JP2015199978A - 還元鉄を用いた高炉操業方法 - Google Patents

還元鉄を用いた高炉操業方法 Download PDF

Info

Publication number
JP2015199978A
JP2015199978A JP2014078130A JP2014078130A JP2015199978A JP 2015199978 A JP2015199978 A JP 2015199978A JP 2014078130 A JP2014078130 A JP 2014078130A JP 2014078130 A JP2014078130 A JP 2014078130A JP 2015199978 A JP2015199978 A JP 2015199978A
Authority
JP
Japan
Prior art keywords
reduced iron
iron
ore
briquette
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014078130A
Other languages
English (en)
Other versions
JP6273983B2 (ja
Inventor
弘孝 佐藤
Hirotaka Sato
弘孝 佐藤
公平 砂原
Kohei Sunahara
公平 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014078130A priority Critical patent/JP6273983B2/ja
Publication of JP2015199978A publication Critical patent/JP2015199978A/ja
Application granted granted Critical
Publication of JP6273983B2 publication Critical patent/JP6273983B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

【課題】鉄系ダスト由来の還元鉄を使用しても、高温通気抵抗が上昇しない還元鉄を用いた高炉操業方法を提供すること。
【解決手段】鉄系ダストを加熱・還元・成型して製造した還元鉄であって、
前記還元鉄は、鉄分が50.0質量%以上、脈石比((CaO+SiO2+Al23+MgO)/Fe)が0.30以上0.60以下、塩基度(CaO/SiO2)が2.0以上であり、
前記還元鉄と酸性塊鉱石を混合して、鉄分が50.0質量%以上、脈石比((CaO+SiO2+Al23+MgO)/Fe)が0.32以下、塩基度(CaO/SiO2)が1.0以上2.0以下に調整した混合物を作成し、
前記混合物を高炉に装入することを特徴とする高炉操業方法。
【選択図】図1

Description

本発明は、還元鉄を用いた高炉操業方法に関する。特に、鉄系ダスト由来の還元鉄を用いた高炉操業方法に関する。
現在、鉄の多くは、高炉法により生産されている。高炉では、鉄鉱石が還元材により還元され、溶けた銑鉄が製造される。高炉に投入する原料には、一定レベル以上の強度を保ち、炉内通気性を確保できる粒度を有することが要求される。そのため、還元材として使用する炭材は、強粘結炭を多く配合して乾留したコークスに依存し、鉄原料は、塊状化された焼結鉱に多くを依存している。そのため、コークス製造設備、焼結設備等の高炉以外の付帯設備を設置する必要があり、設備コストも高い。また、高炉原料には高い品質が要求されるため、原料コストも高い。また、近年、原料の枯渇化が進んでおり、劣質原料を活用することも大きな課題となっている。さらに、高炉の内部では、酸化物である鉄鉱石を還元するために、膨大なエネルギーおよび炭材を消費している。その結果、日本における炭酸ガス排出量の15〜20%を鉄鋼業が占めている。
こうした中、比較的安価な鉱石等から還元鉄を製造し、高炉原料として利用することで、高炉での劣質原料の活用促進、還元材比や炭酸ガス排出量削減を図ることが検討されてきた。還元鉄の生産は、プラントが安価であると共に、運転が容易であり、更に小規模でも立地が可能であるという特徴を背景に拡大を続けている。
金属鉄を79質量%含む還元鉄を高炉に投入することにより、高炉での還元材比が低減し、生産性が向上することが開示されている(非特許文献1)。
還元鉄としては、主に、鉄鉱石を原料に製造される還元鉄(以下、鉄鉱石由来の還元鉄と記す。)が一般的であるが、高炉、転炉および電気炉等で発生する鉄系ダストを原料として製造される還元鉄(以下、鉄系ダスト由来の還元鉄と記す。)もある。安価な劣質原料を使用する観点から、鉄系ダストから還元鉄を製造し、活用することは有効な手段といえる。しかし、鉄系ダスト由来の還元鉄と、鉄鉱石由来の還元鉄とは、性状が大きく異なっており、高炉に対する使用の効果が相違すると考えられる。
亜鉛を含む鉄系ダストを回転炉床炉やロータリキルンを用いて還元焙焼処理することにより得た還元鉄粉を、冷間成型した後、水浸と静置処理を施すことによって、高炉利用することができる高強度ブリケットの製造が提案されている(特許文献1)。
特許文献1の実施例に記載された鉄系ダスト由来の還元鉄は、鉄分の総含有率が57.4質量%、金属鉄が33.9質量%であるが、その他に、CaOが14.1質量%、SiO2が6.5質量%、Al23が2.9質量%、MgOが3.3質量%で、多くの脈石分が含まれている。(CaO+SiO2+Al23+MgO)/T.Feの比(以下、脈石比と称する。)は、0.47であり、鉄鉱石由来の還元鉄の脈石比より大きい。また、製鋼工程で発生するダストが、還元鉄原料に含まれるため、還元鉄中のCaO濃度は高く、生成する還元鉄の塩基度(=CaO/SiO2)は2.17と、一般的な高炉原料である焼結鉱や塊鉱石と比べ大きな値である。
このように脈石比が高く、塩基度が極端に高い鉄系ダスト由来の還元鉄と、鉄鉱石由来の還元鉄は、高炉における使用の効果が相違する。鉄系ダスト由来の還元鉄は、生成するスラグの性状を大幅に変え、高炉下部での高温通気性状が悪化することが、懸念される。
回転炉床式還元炉で酸化鉄を還元し、更に熱間成形して製造されたホットブリケットアイアンを、高炉を上から見た外周円の内部において、炉中心から 半径方向 2/3以内の位置に、65%以上の還元鉄成形体を装入することが提案されている(特許文献2)。
還元鉄成形体を高炉の外周側に多く入れると、還元鉄成形体は鉱石等と比較して還元・溶解が速いため、外周部の充填物の降下速度が大きくなる。この結果、還元の遅い外周部の鉱石が未還元のまま炉下部に到達し、炉下部が過冷却されてしまう問題がある。これに対し、還元鉄成形体を炉中心部に多く供給すると、還元鉄成形体の還元粉化が抑制され、充填物中のガス圧力損出を低減できる。また、還元鉄成形体の降下速度の増加にともない、充填物の降下が促進される。これにより、中心部でのガス流れが促進されて送風量を増加することができ、高炉での銑鉄生産性(生産t/d)を向上できるとしている。
しかし、特許文献1に記載のスラグ比や塩基度が高い鉄系ダスト由来の還元鉄を、特許文献2に開示された方法で高炉内へ投入した場合、中心部近傍で高温通気が悪化することが考えられる。
酸化鉄を原料として、回転炉床式還元炉で圧潰強度が高い還元鉄ペレットを製造し、このペレットを高炉で直接使用する銑鉄の製造方法を提供している(特許文献3、4)。
特許文献3では、この還元鉄ペレットから、スラグ生成物、硫黄、燐などの固溶不純物を溶かし、除去するためには、他の高炉原料と混合して製鉄用高炉で使用することが望ましいとしている。一方、特許文献4では混合する原料としては、塊鉱石や焼結鉱等を上げている。これにより、粒径が5〜20mmと比較的小粒径の還元鉄粒状物を投入した際、高炉内部のガス通気を悪化させることを抑制する。すなわち、特許文献3や特許文献4によれば、還元鉄を高炉で単独もしくは多量に使用することには課題があり、還元鉄を他の原料と混合して高炉で使用することによりその課題が緩和できることが示唆されている。
しかし、還元鉄と混合する原料の組合せによっては、高炉内の高温通気性状を悪化することが考えられる。例えば、特許文献1に記載の鉄系ダスト由来の還元鉄を焼結鉱と混合して高炉投入した場合、混合後のスラグ比は、焼結鉱単味で投入した時よりも大きくなってしまう。焼結鉱は、高炉内での性状が最適化されるように人為的に塩基度等の成分を設計している。そのため、特許文献1で対象としたような脈石比が大きく、スラグ性状に影響を与える可能性のある鉄系ダスト由来の還元鉄と焼結鉱との混合は、生成するスラグの高温通気性状を焼結鉱単味と比べ悪化させる懸念がある。
特開2011−63835号公報 特開2010−255075号公報 特開2002−194410号公報 特開2002−194412号公報
Yutaka Ujisawaら、 CAMP-ISIJ、 22(2009)、 p.282
鉄系ダストを加熱・還元・成型して製造した還元鉄は、脈石比((CaO+SiO2+Al23+MgO)/Fe)が高く、更に、塩基度(CaO/SiO2)も高いため、これを高炉にそのまま使用すると、軟化・融着温度の上昇、スラグの流動性の低下により、高温通気抵抗が大きくなるという問題がある。
本発明の目的は、鉄系ダスト由来の還元鉄を使用しても、高温通気抵抗が上昇しない、還元鉄を用いた高炉操業方法を提供することである。
本発明者は、鉄系ダスト由来の還元鉄と酸性塊鉱石を事前に混合し、高炉に装入することにより、高温通気抵抗が上昇しない高炉操業が可能であるという知見を得た。本発明はかかる知見に基づくものである。
本発明の要旨とするところは、以下のとおりである。
(1)鉄系ダストを加熱・還元・成型して製造した還元鉄であって、
前記還元鉄は、鉄分が50.0質量%以上、脈石比((CaO+SiO2+Al23+MgO)/Fe)が0.30以上0.60以下、塩基度(CaO/SiO2)が2.0以上であり、
前記還元鉄と酸性塊鉱石を混合して、鉄分が50.0質量%以上、脈石比((CaO+SiO2+Al23+MgO)/Fe)が0.32以下、塩基度(CaO/SiO2)が1.0以上2.0以下に調整した混合物を作成し、
前記混合物を高炉に装入することを特徴とする高炉操業方法。
(2)静置養生処理した還元鉄及び酸性塊鉱石のそれぞれの槽から同一の輸送ベルトに切り出し、ベルト上で混合し、鉱石ホッパーに投入して、養生した還元鉄と酸性塊鉱石の混合物を作成することを特徴とする請求項1に記載の高炉操業方法。
(3)還元鉄の製造工程における静置養生において、
輸送ベルトに積載した水浸処理後の成型還元鉄の上に前記酸性塊鉱石を積載し、静置養生槽に投入し、還元鉄と酸性塊鉱石の混合物を作成することを特徴とする(1)に記載の高炉操業方法。
(4)前記酸性塊鉱石が、ローブリバー塊鉱石であることを特徴とする(1)乃至(3)に記載の高炉の操業方法。
鉄系ダスト由来の還元鉄と酸性塊鉱石を事前にブレンドし、高炉に装入することにより、高温通気抵抗が上昇しない高炉操業が可能である。
鉄系ダスト由来の還元鉄を用いた高炉操業方法(実施態様1)を示す図。 鉄系ダスト由来の還元鉄の成型工程を示す図。 鉄系ダスト由来の還元鉄を用いた高炉操業方法(実施態様2)を示す図。
(第一の実施態様)
図1に鉄系ダスト由来の還元鉄を用いた高炉操業方法(実施態様1)を示す。
還元鉄は、還元鉄原料12(鉄系ダスト、炭剤)を還元炉11で還元し、還元鉄が製造される。
鉄系ダストとしては、高炉及び製鋼工程で集塵されるダストの他に、酸化スケール、酸化スラッジ等の鉄分を含有する粉体も含まれる。
還元炉11としては、ロータリキルン炉や回転炉床式還元炉が挙げられる。
還元炉11で製造された還元鉄は、篩い分級装置16で篩い分けし、篩い上品と、篩い下品とに分級される。篩上の粗粒状還元鉄13は、還元鉄槽37に搬送される。
一方、篩い下の粉粒状還元鉄2は、混合機18に供給され、水やバインダー等の添加物17と混合された後、ダブルロール型ブリケット成型機19に投入され、還元鉄ブリケットを成型する。
バインダーは、無機バインダーとして、高炉水砕スラグを主成分とする微粉末とアルカリ刺激剤からなる時効性バインダーや、ポルトランドセメント、アルミナセメント、高炉セメント、ベントナイト、フライアッシュ、粘土などがある。また、鉄系ダストに含まれる金属鉄もバインダーとして機能する。有機バインダーとしては、澱粉、糖蜜、タール、パルプ廃液、プラスチックなどがある。しかし、バインダーはコストがかかることや、バインダーに含まれる成分が高炉操業に支障をきたすことも懸念される。そのため、後述するように水浸処理と静置養生処理によって還元鉄ブリケットの強度を向上させ、添加するバインダー量は、極力、減らすべきである。好ましくは添加しない。
図2に還元鉄ブリケットの成型機を示す。ダブルロール型ブリケット成型機19を模式的に示している。ダブルロール型ブリケット成型機19は、2つの円筒型のロール4が水平に隣接して配設された構造を有する。ロール4のうち、同図中の左側の成型ロールは時計方向に、また、右側の成型ロールは反時計方向に回転し、双方のロール外周表面にはポケット5と称する穴が多数存在する。このポケット5は、双方のロール間において周面上で同期するように配置されている。双方のロール4が隣接する部位の上方には原料供給ホッパー1が設置されており、その原料供給ホッパー1からブリケット原料である粉粒状還元鉄2が供給される。ロール間に供給された粉粒状還元鉄2は、ポケット5に入り込み、ポケット5表面との摩擦力によって強いせん断力を受けながら圧縮される。ポケット5の内部では、還元鉄粒子が互いに滑り、位置を変えて空隙を埋め、絡み合って緻密な構造の還元鉄ブリケット6aを製造する。ここで、還元鉄ブリケットは、成型機により成型された還元鉄をいい、還元炉11から排出される粗粒状還元鉄13とは相違する。
粉粒状還元鉄2は、単に、自然落下によりロール間に供給するのではなく、原料供給ホッパ−1内に設置されたスクリュー3により、強制的にポケット5の内部に押し込むことにより、高い充填密度を有する強度の大きい還元鉄ブリケット6aとする。
ダブルロール型ブリケット成型機19で製造された還元鉄ブリケットは、図1に示す篩い分級装置20で篩い上の還元鉄ブリケットと篩い下の粉粒状還元鉄6bに分級される。篩い分級装置20としては、外周部に篩い上品と篩い下品を分級するための網が張られ、両端の中心を軸として、軸を水平よりやや傾けた状態にして、一定速度で回転する円筒部を具備するトロンメル型篩い分級装置を採用することが望ましい。この分級装置の円筒内に還元鉄ブリケットを入れることにより、篩い下の粉粒状還元鉄6bが網(スクリーン)の目を通過するので、還元鉄ブリケットと粉粒状還元鉄6bを分離することができる。このとき、還元鉄ブリケットは、回転するトロンメル型篩い分級装置 内で転動し、ブリケット外周にあるバリが除去される。バリは、ブリケットを高炉まで搬送する際、ベルトコンベアのベルトを損耗させる原因となるので、このトロンメル型篩い分級装置を用いることは、搬送用ベルトコンベアの保守管理の観点からも有効である。篩い分級された粉粒状還元鉄6bは、混合機18にリターンされる。
篩い分級装置20の篩い上の還元鉄ブリケットは、ブリケット水浸処理装置21で、ブリケットの全表面に水を配置させる水浸処理をした後、ブリケット静置処理装置22で静置処理を行う。水浸と静置処理により、還元鉄ブリケットに含まれる金属鉄の酸化結合 が進んで強度発現して、バインダーなし、または少ないバインダーで高炉利用が可能な高強度ブリケットとすることができる。静置処理された還元鉄ブリケット6(6a、6c)は、篩い分級装置16に戻され、還元鉄ブリケット6aと粉粒状還元鉄6cに分級され、還元鉄ブリケット6aは、粗粒状還元鉄13とともに還元鉄槽37に搬送される。
還元鉄のブリケット化方法として、還元炉11から排出された還元鉄を高温のまま熱間成型する方法(特許5059379、特開2000−204419)がある。この場合は、ブリケット水浸処理装置21およびブリケット静置処理装置22は不要である。
一方、酸性塊鉱石 25 は、酸性塊鉱石槽38に搬送される。還元鉄(13、6a)及び酸性塊鉱石25は、それぞれの槽から同一の輸送ベルト24に切り出し、ベルト上で混合する。還元鉄(13、6a)及び酸性塊鉱石25は、均一に混合し、鉱石サージホッパー29に打ち込まれる。
また、焼結鉱・その他の鉄鉱石槽39から切り出された焼結鉱・その他の鉄鉱石も、鉱石サージホッパー29に打ち込まれる。その他の鉄鉱石とは、還元鉄とは混合されない鉄鉱石をいう。コークス槽40から切り出されたコークスは、コークスサージホッパー30に打ち込まれる。
各々のサージホッパー に打ち込まれた還元鉄及び酸性塊鉱石の混合物、焼結鉱・その他の鉄鉱石及び、コークスは、貯留ホッパー33、集合ホッパー34、旋回シュート35 を経て、高炉15に装入される。
高炉への装入方法について述べる。
ベルレス高炉の装入物装入方法は、例えば、コークス(以下Cと記す。)は、C1、C2の2バッチに分けて装入され、又、鉱石(以下Oと記す。)は、O1、O2の2バッチに分けて装入される。C1、C2、O1、O2の装入を1チャージと称する。
第一の実施態様においては、1チャージのうちの1バッチは、還元鉄と酸性塊鉱石の混合物であるのに対し、従来の還元鉄の使用方法の1バッチは、還元鉄と焼結鉱等の混合物である点で相違する。
従来の装入方法では、O1、O2の少なくともいずれかのバッチに、還元鉄と焼結鉱を混合して装入する。この場合、脈石比及び塩基度が大きく相違する還元鉄の粒子と焼結鉱の粒子は、近接していても粒子間の脈石比及び塩基度の調整がされない。これに対し、本第一の実施態様では、還元鉄と酸性塊鉱石が1バッチとして混合して装入されるので、接触する還元鉄の粒子と酸性塊鉱石の粒子間の脈石比及び塩基度の調整がなされ、本発明の効果を奏する。
なお、装入原料の10%の還元鉄を高炉に装入する従来方法の場合、各チャージ毎に還元鉄と焼結鉱がチャージされる。これに対し、本第一の実施態様では、例えば、還元鉄と酸性塊鉱石を5/5の比率で混合する場合、還元鉄と酸性塊鉱石のバッチは、5チャージに1回の割合で装入される。
対象とする還元鉄は、ローブリバー塊鉱石のような、酸性で結晶水を3%以上含む多孔質な高結晶水鉱石と混合することにより、より大きな効果を発揮する。多孔質の高結晶水酸性鉱石は、安価で、多量使用することにより銑鉄コストを大幅に削減することができる。しかし、多孔質な高結晶水酸性鉱石は、高炉シャフト部での粉化量が多く、通気不良を惹起して安定した操業が維持できなくなることが懸念されている。
一方、還元鉄は、高炉シャフト部では粉化しづらい原料である。既に還元されているため、Fe23の含有率は極めて小さく、Fe23がFe34に還元される際に生じる還元粉化は発生しない。また、ブリケット内では金属鉄同士が強固に結合しているため、熱割れも発生しない。そのため、多孔質な高結晶水酸性鉱石と混合して高炉に投入した場合、多孔質な高結晶水鉱石が高炉シャフト部で粉化したとしても、還元鉄は形状を維持して骨材となり、シャフト部のガス流れを維持する。即ち、ローブリバー塊鉱石のような、高炉シャフト部で粉化する多孔質な高結晶水鉱石を使用する場合でも、周囲に還元鉄を配置することにより、還元ガスの通気性を維持することができる。還元ガスの偏流も抑制され、鉱石の還元も均一に近い状態で進行する。
また、還元鉄(6a、13)と酸性塊鉱石25との混合を促進する観点から、還元鉄ブリケット6aのサイズは極めて重要である。一般的に、密度が大きく、粒径の小さい原料ほど、混合物の下層に溜まりやすい。従って、混合する酸性塊鉱石25の見かけ密度および粒径を考慮して、還元鉄ブリケット6aの見かけ密度および粒径を決めるべきである。しかし、見かけ密度を調整することは困難である。高炉原料には強度が必要であり、高強度の還元鉄ブリケット6aを製造するためには、見掛け密度の大きいブリケットとすることが必須であるためである。即ち、還元鉄ブリケット6aの見掛け密度は、可能な限り大きくする必要がある。その上で、還元鉄ブリケット6aの粒径を決め、酸性塊鉱石25との混合が促進されるようにする。還元鉄ブリケット6aの粒径は、図2に示すブリケットマシンのポケット5のサイズおよび形状を調整することで、容易に制御することができる。還元鉄ブリケット6aの平均粒径Dbは、以下の(1)式より決定することが好ましい。ここで、ρbは還元鉄ブリケット6aの見掛け密度、ρoは酸性塊鉱石の見掛け密度、Doは酸性塊鉱石25の平均粒径を示す。
Db = Do × (0.21 × ρb / ρo + 0.76) (1)
現実的には、この式で得られた平均粒径Dbのプラスマイナス20%の範囲の平均粒径となるように図2に示すダブルロール型ブリケット成型機のポケット5のサイズや形状を調整する。従って、Db/Do が (2)式を満足する範囲となるように調整することが現実的である。
(0.17 × ρb / ρo + 0.61) ≦ Db/Do ≦ (0.25 × ρb / ρo + 0.91) ・・・・・(2)
還元炉11としては、ロータリキルンや回転炉床式還元炉があるが、ロータリキルンのような還元炉11から排出される還元鉄のほとんどは粉粒状である。そのため、大部分の還元鉄は、(2)式を基に適正粒径を決め、ブリケット化してから高炉に搬送される。一部の還元鉄は、粗粒状還元鉄13としてロータリキルンから排出されるが、見掛け密度や粒径を調整することは難しい。しかし、粗粒状還元鉄13として排出される量を少なくすれば、混合への影響は小さく、問題ないレベルとなる。また、粗粒状還元鉄13を粉砕し、ブリケット化して、還元鉄ブリケット6aとして、高炉15へと搬送することも可能である。
回転炉床式還元炉では、ダスト原料を事前にペレットやブリケット等に塊成化して、回転炉床式還元炉に投入し、圧壊強度が高い還元鉄ペレットや還元鉄ブリケットを製造している。この場合は還元鉄ペレットや還元鉄ブリケットが粗粒状還元鉄13として排出される。回転炉床式還元炉から排出する還元鉄ペレットや還元鉄ブリケットの平均粒径が、(2)式を満足させるように、回転炉床式還元炉に投入されるペレットやブリケットの粒径を調整し、酸性塊鉱石25との混合が促進されるようにする。また、回転炉床式還元炉においても粉粒状の還元鉄も排出されるが、これらから製造する還元鉄ブリケットの粒径は(2)式を基に決定することができる。
(第二の実施態様)
図3 に鉄系ダスト由来の還元鉄を用いた高炉操業方法(実施態様2)を示す。
本実施態様では、還元鉄の製造工程における静置養生において、輸送ベルト24 に積載した水浸処理後の成型還元鉄の上に前記酸性塊鉱石25を積載し、ブリケット静置処理装置22 に投入し、ブリケット静置処理装置22 の中で養生した還元鉄と酸性塊鉱石の混合物を作製することを特徴とする。
第一の実施態様においては、ダブルロール型ブリケット成型機19により冷間でブリケット成型した後、ブリケット水浸処理装置21でブリケットを水に浸漬させ、ブリケット静置処理装置22で養生することにより強度を発現させる。即ち、冷間で製造された還元鉄ブリケット6aは、その状態では十分な強度を有していないが、水浸処理と静置処理を施すことによって、還元鉄ブリケットを構成する還元鉄粒子同士の結合を強化し、強度の大きいブリケットとなる。
ブリケット静置処理装置22は、ホッパー とすることが設置スペースを小さくできる点で好ましく、ホッパーの中で濡れた状態のブリケットの充填層を造り、ホッパー下部から工場排ガス や空気等、酸素や炭酸ガスを含むガスを吹き込み、強度を発現させる。
しかし、ブリケット静置処理装置22の内部では、還元鉄ブリケット6a同士が付着して、大きな塊となってしまう問題がある(金属鉄は酸化すると固着する)。還元鉄ブリケット6aの表面には水が配置されており、この状態で長時間経過すると、ブリケットの接点に水酸化鉄ができる。これによって、ブリケット同士が結合して、更に 脱水や 酸化が進むことによって、結合が強化される。最終的には、複数のブリケットが固着して大きな塊となってしまう。ブリケット静置処理装置22の内部に大きな塊ができると、ブリケット静置処理装置22からの切り出しや、高炉に搬送する上での障害となる。
そこで、第二の実施態様においては、固着抑制の観点から、ブリケット静置処理装置22の中で、還元鉄ブリケットと酸性塊鉱石を混合し、養生する。要するに還元鉄ブリケット同士の接触をできる限り少なくすることで、ブリケット静置処理装置22内での固着を抑制できる。ブリケット静置処理装置22に同時装入することによって、酸性塊鉱石25と還元鉄ブリケット6aの混合した状態を作る。
ブリケット静置処理装置22の内部では、酸性塊鉱石25と還元鉄ブリケット6aの混合物が充填層を形成しており、充填層下部から還元鉄ブリケット6aの強度発現に必要な空気や工場燃焼排ガス等が供給される。還元鉄ブリケット6aの強度発現の進行にともない、還元鉄ブリケット6aと酸性塊鉱石25は下部に移動して、最終的にはブリケット静置処理装置22の下部から排出される。
具体的には、輸送ベルト24で輸送される水浸処理された還元鉄ブリケット6aの上に、酸性塊鉱石槽38から切り出した酸性塊鉱石25を乗せ、還元鉄ブリケット6aと酸性塊鉱石25をブレンドし、ブリケット静置処理装置22に投入する。還元鉄ブリケット6aと酸性塊鉱石25の混合比率のコントロールは、還元鉄ブリケット6aの輸送ベルトに設置した秤量器(ベルトスケール)41で秤量した還元鉄ブリケット6aの質量に対応し、酸性塊鉱石槽38から切り出す酸性塊鉱石25 の切り出し 質量をコントロールする。ブリケット静置処理装置22から排出される養生後の還元鉄ブリケット6aと酸性塊鉱石25は、更に粗粒状還元鉄13と混合され、鉱石サージホッパー29 に打ち込まれる。
以上の操作により、還元鉄ブリケット同士が固着することなく、高炉に装入することができる。
(還元鉄の製造)
亜鉛成分を約6.0質量%含有する粉粒状の鉄系ダストに炭材を混合した原料を、ロータリキルンにて還元焙焼処理を行い、常温まで冷却して得た還元鉄粉を使用した。この還元鉄粉を常温でブリケット化した後、特許文献1に記載されるような水浸処理および静置処理を行うことによって、ブリケット1個当たりの圧壊強度が1470N以上となるようにした。
表1に製造した還元鉄ブリケットの成分分析値を示す。32.6質量%の金属鉄が含まれている。また、脈石比((CaO+SiO2+Al23+MgO)/Fe)が0.472で、塩基度(CaO/SiO2)は2.9であった。
Figure 2015199978
(高温荷重軟化滴下実験)
高炉内での高温通気性状を把握するため、酸性塊鉱石と還元鉄ブリケットの混合物を試料として反応管内に充填し、高温荷重軟化滴下実験を実施した。
この還元鉄ブリケットを、内径70mmの反応管にローブリバー(酸性塊鉱石)や焼結鉱と混合して入れ、荷重軟化試験を行った。還元鉄ブリケット、ローブリバーおよび焼結鉱の粒径は15〜19mmとした。ローブリバーおよび焼結鉱の成分分析値は表1に示すとおりである。ローブリバーの脈石比((CaO+SiO2+Al23+MgO)/Fe)は0.108で、還元鉄ブリケットと比べ少ない値である。また、塩基度は0.02の酸性塊鉱石である。使用したローブリバー塊鉱石に含まれる結晶水は9質量%であった。一方、焼結鉱の脈石比は0.272、塩基度は1.7であった。これらには金属鉄は含まれていない。
試料を充填した反応管を電気炉にセットし、試料温度が1873Kとなるまで昇温した。昇温速度は、常温から993Kまでを5K/min、993から1323Kまでを3.5K/min、1323から1873Kまでを4K/minとした。その間、試料には上部より1kg/cm2の一定荷重をかけ、充填層内の圧力損失を連続的に測定した。また、試料昇温中、充填層下部より還元ガスを供給した。還元ガスはCO、CO2およびN2の混合ガスで、各々の流量は試料温度によって変更した。試料温度が常温から573KまではN2ガスのみを5NL/min流した。573から973Kの範囲では、COガスが8NL/min、CO2ガスが5NL/min、N2ガスが17NL/minの混合ガスを流通させた。
973から1173Kの範囲では、COガスが10NL/min、CO2ガスが3NL/min、N2ガスが17NL/minの混合ガスとした。1173から1473Kの範囲では、COガスが12NL/min、CO2ガスが1NL/min、N2ガスが17NL/minの混合ガスとした。1473から1873Kの範囲では、COガスが13NL/min、CO2ガスが0NL/min、N2ガスが17NL/minの混合ガスとした。この条件は、サンプルの混合割合を変更したいずれの実験でも同じとした。
高温荷重軟化滴下実験では、充填層の軟化収縮による変位、および圧力損失を連続的に測定し、573Kから1873Kにかけての高温通気抵抗指数KSを算出し評価した。高温通気抵抗指数KSは、充填層高さあたりの高温通気抵抗を温度で積分した値であって、下記の式(3)で表され、この数値が高い程、通気性が悪化することを意味する。式(3)中で、ΔPは 充填層内での圧力損失(N/m2)、Hは充填層高さ(m)、ρgはガス密度(kg/m3)、μgはガス粘度(kg/m/sec)、ugはガス流速(m/s)である。
Figure 2015199978
(試験結果)
試験結果を表2にまとめた。
<比較例1>
比較例1は、焼結鉱単味での試験結果を示す。試験サンプルの脈石比は0.272、塩基度は1.7で、高温通気抵抗指数KS値は1967×105であった。
<比較例2>
比較例2は、還元鉄ブリケット単味で試験した結果を示す。試験サンプルの脈石比は0.472、塩基度は2.9であった。金属鉄は32.6質量%含まれるが、この時のKS値は4、483×105で、焼結鉱単味での値と比べ大きかった。これは、 脈石比や塩基度が、焼結鉱と比べ、極端に高いことによるものである。
<比較例3>
比較例3は、ローブリバー単味で試験した結果を示す。試験サンプルの脈石比は0.108であるが、高温通気抵抗指数KS値は6、172×105と焼結鉱単味での値と比べ、高い値であった。この理由として、塩基度が0.02と極めて低く、生成する溶融スラグの粘度が高いことがあげられる。
<実施例1>
実施例1は、ローブリバーと還元鉄ブリケットを重量比で3/1となるように混合したケースである。この時の脈石比は0.201と、ローブリバーと比べ大きいが、高温通気抵抗指数KSは1、959×105と、従来の高炉原料であるローブリバーや焼結鉱を単味で試験した時と比べ、低位であった。これは、混合後の塩基度が1.0となることによって生成する溶融スラグの粘度が低くなることによるものである。
<実施例2>
実施例2は、ローブリバーと還元鉄ブリケットを重量比で1/1で混合したケースである。この時の脈石比は0.293となるが、混合後の塩基度が1.7となるため、生成する溶融スラグの粘度は低下する。更に、金属鉄が16.3質量%まで増加することもあり、高温通気抵抗指数KSは1、116×105まで低下した。
<比較例4>
還元鉄ブリケットを焼結鉱と混合した。混合サンプルの塩基度は1.9で、脈石比は0.313となる。高温通気抵抗指数KS値は2、051×105と、焼結鉱単味で試験した時と比べ、若干、増加した。
<まとめ>
鉄系ダスト由来の還元鉄(比較例2)及び酸性塊鉱石(比較例3)の単味使用の場合、高温通気抵抗指数(KS値)は、非常に大きい。鉄系ダスト由来の還元鉄及び酸性塊鉱石を混合し、脈石比0.32以下、塩基度(CaO/SiO2)が1.0以上2.0以下に調整することにより、高温通気抵抗指数(KS値)が、大きく低下した。
この場合、焼結鉱単味使用の場合(比較例1)、焼結鉱と鉄系ダスト由来の還元鉄の混合の場合(比較例4)よりも、高温通気抵抗指数(KS値)が低下した。
Figure 2015199978
鉄系ダスト由来の還元鉄を使用しても、高温通気抵抗が上昇しない還元鉄を用いた高炉操業に利用することができる。
1:原料供給ホッパー、2:粉粒状還元鉄、3:スクリュー、4:ロール、5:ポケット、6a:還元鉄ブリケット、6b:粉粒状還元鉄(ブリケット化後)、6c:粉粒状還元鉄(静置後)、11:還元炉、12:還元炉原料、13:粗粒状還元鉄、 15:高炉、16:篩い分級装置、17:添加物(水、バインダー)、18:混合機、19:ダブルロール型ブリケット成型機、20:篩い分級装置、21:ブリケット水浸処理装置(水槽)、22:ブリケット静置処理装置、、24:輸送ベルト、25:酸性塊鉱石、、 29:鉱石サージホッパー 、 30:コークスサージホッパー 、33:貯留ホッパー、 34:集合ホッパー、 35: 旋回シュート、37:還元鉄槽、38:酸性塊鉱石槽、39:焼結鉱・その他の鉄鉱石槽、40:コークス槽、41:秤量器(ベルトスケール)。

Claims (4)

  1. 鉄系ダストを加熱・還元・成型して製造した還元鉄であって、
    前記還元鉄は、鉄分が50.0質量%以上、脈石比((CaO+SiO2+Al23+MgO)/Fe)が0.30以上0.60以下、塩基度(CaO/SiO2)が2.0以上であり、
    前記還元鉄と酸性塊鉱石を混合して、鉄分が50.0質量%以上、脈石比((CaO+SiO2+Al23+MgO)/Fe)が0.32以下、塩基度(CaO/SiO2)が1.0以上2.0以下に調整した混合物を作成し、
    前記混合物を高炉に装入することを特徴とする高炉操業方法。
  2. 静置養生処理した還元鉄及び酸性塊鉱石のそれぞれの槽から同一の輸送ベルトに切り出し、ベルト上で混合し、鉱石ホッパーに投入して、養生した還元鉄と酸性塊鉱石の混合物を作成することを特徴とする請求項1に記載の高炉操業方法。
  3. 還元鉄の製造工程における静置養生において、
    輸送ベルトに積載した水浸処理後の成型還元鉄の上に前記酸性塊鉱石を積載し、静置養生槽に投入し、還元鉄と酸性塊鉱石の混合物を作成することを特徴とする請求項1に記載の高炉操業方法。
  4. 前記酸性塊鉱石が、ローブリバー塊鉱石であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の高炉操業方法。
JP2014078130A 2014-04-04 2014-04-04 還元鉄を用いた高炉操業方法 Active JP6273983B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078130A JP6273983B2 (ja) 2014-04-04 2014-04-04 還元鉄を用いた高炉操業方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078130A JP6273983B2 (ja) 2014-04-04 2014-04-04 還元鉄を用いた高炉操業方法

Publications (2)

Publication Number Publication Date
JP2015199978A true JP2015199978A (ja) 2015-11-12
JP6273983B2 JP6273983B2 (ja) 2018-02-07

Family

ID=54551530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078130A Active JP6273983B2 (ja) 2014-04-04 2014-04-04 還元鉄を用いた高炉操業方法

Country Status (1)

Country Link
JP (1) JP6273983B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049780A1 (ja) * 2020-09-03 2022-03-10 株式会社神戸製鋼所 銑鉄製造方法
WO2022259563A1 (ja) 2021-06-08 2022-12-15 株式会社神戸製鋼所 銑鉄製造方法及び鉱石原料
WO2023199550A1 (ja) * 2022-04-11 2023-10-19 Jfeスチール株式会社 高炉の操業方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021577A1 (ja) * 2009-08-21 2011-02-24 新日本製鐵株式会社 高炉用の非焼成含炭塊成鉱およびその製造方法
JP2011063835A (ja) * 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd 塊成化状高炉用原料の強度改善方法
JP2011184718A (ja) * 2010-03-05 2011-09-22 Nippon Steel Corp マイクロ波加熱による酸化鉄含有物質の還元方法、及び、焼結鉱製造用原料の製造方法、並びに、高炉原料の製造方法
JP2011225926A (ja) * 2010-04-19 2011-11-10 Jfe Steel Corp 製鉄用炭材内装塊成鉱およびその製造方法
US20130047787A1 (en) * 2010-03-25 2013-02-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Carbon-material-containing iron oxide briquette composition, method for producing the same, and method for producing direct reduced iron using the same
JP2013170311A (ja) * 2012-02-23 2013-09-02 Jfe Steel Corp 焼結鉱の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021577A1 (ja) * 2009-08-21 2011-02-24 新日本製鐵株式会社 高炉用の非焼成含炭塊成鉱およびその製造方法
JP2011063835A (ja) * 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd 塊成化状高炉用原料の強度改善方法
JP2011184718A (ja) * 2010-03-05 2011-09-22 Nippon Steel Corp マイクロ波加熱による酸化鉄含有物質の還元方法、及び、焼結鉱製造用原料の製造方法、並びに、高炉原料の製造方法
US20130047787A1 (en) * 2010-03-25 2013-02-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Carbon-material-containing iron oxide briquette composition, method for producing the same, and method for producing direct reduced iron using the same
JP2011225926A (ja) * 2010-04-19 2011-11-10 Jfe Steel Corp 製鉄用炭材内装塊成鉱およびその製造方法
JP2013170311A (ja) * 2012-02-23 2013-09-02 Jfe Steel Corp 焼結鉱の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049780A1 (ja) * 2020-09-03 2022-03-10 株式会社神戸製鋼所 銑鉄製造方法
JP2022042774A (ja) * 2020-09-03 2022-03-15 株式会社神戸製鋼所 銑鉄製造方法
JP7339222B2 (ja) 2020-09-03 2023-09-05 株式会社神戸製鋼所 銑鉄製造方法
WO2022259563A1 (ja) 2021-06-08 2022-12-15 株式会社神戸製鋼所 銑鉄製造方法及び鉱石原料
KR20230170047A (ko) 2021-06-08 2023-12-18 가부시키가이샤 고베 세이코쇼 선철 제조 방법 및 광석 원료
WO2023199550A1 (ja) * 2022-04-11 2023-10-19 Jfeスチール株式会社 高炉の操業方法

Also Published As

Publication number Publication date
JP6273983B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5059379B2 (ja) 高炉装入原料用ホットブリケットアイアンおよびその製造方法
WO2011034195A1 (ja) フェロコークスの製造方法
CN102102147B (zh) 链篦机回转窑生产镁质球团工艺
JP4627236B2 (ja) 炭材内装塊成化物の製造方法
CN103374635B (zh) 一种高炉渣铁的回收利用方法
JP6273983B2 (ja) 還元鉄を用いた高炉操業方法
JP4603628B2 (ja) 含炭非焼成ペレットを用いる高炉操業方法
JP5512205B2 (ja) 塊成化状高炉用原料の強度改善方法
JP2015193930A (ja) 焼結鉱の製造方法
CN106414778A (zh) 粒状金属铁的制造方法
JP4918754B2 (ja) 半還元焼結鉱およびその製造方法
JP2010138427A (ja) 製鋼用還元鉄塊成鉱の製造方法
JP5786668B2 (ja) 非焼成含炭塊成鉱の製造方法
WO2005111248A1 (ja) 半還元焼結鉱およびその製造方法
JP6098364B2 (ja) 塊成化状高炉用原料の製造方法
KR101499317B1 (ko) 제철소 부산물을 이용한 브리켓 제조방법
JP2007063605A (ja) 炭材内装塊成化物の製造方法
KR20050109724A (ko) 금속철의 제조방법 및 사용방법
JP5463571B2 (ja) 鉄原料の塊成方法およびその塊成設備
JP2016211032A (ja) フェロニッケルの製造方法
JP4867394B2 (ja) 製鉄用非焼成塊成鉱
JP2020045542A (ja) 酸化鉱石の製錬方法
Kurunov et al. Stiff Vacuum Extrusion for Agglomeration of Natural and Anthropogenic Materials in Metallurgy
Long et al. Comprehensive Utilization of Iron-Bearing Converter Wastes
JP2017172020A (ja) 焼結鉱製造用の炭材内装造粒粒子およびそれを用いた焼結鉱の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6273983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350