JP2015208845A - Surface-coated cutting tool exhibiting excellent chipping resistance - Google Patents

Surface-coated cutting tool exhibiting excellent chipping resistance Download PDF

Info

Publication number
JP2015208845A
JP2015208845A JP2014094202A JP2014094202A JP2015208845A JP 2015208845 A JP2015208845 A JP 2015208845A JP 2014094202 A JP2014094202 A JP 2014094202A JP 2014094202 A JP2014094202 A JP 2014094202A JP 2015208845 A JP2015208845 A JP 2015208845A
Authority
JP
Japan
Prior art keywords
layer
composite
average
carbonitride
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014094202A
Other languages
Japanese (ja)
Other versions
JP6344040B2 (en
Inventor
佐藤 賢一
Kenichi Sato
佐藤  賢一
翔 龍岡
Sho Tatsuoka
翔 龍岡
健志 山口
Kenji Yamaguchi
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014094202A priority Critical patent/JP6344040B2/en
Publication of JP2015208845A publication Critical patent/JP2015208845A/en
Application granted granted Critical
Publication of JP6344040B2 publication Critical patent/JP6344040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool exhibiting excellent chipping resistance and abrasion resistance in a high-speed intermittent cutting work.SOLUTION: In a surface-coated cutting tool where a hard coating layer consisting of the laminate structure of at least an A layer and a B layer is formed on a substrate surface by a chemical vapor deposition method including, for example, Al(CH)as a reaction gas component,: the A layer is constituted with the composite nitride of Ti and Al having a cubic crystal structure expressed by compositional formula: (TiAl)(CN) (where, 0.60≤x≤0.75 and 0≤y≤0.005 are satisfied) or composite carbonitride crystal grains; and the B layer is constituted with the composite nitride of Ti and Al consisting of a mixed crystal of a cubic crystal structure and a hexagonal crystal structure expressed by compositional formula: (TiAl)(CN) (where, 0.94≤s<0.98 and 0≤t≤0.005 are satisfied) or composite carbonitride crystal grains.

Description

本発明は、高熱発生を伴うとともに、切刃に対して衝撃的・機械的な高負荷が作用する高速断続切削加工等で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits high chipping resistance with a hard coating layer in high-speed intermittent cutting that involves high heat generation and impact / mechanical high load acts on the cutting blade ( Hereinafter, this is referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、TiAl系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られている。このような被覆工具は、すぐれた耐摩耗性を発揮することが知られており、マシニングセンタや複合加工機など、さまざまな用途への利用が進んでいる。
しかしながら、従来のTiAl系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body 2. Description of the Related Art A coated tool is known in which a TiAl-based composite nitride layer is formed as a hard coating layer on a surface of a substrate (hereinafter collectively referred to as a substrate) by a physical vapor deposition method. Such a coated tool is known to exhibit excellent wear resistance, and is being used for various purposes such as a machining center and a multi-task machine.
However, the coated tool formed by coating the conventional TiAl-based composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed interrupted cutting conditions. Various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体表面に、層厚が0.05〜2μmであって結晶粒径30nm以下の粒状晶(Al1−XTi)N層(但し、0.40≦X≦0.65)からなる薄層Aと、層厚0.05〜2μmであって結晶粒径50〜500nmの柱状晶(Al1−XTi)N層(但し、0.40≦X≦0.65)からなる薄層Bの交互積層構造をアークイオンプレーティングにて形成した被覆工具が提案されており、この被覆工具によれば、高硬度鋼の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮することが知られている。 For example, Patent Document 1 discloses a granular crystal (Al 1-X Ti X ) N layer (provided that 0.40 ≦ X ≦) having a layer thickness of 0.05 to 2 μm and a crystal grain size of 30 nm or less on the surface of the substrate. 0.65) and a columnar crystal (Al 1-X Ti X ) N layer having a thickness of 0.05-2 μm and a crystal grain size of 50-500 nm (provided that 0.40 ≦ X ≦ 0) .65) is a coated tool formed by arc ion plating with an alternating layered structure of thin layers B. According to this coated tool, a hard coating layer is formed in high-speed intermittent cutting of high-hardness steel. It is known to exhibit excellent chipping resistance and wear resistance.

また、特許文献2には、工具基体表面に、プラズマ励起を行わないCVDにより、0.75<x≦0.93の化学量論係数および0.412nm〜0.405nmの格子定数有する立方晶NaCl構造の単層からなる(Al1−XTi)N層を被覆層として形成した被覆工具、あるいは、前記Al1−XTi)N硬質皮膜層の主要な層が、0.75<x≦0.93の化学量論係数および0.412nm〜0.405nmの格子定数を有する立方晶NaCl構造を有するTi1−XAlNを主要層とし、別の層としてウルツ鉱構造のTi1−XAlN、および/または、NaCl構造のTiNを含有する多相の被覆層を形成することにより、被覆工具の耐摩耗性および耐酸化性を改善することが知られている。 Patent Document 2 discloses cubic NaCl having a stoichiometric coefficient of 0.75 <x ≦ 0.93 and a lattice constant of 0.412 nm to 0.405 nm by CVD without plasma excitation on the surface of the tool base. A coated tool in which a (Al 1-X Ti X ) N layer consisting of a single layer of structure is formed as a coating layer, or the main layer of the Al 1-X Ti X ) N hard coating layer is 0.75 <x ≦ 0.93 in the Ti 1-X Al X N having a cubic NaCl structure with lattice constants of the stoichiometric coefficients and 0.412nm~0.405nm as the main layer, Ti 1 wurtzite structure as a separate layer It is known to improve the wear resistance and oxidation resistance of a coated tool by forming a multiphase coating layer containing —X Al X N and / or TiN x with a NaCl structure.

さらに、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層を成膜できることが記載されているが、この文献では、この(Ti1−XAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層の形成によって、切削性能へ如何なる影響があるかという点については解明されていない。 Further, Patent Document 3 discloses that the value of the Al content ratio X is 0.65 to 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-X Al X ) N layer having a thickness of 0.95 can be formed, this document further describes an Al 2 O 3 layer on the (Ti 1-X Al X ) N layer. Therefore, the cutting performance is improved by forming the (Ti 1-X Al X ) N layer in which the value of X is increased from 0.65 to 0.95. It has not been elucidated what kind of influence it has.

特開2011−224715号公報JP2011-224715A 特表2008−545063号公報Special table 2008-545063 gazette 特表2011−516722号公報Special table 2011-516722 gazette

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってすぐれた耐摩耗性が求められている。
しかし、前述した特許文献1に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で成膜され、膜中のAl含有量Xを高めることができないため、例えば、合金鋼の高速断続切削に供した場合には、耐チッピング性が十分でないという課題があった。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance is required over a long period of use.
However, in the coated tool described in Patent Document 1 described above, a hard coating layer composed of a (Ti 1-X Al X ) N layer is formed by physical vapor deposition, and the Al content X in the film is increased. Therefore, for example, when the alloy steel is subjected to high-speed intermittent cutting, there is a problem that the chipping resistance is not sufficient.

一方、前述した特許文献2,3に記載される化学蒸着法で被覆形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、合金鋼の高速断続切削に供する被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。 On the other hand, the is is a chemical vapor deposition in coated form (Ti 1-X Al X) N layer described in Patent Documents 2 and 3 mentioned above, it is possible to increase the Al content X, also form a cubic structure Although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient and the toughness is inferior. When used as a coated tool for intermittent cutting, abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.

そこで、本発明は、鋳鉄、合金鋼等の切刃に対して衝撃的・機械的な高負荷が作用する高速断続切削加工に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。   Therefore, the present invention exhibits excellent chipping resistance even when subjected to high-speed intermittent cutting in which a high impact and mechanical load are applied to cutting edges of cast iron, alloy steel, etc. An object of the present invention is to provide a coated tool that exhibits excellent wear resistance over a long period of use.

本発明者らは、前述の観点から、TiとAlの複合炭窒化物からなる硬質被覆層を化学蒸着で被覆形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。   From the above viewpoint, the present inventors have conducted intensive research in order to improve the chipping resistance and wear resistance of a coated tool in which a hard coating layer made of a composite carbonitride of Ti and Al is formed by chemical vapor deposition. As a result, the following findings were obtained.

WC基超硬合金、TiCN基サーメットまたはcBN基超高圧焼結体のいずれかで構成された基体の表面に、例えば、硬質被覆層として、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合x、および、CのCとNの合量に占める平均含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.60≦x≦0.75、0≦y≦0.005を満足する立方晶構造を有する複合窒化物または複合炭窒化物からなるA層を被覆すると、A層はすぐれた靭性、耐チッピング性、耐欠損性を示す。
また、硬質被覆層として、組成式:(Ti1−sAl)(C1−t)で表した場合、AlのTiとAlの合量に占める平均含有割合s、および、CのCとNの合量に占める平均含有割合t(但し、s、tはいずれも原子比)が、それぞれ、0.94≦s<0.98、0≦t≦0.005を満足する立方晶構造と六方晶構造の混合構造を有する複合窒化物または複合炭窒化物からなるB層を被覆した場合には、B層はすぐれた耐摩耗性を示す。
したがって、少なくとも、A層とB層の積層構造からなる硬質被覆層を備える被覆工具は、A層の備える靭性、耐チッピング性、耐欠損性と、B層が備える耐摩耗性が相まって、高熱発生を伴うとともに、切刃に対して衝撃的・機械的な高負荷が作用する高速断続切削加工に供した場合でも、すぐれた切削性能を発揮することを見出したのである。
For example, as a hard coating layer, trimethylaluminum (Al (CH 3 ) 3 ) is used as a reactive gas component on the surface of a substrate composed of either a WC-based cemented carbide, a TiCN-based cermet, or a cBN-based ultrahigh-pressure sintered body. At least a Ti and Al composite nitride or composite carbonitride layer formed by a chemical vapor deposition method such as a thermal CVD method, and a composition formula: (Ti 1-x Al x ) (C y N 1- y ), the average content ratio x in the total amount of Ti and Al in Al, and the average content ratio y in the total amount of C and N in C (where x and y are atomic ratios) However, when the A layer composed of a composite nitride or a composite carbonitride having a cubic structure satisfying 0.60 ≦ x ≦ 0.75 and 0 ≦ y ≦ 0.005, respectively, was coated, the A layer was excellent Toughness, chipping resistance, fracture resistance Show.
Moreover, as a hard coating layer, when expressed by a composition formula: (Ti 1-s Al s ) (C t N 1-t ), the average content ratio s in the total amount of Ti of Ti and Al, and C Cubic crystals whose average content ratio t (where s and t are atomic ratios) in the total amount of C and N satisfy 0.94 ≦ s <0.98 and 0 ≦ t ≦ 0.005, respectively. When a B layer made of a composite nitride or a composite carbonitride having a mixed structure of a structure and a hexagonal crystal structure is coated, the B layer exhibits excellent wear resistance.
Therefore, a coated tool comprising at least a hard coating layer composed of a laminated structure of A layer and B layer is combined with the toughness, chipping resistance, chipping resistance provided by the A layer, and wear resistance provided by the B layer to generate high heat. In addition, the present inventors have found that excellent cutting performance is exhibited even when subjected to high-speed intermittent cutting in which a high impact and mechanical load are applied to the cutting edge.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成の異なるA層とB層からなる2層の積層構造を有しており、
(a)前記A層は、立方晶構造のTiとAlの複合窒化物または複合炭窒化物結晶粒からなり、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合xおよびCのCとNの合量に占める平均含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.60≦x≦0.75、0≦y≦0.005を満足し、
(b)前記B層は、立方晶構造及び六方晶構造のTiとAlの複合窒化物または複合炭窒化物結晶粒からなり、
組成式:(Ti1−sAl)(C1−t
で表した場合、AlのTiとAlの合量に占める平均含有割合sおよびCのCとNの合量に占める平均含有割合t(但し、s、tはいずれも原子比)が、それぞれ、0.94≦s<0.98、0≦t≦0.005を満足することを特徴とする表面被覆切削工具。
(2)前記複合窒化物または複合炭窒化物層の各層において、前記A層の1層あたりの平均層厚が1〜4μm、前記B層の平均層厚が3〜7μmであり、かつA層とB層の合計積層数が2〜6層であり、B層において電子線後方散乱回折装置を用いて個々の結晶粒の結晶構造を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子線後方散乱回折像が観察される立方晶結晶相と六方晶結晶格子の電子線後方散乱回折像が観察される六方晶結晶相が観察され、かつ、立方晶結晶相と六方晶結晶相との合計に占める立方晶結晶相の面積割合が60面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層が存在することを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)乃至(3)のいずれかにに記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする(1)乃至(4)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and includes an A layer and a B layer having different compositions. Has a layered structure of layers,
(A) The layer A is composed of a composite nitride or composite carbonitride crystal grain of Ti and Al having a cubic structure,
Composition formula: (Ti 1-x Al x ) (C y N 1-y )
In this case, the average content ratio x in the total amount of Ti and Al in Al and the average content ratio y in the total amount of C and N in C (where x and y are atomic ratios), respectively, 0.60 ≦ x ≦ 0.75, 0 ≦ y ≦ 0.005 is satisfied,
(B) The B layer is composed of a composite nitride or composite carbonitride crystal grain of Ti and Al having a cubic structure and a hexagonal structure,
Composition formula: (Ti 1-s Al s ) (C t N 1-t )
The average content ratio s in the total amount of Ti and Al in Al and the average content ratio t in the total amount of C and N in C (where s and t are atomic ratios) are respectively A surface-coated cutting tool satisfying 0.94 ≦ s <0.98 and 0 ≦ t ≦ 0.005.
(2) In each layer of the composite nitride or composite carbonitride layer, the average layer thickness per layer of the A layer is 1 to 4 μm, the average layer thickness of the B layer is 3 to 7 μm, and the A layer The total number of laminated layers of B and B is 2 to 6, and the crystal structure of each crystal grain is determined in the B layer by using an electron beam backscatter diffraction device, and the longitudinal cross-sectional direction of the composite carbonitride layer of Ti and Al. When analyzing from, a cubic crystal phase in which an electron beam backscatter diffraction image of a cubic crystal lattice is observed and a hexagonal crystal phase in which an electron beam backscatter diffraction image of a hexagonal crystal lattice is observed, and The surface-coated cutting tool according to (1), wherein the area ratio of the cubic crystal phase to the total of the cubic crystal phase and the hexagonal crystal phase is 60 area% or more.
(3) A tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body, and a composite nitride or composite carbonitride of Ti and Al. Between the layers, it consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and a total average of 0.1 to 20 μm The surface-coated cutting tool according to (1) or (2), wherein a Ti compound layer having a layer thickness is present.
(4) The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or composite carbonitride layer. (1) to (3) The surface-coated cutting tool according to any one of the above.
(5) The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. (1) to (4) The surface coating cutting tool in any one. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

硬質被覆層の平均層厚および積層回数:
本発明における硬質被覆層は、その平均合計層厚が1μm未満では、長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均合計層厚が20μmを越えると、高熱発生を伴う高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となる。したがって、その平均合計層厚は1〜20μmとすることが好ましく、より好ましくは3〜14μmとする。また、A層の平均層厚は靱性および耐チッピング性の観点より1〜4μmとすること、B層の平均層厚は耐摩耗性の観点より3〜7μmとすることが好ましく、積層回数に関しては6回以内とすることで、前記各層の層厚を担保することができるため、好ましい。
また、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体とTiとAlの複合窒化物または複合炭窒化物層の間に形成するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の平均合計層厚に関しては、0.1μm未満では層厚が薄いため、長期の使用に亘って耐摩耗性を向上させることができず、一方、平均層厚が20μmより大きくなると、工具基体およびTiとAlの複合窒化物または複合炭窒化物層との付着強度が低下し、耐剥離性が低下するため、その平均層厚は0.1〜20μmとするのが望ましい。
上部層として、酸化アルミニウム層を含む場合、酸化アルミニウム層の合計平均層厚が1μm未満であると、層厚が薄いため長期の使用に亘って耐摩耗性の向上を図ることができず、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなることから、酸化アルミニウム層を含む上部層の層厚は、1〜25μmとすることが望ましい。
Average thickness and number of lamination of hard coating layer:
When the average total layer thickness of the hard coating layer in the present invention is less than 1 μm, sufficient wear resistance over a long period of time cannot be secured, while when the average total layer thickness exceeds 20 μm, It becomes easy to cause thermoplastic deformation by high-speed intermittent cutting with high heat generation, which causes uneven wear. Therefore, the average total layer thickness is preferably 1 to 20 μm, more preferably 3 to 14 μm. The average layer thickness of the A layer is preferably 1 to 4 μm from the viewpoint of toughness and chipping resistance, and the average layer thickness of the B layer is preferably 3 to 7 μm from the viewpoint of wear resistance. By setting it to 6 times or less, the layer thickness of each layer can be secured, which is preferable.
In addition, between a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body and Ti and Al composite nitride or composite carbonitride layer The average total layer thickness of the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer formed on the thin layer is less than 0.1 μm, so that it can be used over a long period of time. However, if the average layer thickness is larger than 20 μm, the adhesion strength between the tool base and the composite nitride or composite carbonitride layer of Ti and Al decreases, and the peel resistance Therefore, the average layer thickness is desirably 0.1 to 20 μm.
When an aluminum oxide layer is included as the upper layer, if the total average layer thickness of the aluminum oxide layer is less than 1 μm, the layer thickness is so thin that the wear resistance cannot be improved over a long period of use. If it exceeds 1, the crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the layer thickness of the upper layer including the aluminum oxide layer is preferably 1 to 25 μm.

A層の成分組成:
本発明の硬質被覆層のA層を構成する(Ti1−xAl)(C1−y)層は、立方晶構造を有する結晶粒から構成されるが、Alの平均含有割合x(原子比)の値が0.60未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、x(原子比)の値が0.75を超えると、相対的なAl含有割合の増加によって(Ti1−xAl)(C1−y)層自体の靱性が低下し、チッピング、欠損を発生しやすくなる。したがって、Alの平均含有割合x(原子比)の値は、0.60以上0.75以下とすることが必要である。
また、前記(Ti1−xAl)(C1−y)層において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の平均含有割合y(原子比)が0.005を超えると、高温強度が低下する。したがって、C成分の平均含有割合y(原子比)は、0≦y≦0.005と定めた。
Component composition of layer A:
The (Ti 1-x Al x ) (C y N 1-y ) layer constituting the A layer of the hard coating layer of the present invention is composed of crystal grains having a cubic structure, but the average content ratio x of Al When the value of (atomic ratio) is less than 0.60, high-temperature hardness is insufficient and wear resistance is reduced. On the other hand, when the value of x (atomic ratio) exceeds 0.75, the relative an increase in the Al content (Ti 1-x Al x) (C y N 1-y) layer toughness of itself is lowered, chipping, becomes defective likely to occur. Therefore, the value of the average content ratio x (atomic ratio) of Al needs to be 0.60 or more and 0.75 or less.
Further, in the (Ti 1-x Al x ) (C y N 1-y ) layer, the C component improves the hardness, while the N component has the effect of improving the high temperature strength. When the average content ratio y (atomic ratio) of exceeds 0.005, the high-temperature strength decreases. Therefore, the average content ratio y (atomic ratio) of the C component was set to 0 ≦ y ≦ 0.005.

なお、通常、物理蒸着法によって前記組成、即ち、Alの平均含有割合x(原子比)が0.60以上0.75以下の(Ti1−xAl)(C1−y)層を成膜した場合は、結晶構造は六方晶構造となるが、本発明では、後述する化学蒸着法によって成膜していることから、立方晶構造を維持したままで前述したような組成の(Ti1−xAl)(C1−y)層を得ることができる。それにより、硬質被覆層の硬さの低下を回避している。 Normally, the composition by physical vapor deposition, i.e., the average content x (atomic ratio) of 0.60 to 0.75 (Ti 1-x Al x) of Al (C y N 1-y ) layer When the film is formed, the crystal structure becomes a hexagonal crystal structure. However, in the present invention, since the film is formed by the chemical vapor deposition method to be described later, Ti 1-x Al x) ( C y N 1-y) layer can be obtained. Thereby, the fall of the hardness of a hard coating layer is avoided.

B層の成分組成:
本発明の硬質被覆層のB層を構成する(Ti1−sAl)(C1−t)層は、立方晶構造を有する結晶粒と六方晶構造を有する結晶粒との混晶構造として構成されるが、Alの平均含有割合s(原子比)の値が0.94未満になると、A層との積層構造にした場合に、高温硬さが不足し耐摩耗性を十分に確保することができず、一方、s(原子比)の値が0.98以上になると、相対的なTi含有割合が硬さを担保するにあたって不十分となり、(Ti1−sAl)(C1−t)層自体の耐摩耗性が著しく低下する。したがって、Alの平均含有割合s(原子比)の値は、0.94以上0.98未満とすることが必要である。
また、前記(Ti1−sAl)(C1−t)層において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の平均含有割合t(原子比)が0.005を超えると、高温強度が低下する。したがって、C成分の平均含有割合t(原子比)は、0≦t≦0.005と定めた。
Component composition of layer B:
Constituting the hard layer B layer of the present invention (Ti 1-s Al s) (C t N 1-t) layer, a mixed crystal of crystal grains having a crystal grain and hexagonal structure having a cubic structure Although it is configured as a structure, when the average content ratio s (atomic ratio) of Al is less than 0.94, when it has a laminated structure with the A layer, the high-temperature hardness is insufficient and the wear resistance is sufficient. On the other hand, when the value of s (atomic ratio) is 0.98 or more, the relative Ti content is insufficient to secure the hardness, and (Ti 1-s Al s ) ( The wear resistance of the C t N 1-t ) layer itself is significantly reduced. Therefore, the value of the average content ratio s (atomic ratio) of Al needs to be 0.94 or more and less than 0.98.
Further, in the (Ti 1-s Al s ) (C t N 1-t ) layer, the C component improves the hardness, while the N component has the effect of improving the high temperature strength. When the average content ratio t (atomic ratio) of exceeds 0.005, the high-temperature strength decreases. Therefore, the average content ratio t (atomic ratio) of the C component was set to 0 ≦ t ≦ 0.005.

本発明の(Ti1−xAl)(C1−y)層からなるA層及び(Ti1−sAl)(C1−t)層からなるB層の2層の積層構造は、下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む場合及び上部層として1〜25μmの平均層厚を有する酸化アルミニウム層を含む場合においても、前述した特性が損なわれず、これらの下部層や上部層などと併用することにより、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。
下部層、上部層を設ける場合、前述したような効果を十分に奏するためには、下部層に含まれるTi化合物層の合計平均層厚については、0.1μm以上とすることが好ましく、上部層に含まれる酸化アルミニウム層の平均層厚については1μm以上とすることが好ましい。一方、下部層に含まれるTi化合物層の合計平均層厚が20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、上部層に含まれる酸化アルミニウム層の平均層厚が25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
したがって、下部層の平均層厚は、合計層厚で0.1〜20μmとすることが望ましく、また、上部層に含まれる酸化アルミニウム層の平均層厚は、1〜25μmとすることが望ましい。
Of the present invention (Ti 1-x Al x) (C y N 1-y) A layer consisting of layers and (Ti 1-s Al s) (C t N 1-t) of the B layer made of two layers of The laminated structure consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer as the lower layer, and 0.1-20 μm Even when the Ti compound layer having the total average layer thickness is included and the aluminum oxide layer having the average layer thickness of 1 to 25 μm is included as the upper layer, the above-described characteristics are not impaired, and the lower layer and the upper layer, etc. In combination with these, it is possible to create better properties in combination with the effects of these layers.
In the case where the lower layer and the upper layer are provided, the total average layer thickness of the Ti compound layers contained in the lower layer is preferably 0.1 μm or more in order to sufficiently achieve the effects described above. The average layer thickness of the aluminum oxide layer contained in is preferably 1 μm or more. On the other hand, if the total average layer thickness of the Ti compound layers included in the lower layer exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. On the other hand, when the average thickness of the aluminum oxide layer included in the upper layer exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur.
Therefore, the average layer thickness of the lower layer is desirably 0.1 to 20 μm in terms of the total layer thickness, and the average layer thickness of the aluminum oxide layer included in the upper layer is desirably 1 to 25 μm.

成膜は、例えば、工具基体もしくはTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層上に、反応ガス組成、反応雰囲気圧力、反応雰囲気温度の異なる2条件を交互に適用して化学蒸着を行うことにより、本発明で規定する積層構造を形成することができる。   Film formation is performed on, for example, a tool substrate or a Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer on two conditions with different reaction gas composition, reaction atmosphere pressure, and reaction atmosphere temperature. By alternately applying the chemical vapor deposition, it is possible to form a laminated structure defined in the present invention.

また、本発明の(Ti1−xAl)(C1−y)層からなるA層、(Ti1−sAl)(C1−t)層からなるB層の成膜は、例えば、反応ガス成分としてトリメチルアルミニウムを含有する以下の条件で行うことができる。 In addition, the A layer composed of the (Ti 1-x Al x ) (C y N 1-y ) layer and the B layer composed of the (Ti 1-s Al s ) (C t N 1-t ) layer of the present invention. The film can be formed, for example, under the following conditions containing trimethylaluminum as a reaction gas component.

≪A層の成膜≫
反応ガス組成(容量%):
TiCl 3〜4%、 Al(CH0〜0.5%、AlCl 5〜7%、NH 5〜10%、N 0〜3%、残りH
反応雰囲気温度: 700〜900℃、
反応雰囲気圧力: 2〜3kPa、
という条件で、立方晶構造の(Ti1−xAl)(C1−y)層からなるA層を蒸着形成することができる。
≪Formation of A layer≫
Reaction gas composition (volume%):
TiCl 4 3~4%, Al (CH 3) 3 0~0.5%, AlCl 3 5~7%, NH 3 5~10%, N 2 0~3%, the remainder H 2,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2-3 kPa,
Under such conditions, an A layer composed of a (Ti 1-x Al x ) (C y N 1-y ) layer having a cubic structure can be formed by vapor deposition.

≪B層の成膜≫
反応ガス組成(容量%):
TiCl 1.0〜1.5%、 Al(CH0〜0.5%、AlCl 4.5〜7.0%、NH 5〜10%、N 6〜10%、
残りH
反応雰囲気温度: 700〜900℃、
反応雰囲気圧力: 2〜3kPa、
という条件で、立方晶構造と六方晶構造の混晶の(Ti1−sAl)(C1−t)層からなるB層を蒸着形成することができる。
≪B layer deposition≫
Reaction gas composition (volume%):
TiCl 4 1.0~1.5%, Al (CH 3) 3 0~0.5%, AlCl 3 4.5~7.0%, NH 3 5~10%, N 2 6~10%,
Remaining H 2 ,
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2-3 kPa,
Under such conditions, a B layer composed of a mixed crystal (Ti 1-s Al s ) (C t N 1-t ) layer having a cubic crystal structure and a hexagonal crystal structure can be formed by vapor deposition.

本発明の被覆工具は、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合xおよびCとNの合量に占める平均含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.60≦x≦0.75、0≦y≦0.005を満足し、立方晶構造の複合窒化物または複合炭窒化物層からなるA層が成膜され、また、同じく、例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する熱CVD法等の化学蒸着法により、組成式:(Ti1−sAl)(C1−t)で表した場合、AlのTiとAlの合量に占める平均含有割合sおよびCとNの合量に占める平均含有割合t(但し、s、tはいずれも原子比)が、それぞれ、0.94≦s<0.98、0≦t≦0.005を満足し、立方晶構造と六方晶構造の混晶の複合窒化物または複合炭窒化物層からなるB層が成膜され、工具基体表面に、上記A層とB層の積層構造を構成することにより、靭性にすぐれた層(A層)と耐摩耗性の高い層(B層)を組み合わせたことで、高熱発生を伴うとともに、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮するのである。 The coated tool of the present invention is obtained, for example, by chemical vapor deposition such as thermal CVD containing trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component, with a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content ratio x in the total amount of Ti and Al in Al and the average content ratio y in the total amount of C and N (where x and y are atomic ratios) Satisfying 0.60 ≦ x ≦ 0.75 and 0 ≦ y ≦ 0.005, respectively, and an A layer made of a composite nitride or composite carbonitride layer having a cubic structure is formed. For example, a chemical vapor deposition method such as a thermal CVD method containing trimethylaluminum (Al (CH 3 ) 3 ) as a reaction gas component is used to express the composition formula: (Ti 1-s Al s ) (C t N 1-t ). If this is the case, the average The content ratio s and the average content ratio t (where s and t are atomic ratios) in the total amount of C and N are 0.94 ≦ s <0.98 and 0 ≦ t ≦ 0.005, respectively. Satisfactory, B layer composed of mixed nitride or composite carbonitride layer of cubic crystal and hexagonal crystal structure is formed, and the laminated structure of A layer and B layer is formed on the tool base surface By combining a layer with excellent toughness (layer A) and a layer with high wear resistance (layer B), high-speed intermittent cutting with high heat generation and intermittent / impact high load acts on the cutting edge. Even if it is used for the above, it exhibits excellent wear resistance over a long period of use without causing abnormal damage such as chipping, chipping or peeling.

本発明の被覆工具を、実施例に基づき具体的に説明する。   The coated tool of this invention is demonstrated concretely based on an Example.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の基体イ〜ハをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. A substrate made of a WC-based cemented carbide with an ISO standard SEEN1203AFSN insert shape after vacuum sintering under vacuum at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. Were manufactured respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の基体二、ホを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, two substrates made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape, E made.



つぎに、これらの工具基体イ〜ハおよび工具基体二、ホの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−xAl)(C1−y)からなるA層もしくは同じく表4に示される条件で、所定の組成を有する(Ti1−sAl)(C1−t)からなるB層を蒸着形成し、次いで表4に示される1層目と異なるA層またはB層を蒸着形成し、交互に積層することにより、表7に示される本発明被覆工具1〜10を製造した。
なお、本発明被覆工具6〜10については、表3に示される形成条件で、表6に示される下部層および上部層を形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases A to C and the tool bases 2 and E, and first, under the conditions shown in Table 4 (Ti 1-x Al x ) An A layer made of (C y N 1-y ) or a B layer made of (Ti 1-s Al s ) (C t N 1-t ) having a predetermined composition under the conditions shown in Table 4 Then, A-layer or B-layer different from the first layer shown in Table 4 was formed by vapor deposition, and alternately laminated to produce the inventive coated tools 1 to 10 shown in Table 7.
In addition, about this invention coated tools 6-10, the lower layer and upper layer which were shown in Table 6 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ〜ハおよび工具基体二、ホの表面に通常の化学蒸着装置を用い、表5に示される条件で、本発明範囲外の組成を有するA層単独、B層単独あるいはA層とB層の積層構造からなる硬質被覆層を蒸着形成することにより、表8に示される比較例被覆工具1〜8を製造した。   In addition, for comparison purposes, a normal chemical vapor deposition apparatus is similarly used on the surfaces of the tool bases A to C and the tool bases 2 and E, and under the conditions shown in Table 5, the A layer alone having a composition outside the scope of the present invention, Comparative example coated tools 1 to 8 shown in Table 8 were produced by vapor-depositing a hard coating layer consisting of a layered structure of the B layer alone or the laminated structure of the A layer and the B layer.

参考のため、工具基体ハおよび工具基体ホの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を蒸着形成することにより、表8に示される参考例被覆工具9,10を製造した。
なお、アークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体Aおよびaを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、前記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標平均組成、目標平均層厚の(Ti1−xAl)(C1−y)層を蒸着形成し、参考例被覆工具9,10を製造した。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool substrate c and the tool substrate e by arc ion plating using a conventional physical vapor deposition apparatus. The reference example coated tools 9 and 10 shown in Table 8 were manufactured.
The conditions for arc ion plating are as follows.
(A) The tool bases A and a are ultrasonically cleaned in acetone and dried, and at the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, thereby generating Al and Ti ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate an arc discharge, and the target average composition and target shown in Table 8 are formed on the surface of the tool base. A (Ti 1-x Al x ) (C y N 1-y ) layer having an average layer thickness was formed by vapor deposition to produce reference example coated tools 9 and 10.

また、本発明被覆工具1〜10、比較例被覆工具1〜8および参考例被覆工具9,10の各構成層の縦断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。
ついで、前述した本発明被覆工具1〜10の複合炭窒化物層の各層について、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、試料断面を研磨し、加速電圧7kVの電子線を試料断面側から照射し、得られた特性X線の解析結果の10点平均から、A層の平均Al含有割合x、平均C含有割合y、また、B層の平均Al含有割合s、平均C含有割合tを測定した。
Moreover, the longitudinal cross-section of each component layer of this invention coated tool 1-10, comparative example coated tool 1-8, and reference example coated tool 9,10 was measured using a scanning electron microscope, and five points within an observation visual field were measured. The layer thickness was measured and averaged to obtain the average layer thickness.
Next, for each layer of the composite carbonitride layers of the above-described coated tools 1 to 10 of the present invention, an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyzer) is used to polish the sample cross section, and an electron having an acceleration voltage of 7 kV. A line is irradiated from the sample cross-section side, and the average Al content ratio x, average C content ratio y of the A layer, and average Al content ratio s of the B layer, from the 10-point average of the obtained characteristic X-ray analysis results, The average C content t was measured.

A層およびB層の結晶構造については、電子線後方散乱回折装置を用いて、TiとAlの複合窒化物または複合炭窒化物層の各硬質被覆層の工具基体に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μm、幅は各層の層厚に相当する長さの領域に亘り、0.1μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで立方晶構造あるいは六方晶構造であるかを同定した。なお、走査電子顕微鏡より得られた像と電子線後方散乱回折像を重ね合わせることで、得られた電子線後方散乱回折像に含まれる、対象としている層の上部層および下部層の結晶粒による像を除去し、各層単層としての電子線後方散乱回折像を得た。
また、B層においては立方晶構造あるいは六方晶構造であるかを同定した後に、立方晶結晶相と六方晶結晶相との合計に占める立方晶結晶相の面積割合を求めた。立方晶結晶相の面積割合が60面積%以上であると硬さが向上し、より優れた耐摩耗性を有することができるため、60面積%以上であることが好ましい。
表7、表8に、その結果を示す。
Regarding the crystal structure of the A layer and the B layer, the cross section in the direction perpendicular to the tool substrate of each hard coating layer of the composite nitride or composite carbonitride layer of Ti and Al is polished using an electron beam backscatter diffraction apparatus. In a state where it is in a plane, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA, Irradiate each individual crystal grain within the range, 100 μm in length in the horizontal direction from the tool base, and the width spans the area corresponding to the layer thickness of each layer, at an interval of 0.1 μm / step, behind the electron beam The scattering diffraction image was measured and the crystal structure of each crystal grain was analyzed to identify whether it was a cubic structure or a hexagonal structure. In addition, by superimposing the image obtained from the scanning electron microscope and the electron beam backscatter diffraction image, it depends on the crystal grains of the upper layer and lower layer of the target layer included in the obtained electron beam backscatter diffraction image. The image was removed, and an electron beam backscatter diffraction image as each single layer was obtained.
Further, after identifying whether the layer B has a cubic or hexagonal crystal structure, the area ratio of the cubic crystal phase to the total of the cubic crystal phase and the hexagonal crystal phase was determined. When the area ratio of the cubic crystal phase is 60 area% or more, the hardness is improved and the wear resistance can be further improved. Therefore, the area ratio is preferably 60 area% or more.
Tables 7 and 8 show the results.







つぎに、前記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜10、比較例被覆工具1〜8および参考例被覆工具9,10について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験(通常の回転速度、切削速度、切り込み、一刃送り量は、それぞれ、800min−1、200 m/min、1.0mm、0.08mm/刃)を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 968min−1
切削速度: 380m/min、
切り込み: 1.2mm、
一刃送り量: 0.15mm/刃、
切削時間: 8分、
表9に、前記切削試験の結果を示す。
Next, the coated tools of the present invention 1 to 10, the coated tools 1 to 8 of the comparative example, and the reference in the state in which each of the various coated tools is clamped to the tool steel cutter tip portion with a cutter diameter of 125 mm by a fixing jig. Example For coated tools 9 and 10, the following dry dry high-speed face milling, which is a kind of high-speed intermittent cutting of alloy steel, center-cut cutting test (normal rotation speed, cutting speed, cutting, single-blade feed amount are respectively 800 min −1 , 200 m / min, 1.0 mm, 0.08 mm / tooth), and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SCM440 width 100mm, length 400mm
Rotational speed: 968 min −1
Cutting speed: 380 m / min,
Cutting depth: 1.2mm,
Single blade feed amount: 0.15 mm / tooth,
Cutting time: 8 minutes,
Table 9 shows the results of the cutting test.


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体へ〜チをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. A tool base made of a WC-based cemented carbide having the insert shape of CNMG120212 was manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体リを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate was formed.

つぎに、これらの工具基体へ〜チおよび工具基体リの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−xAl)(C1−y)からなるA層もしくは同じく表4に示される条件で、所定の組成を有する(Ti1−sAl)(C1−t)からなるB層を蒸着形成し、次いで表4に示される1層目と異なるA層またはB層を蒸着形成し、交互に積層することにより、表13に示される本発明被覆工具11〜20を製造した。
なお、本発明被覆工具14〜18については、表3に示される形成条件で、表12に示される下部層および上部層を形成した。
Next, these tool bases have a predetermined composition (Ti 1-x Al x ) under the conditions shown in Table 4 using a normal chemical vapor deposition apparatus on the surfaces of the tool base and the tool base. A layer consisting of C y N 1-y ) or a layer B consisting of (Ti 1-s Al s ) (C t N 1-t ) having a predetermined composition is deposited under the conditions shown in Table 4 Then, A-layer or B-layer different from the first layer shown in Table 4 was formed by vapor deposition and laminated alternately to produce the inventive coated tools 11-20 shown in Table 13.
In addition, about this invention coated tools 14-18, the lower layer and upper layer which were shown in Table 12 on the formation conditions shown in Table 3 were formed.

また、比較の目的で、同じく工具基体へ〜チおよび工具基体リの表面に、通常の化学蒸着装置を用い、表5に示される条件で、本発明範囲外の組成を有するA層単独、B層単独あるいはA層とB層の積層構造からなる硬質被覆層を蒸着形成することにより、表14に示される比較例被覆工具11〜18を製造した。
なお、本発明被覆工具14〜18と同様に、比較被覆工具14〜18については、表3に示される形成条件で、表12に示される下部層および上部層を形成した。
Also, for comparison purposes, the A layer alone having a composition outside the scope of the present invention, under the conditions shown in Table 5, using a normal chemical vapor deposition device on the surface of the tool substrate and the surface of the tool substrate, B Comparative example-coated tools 11 to 18 shown in Table 14 were manufactured by vapor-depositing a hard coating layer composed of a single layer or a laminated structure of A and B layers.
In addition, similarly to this invention coated tools 14-18, about the comparative coated tools 14-18, the lower layer and upper layer which were shown in Table 12 were formed on the formation conditions shown in Table 3.

参考のため、工具基体トおよび工具基体チの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を蒸着形成することにより、表14に示される参考被覆工具19,20を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base and the tool base by arc ion plating using a conventional physical vapor deposition apparatus. The reference coated tools 19 and 20 shown in Table 14 were manufactured.
In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.

また、本発明被覆工具11〜20、比較例被覆工具11〜18および参考例被覆工具19、20の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。
ついで、前記の本発明被覆工具11〜20の硬質被覆層について、実施例1の場合と同様にして、A層の平均Al含有割合x、平均C含有割合y、また、B層の平均Al含有割合s、平均C含有割合tを測定した。
さらに、A層、B層の結晶構造およびB層における立方晶面積割合についても、実施例1の場合と同様にして測定した。
表13、表14に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 11-20, comparative example coated tool 11-18, and reference example coated tool 19 and 20 is measured using a scanning electron microscope, and five layers in an observation visual field. The thickness was measured and averaged to obtain the average layer thickness.
Next, with respect to the hard coating layers of the present invention-coated tools 11 to 20, in the same manner as in Example 1, the average Al content ratio x of the A layer, the average C content ratio y, and the average Al content of the B layer The ratio s and the average C content ratio t were measured.
Further, the crystal structures of the A layer and the B layer and the cubic area ratio in the B layer were also measured in the same manner as in Example 1.
Tables 13 and 14 show the results.






つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具11〜20、比較被覆工具11〜18および参考被覆工具19、20について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:370m/min、
切り込み:1.5mm、
送り:0.15mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min、
切り込み:1.5mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、200m/min)、
表15に、前記切削試験の結果を示す。
Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 11 to 20, the comparative coated tools 11 to 18, and the reference coated tool 19, For No. 20, a carbon steel dry high-speed intermittent cutting test and a cast iron wet high-speed intermittent cutting test were carried out, and the flank wear width of the cutting edge was measured.
Cutting condition 1:
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 370 m / min,
Incision: 1.5mm,
Feed: 0.15mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 320 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 200 m / min),
Table 15 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体ヌ〜ヲをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations The tool substrate Nu ~ wo having the insert shape of CNGA120412 were prepared, respectively.


つぎに、これらの工具基体ヌ〜ヲの表面に、通常の化学蒸着装置を用い、表4に示される条件で、所定の組成を有する(Ti1−xAl)(C1−y)からなるA層もしくは同じく表4に示される条件で、所定の組成を有する(Ti1−sAl)(C1−t)からなるB層を目標層厚になるまで蒸着形成し、次いで表4に示される1層目と異なるA層またはB層を目標層厚保になるまで蒸着形成し、交互に積層することにより、表18に示される本発明被覆工具21〜28を製造した。
なお、本発明被覆工具24〜27については、表3に示される形成条件で、表17に示される下部層および上部層を形成した。
Next, (Ti 1-x Al x ) (C y N 1-y ) having a predetermined composition on the surfaces of these tool bases N to V using a normal chemical vapor deposition apparatus under the conditions shown in Table 4. A layer consisting of (Ti 1-s Al s ) (C t N 1-t ) having a predetermined composition is vapor-deposited to the target layer thickness under the conditions shown in Table 4 Then, the present invention coated tools 21 to 28 shown in Table 18 were manufactured by vapor-depositing A layers or B layers different from the first layer shown in Table 4 until the target layer thickness was maintained, and alternately laminating them. .
In addition, about this invention coated tools 24-27, the lower layer and upper layer which were shown in Table 17 on the formation conditions shown in Table 3 were formed.

また、比較の目的で、同じく工具基体ヌ〜ヲの表面に、通常の化学蒸着装置を用い表5に示される条件で、本発明範囲外の組成を有するA層単独、B層単独あるいはA層とB層の積層構造からなる硬質被覆層を蒸着形成することにより、表19に示される比較例被覆工具21〜27を製造した。   For comparison purposes, A layer alone, B layer alone, or A layer having a composition outside the scope of the present invention was used on the surface of the tool substrate Nu on the conditions shown in Table 5 using a normal chemical vapor deposition apparatus. Comparative coating tools 21 to 27 shown in Table 19 were manufactured by vapor-depositing a hard coating layer having a laminated structure of B and B.

参考のため、工具基体ルの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を蒸着形成することにより、表19に示される参考例被覆工具28を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、(Ti1−xAl)(C1−y)層、を蒸着形成し、参考例被覆工具28を製造した。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is vapor-deposited on the surface of the tool substrate by arc ion plating using a conventional physical vapor deposition apparatus. Thus, a reference example-coated tool 28 shown in Table 19 was produced.
The arc ion plating conditions were the same as those shown in Example 1, and a (Ti 1-x Al x ) (C y N 1-y ) layer was formed on the surface of the tool base. The reference coated tool 28 was manufactured by vapor deposition.

また、本発明被覆工具21〜28、比較例被覆工具21〜27および参考例被覆工具28の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。
ついで、前記の本発明被覆工具21〜28の硬質被覆層について、実施例1の場合と同様にして、A層の平均Al含有割合x、平均C含有割合y、また、B層の平均Al含有割合s、平均C含有割合tを測定した。
さらに、A層、B層の結晶構造およびB層における立方晶面積割合についても、実施例1の場合と同様にして測定した。
表18、表19に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 21-28, comparative example coated tool 21-27, and reference example coated tool 28 is measured using a scanning electron microscope, and the layer thickness of five points in an observation visual field is obtained. The average layer thickness was obtained by measuring and averaging.
Next, with respect to the hard coating layers of the inventive coated tools 21 to 28, the average Al content ratio x, the average C content ratio y of the A layer, and the average Al content of the B layer are the same as in the case of Example 1. The ratio s and the average C content ratio t were measured.
Further, the crystal structures of the A layer and the B layer and the cubic area ratio in the B layer were also measured in the same manner as in Example 1.
Tables 18 and 19 show the results.




つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具21〜28、比較例被覆工具21〜27および参考例被覆工具28について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250m/min、
切り込み: 0.1mm、
送り: 0.1mm/rev、
切削時間: 4分、
表20に、前記切削試験の結果を示す。
Next, the present coated tools 21 to 28, the comparative coated tools 21 to 27, and the reference example coated with the above various coated tools screwed to the tip of the tool steel tool with a fixing jig. The tool 28 was subjected to the following dry high-speed intermittent cutting test of carburized and quenched alloy steel, and the flank wear width of the cutting edge was measured.
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 250 m / min,
Cutting depth: 0.1mm,
Feed: 0.1mm / rev,
Cutting time: 4 minutes
Table 20 shows the results of the cutting test.


表7〜9、表13〜15および表18〜20に示される結果から、本発明被覆工具1〜28は、立方晶構造の(Ti1−xAl)(C1−y)からなるA層と、立方晶構造と六方晶構造の混晶の(Ti1−sAl)(C1−t)からなるB層の積層構造を備えることから、高熱発生を伴うとともに、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜8,11〜18、21〜27、参考例被覆工具9,10,19、20、28については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 to 9, Tables 13 to 15, and Tables 18 to 20, the coated tools 1 to 28 of the present invention are made of (Ti 1-x Al x ) (C y N 1-y ) having a cubic structure. And a layered structure of layer B composed of (Ti 1-s Al s ) (C t N 1-t ) in a mixed crystal of a cubic structure and a hexagonal structure, with high heat generation, Even when used for high-speed intermittent cutting where intermittent and shocking high loads act on the cutting edge, it exhibits excellent wear resistance over a long period of use without causing abnormal damage such as chipping, chipping or peeling. To do.
On the other hand, all of the comparative example coated tools 1-8, 11-18, 21-27 and the reference example coated tools 9, 10, 19, 20, 28 are chipped, chipped, peeled, etc. on the hard coating layer. It is clear that not only abnormal damage occurs, but also the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、炭素鋼、鋳鉄、合金鋼などの高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of carbon steel, cast iron, alloy steel, etc., but also as a coated tool for various work materials. Since it exhibits excellent chipping resistance and wear resistance, it can satisfactorily respond to higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Claims (5)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成の異なるA層とB層からなる2層の積層構造を有しており、
(a)前記A層は、立方晶構造のTiとAlの複合窒化物または複合炭窒化物結晶粒からなり、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合xおよびCのCとNの合量に占める平均含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.60≦x≦0.75、0≦y≦0.005を満足し、
(b)前記B層は、立方晶構造及び六方晶構造のTiとAlの複合窒化物または複合炭窒化物結晶粒からなり、
組成式:(Ti1−sAl)(C1−t
で表した場合、AlのTiとAlの合量に占める平均含有割合sおよびCのCとNの合量に占める平均含有割合t(但し、s、tはいずれも原子比)が、それぞれ、0.94≦s<0.98、0≦t≦0.005を満足することを特徴とする表面被覆切削工具。
In the surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body, the hard coating The layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and is a two-layer structure composed of an A layer and a B layer having different compositions Have
(A) The layer A is composed of a composite nitride or composite carbonitride crystal grain of Ti and Al having a cubic structure,
Composition formula: (Ti 1-x Al x ) (C y N 1-y )
In this case, the average content ratio x in the total amount of Ti and Al in Al and the average content ratio y in the total amount of C and N in C (where x and y are atomic ratios), respectively, 0.60 ≦ x ≦ 0.75, 0 ≦ y ≦ 0.005 is satisfied,
(B) The B layer is composed of a composite nitride or composite carbonitride crystal grain of Ti and Al having a cubic structure and a hexagonal structure,
Composition formula: (Ti 1-s Al s ) (C t N 1-t )
The average content ratio s in the total amount of Ti and Al in Al and the average content ratio t in the total amount of C and N in C (where s and t are atomic ratios) are respectively A surface-coated cutting tool satisfying 0.94 ≦ s <0.98 and 0 ≦ t ≦ 0.005.
前記複合窒化物または複合炭窒化物層の各層において、前記A層の平均層厚が1〜4μm、前記B層の平均層厚が3〜7μmであり、A層とB層の合計積層数が2〜6層であり、B層において電子線後方散乱回折装置を用いて個々の結晶粒の結晶構造を、上記TiとAlの複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子線後方散乱回折像が観察される立方晶結晶相と六方晶結晶格子の電子線後方散乱回折像が観察される六方晶結晶相との混合組織からなり、かつ、立方晶結晶相と六方晶結晶相との合計に占める立方晶結晶相の面積割合は60面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 In each layer of the composite nitride or composite carbonitride layer, the average layer thickness of the A layer is 1 to 4 μm, the average layer thickness of the B layer is 3 to 7 μm, and the total number of layers of the A layer and the B layer is When the crystal structure of each crystal grain is analyzed from the longitudinal cross-sectional direction of the composite carbonitride layer of Ti and Al using an electron beam backscattering diffractometer in the B layer, a cubic crystal is obtained. It consists of a mixed structure of the cubic crystal phase in which the electron backscatter diffraction image of the lattice is observed and the hexagonal crystal phase in which the electron beam backscatter diffraction image of the hexagonal crystal lattice is observed. The surface-coated cutting tool according to claim 1, wherein the area ratio of the cubic crystal phase to the total of the hexagonal crystal phase is 60% by area or more. 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層が存在することを特徴とする請求項1または2に記載の表面被覆切削工具。   Between a tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body, and the Ti / Al composite nitride or composite carbonitride layer. And consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and a total average layer thickness of 0.1 to 20 μm. The surface-coated cutting tool according to claim 1, wherein a Ti compound layer is present. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1〜3のいずれか一項に記載の表面被覆切削工具。   4. The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm is present on an upper portion of the composite nitride or the composite carbonitride layer. The surface-coated cutting tool described. 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1〜4のいずれか一項に記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of claims 1 to 4. The surface-coated cutting tool described.
JP2014094202A 2014-04-30 2014-04-30 Surface-coated cutting tool with excellent chipping resistance Active JP6344040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094202A JP6344040B2 (en) 2014-04-30 2014-04-30 Surface-coated cutting tool with excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094202A JP6344040B2 (en) 2014-04-30 2014-04-30 Surface-coated cutting tool with excellent chipping resistance

Publications (2)

Publication Number Publication Date
JP2015208845A true JP2015208845A (en) 2015-11-24
JP6344040B2 JP6344040B2 (en) 2018-06-20

Family

ID=54611489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094202A Active JP6344040B2 (en) 2014-04-30 2014-04-30 Surface-coated cutting tool with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP6344040B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003369A (en) * 2014-06-17 2016-01-12 住友電工ハードメタル株式会社 Hard coating, cutting tool and method for manufacturing hard coating
JP2017104950A (en) * 2015-12-10 2017-06-15 三菱日立ツール株式会社 Hard coating film coated tool and manufacturing method thereof
JP2018034216A (en) * 2016-08-29 2018-03-08 三菱マテリアル株式会社 Surface-coated cutting tool whose hard coating layer exerts excellent chipping resistance and peeling resistance
JP6565093B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6565091B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6565092B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
CN111886093A (en) * 2018-03-22 2020-11-03 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
US20210395896A1 (en) * 2018-09-28 2021-12-23 Corning Incorporated Methods for sub-austenite transformation temperture deposition of inorganic particles and articles produced by the same
US20220033942A1 (en) * 2018-09-28 2022-02-03 Corning Incorporated Alloyed metals with an increased austenite transformation temperature and articles including the same
US11939670B2 (en) 2018-09-28 2024-03-26 Corning Incorporated Low temperature methods for depositing inorganic particles on a metal substrate and articles produced by the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209123A (en) * 1996-02-05 1997-08-12 Mitsubishi Materials Corp Hard layer lamination coated cutting tool
JP2013116509A (en) * 2011-12-01 2013-06-13 Mitsubishi Materials Corp Surface-coated cutting tool
JP2014004665A (en) * 2012-06-26 2014-01-16 Mitsubishi Materials Corp Surface coating cutting tool excellent in wear resistance and breakage resistance
WO2014034730A1 (en) * 2012-08-28 2014-03-06 三菱マテリアル株式会社 Surface-coated cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209123A (en) * 1996-02-05 1997-08-12 Mitsubishi Materials Corp Hard layer lamination coated cutting tool
JP2013116509A (en) * 2011-12-01 2013-06-13 Mitsubishi Materials Corp Surface-coated cutting tool
JP2014004665A (en) * 2012-06-26 2014-01-16 Mitsubishi Materials Corp Surface coating cutting tool excellent in wear resistance and breakage resistance
WO2014034730A1 (en) * 2012-08-28 2014-03-06 三菱マテリアル株式会社 Surface-coated cutting tool
JP2014061588A (en) * 2012-08-28 2014-04-10 Mitsubishi Materials Corp Surface-coated cutting tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003369A (en) * 2014-06-17 2016-01-12 住友電工ハードメタル株式会社 Hard coating, cutting tool and method for manufacturing hard coating
JP2017104950A (en) * 2015-12-10 2017-06-15 三菱日立ツール株式会社 Hard coating film coated tool and manufacturing method thereof
JP2018034216A (en) * 2016-08-29 2018-03-08 三菱マテリアル株式会社 Surface-coated cutting tool whose hard coating layer exerts excellent chipping resistance and peeling resistance
JP6565093B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6565091B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6565092B1 (en) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
CN111886093A (en) * 2018-03-22 2020-11-03 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
CN111886093B (en) * 2018-03-22 2023-01-31 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
US20210395896A1 (en) * 2018-09-28 2021-12-23 Corning Incorporated Methods for sub-austenite transformation temperture deposition of inorganic particles and articles produced by the same
US20220033942A1 (en) * 2018-09-28 2022-02-03 Corning Incorporated Alloyed metals with an increased austenite transformation temperature and articles including the same
US11939670B2 (en) 2018-09-28 2024-03-26 Corning Incorporated Low temperature methods for depositing inorganic particles on a metal substrate and articles produced by the same

Also Published As

Publication number Publication date
JP6344040B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6090063B2 (en) Surface coated cutting tool
JP6344040B2 (en) Surface-coated cutting tool with excellent chipping resistance
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2016064485A (en) Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2014128837A (en) Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP6171638B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6044401B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6726403B2 (en) Surface-coated cutting tool with excellent hard coating layer and chipping resistance
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP6270131B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150