による光源の反射像の位置を算出し、算出した反射像の位置と、平面鏡の位置および姿勢とに基づいて、光源の平面鏡での反射像の位置を算出する。これにより、光源の位置を正確に計測できる光源位置計測方法を提供できる。
また、平面鏡での光源の反射像を利用するので、第1および第2のカメラによって撮像し難い場所に光源が配置されている場合であっても、当該光源の位置を算出することができる。これにより、光源の配置場所によらずに、光源の位置を正確に計測できる。
請求項2によれば、平面鏡の位置および姿勢を正確に求めることができる。
請求項3によれば、平面鏡の位置および姿勢を、比較的簡単な手法により求めることができる。
請求項4によれば、光源の位置を、より一層精度良く計測できる。
請求項5によれば、請求項1に関連して説明した作用効果と同等の作用効果を奏する。
請求項6によれば、第1および第2のカメラに対する光源の位置が正確に把握されるので、球体の中心位置を精度良く検出できる球体位置計測方法を提供できる。
請求項7によれば、第1および第2のリングライトの位置を、正確に計測できる。
本発明の一実施形態に係る光源位置計測装置が適用された玉位置計測装置の概略構成を示す平面図である。 本発明の一実施形態に係る光源位置計測装置が適用された玉位置計測装置の概略構成を示す側面図である。 第1の撮像システムの構成を示す斜視図である。 計測対象の玉軸受を説明するための断面図である。 第1および第2の撮像システムによる照明および撮像を説明するための断面図である。 第1の撮像方向から玉軸受を撮像した第1の撮像画像を、u−v座標系で示す図である。 第1の撮像画像に含まれる、玉表面における第1のリングライトの反射光画像を示す図である。 玉軸受を、u−v座標系で示す図である。 第1の基準線に沿う方向に関し、第1の照射面から光が玉の表面で反射して第1のレンズに届く様子を示す模式的な図である。 第2の撮像方向から玉軸受を撮像した第2の撮像画像を、u´−v´座標系で示す図である。 第2の撮像画像に含まれる、玉表面における第2のリングライトの反射光画像を示す図である。 玉軸受を、u´−v´座標系で示す図である。 第2の基準線に沿う方向に関し、第2の照射面から光が玉の表面で反射して第2のレンズに届く様子を示す模式的な図である。 本発明の一実施形態に係る光源位置計測装置が適用された玉位置計測装置1を用いた玉位置計測処理の流れを示すフローチャートである。 本発明の一実施形態に係る光源位置計測装置を模式的に示す平面図である。 図15の矢視Pから平面鏡を見た図である。 図16に示す第1(第2)のリングライト位置計測処理の流れを示すフローチャートである。 図16に示す画像解析処理の流れを示すフローチャートである。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1および図2は、本発明の一実施形態に係る光源位置計測装置51(図15参照)が適用された玉位置計測装置(球体位置計測装置)1の概略構成を示す図である。図2は、図1をX方向から見た図である。玉位置計測装置1は、玉軸受30を計測対象とし、公転中の玉(球体)33の中心の三次元位置を計測するための装置である。以下、互いに垂直な水平方向に沿う二方向をそれぞれX方向およびZ方向とし、鉛直上方を、Y方向として説明する。なお、図1および図2では、次に述べる第1のカメラ(第1の撮像手段)11の第1のレンズ13の中心(図1参照)と、第2のカメラ(第2の撮像手段)16の第2のレンズ18の中心(図1参照)とを結ぶ線分の中央位置を、原点Oとしている。
玉位置計測装置1は、玉軸受30を鉛直姿勢に保持しながら、その内輪31および外輪32を相対回転させる保持回転機構70と、回転状態にある玉軸受30に対してリング状の光を照射するための第1のリングライト12および第2のリングライト17と、回転状態にある玉軸受30を撮像するための第1のカメラ11および第2のカメラ16と、制御装置(制御手段)20とを含む。
保持回転機構70は、玉軸受30の内輪31および外輪32を回転軸線回りに相対回転させる。内輪31および外輪32の相対回転の回転軸線(保持回転機構70が撮像カメラ11,16から離反する方向)は、図1および図2に示すZ方向である。この実施形態では、外輪32を回転させ内輪31を静止させる場合を例に挙げて説明するが、内輪31を回転させながら外輪32を静止させるようにしてもよい。さらに、内輪31および外輪32を互いに異なる方向に回転させ、または同方向に互いに異なる速度で回転させることにより、内輪31および外輪32を相対回転させるようにしてもよい。
第1のカメラ11は、たとえばCCDカメラであり、時間的に連続する複数枚の画像からなる動画像を撮像するためのカメラである。第1のカメラ11は、第1のレンズ13と、受光素子11Aとを含む。第1のレンズ13は、第1のカメラ11内の鏡筒13A(図3参照)内に収容配置された仮想レンズである。受光素子11Aはイメージセンサ等からなる。受光素子11Aと、玉軸受30の回転中心Q(保持回転機構70に配置された玉軸受30の回転軸線(図1および図2のZ方向)上にあり、かつ玉軸受30の厚み方向(図1および図2のZ方向に沿う方向)の中央点)とを、水平方向に沿う所定の第1の基準線Lで結ぶとすると、第1のカメラ11の第1のレンズ13の光軸は、第1の基準線Lに一致している。保持回転機構70に玉軸受30を装着した状態では、玉軸受30の前面(図1の下面および図2の左面)の全体が、第1のカメラ11の撮像範囲に含まれる。第1のカメラ11は、第1の基準線Lに沿う第1の撮像方向D1(図1参照)から玉軸受30を撮像する。
第2のカメラ16は、たとえばCCDカメラであり、時間的に連続する複数枚の画像からなる動画像を撮像するためのカメラである。第2のカメラ16は、第2のレンズ18と、受光素子16Aとを含む。第2のレンズ18は、第2のカメラ16内の鏡筒18A(図3参照)内に収容配置された仮想レンズである。受光素子16Aはイメージセンサ等からなる。受光素子16Aと、玉軸受30の回転中心Qとを、水平方向に沿う所定の第2の基準線Lで結ぶとすると、第2のカメラ16の第2のレンズ18の光軸は、第2の基準線Lに一致している。保持回転機構70に玉軸受30を装着した状態では、玉軸受30の前面(図1の下面および図2の左面)の全体が、第2のカメラ16の撮像範囲に含まれる。第2のカメラ16は、第2の基準線Lに沿う第2の撮像方向D2(図1参照)から玉軸受30を撮像する。
なお、第1のカメラ11の受光素子11Aと、第2のカメラ16の受光素子16Aとを結ぶ直線に沿い、かつ第1のカメラ11から第2のカメラ16に向かう方向を、図1および図2のX方向とする。また、第2の基準線Lは、玉軸受30の回転軸線(図1および図2のZ方向)を中心として、第1の基準線Lと線対称である。玉軸受30の回転軸線および第1の基準線Lがなす角度と、玉軸受30の回転軸線および第2の基準線Lがなす角度は、ともに図1のαである。
第1および第2のカメラ11,16として、30(fp)以上のフレームレートで動画を撮像するカメラを採用できるが、100(fp)以上のフレームレートで動画を撮像可能な高速度カメラの採用がより一層望ましい。
第1のリングライト12は、円環状をなし、その端面に円形の第1の照射面12Aが設けられている。第1の照射面12Aは、保持回転機構70に対向している。第1のリングライト12は、その中心が、第1の基準線L上に位置するように配置されている。第1の照射面12Aからは、玉軸受30に対して均一に光が照射される。第1のリングライト12は、保持回転機構70による保持対象の玉軸受30の外輪32(より詳しくは外輪軌道面32A(図4参照)よりも大径であり、そのため、保持回転機構70に保持された玉軸受30の全体に光を照射できるようになっている。
第2のリングライト17は、円環状をなし、その端面に円形の第2の照射面17Aが設けられている。第2の照射面17Aは、保持回転機構70に対向している。第2のリングライト17は、その中心が、第2の基準線L上に位置するように配置されている。第2の照射面17Aからは、保持回転機構70に対して均一に光が照射される。第2のリングライト17は、保持回転機構70による保持対象の玉軸受30の外輪32(より詳しくは外輪軌道面32A(図4参照)よりも大径であり、そのため、保持回転機構70に保持された玉軸受30の全体に光を照射できるようになっている。なお、第1および第2のリングライト12,17として円環状のものを例に挙げるが、円筒状をなしていてもよい。
以上説明した第1のカメラ11(第1のレンズ13を含む)および第1のリングライト12は、第1の撮像システム2に含まれている。第1の撮像システム2の斜視図を、図3に示す。
また、以上説明した第2のカメラ16(第2のレンズ18を含む)および第2のリングライト17は、第2の撮像システム3に含まれている。第2の撮像システム3は、第1の撮像システム2の図3に示す構成と同等であるので図示を省略する。
制御装置20は、CPU、メモリおよび各種のインターフェイス等を含む構成のコンピュータを含む構成である。制御装置20には、制御対象として、第1および第2のカメラ11,16、第1および第2のリングライト12,17、ならびに前記の保持回転機構70が接続されている。制御装置20は、第1および第2のカメラ11,16の撮像動作を制御する。制御装置20は、第1および第2のリングライト12,17の発光/消灯動作を制御する。制御装置20は、保持回転機構70の回転動作を制御する。
制御装置20は、第1および第2のカメラ11,16による撮像画像を処理するための画像処理部21を備えている。画像処理部21には、第1および第2のカメラ11,16によってそれぞれ撮像された撮像画像が入力される。画像処理部21は、入力された各撮像画像に対して、所定の画像処理を施す処理部である。
図4は、玉位置計測装置1の計測対象の玉軸受30を説明するための断面図である。
玉軸受30は、内輪31と、内輪31と同心に配置された外輪32と、内輪31および外輪32間に介装された複数の転動体としての玉(球体)33と、複数の玉33を周方向に間隔を空けて保持するための保持器34とを備えた深溝玉軸受である。内輪31と外輪32とがそれらの中心軸線まわりに相対回転可能である。玉33は、内輪31の深溝型の内輪軌道面(円軌道)31Aと外輪32の深溝型の外輪軌道面(円軌道)32Aとの間に介在されている。
なお、計測対象として、玉軸受30は深溝玉軸受でなく、玉33と内輪軌道面31Aとの接触面および玉33と外輪軌道面32Aとの接触面とを結ぶ直線が、内輪31や外輪32の径方向に対して所定角度傾斜するアンギュラ型の玉軸受を採用することもできる。
図5は、第1および第2の撮像システム2,3による照明および撮像を説明するための断面図である。図5では、第1の撮像システム2の各構成を実線で示し、第2の撮像システム3の各構成を二点鎖線で示す。図5を参照して、第1および第2のカメラ11,16によって撮像された撮像画像における、玉33の表面の反射光について説明する。
第1のカメラ11の第1のレンズ13には、それぞれ、各玉33の表面で反射した第1のリングライト12の反射光が入射される。このとき、第1の照明面12Aの各所から照射された光は各玉33の表面上で反射して、第1のレンズ13を通して第1のカメラ11に入射する。第1の照明面12Aが円環状をなしているので、第1のリングライト12の配置側から見たとき、各玉33の表面に、第1の照明面12Aからの反射光による円環状の模様が表れる。これにより、各玉33の表面の反射光の像が、円環状の形態で撮像される。
図6は、第1の撮像方向D1から玉軸受30を撮像した第1の撮像画像40を、u−v座標系(第1の直交座標系)で示す図である。図7は、第1の撮像画像40に含まれる、玉33表面における第1のリングライト12(図5参照)の反射光画像41,42を示す図である。
第1の撮像画像40には、複数の玉33の画像が含まれる。このうち、計測対象になる1つの玉33の画像(図6において矩形の枠で囲む)に着目する。第1のリングライト12からの照明と、第2のリングライト17(図5参照)の照明とが同時に行われるので、第1のカメラ11によって撮像される第1の撮像画像40には、玉33表面における第1のリングライト12の反射光画像41(以下、第1の撮像画像40に含まれる、第1のリングライト12の反射光画像を、「第1の反射光画像41」という場合がある。)だけでなく、玉33表面における第2のリングライト17の反射光画像42も写り込む。なお、図6に示すように、第1の撮像画像40の2次元座標系は、第1の基準線Lに垂直な平面の直交座標系であるu−v座標系である。u−v座標系において、玉軸受30の回転中心Qの座標は(u,v)である。
図7に示すように、第1の撮像画像40に含まれる第1の反射光画像41は、所定の幅を有する円環状をなしている。第1の反射光画像41から、当該第1の反射光画像41の中心の位置を特定する。この実施形態では、円環状の第1の反射光画像41の外周縁に基づいて、第1の反射光画像41の中心の位置を特定する。なお、図7に示す、点a、点b、点cおよび点dは、それぞれ、第1の反射光画像41に含まれる、第1の照明面12Aの外側の横端a1(図1参照)からの光の反射位置、第1の照明面12Aの上端b1(図2参照)からの光の反射位置、第1の照明面12Aの内側の横端c1(図1参照)からの光の反射位置、および第1の照明面12Aの下端d1(図2参照)からの光の反射位置を示す。
図8は、玉軸受30を、u−v座標系で示す図である。図9は、第1の基準線Lに沿う方向に関し、第1の照射面12Aから光が玉33の表面で反射して第1のレンズ13に届く様子を示す模式的な図である。
以下、図8および図9を参照しながら、u−v座標系における玉33の仮定中心位置Oの座標と、u−v座標系における玉33の真の中心位置Oの座標との関係について説明する。
図9に示すように、第1の反射光画像41の位置(玉33の表面における反射位置)と第1の基準線Lとの間の最短距離をmとする。第1の基準線Lに沿う方向に関する、第1のレンズ13の中心と第1のリングライト12の中心との間の距離をcとする。第1の基準線Lに沿う方向に関する、第1のリングライト12の中心と第1の反射光画像41の位置との間の距離をdとする。第1の反射光画像41に対する入射角および反射角をそれぞれθF1とする。玉33から第1のレンズ13の中心に向けて反射する反射光と第1の基準線Lとがなす角度をθF2とする。第1のリングライト12から玉33に向けて入射する入射光と第1の基準線Lとがなす角度をθF3とする。
このとき、θF1、θF2およびθF3は、それぞれ、次式(1)〜(3)のように表すことができる。
θF1=(θF3−θF2)/2 …(1)
θF2=tan−1(m/(c+d)) …(2)
θF3=tan−1(m/d) …(3)
このとき、回転中心Qと玉33とを結ぶ直線に、第1の反射光画像41を第1の基準線Lに沿って垂下したときの垂下点をPとし、玉33の半径をrとすると、中心位置Oと垂下点Pとの距離Oは、次式(4)で表すことができる。
=r・sin(θF1+θF2) …(4)
一方、第1の仮定中心位置Oと垂下点Pとの間の距離Oは、次式(5)で表すことができる。
=r・cos(θF1+θF2)・tanθF2 …(5)
中心位置Oと第1の仮定中心位置Oとの間の距離Oは、距離Oから距離Oを差し引いた長さであるから、次式(6)を導出することができる。その結果、距離Oは、次式(10)で表すことができる。
=O−O=r・(sin((θF2+θF3)/2)−cos((θF2+θF3)/2))・tanθF2 …(6)
=r・(sin((θF2+θF3)/2)−cos((θF2+θF3)/2))・tan((θF2+θF3)/2+(θF2−θF3)/2)) …(7)
また、u−v座標系における第1の仮定中心位置Oおよび回転中心Qの座標を、それぞれ(u,v)および(u,v)とし、図8に示すように計測対象である玉33がu−v座標系のu軸となす角度をφとする。
この場合、中心位置O、第1の仮定中心位置Oおよび回転中心Qは一直線上に並んでいるので、図8のように回転中心Qを中心とするu−v座標系を考慮すると、中心位置Oのu−v座標における座標(u,v)は、次式(8)および式(9)のように表すことができる。
=(u−u)+O・cosφ …(8)
=(v−v)+O・sinφ …(9)
式(8)および式(9)に、式(7)をあてはめることにより、次式(10)〜(12)を導くことができる。
=(u−u)+k・cosφ …(10)
=(v−v)+k・sinφ …(11)
k=r・(sin((θF2+θF3)/2)−cos((θF2+θF3)/2))・tan((θF2+θF3)/2+(θF2−θF3)/2)) …(12)
図5に示すように、第2のカメラ16の第2のレンズ18には、それぞれ、各玉33の表面で反射した第2のリングライト17の反射光が入射される。このとき、第2の照明面17Aの各所から照射された光は、玉33の表面上で反射して、第2のレンズ18を通して第2のカメラ16に入射する。第2の照明面17Aが円環状をなしているので、第2のリングライト17の配置側から見たとき、玉33の表面に、第2の照明面17Aからの反射光による円環状の模様が表れる。これにより、玉33の表面の反射光の像が、円環状の形態で撮像される。
図10は、第2の撮像方向D2から玉軸受30を撮像した第2の撮像画像43を、u−v座標系と異なる座標系であるu´−v´座標系(第2の直交座標系)で示す図である。図11は、第2の撮像画像43に含まれる、玉33表面における第2のリングライト17(図5参照)の反射光画像44,45を示す図である。
第2の撮像画像43には、複数の玉33の画像が含まれる。このうち、計測対象になる1つの玉33の画像(図10において矩形の枠で囲む)に着目する。第1のリングライト12(図5参照)からの照明と、第2のリングライト17の照明とが同時に行われるので、第2のカメラ16によって撮像される第2の撮像画像43には、玉33表面における第2のリングライト17の反射光画像44(以下、第2の撮像画像43に含まれる、第2のリングライト17の反射光画像を、「第2の反射光画像44」という場合がある。)だけでなく、玉33表面における第1のリングライト12の反射光画像45も写り込む。なお、図10に示すように、第2の撮像画像43の2次元座標系は、第2の基準線Lに垂直な平面の直交座標系であるu´−v´座標系である。u´−v´座標系において、u玉軸受30の回転中心Qの座標は(u´,v´)である。
図11に示すように、第2の撮像画像43に含まれる第2の反射光画像44は、所定の幅を有する円環状をなしている。第2の反射光画像44から、当該第2の反射光画像44の中心の位置を特定する。この実施形態では、円環状の第2の反射光画像44の外周縁に基づいて、第2の反射光画像44の中心の位置を特定する。なお、図11に示す、点a、点b、点cおよび点dは、それぞれ、第2の反射光画像44に含まれる、第2の照明面17Aの外側の横端a2(図1参照)からの光の反射位置、第2の照明面17Aの上端(図示しない)からの光の反射位置、第2の照明面17Aの内側の横端c2(図1参照)からの光の反射位置、および第2の照明面17Aの下端(図示しない)からの光の反射位置を示す。
図12は、玉軸受30を、u´−v´座標系で示す図である。図13は、第2の基準線Lに沿う方向に関し、第2の照射面17Aから光が玉33の表面で反射して第2のレンズ18に届く様子を示す模式的な図である。
以下、図12および図13を参照しながら、u´−v´座標系における玉33の第2の仮定中心位置Oの座標と、u´−v´座標系における玉33の真の中心位置Oの座標との関係について説明する。
図13に示すように、第2の反射光画像44の位置(玉33の表面における反射位置)と第2の基準線Lとの間の最短距離をmとする。第1の基準線Lに沿う方向に関する、第2のレンズ18の中心と第2のリングライト17の中心との間の距離をcとする。第2の基準線Lに沿う方向に関する、第2のリングライト17の中心と第2の反射光画像44の位置との間の距離をdとする。第2の反射光画像44に対する入射角および反射角をそれぞれθG1とする。玉33から第2のレンズ18の中心に向けて反射する反射光と第2の基準線Lとがなす角度をθG2とする。第2のリングライト17から玉33に向けて入射する入射光と第2の基準線Lとがなす角度をθG3とする。
このとき、θG1、θG2およびθG3は、それぞれ、次式(13)〜式(15)のように表すことができる。
θG1=(θG3−θG2)/2 …(13)
θG2=tan−1(m/(c+d)) …(14)
θG3=tan−1(m/d) …(15)
このとき、回転中心Qと玉33とを結ぶ直線に、第2の反射光画像44を第1の基準線Lに沿って垂下したときの垂下点をPとし、玉33の半径をrとすると、中心位置Oと垂下点Pとの距離Oは、次式(16)で表すことができる。
=r・sin(θG1+θG2) …(16)
一方、第2の仮定中心位置Oと垂下点Pとの間の距離Oは、次式(17)で表すことができる。
=r・cos(θG1+θG2)・tanθG2 …(17)
中心位置Oと第2の仮定中心位置Oとの間の距離Oは、距離Oから距離Oを差し引いた長さであるから、次式(18)を導出することができる。その結果、距離Oは、次式(19)で表すことができる。
=O−O=r・(sin((θG2+θG3)/2)−cos((θG2+θG3)/2))・tanθG2 …(18)
=r・(sin((θG2+θG3)/2)−cos((θG2+θG3)/2))・tan((θG2+θG3)/2+(θG2−θG3)/2)) …(19)
また、u´−v´座標系における第2の仮定中心位置Oおよび回転中心Qの座標を、それぞれ(u´,v´)および(u´,v´)とし、図12に示すように計測対象である玉33がu´−v´座標系のu´軸となす角度をφとする。
この場合、中心位置O、第2の仮定中心位置Oおよび回転中心Qは一直線上に並んでいるので、図12のように回転中心Qを中心とするu´−v´座標系を考慮すると、中心位置Oのu´−v´座標における座標(u´,v´)は、次式(20)および式(21)のように表すことができる。
´=(u´−u´)+O・cosφ …(20)
´=(v´−v´)+O・sinφ …(21)
式(20)および式(21)に、式(19)をあてはめることにより、次式(22)〜式(24)を導くことができる。
´=(u´−u´)+k´・cosφ …(22)
´=(v´−v´)+k´・sinφ …(23)
k´=r・(sin((θG2+θG3)/2)−cos((θG2+θG3)/2))・tan((θG2+θG3)/2+(θG2−θG3)/2)) …(24)
図14は、本発明の一実施形態に係る光源位置計測装置51が適用された玉位置計測装置1を用いた玉位置計測処理の流れを示すフローチャートである。図15は、本発明の一実施形態に係る光源位置計測装置51を模式的に示す平面図である。図16は、図15の矢視Pから平面鏡を見た図である。図17は、図16に示す第1(第2)のリングライト位置計測処理の流れを示すフローチャートである。図18は、図16に示す画像解析処理の流れを示すフローチャートである。
図1、図2および図13を参照して、玉位置計測装置1を用いた玉位置計測処理について説明する。図6、図7、図10、図11、および図15〜図18は適宜参照する。以下では、玉軸受30(図4等参照)に含まれる玉33のうち、所定の玉33の位置を計測する玉位置計測処理を例に挙げて説明するが、玉位置計測処理は、全ての玉33の位置を計測するものであってもよい。
まず、玉位置計測装置1に玉軸受30が搬入され、オペレータが、玉軸受30を保持回転機構70に装着する。
保持回転機構70に玉軸受30が装着された後、制御装置20は、光源位置計測装置51を用いて、第1のリングライト12の位置を計測する(S1:第1のリングライト位置計測)。
光源位置計測装置51は、図15に示すように、平面鏡52と、平面鏡52の姿勢(図15のS方向およびT方向に対する向き)をそれぞれ調整可能な姿勢調整機構(位置姿勢変更手段)53と、平面鏡52を、第1および第2のカメラ11,16に対して接離する所定の方向(図15のS方向)に移動する移動機構(位置姿勢変更手段)54とを含む。
図16に示すように、平面鏡52は、矩形をなし、第1および第2のカメラ11,16の前方を横切るように配置されている。すなわち、平面鏡52は、第1のカメラ11の第1のレンズ13および第2のカメラ16の第2のレンズ18に対向するように配置されている。平面鏡52の表面には、互いに異なる3箇所のマーカ55が配置されている。マーカ55は、平面鏡52に貼り付けられたものであってもよいし、平面鏡52に直接描かれたものであってもよい。また、マーカ55は、刻印等によって形成されていてもよい。マーカ55の配置位置は、互いに離れていることが望ましい。なお、マーカ55を配置する箇所は、3箇所に限られず、4か所以上であってもよい。
以下、図17を併せて参照しながら、第1のリングライト12の位置計測の処理(以下、「第1のリングライト位置計測処理」という。)について説明する。
制御装置20は、第1のリングライト12を制御して、第1の照射面12Aを発光させる(S11:第1のリングライト発光)。
次いで、制御装置20は、姿勢調整機構53および移動機構54を制御して、平面鏡52の表面での第1のリングライト12からの光の反射光が第1および第2のカメラ11,16の各々に入光する(この状態を、「双方入光状態」という。)ように、平面鏡52の位置および姿勢を調整する(ステップS12)。
双方入光状態の成立後、制御装置20は、平面鏡52の表面での第1のリングライト12からの反射光に基づき、平面鏡52による第1のリングライト12の反射像(虚像)56の三次元座標を算出する(ステップS13)。
また、制御装置20は、この双方入光状態における、平面鏡52の位置および姿勢を演算により求める(ステップS14)。より具体的には、制御装置20は、平面鏡52の3箇所に配置されたマーカ55を第1および第2のカメラ11,16により撮像する。制御装置20の画像処理部21は、撮像画像に含まれる3つのマーカ55の位置に基づいて、ステレオ法を用いて、平面鏡52の位置(三次元座標)および姿勢を算出する。
次いで、制御装置20は、第1のリングライト12の反射像(虚像)56の、平面鏡52に対し対称の位置を、第1のリングライト12の位置として算出する(ステップS15)。具体的には、制御装置20は、ステップS13で求めた反射像(虚像)56の三次元座標、およびステップS14で求めた平面鏡52の位置および姿勢に基づいて、第1のリングライト12の三次元座標を算出する。
S11〜S15の処理は、平面鏡52の位置および姿勢を変更させながら予め定める複数回(たとえば3回)実行する(ステップS16でNO。ステップS17)。
S11〜S15の処理が予め定める回数だけ実行された後、制御装置20は、これら複数回の第1のリングライト12の三次元座標の算出結果を平均化し、その平均化した値を、第1のリングライト12の三次元座標として認識し、その三次元座標を制御装置20のメモリに記憶する(ステップS18)。
すなわち、第1のリングライト位置計測処理では、平面鏡52の位置および姿勢を、平面鏡52での光源からの反射光が第1および第2のカメラ11,16の各々に入光する状態になるように配置し、平面鏡52による第1のリングライト12の反射像56の三次元座標を算出し、算出した反射像56の三次元座標と、平面鏡52の位置および姿勢とに基づいて、第1のリングライト12の平面鏡52での反射像56の位置を三次元で算出する。これにより、第1のリングライト12の三次元座標を正確に計測できる。
また、平面鏡52での反射像56を利用するので、第1および第2のカメラ11,16によって撮像し難い場所に第1のリングライト12が配置されている場合であっても、第1のリングライト12の位置を算出することができる。これにより、第1のリングライト12の配置場所によらずに、第1のリングライト12の相対位置を正確に計測できる。
また、S11〜S15の処理を、反射鏡52の位置および姿勢を変えながら複数回行い、それら複数回の第1のリングライト12の三次元座標の算出結果を平均化し、その平均化した値を、第1のリングライト12の三次元座標として得るので、第1のリングライト12の三次元座標を、より一層精度良く計測できる光源計測装置51を提供できる。
図14に戻って、制御装置20は、計測結果、すなわち第1のリングライト12の三次元位置を、メモリに記憶する(ステップS2)。
次いで、制御装置20は、第2のリングライト17の位置を計測する(S3:第2のリングライト位置計測)。第2のリングライト17の位置計測の処理(以下、「第2のリングライト位置計測処理」という。)は、ステップS1の第1のリングライト位置計測処理と同等の処理であるので、説明を省略する。第2のリングライト位置計測処理では、第1のリングライト位置計測処理についての前述の説明において、第1のリングライト12を第2のリングライト17に置き換えた内容で処理が実行される(図17に括弧書きで示す)。第2のリングライト位置計測処理により、第2のリングライト17の三次元座標を、より一層精度良く計測できる。第2のリングライト位置計測処理後、制御装置20は、計測結果、すなわち第2のリングライト17の三次元座標を、制御装置20のメモリに記憶する(ステップS4)。第2のリングライト位置計測処理により、第2のリングライト17の三次元座標を、より一層精度良く計測できる
次いで、制御装置20は、保持回転機構70の回転駆動源(図示しない)を制御して、外輪32の回転を開始させる(ステップS5)。所定大きさ(たとえば100(N))のスラスト荷重と、所定大きさ(たとえば1000(N))のラジアル荷重とが玉軸受30に与えられた状態で、保持回転機構70に保持された玉軸受30の外輪32が回転される。外輪32の回転に伴って、玉33および保持器34も、内輪軌道面31Aおよび外輪軌道面32A上を、円周方向に公転(回転)する。
また、制御装置20は、第1および第2のリングライト12,17を制御して、第1および第2の照射面12A,17Aを発光させる(ステップS6)。これにより、第1および第2のリングライト12,17からの光が、玉軸受30に向けて同時に照射される。
制御装置20は、第1および第2のカメラ11,16によって、光が照射されている玉軸受30を撮像する(ステップS7)。第1のカメラ11による撮像と、第2のカメラ16による撮像とは、互いに同期して(同時に)実行される。
撮像終了後、制御装置20は、保持回転機構70の回転駆動源(図示しない)を制御して、外輪32の回転を停止させる(ステップS8)。その後、オペレータは、玉軸受30を保持回転機構70から取り出し、玉位置計測装置1から玉軸受30が搬出される。
次いで、画像処理部21が画像計測処理を実行する(ステップS9)。
以下、図6、図7、図10、図11および図18を併せて参照しながら、画像解析処理について説明する。
画像計測処理では、まず、画像処理部21が、第1のカメラ11から第1の撮像画像40の入力を、第2のカメラ16から第2の撮像画像43の入力を受け付け、それぞれ、メモリに記憶する(S21:画像記憶)。
その後、画像処理部21は、第1の撮像画像40に含まれる計測対象の玉33の表面の第1の反射光画像41を認識し、第1の反射光画像41の中心の座標をu−v座標系で特定する(S22:第1の反射光画像特定)。具体的には、第1の反射光画像41の認識のための処理は、たとえば、第1の撮像画像40における玉33に対し、所定の輝度値を闇値とする二値化処理を施すことにより、第1の反射光画像41を抽出する。
次いで、画像処理部21は、特定された第1の反射光画像41の位置に基づいて、第1の仮定中心位置Oのu−v座標系の座標(u,v)を演算により算出する(S23:第1の仮定中心位置算出)。
次いで、画像処理部21は、算出した第1の仮定中心位置Oの座標(u,v)を、前記の式(10)〜式(12)を用いて補正して、u−v座標系における玉33の中心位置Oの座標(u,v)を算出する(S24:u−v座標系における中心位置算出。第1の直交座標系位置算出ステップ)。
式(10)〜式(12)は、変数の一つとしてθF3を有している。この実施形態では、第1のリングライト位置計測処理(図14のステップS2)において、第1のリングライト12の三次元座標を計測し、その計測値に基づいて、第1のリングライト12の中心と第1の反射光画像41の位置との間の距離d(図9参照)を求めるので、距離dによって定まるθF3の値が実際の値に極めて近い。したがって、u−v座標系における玉33の中心位置Oの補正後の座標(u,v)を、精度良く計測できる。
また、画像処理部21は、第2の撮像画像43に含まれる計測対象の玉33の表面の第2の反射光画像44を認識し、第2の反射光画像44の位置をu´−v´座標系で特定する(S25:第2の反射光画像特定)。具体的には、第2の反射光画像44の認識のための処理は、たとえば、第2の撮像画像43における玉33に対し、所定の輝度値を闇値とする二値化処理を施すことにより、第2の反射光画像44を抽出する。
次いで、画像処理部21は、特定された第2の反射光画像44の位置に基づいて、第2の仮定中心位置Oのu´−v´座標系の座標(u´,v´)を演算により算出する(S26:第2の仮定中心位置算出)。
次いで、画像処理部21は、算出した第2の仮定中心位置Oの座標(u´,v´)を、前記の式(22)〜式(24)を用いて補正して、u´−v´座標系における玉33の中心位置Oの座標(u´,v´)を算出する(S27:u´−v´座標系における中心位置算出。第2の直交座標系位置算出ステップ)。
式(22)〜式(24)は、変数の一つとしてθG3を有している。この実施形態では、第2のリングライト位置計測処理(図14のステップS3)において、第2のリングライト17の三次元座標を計測し、その計測値に基づいて、第2のリングライト17の中心と第2の反射光画像44の位置との間の距離d(図13参照)を求めるので、距離dによって定まるθG3の値が実際の値に極めて近い。したがって、u´−v´座標系における玉33の中心位置Oの補正後の座標(u´,v´)を、精度良く計測できる。
ステップS24およびステップS27の処理の後、u−v座標系における玉33の中心位置Oの座標(u,v)と、u´−v´座標系における玉33の中心位置Oの座標(u´,v´)とに基づいて、玉33の中心位置Oの三次元座標を演算により算出する(S28:中心位置の三次元位置算出)。第1の撮像画像40の撮像方向である第1の撮像方向D1と第2の撮像画像43の撮像方向である第2の撮像方向D2とが互いに異なる方向であるので、玉33の中心位置Oの三次元位置を求めることができる。u−v座標系における玉33の中心位置Oおよびu´−v´座標系における玉33の中心位置Oの位置をそれぞれ特定できれば、これらの位置に基づいて、玉33の中心位置Oの三次元位置を求めることが可能である。
具体的には、画像処理部21は、u−v座標系における玉33の中心位置Oの座標(u,v)と、u´−v´座標系における玉33の中心位置Oの座標(u´,v´)とを、次の式(25)にあてはめることにより、中心位置Oの三次元座標(X,Y,Z)を導き出す。
(X,Y,Z)=B/(u−u´)×(1/2(u+u´),1/2(v+v´),f)
(但し、B…第1および第2のレンズ13,18の間隔(図1参照)、f…第1のレンズ13のレンズ焦点距離および第2のレンズ18のレンズ焦点距離(図1参照)、i…複数の玉33のうち、計測対象になる玉33を特定するための番号) …(25)
この実施形態では、撮像カメラ11,16を同時に、連続的に複数回繰り返し撮像させる。そして、連続する撮像画像を解析することにより、公転中の玉33の周方向の各所における位置を計測でき、これにより、公転中の玉33の挙動を良好に計測できる。
以上によりこの実施形態によれば、u−v座標系で特定された特定された第1の反射光画像41の位置に基づいて、第1の仮定中心位置Oのu−v座標系の座標(u,v)を算出する。そして、算出された第1の仮定中心位置Oの座標(u,v)を、前記の式(10)〜式(12)を用いて補正(第1の照射面12Aの位置および/または第1のレンズ13の位置に基づいて補正)することにより、u−v座標系における玉33の中心位置Oの座標(u,v)が算出される。
また、u´−v´座標系で特定された特定された第2の反射光画像44の位置に基づいて、第2の仮定中心位置Oのu´−v´座標系の座標(u´,v´)を算出する。そして、算出された第2の仮定中心位置Oの座標(u´,v´)を、前記の式(22)〜式(24)を用いて補正(第2の照射面17Aの位置および/または第2のレンズ18の位置に基づいて補正)することにより、u´−v´座標系における玉33の中心位置Oの座標(u´,v´)が算出される。
そして、u−v座標系における玉33の中心位置Oと、u´−v´座標系における玉33の中心位置Oとに基づいて、玉33の中心位置Oの三次元座標が算出される。u−v座標系における玉33の中心位置Oおよびu´−v´座標系における玉33の中心位置Oをそれぞれ正確に計測できるので、玉33の中心位置Oの三次元座標を精度良く計測できる。とくに、第1および第2のリングライト位置計測処理(図14のステップS2,S3)において、第1および第2のリングライト12,17の三次元座標を計測し、その計測値に基づいて玉33の中心位置Oを計測するので、玉33の中心位置Oの三次元座標を、より一層精度良く計測できる。ゆえに、公転中の玉33に軸方向(図1および図2で示すZ方向)への蛇行が生じている場合には、この蛇行を良好に検出できる。
以上、この発明の一つの実施形態について説明したが、本発明は他の形態で実施することもできる。
たとえば、第1および第2のリングライト位置計測処理において、光源位置計測装置51による第1および第2のリングライト12,17の三次元座標の計測結果に基づいて、それぞれ、第1および第2のリングライト12,17の位置を所期の位置に調整するようにしてもよい。この場合、第1および第2のリングライト12,17を移動する機構が、当該リングライト12,17に設けられていてもよい。
また、玉位置計測方法として、カメラ11,16およびリングライト12,17の対を2対設け、互いに異なる二方向から玉33を撮像することにより、玉33の中心の三次元位置を求めるものを例に挙げて説明したが、本発明は、カメラおよびリングライトの対を一対設け、一方向から玉33を撮像することにより玉33の中心の三次元位置を求める、特開2012−98177号公報に記載のような計測方法にも適用可能である。
また、光源置計測方法は、リングライト12,17の位置を計測するものとして説明したが、それ以外の光源の計測に適用することもできる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1…玉位置計測装置(球体位置計測装置)、11…第1のカメラ、12…第1のリングライト、16…第2のカメラ、17…第2のリングライト、20…制御装置、31A…内輪軌道(円軌道)、32A…外輪軌道(円軌道)、40…第1の撮像画像、41…第1の反射光画像、43…第2の撮像画像、44…第2の反射光画像、51…光源位置計測装置、52…平面鏡、53…姿勢調整機構(位置姿勢変更手段)、54…移動機構(位置姿勢変更手段)、D1…第1の撮像方向、D2…第2の撮像方向、L…第1の基準線、L…第2の基準線、O…第1の仮定中心位置、O…第2の仮定中心位置

Claims (7)

  1. 光源を発光させる光源発光ステップと、
    平面鏡を、互いに別個に設けられた第1および第2のカメラに対向し、かつ前記平面鏡での前記光源からの反射光が当該第1および第2のカメラの各々に入光する双方入光状態になるような位置および姿勢に配置する平面鏡配置ステップと、
    前記双方入光状態において、前記平面鏡による前記光源の反射像の位置を算出する反射像位置算出ステップと、
    算出された前記反射像の位置と、当該平面鏡の位置および姿勢とに基づいて、前記光源の位置を算出する光源位置算出ステップとを含む、光源位置計測方法。
  2. 前記平面鏡の位置および姿勢を算出する平面鏡位置姿勢算出ステップをさらに含む、請求項1に記載の光源位置計測方法。
  3. 前記平面鏡位置姿勢算出ステップは、少なくとも3か所にマーカが配置された前記平面鏡を前記第1および第2のカメラにより撮像し、この撮像画像に基づいて前記平面鏡の位置および姿勢を算出する、請求項2に記載の光源位置計測方法。
  4. 前記平面鏡配置ステップおよび前記反射像位置算出ステップを、前記平面鏡の位置および姿勢を変更させながら複数回実行し、これら複数回の前記光源の前記位置の算出結果を平均化する、請求項1〜3のいずれか一項に記載の光源位置計測方法。
  5. 光源の位置を計測するための光源位置計測装置であって、
    互いに別個に設けられた第1および第2のカメラと、
    前記第1および第2のカメラに対向配置された平面鏡と、
    前記平面鏡の位置および姿勢を変更する位置姿勢変更手段と、
    前記光源および前記位置姿勢変更手段を制御して、前記光源を発光させる光源発光ステップと、前記平面鏡を、前記第1および第2のカメラに対向し、かつ前記平面鏡での前記光源からの反射光が当該第1および第2のカメラの各々に入光する双方入光状態になるような位置および姿勢に配置する平面鏡配置ステップと、前記双方入光状態において、前記平面鏡による前記光源の反射像の位置を算出する反射像位置算出ステップと、算出された前記反射像の位置と、当該平面鏡の位置および姿勢とに基づいて、前記光源の位置を算出する光源位置算出ステップとを実行する制御手段とを含む、光源位置計測装置。
  6. 円軌道上を公転する球体の位置を計測する方法であって、
    請求項1〜4のいずれか一項に記載の前記光源位置計測方法と、
    前記光源によって前記球体を照明する照明ステップと、
    前記照明ステップと並行して、公転している前記球体を、所定の第1の基準線上に配置された第1のカメラにより、前記第1の基準線に沿う所定の第1の撮像方向から撮像する第1の撮像ステップと、
    前記照明ステップと並行して、公転している前記球体を、所定の第2の基準線上に配置された第2のカメラにより、前記第2の基準線に沿う所定の第2の撮像方向から撮像する第2の撮像ステップと、
    前記第1の撮像ステップで撮像された第1の撮像画像に含まれる、前記球体表面における前記光源の反射光の画像である第1の反射光画像の位置を、前記第1の基準線に垂直な平面の直交座標系である第1の直交座標系で特定し、当該第1の直交座標系において特定された前記第1の反射光画像の位置に基づいて、前記第1のカメラと前記球体とを結ぶ直線上に前記球体の中心の位置があると仮定した場合の、前記第1の直交座標系における第1の仮定中心位置を算出し、当該前記第1の仮定中心位置を、前記光源位置に基づく値である第1の補正値に基づいて補正して、前記第1の直交座標系における前記球体の中心の位置を算出する第1の直交座標系位置算出ステップと、
    前記第2の撮像ステップで撮像された第2の撮像画像に含まれる、前記球体表面における前記光源の反射光の画像である第2の反射光画像の位置を、前記第2の基準線に垂直な平面の直交座標系である第2の直交座標系で特定し、前記第2の直交座標系において特定された前記第2の反射光画像の位置に基づいて、前記第2のカメラと前記球体とを結ぶ直線上に前記球体の中心の位置があると仮定した場合の、前記第2の直交座標系における第2の仮定中心位置を算出し、当該第2の仮定中心位置を、前記光源位置に基づく値である第2の補正値に基づいて補正して、前記第2の直交座標系における前記球体の中心の位置を算出する第2の直交座標系位置算出ステップと、
    前記第1の直交座標系位置算出ステップおよび前記第2の直交座標系位置算出ステップの算出結果に基づいて、前記球体の中心の三次元座標を算出する三次元位置算出ステップとを含む、球体位置計測方法。
  7. 前記光源は、所定の第1の基準線上に中心を有する円環状の第1のリングライトと、前記第1基準線とは異なる第2の基準線上に中心を有する第2のリングライトとを含む、請求項6に記載の球体位置計測方法。
JP2014107463A 2014-05-23 2014-05-23 光源位置計測方法、光源位置計測装置および球体位置計測方法 Pending JP2015222241A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107463A JP2015222241A (ja) 2014-05-23 2014-05-23 光源位置計測方法、光源位置計測装置および球体位置計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107463A JP2015222241A (ja) 2014-05-23 2014-05-23 光源位置計測方法、光源位置計測装置および球体位置計測方法

Publications (1)

Publication Number Publication Date
JP2015222241A true JP2015222241A (ja) 2015-12-10

Family

ID=54785325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107463A Pending JP2015222241A (ja) 2014-05-23 2014-05-23 光源位置計測方法、光源位置計測装置および球体位置計測方法

Country Status (1)

Country Link
JP (1) JP2015222241A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025439A (ja) * 2016-08-09 2018-02-15 株式会社ジェイテクト 外観検査方法および外観検査装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025439A (ja) * 2016-08-09 2018-02-15 株式会社ジェイテクト 外観検査方法および外観検査装置

Similar Documents

Publication Publication Date Title
US20170160077A1 (en) Method of inspecting an object with a vision probe
CN104197960B (zh) 一种激光跟踪仪视觉导引摄像机的全局标定方法
US7924418B2 (en) Inspection apparatus and method
JP2007327771A5 (ja)
US20140002641A1 (en) Tire shape testing device and tire shape testing method
JP2021193400A (ja) アーチファクトを測定するための方法
TW201616214A (zh) 測試圖紙、採用該測試圖紙的攝像模組檢測方法及系統
JP2014081279A (ja) 三次元形状測定装置および三次元形状測定方法
JP6160062B2 (ja) 移動体の姿勢検出方法及び移動体の姿勢検出装置並びに部品組立装置
RU2015107204A (ru) Способ неразрушающего контроля заготовки лопатки
JP2005195335A (ja) 3次元画像撮影装置および方法
JP5835616B2 (ja) 玉挙動計測方法および玉挙動計測装置
JP6746968B2 (ja) ラジアルころ軸受のスキュー角度計測方法及びラジアルころ軸受のスキュー角度計測装置
JP2015222241A (ja) 光源位置計測方法、光源位置計測装置および球体位置計測方法
JP5585391B2 (ja) 球体の位置測定装置及び方法
JP2008102123A (ja) 形状測定方法及び形状測定装置
JP6733244B2 (ja) 外観検査システム
JP6089819B2 (ja) 軸受の構成部品の挙動解析方法および挙動解析装置
JP6202320B2 (ja) 球体位置計測方法および球体位置計測装置
JP2015055490A (ja) 球体位置計測方法および球体位置計測装置
KR101850336B1 (ko) 회전 비전 검사 시스템 및 회전 비전 검사 방법
Sueishi et al. Mirror-based high-speed gaze controller calibration with optics and illumination control
JP2013156201A (ja) ころ挙動計測方法およびころ挙動計測装置
CN106153012B (zh) 指定目标的空间姿态参数测量方法及其应用
JP2015031638A (ja) 球体位置計測方法および球体位置計測装置