JP2015192015A - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP2015192015A
JP2015192015A JP2014067931A JP2014067931A JP2015192015A JP 2015192015 A JP2015192015 A JP 2015192015A JP 2014067931 A JP2014067931 A JP 2014067931A JP 2014067931 A JP2014067931 A JP 2014067931A JP 2015192015 A JP2015192015 A JP 2015192015A
Authority
JP
Japan
Prior art keywords
substrate
solid
imaging device
state imaging
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014067931A
Other languages
English (en)
Inventor
良章 竹本
Yoshiaki Takemoto
良章 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014067931A priority Critical patent/JP2015192015A/ja
Priority to PCT/JP2015/051650 priority patent/WO2015146253A1/ja
Publication of JP2015192015A publication Critical patent/JP2015192015A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

【課題】光電変換部が形成された半導体基板を複数段に積層した構成の固体撮像装置において、2段目以降の半導体基板に形成された光電変換部が生成する電気信号を向上させることができる固体撮像装置を提供する。【解決手段】入射された第1の光線を電気信号に変換する第1の光電変換部が形成された第1の半導体層を有する第1の基板と、第1の基板を透過して入射された第2の光線を電気信号に変換する第2の光電変換部が形成された第2の半導体層を有する第2の基板とを備え、第1の基板は、第1の半導体層に第1の光線が入射する側の面である第1の面に接して形成され、第1の面における第1の光線の反射を低減する第1の反射防止膜と、第1の光線が第1の半導体層を透過して第2の光線として出射される、第1の面と反対側の面である第2の面に接して形成され、第2の面における第2の光線の反射を低減する第2の反射防止膜とを備える。【選択図】図4

Description

本発明は、固体撮像装置に関する。
近年、ビデオカメラや電子スチルカメラなどの撮像装置が広く一般に普及している。これらの撮像装置(以下、「カメラ」という)には、CCD(Charge Coupled Device:電荷結合素子)型の固体撮像装置や、増幅型の固体撮像装置が使用されている。増幅型の固体撮像装置は、光が入射する画素内に設けられたフォトダイオードなどの光電変換部が生成、蓄積した電気信号を、画素内に設けられた増幅部に導き、増幅部が増幅した信号を画素から出力する。増幅型の固体撮像装置では、このような画素が二次元のマトリクス状に複数配置されて、画素アレイ部が形成されている。増幅型の固体撮像装置には、例えば、CMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)トランジスタを用いたCMOS型固体撮像装置などがある。
従来のCMOS型固体撮像装置は、二次元のマトリクス状に配置された各画素内の光電変換部が生成、蓄積した電気信号を、同一の基板上に設けられた回路部によって行毎に順次読み出す方式を採用している。一般的なモノリシック構造(単一の半導体基板で製造された構造)を有したCMOS型固体撮像装置では、光が入射する面から見たとき、入射光を電気信号に変換する複数の画素が形成された画素アレイ部の周囲には、垂直走査回路、水平走査回路、列処理回路や、出力回路などの周辺回路が配置されている。そして、画素アレイ部とこれらの周辺回路との間には、列毎または行毎に、電気信号を伝達するための配線が設けられている。
ところで、近年のCMOS型固体撮像装置には、データレートの向上、面内の撮像性能の同一性の向上、高機能化なども要求されている。しかしながら、従来のモノリシック構造を有したCMOS型固体撮像装置では、平面方向の電気伝導における速度制限や密度制限などによって性能を向上させることが難しい。また、前述の画素アレイ部分と周辺回路部分では、最適な製造プロセスが異なることから、機能向上を実現するために、コスト・製造プロセスの問題が発生している。このため、複数の半導体基板が積層された状態で動作するCMOS型固体撮像装置が提案されている。
そして、このようなCMOS型固体撮像装置では、例えば、特許文献1や特許文献2のように、光電変換部を備えた複数の半導体基板を積層することによって、感度向上や機能向上の実現を図る技術が開示されている。特許文献1では、入射光を受光して光電変換する光電変換部が形成された第1の固体撮像素子と、第1の固体撮像素子を透過した光を受光して光電変換する光電変換部が形成された第2の固体撮像素子とを重ね合わせて構成し、少なくとも一方の固体撮像素子を裏面照射(BackSide Illumination:BSI)型とする固体撮像装置の技術が開示されている。また、特許文献2では、光を受光して光電変換する光電変換部が形成された複数の半導体チップを複数段に積層して構成し、それぞれの半導体チップが異なる波長の光に応じて光電変換する固体撮像装置の技術が開示されている。
特開2008−227250号公報 特開2010−135700号公報
ところで、一般的な固体撮像装置では、表面照射(FrontSide Illumination:FSI)型や裏面照射型に関わらず、半導体基板の上面、すなわち、光電変換部に光が入射する側の半導体基板の面にのみ、入射光の反射を低減する反射防止膜が形成されている。特許文献1に開示された技術でも、裏面照射型とした第1の固体撮像素子において、カラーフィルターやマイクロレンズが形成され、光が入射する裏面側の面にのみ反射防止膜が形成されていることが開示されている。なお、特許文献2に開示された技術には、反射防止膜についての開示はされていない。
このため、光電変換部が形成された半導体基板を複数段に積層した構成の固体撮像装置では、光が入射する1段目の半導体基板を透過する光線が、光の出射する側の界面によって反射されてしまい、2段目以降の半導体基板に十分な光線が届かない。これにより、2段目以降の半導体基板に形成された光電変換部は、1段目の半導体基板における前述の反射の影響によって十分な光量を確保することができず、生成する電気信号のレベルが低下してしまう。この結果、光電変換部が形成された半導体基板を複数段に積層した構成の固体撮像装置では、感度が低下してしまうという問題がある。
本発明は、上記の課題認識に基づいてなされたものであり、光電変換部が形成された半導体基板を複数段に積層した構成の固体撮像装置において、2段目以降の半導体基板に形成された光電変換部が生成する電気信号を向上させることができる固体撮像装置を提供することを目的としている。
上記の課題を解決するため、本発明の固体撮像装置は、光電変換部を有する画素が二次元のマトリクス状に複数配置された画素部を具備した複数の基板が積層される構造の固体撮像装置であって、入射された第1の光線を電気信号に変換する第1の光電変換部が形成された第1の半導体層を有する第1の基板と、前記第1の基板を透過して入射された第2の光線を電気信号に変換する第2の光電変換部が形成された第2の半導体層を有する第2の基板と、を備え、前記第1の基板は、前記第1の半導体層に前記第1の光線が入射する側の面である第1の面に接して形成され、該第1の面における該第1の光線の反射を低減する第1の反射防止膜と、前記第1の半導体層に入射した前記第1の光線が該第1の半導体層を透過して前記第2の光線として出射される、前記第1の面と反対側の面である第2の面に接して形成され、該第2の面における該第2の光線の反射を低減する第2の反射防止膜と、を備えることを特徴とする。
また、本発明の固体撮像装置において、前記第1の反射防止膜と前記第2の反射防止膜とは、異なる材料によって形成される、ことを特徴とする。
また、本発明の固体撮像装置において、前記第1の反射防止膜と前記第2の反射防止膜とは、同じ材料によって形成される、ことを特徴とする。
また、本発明の固体撮像装置において、前記第1の反射防止膜が前記第1の光線を透過する分光透過特性と、前記第2の反射防止膜が前記第2の光線を透過する分光透過特性とは、異なる分光透過特性である、ことを特徴とする。
また、本発明の固体撮像装置において、前記第2の反射防止膜の分光透過率が最も高い波長は、前記第1の反射防止膜の分光透過率が最も高い波長よりも長波長側にある、ことを特徴とする。
また、本発明の固体撮像装置において、前記第2の基板は、前記第2の半導体層に前記第2の光線が入射する側の面である第3の面に接して形成され、該第3の面における該第2の光線の反射を低減する第3の反射防止膜、を備え、前記第3の反射防止膜の分光透過率が最も高い波長は、前記第2の反射防止膜の分光透過率が最も高い波長と同じ波長である、ことを特徴とする。
また、本発明の固体撮像装置は、前記第2の基板を透過して入射された第3の光線を電気信号に変換する第3の光電変換部が形成された第3の半導体層を有する第3の基板、をさらに備え、前記第2の基板は、前記第2の半導体層に入射した前記第2の光線が該第2の半導体層を透過して前記第3の光線として出射される、前記第3の面と反対側の面である第4の面に接して形成され、該第4の面における該第3の光線の反射を低減する第4の反射防止膜、を備え、前記第3の基板は、前記第3の半導体層に前記第3の光線が入射する側の面である第5の面に接して形成され、該第5の面における該第3の光線の反射を低減する第5の反射防止膜、を備え、前記第4の反射防止膜の分光透過率が最も高い波長は、前記第5の反射防止膜の分光透過率が最も高い波長と同じ波長である、ことを特徴とする。
本発明によれば、光電変換部が形成された半導体基板を複数段に積層した構成の固体撮像装置において、2段目以降の半導体基板に形成された光電変換部が生成する電気信号を向上させることができるという効果が得られる。
本発明の第1の実施形態による固体撮像装置の概略構成を示した概観図である。 本第1の実施形態の固体撮像装置における第1の基板の概略構成を示した平面図である。 本第1の実施形態の固体撮像装置における第2の基板の概略構成を示した平面図である。 本第1の実施形態の固体撮像装置の構造を示した断面図である。 本発明の第2の実施形態の固体撮像装置に形成された反射防止膜における光の波長に対する透過率を説明する図である。 本発明の第3の実施形態の固体撮像装置の構造を示した断面図である。 本発明の第4の実施形態の固体撮像装置の構造を示した断面図である。 本発明の第5の実施形態の固体撮像装置における第1の基板の概略構成を示した平面図である。 本第5の実施形態の固体撮像装置における第2の基板の概略構成を示した平面図である。 本第5の実施形態の固体撮像装置の構造を示した断面図である。
<第1の実施形態>
以下、本発明の実施形態について、図面を参照して説明する。図1は、本第1の実施形態による固体撮像装置の概略構成を示した概観図である。本第1の実施形態の固体撮像装置10は、複数の基板を積層することによって構成されている。図1において、固体撮像装置10は、第1の基板11と第2の基板12とが、接続層13によって接合されている。なお、本第1の実施形態では、第1の基板11と第2の基板12との2枚の基板が積層された例を示しているが、積層する基板の枚数は2枚に限らず、さらに多くの枚数の基板を積層する構成であってもよい。
接続層13は、例えば、樹脂接着剤などの樹脂膜、または表面活性化によるプラズマ接合を行うための少なくとも1層の無機膜で構成され、第1の基板11と第2の基板12とを接合する。また、接続層13には、第1の基板11と第2の基板12とを電気的に接続するための接続電極部を含んでいる。
第1の基板11は、入射された光線を電気信号に変換して出力する半導体基板である。第1の基板11には、第1の画素アレイ部111と、第1の垂直走査回路112と、第1の水平走査回路113と、ボンディングパッド114と、接続電極アレイ部115とが配置されている。また、第1の基板11に入射された光線は、光線が入射した面と反対側の面から出射される。
第2の基板12は、第1の基板11から出射された光線を電気信号に変換して出力する半導体基板である。
次に、本第1の実施形態の固体撮像装置10を構成する第1の基板11について説明する。図2は、本第1の実施形態の固体撮像装置10における第1の基板11の概略構成を示した平面図である。図2に示した第1の基板11の平面図は、第1の基板11に光が入射する側から見たときの平面を示している。なお、以下の説明においては、第1の基板11が、裏面照射型のCMOS型固体撮像装置と同様の構成である場合について説明する。しかし、第1の基板11の構成は、表面照射型のCMOS型固体撮像装置であってもよく、CCD型の固体撮像装置(表面照射型および裏面照射型を含む)と同様の構成であってもよい。上述したように、第1の基板11には、第1の画素アレイ部111と、第1の垂直走査回路112と、第1の水平走査回路113と、ボンディングパッド114と、接続電極アレイ部115とが配置されている。
第1の画素アレイ部111は、入射された光線を電気信号に変換する光電変換部と複数のトランジスタとから構成される画素(以下、「第1の単位画素」という)が、二次元のマトリクス状に複数配置されている画素部である。
第1の垂直走査回路112は、第1の画素アレイ部111内のそれぞれの第1の単位画素を駆動し、各第1の単位画素が入射した光を光電変換した電気信号(以下、「第1の画素信号」という)を第1の水平走査回路113に出力させる。第1の垂直走査回路112には、第1の画素アレイ部111内のそれぞれの第1の単位画素を駆動する駆動ドライバが備えられている。そして、第1の垂直走査回路112は、第1の画素アレイ部111内のそれぞれの第1の単位画素を駆動するための駆動信号を生成し、生成した駆動信号を第1の画素アレイ部111に配置された第1の単位画素の行毎に順次出力して、第1の画素アレイ部111内のそれぞれの第1の単位画素を行毎に駆動する。
第1の水平走査回路113は、第1の垂直走査回路112によって駆動された第1の単位画素から出力された第1の画素信号を行毎に読み出し、読み出した第1の画素信号を、第1の画素アレイ部111に配置された第1の単位画素の列毎に順次出力する。第1の水平走査回路113には、第1の単位画素から第1の画素信号を順次読み出すための読み出し回路が構成されている。なお、読み出し回路には、例えば、読み出した第1の画素信号に対してノイズ除去などの処理を行うCDS(Correlated Double Sampling:相関二重サンプリング)処理回路や、読み出した第1の画素信号(アナログ信号)をアナログデジタル変換するAD変換器などを備えていてもよい。
ボンディングパッド114は、例えば、セラミックパッケージなどに固体撮像装置10が組み付けられた(パッケージされた)場合に、パッケージの外部の回路と固体撮像装置10との間で電気信号の送受信を行うための端子である。第1の水平走査回路113から順次出力された第1の画素信号は、対応するボンディングパッド114を介して外部に出力される。また、外部の回路から入力された電気信号は、対応するボンディングパッド114を介して第1の基板11内のそれぞれの構成要素に入力される。なお、ボンディングパッド114は、第1の基板11内のそれぞれの構成要素と電気的に接続されているが、例えば、接続電極アレイ部115を介して第2の基板12内のそれぞれの構成要素に接続される構成であってもよい。また、ボンディングパッド114は、第1の基板11に配置されるのみではなく、第2の基板12に配置されてもよい。
接続電極アレイ部115は、第1の基板11内の構成要素と第2の基板12内の構成要素とを電気的に接続するための接続電極部が、アレイ状に複数配置されている。接合した第1の基板11および第2の基板12に配置された構成要素同士は、接続電極アレイ部115に配置された対応するそれぞれの接続電極部を介して、それぞれの電気信号の送受信を行う。接続電極部としては、例えば、シリコン貫通電極(TSV:Through−Silicon−Via)の構造が用いられる。なお、接続電極部の構造として、例えば、蒸着法、めっき法で作製されるマイクロバンプの構造や、金属配線層によって接続する構造を用いてもよい。
なお、図2に示した第1の基板11の平面図では、接続電極アレイ部115が第1の水平走査回路113と並行に並んで配置されている構成を示しているが、接続電極アレイ部115が配置される第1の基板11内の位置は、図2に示した位置に限定されるものではない。例えば、第1の水平走査回路113と並行な第1の画素アレイ部111の反対側の位置に配置されてもよく、第1の垂直走査回路112と並行に並んだ位置や、第1の垂直走査回路112と並行な第1の画素アレイ部111の反対側の位置に配置されてもよい。また、例えば、接続電極アレイ部115が複数の位置に分散して配置されてもよく、前述した位置の少なくとも一部に配置されてもよい。
次に、本第1の実施形態の固体撮像装置10を構成する第2の基板12について説明する。図3は、本第1の実施形態の固体撮像装置10における第2の基板12の概略構成を示した平面図である。図3に示した第2の基板12の平面図は、第1の基板11から出射された光線が第2の基板12に入射する側から見たときの平面を示している。なお、以下の説明においては、第2の基板12が、表面照射型のCMOS型固体撮像装置と同様の構成である場合について説明する。しかし、第2の基板12の構成は、裏面照射型のCMOS型固体撮像装置であってもよく、CCD型の固体撮像装置(表面照射型および裏面照射型を含む)と同様の構成であってもよい。第2の基板12には、第2の画素アレイ部121と、第2の垂直走査回路122と、第2の水平走査回路123と、接続電極アレイ部115とが配置されている。
第2の画素アレイ部121は、第1の基板11を透過して入射された光線を電気信号に変換する光電変換部と複数のトランジスタとから構成される画素(以下、「第2の単位画素」という)が、二次元のマトリクス状に複数配置されている画素部である。なお、第2の画素アレイ部121内のそれぞれの第2の単位画素は、第2の基板12と第1の基板11とを接合した際に、第1の基板11の第1の画素アレイ部111内に配置された第1の単位画素の位置と同様の位置となるように配置されている。
第2の垂直走査回路122は、第1の基板11に配置された第1の垂直走査回路112と同様に、第2の画素アレイ部121内のそれぞれの第2の単位画素を行毎に駆動し、各第2の単位画素が入射した光を光電変換した電気信号(以下、「第2の画素信号」という)を第2の水平走査回路123に順次出力させる。
第2の水平走査回路123は、第1の基板11に配置された第1の水平走査回路113と同様に、第2の垂直走査回路122によって駆動された第2の単位画素から出力された第2の画素信号を行毎に読み出して、第2の単位画素の列毎に順次出力する。第2の水平走査回路123には、第2の単位画素から第2の画素信号を順次読み出すための読み出し回路が構成されている。なお、第2の水平走査回路123に構成された読み出し回路にも、第1の基板11に配置された第1の水平走査回路113に構成された読み出し回路と同様に、例えば、CDS処理回路やAD変換器などを備えていてもよい。
接続電極アレイ部115は、第1の基板11に配置された接続電極アレイ部115に配置されたそれぞれの接続電極部に対応する接続電極部が、アレイ状に複数配置されている。図2においては、第2の基板12内の接続電極アレイ部115と第1の基板11内の接続電極アレイ部115とが対応していることを表すため、同一の符号を付与している。第2の基板12内の接続電極アレイ部115に配置されたそれぞれの接続電極部の構造は、第1の基板11内の接続電極アレイ部115に配置されたそれぞれの接続電極部の構造と同様である。なお、第2の基板12内の接続電極アレイ部115は、第2の基板12と第1の基板11とを接合した際に、第1の基板11内の接続電極アレイ部115と同様の位置となるように配置されている。従って、第2の基板12内で接続電極アレイ部115が配置される位置は、第1の基板11内で接続電極アレイ部115が配置された位置に応じて変更される。
次に、本第1の実施形態の固体撮像装置10の構造について説明する。図4は、本第1の実施形態の固体撮像装置10の構造を示した断面図である。図4には、図2に示した第1の基板11に配置された第1の画素アレイ部111内の第1の単位画素と、図3に示した第2の基板12に配置された第2の画素アレイ部121内の第2の単位画素との領域の構造の一部を示している。上述したように、固体撮像装置10は、第1の基板11と第2の基板12とが接続層13によって接合されており、第1の基板11の第1の画素アレイ部111内に配置された第1の単位画素の位置と、第2の基板12の第2の画素アレイ部121内に配置された第2の単位画素の位置とが同様の位置となるように配置されている。なお、図4に示した固体撮像装置10において、第1の単位画素と第2の単位画素とを区別しない場合には、単に「単位画素」という。
第1の基板11は、マイクロレンズ1111と、カラーフィルター(色フィルター)1112と、透明樹脂層1113と、遮光膜1114と、シリコン酸化膜1115と、第1の反射防止膜1116と、第1の半導体層1117と、金属配線層1120とで構成される。また、接続層13によって第1の基板11と接合される第2の基板12は、金属配線層1211と第2の半導体層1215とによって構成される。
マイクロレンズ1111は、固体撮像装置10に入射された光線(以下、「第1の光線」という)を集光する。マイクロレンズ1111は、固体撮像装置10に配置されたそれぞれの単位画素に対応する位置に形成される。そして、マイクロレンズ1111は、入射された第1の光線を、例えば、第1の半導体層1117と第2の半導体層1215との間に集光する。
カラーフィルター1112は、固体撮像装置10に入射する第1の光線の分光透過特性を変えることによって、直下に形成されたそれぞれの単位画素毎に、異なる色の第1の光線を入射させる。カラーフィルター1112は、マイクロレンズ1111および単位画素のそれぞれに対応する位置に形成される。
透明樹脂層1113は、第1の基板11に光が入射する面を平坦化する層である。
遮光膜1114は、隣接する単位画素同士の間を遮光する。遮光膜1114は、金属材料で構成され、例えば、タングステンまたはアルミを主材料とし、密着層としてチタンやその窒化物を用いた複数の層で形成される。
シリコン酸化膜1115は、遮光膜1114を形成するために適宜形成される膜である。なお、図4に示した固体撮像装置10の構成では、遮光膜1114の下部、すなわち、固体撮像装置10に第1の光線が入射してくる方向と反対側の面にのみシリコン酸化膜1115を形成している場合を示しているが、遮光膜1114の上部、すなわち、固体撮像装置10に第1の光線が入射してくる方向の面にもシリコン酸化膜を形成してもよい。
第1の反射防止膜1116は、固体撮像装置10に入射された第1の光線の反射を低減する膜である。第1の反射防止膜1116は、高誘電体材料によって形成され、例えば、酸化タンタル、酸化ハフニウム、窒化ケイ素を用いた単一の層または複数の層で、第1の半導体層1117に接する面(以下、「第1の面」という)に形成される。このとき、第1の反射防止膜1116は、入射された第1の光線が予め定めた分光透過特性で第1の半導体層1117に入射されるように形成される。例えば、第1の半導体層1117に入射される第1の光線の波長を550nm付近に最適化させ、広い波長領域に渡って反射率を低くしたい場合には、酸化ハフニウムを65nmの厚さの単一の層を第1の反射防止膜1116として形成することによって、可視光領域の光の反射率を20%以下にすることができる。
第1の半導体層1117は、第1の単位画素の構成要素を形成する半導体層である。図4に示した固体撮像装置10の構成では、第1の半導体層1117内に、第1の単位画素を構成し、第1の面から入射された第1の光線を電気信号(第1の画素信号)に変換する光電変換部(以下、「第1の光電変換部」という)1118が形成されている場合を示している。この第1の半導体層1117内に形成された第1の光電変換部1118によって、入射された第1の光線の一部が第1の画素信号に変換される。また、第1の半導体層1117は、第1の面から入射された第1の光線の一部を透過して、第1の面と反対側の面(以下、「第2の面」という)から第2の基板12に出射する。このため、第1の半導体層1117は、例えば、5um以下の厚さにすることが望ましい。以下の説明においては、第1の半導体層1117を透過して出射される第1の光線を、「第2の光線」という。
金属配線層1120は、第1の単位画素の構成要素同士、または第1の基板11内に配置されるそれぞれの構成要素同士を接続する金属配線が形成される層である。図4に示した固体撮像装置10の構成では、金属配線層1120内に、金属配線1121が形成されている場合を示している。この金属配線層1120内に形成されたそれぞれの金属配線1121によって、第1の基板11に配置されたそれぞれの構成要素を構成するそれぞれの回路要素同士が接続される。
また、固体撮像装置10においては、金属配線層1120に、第2の反射防止膜1119も形成される。この第2の反射防止膜1119は、第1の半導体層1117を透過して出射される第2の光線の反射を低減するために、第1の半導体層1117に接するように形成される、つまり、第1の半導体層1117の第2の面に形成される膜である。第2の反射防止膜1119も、第1の反射防止膜1116と同様に、第1の半導体層1117を透過して出射された第2の光線が、予め定めた分光透過特性で第2の半導体層1215に入射されるように選定した材料および膜厚で形成される。なお、第2の反射防止膜1119は、第1の反射防止膜1116と同様に、例えば、酸化タンタル、酸化ハフニウム、窒化ケイ素などの高誘電体材料を用いた単一の層または複数の層で形成されることが考えられるが、第2の反射防止膜1119を形成する材料は、固体撮像装置10の製造上の観点などを考慮して、第1の反射防止膜1116と異なる材料を用いても、同じ材料を用いてもよい。
金属配線層1211は、第2の単位画素の構成要素同士、または第2の基板12内に配置されるそれぞれの構成要素同士を接続する金属配線が形成される層である。図4に示した固体撮像装置10の構成では、金属配線層1211内に、金属配線1212が形成されている場合を示している。この金属配線層1211内に形成されたそれぞれの金属配線1212によって、第2の基板12に配置されたそれぞれの構成要素を構成するそれぞれの回路要素同士が接続される。
また、固体撮像装置10においては、金属配線層1211に、第3の反射防止膜1213も形成される。この第3の反射防止膜1213は、第1の基板11内の第1の半導体層1117を透過して第2の半導体層1215に入射される第2の光線の反射を低減するために、第2の半導体層1215に接する面(以下、「第3の面」という)に形成される膜である。第3の反射防止膜1213も、第1の反射防止膜1116および第2の反射防止膜1119と同様に、第1の半導体層1117を透過して出射された第2の光線が、予め定めた分光透過特性で第2の半導体層1215に入射されるように選定した材料および膜厚で形成される。なお、第3の反射防止膜1213を形成する材料は、第1の反射防止膜1116または第2の反射防止膜1119と異なる材料であっても、同じ材料であってもよい。ただし、第3の反射防止膜1213は、第2の反射防止膜1119と同じ分光透過特性であることが望ましい。この場合、固体撮像装置10の製造上の観点などを考慮すると、第3の反射防止膜1213と第2の反射防止膜1119との分光透過特性の差は、例えば、±5%以下の差であれば同じ分光透過特性あると考えることができる。
第2の半導体層1215は、第2の単位画素の構成要素を形成する半導体層である。図4に示した固体撮像装置10の構成では、第2の半導体層1215内に、第2の単位画素を構成し、第1の基板11を透過して第3の面から入射された第2の光線を電気信号(第2の画素信号)に変換する光電変換部(以下、「第2の光電変換部」という)1214が形成されている場合を示している。この第2の半導体層1215内に形成された第2の光電変換部1214によって、第1の基板11を透過して入射された第2の光線が第2の画素信号に変換される。
本第1の実施形態によれば、光電変換部(第1の光電変換部1118または第2の光電変換部1214)を有する画素が二次元のマトリクス状に複数配置された画素部(第1の画素アレイ部111または第2の画素アレイ部121)を具備した複数の基板(第1の基板11および第2の基板12)が積層される構造の固体撮像装置(固体撮像装置10)であって、入射された第1の光線を電気信号に変換する第1の光電変換部1118が形成された第1の半導体層(第1の半導体層1117)を有する第1の基板11と、第1の基板11を透過して入射された第2の光線を電気信号に変換する第2の光電変換部1214が形成された第2の半導体層(第2の半導体層1215)を有する第2の基板12と、を備え、第1の基板11は、第1の半導体層1117に第1の光線が入射する側の面である第1の面に接して形成され、この第1の面における第1の光線の反射を低減する第1の反射防止膜(第1の反射防止膜1116)と、第1の半導体層1117に入射した第1の光線がこの第1の半導体層1117を透過して第2の光線として出射される、第1の面と反対側の面である第2の面に接して形成され、この第2の面における第2の光線の反射を低減する第2の反射防止膜(第2の反射防止膜1119)と、を備える固体撮像装置10が構成される。
また、本第1の実施形態によれば、第1の反射防止膜1116と第2の反射防止膜1119とは、異なる材料によって形成される固体撮像装置10が構成される。
また、本第1の実施形態によれば、第1の反射防止膜1116と第2の反射防止膜1119とは、同じ材料によって形成される固体撮像装置10が構成される。
このような構成の固体撮像装置10に入射された第1の光線は、第1の基板11に形成されたマイクロレンズ1111によって、例えば、第1の半導体層1117と第2の半導体層1215との間に集光され、カラーフィルター1112、透明樹脂層1113、シリコン酸化膜1115、および第1の反射防止膜1116のそれぞれを透過して、第1の半導体層1117に入射される。そして、第1の半導体層1117に入射された第1の光線は、第1の光電変換部1118によって一部の第1の光線が吸収されて第1の画素信号に変換され、一部の第1の光線が第1の半導体層1117を透過して、金属配線層1120に出射される。ここで、出射された第1の光線は、金属配線層1120(第2の反射防止膜1119を含む)および接続層13を透過して、第2の光線として第2の基板12に入射される。そして、第2の光線は、金属配線層1211(第3の反射防止膜1213を含む)を透過して、第2の半導体層1215に入射され、第2の光電変換部1214によって吸収されて第2の画素信号に変換される。
上記に述べたように、本第1の実施形態の固体撮像装置10では、固体撮像装置10に入射された第1の光線が第1の基板11内の第1の光電変換部1118に入射する側の第1の半導体層1117の第1の面に形成する第1の反射防止膜1116に加えて、第1の半導体層1117を透過した第2の光線が出射する側の第1の半導体層1117の第2の面にも第2の反射防止膜1119を形成する。つまり、本第1の実施形態の固体撮像装置10では、従来の固体撮像装置においても第1の面に形成されていた反射防止膜に対応する第1の反射防止膜1116に加えて、第2の面にも第2の反射防止膜1119を形成する。言い換えれば、本第1の実施形態の固体撮像装置10では、第1の基板11内の第1の半導体層1117の両面(第1の面および第2の面)に反射防止膜を形成する。これにより、本第1の実施形態の固体撮像装置10では、第1の光線が入射する1段目の半導体基板である第1の基板11を透過して第2の光線が出射する側の第2の面の界面における第2の光線の反射を低減することができ、2段目の半導体基板である第2の基板12に形成された第2の単位画素に十分な第2の光線を届けることができる。そして、第2の単位画素は、十分な光量が確保された第2の光線を光電変換し、レベルを向上した第2の画素信号を出力することができる。このことにより、本第1の実施形態の固体撮像装置10は、感度を向上させることができる。
また、本第1の実施形態の固体撮像装置10では、第2の基板12内の第2の光電変換部1214に第1の基板11を透過した第2の光線が入射する側の第2の半導体層1215の第3の面にも第3の反射防止膜1213を形成する。これにより、本第1の実施形態の固体撮像装置10では、2段目の半導体基板である第2の基板12に第2の光線が入射する側の第3の面の界面における第2の光線の反射も低減することができ、第2の単位画素が出力する第2の画素信号のレベルをさらに向上することができる。このことにより、本第1の実施形態の固体撮像装置10は、感度をさらに向上させることができる。
なお、本第1の実施形態の固体撮像装置10では、それぞれの反射防止膜における分光透過特性、つまり、反射防止膜が透過するそれぞれの光線の波長に対する透過率(いわゆる、分光透過率)に関しては、特に規定しない。しかし、それぞれの反射防止膜が透過する光線(以下、「透過光」ともいう)の分光透過特性(分光透過率)を規定することによって、第1の単位画素が光電変換する第1の光線の波長と、第2の単位画素が光電変換する第2の光線の波長とを異なる波長にするなど、固体撮像装置10の機能を向上させることができる。
<第2の実施形態>
次に、固体撮像装置に形成するそれぞれの反射防止膜において分光透過特性(分光透過率)を規定する場合について説明する。以下の説明においては、本第2の実施形態の固体撮像装置(以下、「固体撮像装置20」という)に形成された第1の単位画素が可視光領域の第1の光線を光電変換し、第2の単位画素が赤外光領域の第2の光線を光電変換する場合について説明する。なお、本第2の実施形態の固体撮像装置20の構成は、形成したそれぞれの反射防止膜における分光透過特性(分光透過率)が異なる以外は、図1〜図4に示した第1の実施形態の固体撮像装置10と同様の構成である。従って、以下の説明においては、本第2の実施形態の固体撮像装置20のそれぞれの構成要素について、第1の実施形態の固体撮像装置10と同一の符号を用いて説明し、本第2の実施形態の固体撮像装置20の構成やそれぞれの構成要素に関する詳細な説明は省略する。
図5は、本第2の実施形態の固体撮像装置20に形成された反射防止膜における光(透過光)の波長に対する透過率(分光透過率)を説明する図である。図5(a)には、固体撮像装置20を構成する第1の基板11に配置された第1の画素アレイ部111内の第1の単位画素と、第2の基板12に配置された第2の画素アレイ部121内の第2の単位画素との領域における一部の構造の断面図を示している。また、図5(b)および図5(c)には、固体撮像装置20に形成したそれぞれの反射防止膜における透過光の波長毎の透過率を示している。
図5(a)に示したように、固体撮像装置20には、図4に示した第1の実施形態の固体撮像装置10の構造と同様に、第1の反射防止膜1116と、第2の反射防止膜1119と、第3の反射防止膜1213とが形成されている。より具体的には、第1の基板11内の第1の半導体層1117に第1の光線が入射する側の第1の面に第1の反射防止膜1116が形成され、第1の半導体層1117を透過した第1の光線が第2の光線として出射する側の第2の面に第2の反射防止膜1119が形成されている。また、第2の基板12内の第2の半導体層1215に第1の基板11を透過した第2の光線が入射する側の第3の面に第3の反射防止膜1213が形成されている。
固体撮像装置20では、第1の半導体層1117に形成された第1の光電変換部1118が、可視領域の波長の第1の光線を第1の画素信号に光電変換し、第2の半導体層1215に形成された第2の光電変換部1214が、赤外光領域の波長の第2の光線を第2の画素信号に光電変換する。このため、固体撮像装置20に形成するそれぞれの反射防止膜の分光透過率を、第1の光電変換部1118および第2の光電変換部1214が光電変換するそれぞれの光線の波長に最適化している。つまり、固体撮像装置20では、形成されたそれぞれの反射防止膜の分光透過率を、第1の実施形態の固体撮像装置10に形成されたそれぞれの反射防止膜の分光透過率と異ならせている。
より具体的には、第1の光電変換部1118に第1の光線を入射させる第1の反射防止膜1116は、可視光領域の波長、または可視光と赤外光との中間の領域の波長の第1の光線が透過するように、分光透過率を最適化する。つまり、図5(b)に示したように、可視光領域から赤外光領域まで、まんべんなく透過する分光透過特性(分光透過率)をもった第1の反射防止膜1116を形成する。
また、第1の半導体層1117を透過した第2の光線を出射させる第2の反射防止膜1119は、第2の光電変換部1214に第2の光線を入射させることになるため、赤外光領域の波長の第2の光線が最も透過するように、分光透過率を最適化する。つまり、図5(b)に示したように、可視光領域の波長の透過率が低く、赤外光領域の波長の透過率が高い分光透過特性(分光透過率)をもった第2の反射防止膜1119を形成する。言い換えれば、分光透過率が最も高い値(ピーク)となる波長(以下、「分光透過率のピーク」という)が、赤外光領域の波長(いわゆる、長波長側)にある第2の反射防止膜1119を形成する。
また、第2の光電変換部1214に第1の半導体層1117を透過した第2の光線を入射させる第3の反射防止膜1213も、第2の反射防止膜1119と同じ分光透過特性とするため、第2の反射防止膜1119と同様に、赤外光領域の波長の第2の光線が最も透過するように、分光透過率を最適化する。つまり、第3の反射防止膜1213も、分光透過率のピークが赤外光領域の波長(長波長側)にある、図5(b)に示したような分光透過特性をもつように形成する。なお、固体撮像装置20の製造上の観点などを考慮した場合、第3の反射防止膜1213と第2の反射防止膜1119との分光透過特性(分光透過率のピーク)の差は、例えば、±5%以下の差であれば同じ分光透過特性(分光透過率のピーク)あると考えることができる。
本第2の実施形態によれば、第1の反射防止膜1116が第1の光線を透過する分光透過特性と、第2の反射防止膜1119が第2の光線を透過する分光透過特性とは、異なる分光透過特性である固体撮像装置(固体撮像装置20)が構成される。
また、本第2の実施形態によれば、第2の反射防止膜1119の分光透過率が最も高い波長は、第1の反射防止膜1116の分光透過率が最も高い波長よりも長波長側にある固体撮像装置20が構成される。
また、本第2の実施形態によれば、第2の基板12は、第2の半導体層1215に第2の光線が入射する側の面である第3の面に接して形成され、この第3の面における第2の光線の反射を低減する第3の反射防止膜(第3の反射防止膜1213)、を備え、第3の反射防止膜1213の分光透過率が最も高い波長は、第2の反射防止膜1119の分光透過率が最も高い波長と同じ波長である固体撮像装置20が構成される。
上記に述べたように、本第2の実施形態の固体撮像装置20でも、第1の実施形態の固体撮像装置10と同様に、第1の基板11内の第1の半導体層1117の両面(第1の面および第2の面)と、第1の基板11を透過した第2の光線が入射する側の第2の基板12内の第2の半導体層1215の面(第3の面)とのそれぞれに、反射防止膜を形成する。そして、本第2の実施形態の固体撮像装置20では、第1の基板11内の第1の半導体層1117に第1の光線を入射させる第1の反射防止膜1116と、第2の基板12内の第2の半導体層1215に第2の光線を入射させる第2の反射防止膜1119および第3の反射防止膜1213との分光透過特性(分光透過率のピーク)を異ならせる。つまり、本第2の実施形態の固体撮像装置20では、第1の基板11と第2の基板12とのそれぞれに形成された単位画素が光電変換するそれぞれの光線の波長に、形成する反射防止膜の分光透過特性(分光透過率のピーク)を最適化する。これにより、本第2の実施形態の固体撮像装置20では、第1の基板11と第2の基板12とのそれぞれに形成された単位画素のそれぞれに十分な光線を届けることができ、それぞれの単位画素が、入射されたそれぞれの波長の光線を光電変換することによって、固体撮像装置20の機能を向上させることができる。
なお、第1の実施形態の固体撮像装置10および本第2の実施形態の固体撮像装置20では、第1の基板11と第2の基板12とが接続層13によって接合されている、つまり2枚の基板を積層した固体撮像装置の構成について説明した。しかし、上述したように、固体撮像装置において積層する基板の枚数は2枚に限らず、さらに多くの枚数の基板を積層する構成であってもよい。
<第3の実施形態>
次に、固体撮像装置において積層する基板の枚数が2枚よりも多い場合の一例として、積層する基板の枚数が3枚である場合について説明する。図6は、本第3の実施形態の固体撮像装置の構造を示した断面図である。なお、本第3の実施形態の固体撮像装置30の構成は、積層する基板の枚数が3枚になる以外は、図1〜図4に示した第1の実施形態の固体撮像装置10と同様の構成である。すなわち、本第3の実施形態の固体撮像装置30においてそれぞれの基板内に配置される構成要素のそれぞれの位置は、図2および図3に示した第1の実施形態の固体撮像装置10を構成するそれぞれの基板において配置されるそれぞれの構成要素の位置と同様に考えることができる。従って、以下の説明においては、本第3の実施形態の固体撮像装置30を構成するそれぞれの基板内に配置されるそれぞれの構成要素の位置に関する詳細な説明は省略する。また、以下の説明においては、本第3の実施形態の固体撮像装置30のそれぞれの構成要素において、第1の実施形態の固体撮像装置10と同様の構成要素には、固体撮像装置10と同一の符号を用いて説明し、それぞれの構成要素に関する詳細な説明は省略する。
図6において、固体撮像装置30は、第1の基板11と第2の基板12とが接続層13によって接合され、第2の基板12と第3の基板33とが接続層34によって接合されている。図6には、第1の基板11に配置された第1の画素アレイ部111内の第1の単位画素と、第2の基板12に配置された第2の画素アレイ部121内の第2の単位画素と、第3の基板33に配置された第3の画素アレイ部(不図示)内に構成される画素(以下、「第3の単位画素」という)との領域の構造の一部を示している。固体撮像装置30でも、第1の実施形態の固体撮像装置10と同様に、第1の基板11の第1の画素アレイ部111内に配置された第1の単位画素の位置と、第2の基板12の第2の画素アレイ部121内に配置された第2の単位画素の位置と、第3の基板33の第3の画素アレイ部内に配置された第3の単位画素の位置とが同様の位置となるように配置されている。なお、図6に示した固体撮像装置30においても、第1の単位画素、第2の単位画素、および第3の単位画素のそれぞれを区別しない場合には、単に「単位画素」という。
第1の基板11は、マイクロレンズ1111と、カラーフィルター1112と、透明樹脂層1113と、遮光膜1114と、シリコン酸化膜1115と、第1の反射防止膜1116と、第1の半導体層1117と、金属配線層1120とで構成される。
また、接続層13によって第1の基板11と接合される第2の基板12は、透明樹脂層1217と、遮光膜1218と、第3の反射防止膜1213と、第2の半導体層1215と、金属配線層1211とで構成される。図6に示した固体撮像装置30では、第2の基板12が、裏面照射型のCMOS型固体撮像装置と同様の構成である場合を示している。なお、第2の基板12の構成が、表面照射型のCMOS型固体撮像装置や、CCD型の固体撮像装置(表面照射型および裏面照射型を含む)と同様の構成であっても、同様に考えることができる。
また、接続層34によって第2の基板12と接合される第3の基板33は、金属配線層3311と第3の半導体層3315とによって構成される。図6に示した固体撮像装置30では、第3の基板33が、表面照射型のCMOS型固体撮像装置と同様の構成である場合を示している。なお、第3の基板33の構成が、裏面照射型のCMOS型固体撮像装置や、CCD型の固体撮像装置(表面照射型および裏面照射型を含む)と同様の構成であっても、同様に考えることができる。
第1の基板11の構成は、第1の実施形態の固体撮像装置10における第1の基板11の構成と同様である。従って、第1の基板11に関する詳細な説明は省略する。ただし、固体撮像装置30においては、マイクロレンズ1111が、入射された第1の光線を、例えば、第2の半導体層1215と第3の半導体層3315との間に集光するように形成してもよい。
透明樹脂層1217は、第1の基板11に形成された透明樹脂層1113と同様に、第2の基板12に光が入射する面を平坦化する層である。
遮光膜1218は、第1の基板11に形成された遮光膜1114と同様に、第2の基板12内で隣接する第2の単位画素同士の間を遮光する。
第3の反射防止膜1213は、第1の基板11内の第1の半導体層1117を透過して出射された第2の光線が、予め定めた分光透過特性で第2の半導体層1215に入射されるように、第2の半導体層1215の界面における第2の光線の反射を低減するために、第2の半導体層1215に接する面(以下、この面も「第3の面」という)に形成される膜である。なお、第3の反射防止膜1213は、第2の反射防止膜1119と同じ分光透過特性である、すなわち、第3の反射防止膜1213と第2の反射防止膜1119とのそれぞれの分光透過率のピークが同じであることが望ましい。ただし、固体撮像装置30の製造上の観点などを考慮した場合、第3の反射防止膜1213と第2の反射防止膜1119との分光透過特性(分光透過率のピーク)の差は、例えば、±5%以下の差であれば同じ分光透過特性(分光透過率のピーク)あると考えることができる。なお、図6に示した固体撮像装置30の構成には示していないが、第1の基板11と同様に、第3の反射防止膜1213と、透明樹脂層1217または遮光膜1218との間に、シリコン酸化膜を形成してもよい。
第2の半導体層1215は、第1の実施形態の固体撮像装置10における第2の基板12内の第2の半導体層1215と同様に、第1の基板11を透過して第3の面から入射された第2の光線を第2の画素信号に変換する第2の光電変換部1214などの第2の単位画素が形成される。また、第2の半導体層1215は、第3の面から入射された第2の光線の一部を透過して、第3の面と反対側の面(以下、「第4の面」という)から第3の基板33に出射する。以下の説明においては、第2の半導体層1215を透過して出射される第2の光線を、「第3の光線」という。
金属配線層1211は、第1の実施形態の固体撮像装置10における第2の基板12内の金属配線層1211と同様に、第2の単位画素の構成要素同士、または第2の基板12内に配置されるそれぞれの構成要素同士を接続する金属配線1212などの金属配線が形成される。
また、固体撮像装置30においては、金属配線層1211に、第4の反射防止膜1216も形成される。この第4の反射防止膜1216は、第2の半導体層1215を透過して出射される第3の光線の、第2の半導体層1215の界面における反射を低減するために、第2の半導体層1215に接する第4の面に形成される膜である。第4の反射防止膜1216も、第1の反射防止膜1116、第2の反射防止膜1119、および第3の反射防止膜1213と同様に、第2の半導体層1215を透過して出射された第3の光線が、予め定めた分光透過特性で第3の半導体層3315に入射されるように選定した材料および膜厚で形成される。なお、第4の反射防止膜1216を形成する材料は、第1の反射防止膜1116、第2の反射防止膜1119、または第3の反射防止膜1213と異なる材料であっても、同じ材料であってもよい。
金属配線層3311は、第3の基板33に配置された第3の画素アレイ部(不図示)内に構成された第3の単位画素の構成要素同士、または第3の基板33内に配置されるそれぞれの構成要素同士を接続する金属配線が形成される層である。図6に示した固体撮像装置30の構成では、金属配線層3311内に、金属配線3312が形成されている場合を示している。この金属配線層3311内に形成されたそれぞれの金属配線3312によって、第3の基板33に配置されたそれぞれの構成要素を構成するそれぞれの回路要素同士が接続される。
また、固体撮像装置30においては、金属配線層3311に、第5の反射防止膜3313も形成される。この第5の反射防止膜3313は、第1の基板11内の第1の半導体層1117および第2の基板12内の第2の半導体層1215を透過して入射される第3の光線の、第3の半導体層3315の界面における反射を低減するために、第3の半導体層3315に接する面(以下、「第5の面」という)に形成される膜である。第5の反射防止膜3313も、第1の反射防止膜1116、第2の反射防止膜1119、第3の反射防止膜1213、および第4の反射防止膜1216と同様に、第1の半導体層1117および第2の半導体層1215を透過して出射された第3の光線が、予め定めた分光透過特性で第3の半導体層3315に入射されるように選定した材料および膜厚で形成される。なお、第5の反射防止膜3313を形成する材料は、第1の反射防止膜1116、第2の反射防止膜1119、第3の反射防止膜1213、または第4の反射防止膜1216と異なる材料であっても、同じ材料であってもよい。ただし、第5の反射防止膜3313は、第4の反射防止膜1216と同じ分光透過特性である、すなわち、第5の反射防止膜3313と第4の反射防止膜1216とのそれぞれの分光透過率のピークが同じであることが望ましい。この場合、固体撮像装置30の製造上の観点などを考慮すると、第5の反射防止膜3313と第4の反射防止膜1216との分光透過特性(分光透過率のピーク)の差は、例えば、±5%以下の差であれば同じ分光透過特性(分光透過率のピーク)あると考えることができる。
第3の半導体層3315は、第3の単位画素の構成要素を形成する半導体層である。図6に示した固体撮像装置30の構成では、第3の半導体層3315内に、第3の単位画素を構成し、第1の基板11および第2の基板12を透過して第5の面から入射された第3の光線を電気信号(第3の画素信号)に変換する光電変換部(以下、「第3の光電変換部」という)3314が形成されている場合を示している。この第3の半導体層3315内に形成された第3の光電変換部3314によって、第1の基板11および第2の基板12を透過して入射された第3の光線が第3の画素信号に変換される。
本第3の実施形態によれば、第2の基板12を透過して入射された第3の光線を電気信号に変換する第3の光電変換部(第3の光電変換部3314)が形成された第3の半導体層(第3の半導体層3315)を有する第3の基板(第3の基板33)、をさらに備え、第2の基板12は、第2の半導体層1215に入射した第2の光線がこの第2の半導体層1215を透過して第3の光線として出射される、第3の面と反対側の面である第4の面に接して形成され、この第4の面における第3の光線の反射を低減する第4の反射防止膜(第4の反射防止膜1216)、を備え、第3の基板33は、第3の半導体層3315に第3の光線が入射する側の面である第5の面に接して形成され、この第5の面における第3の光線の反射を低減する第5の反射防止膜(第5の反射防止膜3313)、を備え、第4の反射防止膜1216の分光透過率が最も高い波長は、第5の反射防止膜3313の分光透過率が最も高い波長と同じ波長である固体撮像装置(固体撮像装置30)が構成される。
このような構成の固体撮像装置30に入射された第1の光線は、第1の基板11に形成されたマイクロレンズ1111によって、例えば、第2の半導体層1215と第3の半導体層3315との間に集光され、カラーフィルター1112、透明樹脂層1113、シリコン酸化膜1115、および第1の反射防止膜1116のそれぞれを透過して、第1の半導体層1117に入射される。そして、第1の半導体層1117に入射された第1の光線は、第1の光電変換部1118によって一部の第1の光線が吸収されて第1の画素信号に変換され、一部の第1の光線が第1の半導体層1117を透過して、金属配線層1120に出射される。ここで、出射された第1の光線は、金属配線層1120(第2の反射防止膜1119を含む)および接続層13を透過して、第2の光線として第2の基板12に入射される。そして、第2の光線は、透明樹脂層1217および第3の反射防止膜1213のそれぞれを透過して、第2の半導体層1215に入射され、第2の光電変換部1214によって一部の第2の光線が吸収されて第2の画素信号に変換され、一部の第2の光線が第2の半導体層1215を透過して、金属配線層1211に出射される。ここで、出射された第2の光線は、金属配線層1211(第4の反射防止膜1216を含む)および接続層34を透過して、第3の光線として第3の基板33に入射される。そして、第3の光線は、金属配線層3311(第5の反射防止膜3313を含む)を透過して、第3の半導体層3315に入射され、第3の光電変換部3314によって吸収されて第3の画素信号に変換される。
上記に述べたように、本第3の実施形態の固体撮像装置30では、第1の基板11内の第1の半導体層1117の両面(第1の面および第2の面)に反射防止膜を形成する。また、本第3の実施形態の固体撮像装置30では、第2の基板12内の第2の半導体層1215に第2の光線が入射する側の面(第3の面)に第3の反射防止膜1213を、第2の半導体層1215を透過した第3の光線が出射する側の第2の半導体層1215の面(第4の面)に第4の反射防止膜1216を、それぞれ形成する。つまり、本第3の実施形態の固体撮像装置30では、第2の基板12内の第2の半導体層1215の両面(第3の面および第4の面)にも反射防止膜を形成する。さらに、本第3の実施形態の固体撮像装置30では、第3の基板33に、第1の基板11および第2の基板12のそれぞれを透過した第3の光線が入射する側の第3の半導体層3315の面(第5の面)にも第5の反射防止膜3313を形成する。これにより、本第3の実施形態の固体撮像装置30では、第1の光線が入射する1段目の半導体基板である第1の基板11を透過して第2の光線が出射する側の第2の面の界面と、2段目の半導体基板である第2の基板12に第2の光線が入射する側の第3の面の界面とにおける第2の光線の反射を低減して、第2の基板12に形成された第2の単位画素に十分な第2の光線を届けることができる。このことにより、第2の単位画素は、十分な光量が確保された第2の光線を光電変換し、レベルを向上した第2の画素信号を出力することができる。また、本第3の実施形態の固体撮像装置30では、第2の基板12を透過して第3の光線が出射する側の第4の面の界面と、3段目の半導体基板である第3の基板33に第3の光線が入射する側の第5の面の界面とにおける第3の光線の反射を低減して、第3の基板33に形成された第3の単位画素に十分な第3の光線を届けることができる。このことにより、第3の単位画素は、十分な光量が確保された第3の光線を光電変換し、レベルを向上した第3の画素信号を出力することができる。このことにより、本第3の実施形態の固体撮像装置30は、感度を向上させることができる。
なお、本第3の実施形態の固体撮像装置30では、それぞれの反射防止膜における分光透過特性(分光透過率のピーク)に関しては、特に規定しない。しかし、本第3の実施形態の固体撮像装置30でも、第2の実施形態の固体撮像装置20と同様に、それぞれの反射防止膜の分光透過特性(分光透過率のピーク)を規定することによって、第1の単位画素が光電変換する第1の光線の波長と、第2の単位画素が光電変換する第2の光線の波長と、第3の単位画素が光電変換する第3の光線の波長とを異なる波長にすることもできる。例えば、第1の反射防止膜1116が可視光領域をまんべんなく透過し、第2の反射防止膜1119および第3の反射防止膜1213が可視光領域内の青色から長波長側の領域をまんべんなく透過し、第4の反射防止膜1216および第5の反射防止膜3313が可視光領域内の緑色から長波長側の領域をまんべんなく透過するように、それぞれの光線の波長に対する透過率(分光透過率)を最適化したそれぞれの反射防止膜を形成することもできる。これにより、固体撮像装置30では、第1の単位画素が青色、第2の単位画素が緑色、第3の単位画素が赤色の光線を光電変換する構成にすることができる。
なお、第1の実施形態の固体撮像装置10および第2の実施形態の固体撮像装置20では、第1の基板11内の第1の半導体層1117に形成された第1の光電変換部1118のそれぞれに対応して、第2の基板12内の第2の半導体層1215に第2の光電変換部1214を形成する構成を示した。また、本第3の実施形態の固体撮像装置30では、さらに、第2の光電変換部1214のそれぞれに対応して、第3の基板33内の第3の半導体層3315に第3の光電変換部3314を形成する構成を示した。すなわち、それぞれの基板内の半導体層に形成する単位画素のそれぞれが1対1に対応している構成である場合について説明した。しかし、下段の基板に形成する単位画素は、その上段の基板に形成された単位画素に対応するように形成する構成に限定されるものではない。例えば、第2の基板12に形成する第2の単位画素を、第1の基板11に形成された複数の第1の単位画素に対応するように形成し、第3の基板33に形成する第3の単位画素を、第2の基板12に形成された複数の第2の単位画素に対応するように形成する構成にすることもできる。これにより、第2の単位画素は、第1の単位画素の画素数を少なくした、つまり、第1の画素信号の解像度を低くした第2の画素信号を出力し、第3の単位画素、第1の単位画素の画素数をさらに少なくした、つまり、第1の画素信号の解像度をさらに低くした第3の画素信号を出力する固体撮像装置30を実現することができる。
<第4の実施形態>
次に、固体撮像装置において、下段の基板に形成する単位画素が、その上段の基板に形成された複数の単位画素に対応する構成である場合について説明する。図7は、本第4の実施形態の固体撮像装置の構造を示した断面図である。図7において、固体撮像装置40は、第1の基板11と第2の基板42とが、接続層13によって接合されている。図7に示した本第4の実施形態の固体撮像装置40は、第1の基板11に形成された2つの第1の単位画素に対応する1つの第2の単位画素が、第2の基板42に形成された構成である。なお、本第4の実施形態の固体撮像装置40の構成は、第2の基板42に形成される第2の単位画素が異なる以外は、図1〜図4に示した第1の実施形態の固体撮像装置10と同様の構成である。すなわち、本第4の実施形態の固体撮像装置40は、第1の実施形態の固体撮像装置10を構成する第2の基板12が、第2の基板42に代わった構成であり、本第4の実施形態の固体撮像装置40においてそれぞれの基板内に配置される構成要素のそれぞれの位置は、図2および図3に示した第1の実施形態の固体撮像装置10を構成するそれぞれの基板において配置されるそれぞれの構成要素の位置と同様に考えることができる。従って、以下の説明においては、本第4の実施形態の固体撮像装置40を構成するそれぞれの基板内に配置されるそれぞれの構成要素の位置に関する詳細な説明は省略する。また、以下の説明においては、本第4の実施形態の固体撮像装置40のそれぞれの構成要素において、第1の実施形態の固体撮像装置10と同様の構成要素には、固体撮像装置10と同一の符号を用いて説明し、それぞれの構成要素に関する詳細な説明は省略する。
図7には、第1の基板11に配置された第1の画素アレイ部111内の第1の単位画素と、第2の基板42に配置された第2の画素アレイ部(不図示)内の第2の単位画素との領域の構造の一部を示している。固体撮像装置40では、第1の基板11の第1の画素アレイ部111内に配置された複数の第1の単位画素の位置と、第2の基板42の第2の画素アレイ部内に配置された対応する第2の単位画素の位置とが同様の位置となるように配置されている。なお、図7に示した固体撮像装置40においても、第1の単位画素と第2の単位画素とを区別しない場合には、単に「単位画素」という。
第1の基板11は、マイクロレンズ1111と、カラーフィルター1112と、透明樹脂層1113と、遮光膜1114と、シリコン酸化膜1115と、第1の反射防止膜1116と、第1の半導体層1117と、金属配線層1120とで構成される。第1の基板11の構成は、第1の実施形態の固体撮像装置10における第1の基板11の構成と同様である。従って、第1の基板11に関する詳細な説明は省略する。
また、接続層13によって第1の基板11と接合される第2の基板42は、金属配線層4211と第2の半導体層4215とによって構成される。図7に示した固体撮像装置40では、第2の基板42が、表面照射型のCMOS型固体撮像装置と同様の構成である場合を示している。なお、第2の基板42の構成が、裏面照射型のCMOS型固体撮像装置や、CCD型の固体撮像装置(表面照射型および裏面照射型を含む)と同様の構成であっても、同様に考えることができる。
金属配線層4211は、第2の基板42に配置された第2の画素アレイ部(不図示)内に構成された第2の単位画素の構成要素同士、または第2の基板42内に配置されるそれぞれの構成要素同士を接続する金属配線が形成される層である。図7に示した固体撮像装置40の構成では、金属配線層4211内に、金属配線4212が形成されている場合を示している。この金属配線層4211内に形成されたそれぞれの金属配線4212によって、第2の基板42に配置されたそれぞれの構成要素を構成するそれぞれの回路要素同士が接続される。
また、固体撮像装置40においては、金属配線層4211に、第3の反射防止膜4213も形成される。この第3の反射防止膜4213は、第1の実施形態の固体撮像装置10において第2の基板12内の金属配線層1211に形成された第3の反射防止膜1213と同様に、第1の基板11内の第1の半導体層1117を透過して出射された第2の光線の、第2の半導体層4215の界面における反射を低減するために、第2の半導体層4215に接する面(以下、この面も「第3の面」という)に形成される膜である。第3の反射防止膜4213も、第1の反射防止膜1116および第2の反射防止膜1119と同様に、第1の半導体層1117を透過して出射された第2の光線が、予め定めた分光透過特性で第2の半導体層4215に入射されるように選定した材料および膜厚で形成される。なお、第3の反射防止膜4213を形成する材料は、第1の反射防止膜1116または第2の反射防止膜1119と異なる材料であっても、同じ材料であってもよい。ただし、第3の反射防止膜4213は、第2の反射防止膜1119と同じ分光透過特性であることが望ましい。この場合、固体撮像装置40の製造上の観点などを考慮すると、第3の反射防止膜4213と第2の反射防止膜1119との分光透過特性(分光透過率のピーク)の差は、例えば、±5%以下の差であれば同じ分光透過特性(分光透過率のピーク)あると考えることができる。
第2の半導体層4215は、第2の単位画素の構成要素を形成する半導体層である。図7に示した固体撮像装置40の構成では、第2の半導体層4215内に、第2の単位画素を構成し、第1の基板11を透過して第3の面から入射された第2の光線を電気信号(第2の画素信号)に変換する光電変換部(以下、「第2の光電変換部」という)4214が形成されている場合を示している。この第2の半導体層4215内に形成された第2の光電変換部4214によって、第1の基板11を透過して入射された第2の光線が第2の画素信号に変換される。
なお、第2の光電変換部4214は、第1の基板11の第1の半導体層1117内に形成された2つの第1の光電変換部1118に対応して形成されている。このため、第2の光電変換部4214のそれぞれが光電変換して出力する第2の画素信号は、第1の基板11の第1の半導体層1117内に形成されたそれぞれの第1の光電変換部1118が出力する第1の画素信号の解像度を1/2に低くした画素信号となる。しかし、第2の光電変換部4214が第2の光線を受光する受光面の面積は、第1の光電変換部1118が第1の光線を受光する受光面の面積よりも大きい。このため、第2の光電変換部4214のそれぞれは、第1の基板11を透過して入射された第2の光線をより多く受光し、レベルを向上した第2の画素信号を出力することができる。
このような構成の固体撮像装置40に入射された第1の光線は、第1の基板11に形成されたマイクロレンズ1111によって、例えば、第1の半導体層1117と第2の半導体層4215との間に集光され、カラーフィルター1112、透明樹脂層1113、シリコン酸化膜1115、および第1の反射防止膜1116のそれぞれを透過して、第1の半導体層1117に入射される。そして、第1の半導体層1117に入射された第1の光線は、第1の光電変換部1118によって一部の第1の光線が吸収されて第1の画素信号に変換され、一部の第1の光線が第1の半導体層1117を透過して、金属配線層1120に出射される。ここで、出射された第1の光線は、金属配線層1120(第2の反射防止膜1119を含む)および接続層13を透過して、第2の光線として第2の基板42に入射される。そして、第2の光線は、金属配線層4211(第3の反射防止膜4213を含む)を透過して、第2の半導体層4215に入射され、第2の光電変換部4214によって吸収されて第2の画素信号に変換される。
上記に述べたように、本第4の実施形態の固体撮像装置40では、第1の基板11内の第1の半導体層1117の両面(第1の面および第2の面)に反射防止膜を形成する。また、本第4の実施形態の固体撮像装置40では、第2の基板42に、第1の基板11を透過した第2の光線が入射する側の第2の半導体層4215の面(第3の面)にも第3の反射防止膜4213を形成する。これにより、本第4の実施形態の固体撮像装置40では、第1の光線が入射する1段目の半導体基板である第1の基板11を透過して第2の光線が出射する側の第2の面の界面と、2段目の半導体基板である第2の基板42に第2の光線が入射する側の第3の面の界面とにおける第2の光線の反射を低減して、第2の基板42に形成された第2の単位画素に十分な第2の光線を届けることができる。このことにより、第2の単位画素は、十分な光量が確保された第2の光線を光電変換し、レベルを向上した第2の画素信号を出力することができる。このことにより、本第4の実施形態の固体撮像装置40は、感度を向上させることができる。
また、本第4の実施形態の固体撮像装置40では、第1の基板11の第1の半導体層1117内に形成された2つの第1の光電変換部1118に対応して1つの第2の光電変換部4214を、第2の基板42の第2の半導体層4215内に形成する。つまり、本第4の実施形態の固体撮像装置40では、第1の基板11に配置される2つの第1の単位画素に対応して1つの第2の単位画素を、第2の基板42に配置する。これにより、本第4の実施形態の固体撮像装置40では、第1の基板11を透過して第2の光電変換部4214に入射される第2の光線をより多くすることができ、第2の単位画素が出力する第2の画素信号のレベルをさらに向上することができる。このことにより、本第4の実施形態の固体撮像装置40は、第2の単位画素の感度をさらに向上させることができる。
なお、本第4の実施形態の固体撮像装置40では、2つの第1の単位画素を1つの組とし、この1つの組に対応する1つの第2の単位画素を第2の基板42に配置(形成)した場合について説明した。しかし、第2の基板42に配置(形成)する1つの第2の単位画素が対応する1つの組に含まれる第1の単位画素の数は、本第4の実施形態の固体撮像装置40の構成に限定されるものではない。例えば、第1の基板11において縦と横に隣接して形成された、予め定めた4つの第1の単位画素を1つの組とし、この1つの組に対応して1つの第2の単位画素を第2の基板42に配置(形成)する構成にすることもできる。このように、1つの第2の単位画素が対応する第1の単位画素の数を多くすることによって、第2の画素信号は、第1の画素信号の解像度をさらに低くすることになるが、その分、第2の単位画素は、第2の光電変換部4214の受光面の面積を大きくすることができ、入射された第2の光線をより多く受光してレベルを向上した第2の画素信号を出力することができる。なお、この場合、例えば、カラーフィルター1112が透過する色の重心がずれないようにするなど、カラーフィルター1112が透過する第1の光線の分光透過特性に基づいて、1つの第2の単位画素が対応する第1の単位画素を定めることが望ましい。
なお、本第4の実施形態の固体撮像装置40では、それぞれの反射防止膜における分光透過特性(分光透過率のピーク)に関しては、特に規定しない。しかし、本第4の実施形態の固体撮像装置40でも、第2の実施形態の固体撮像装置20と同様に、それぞれの反射防止膜の分光透過特性(分光透過率のピーク)を規定することによって、第1の単位画素が光電変換する第1の光線の波長と、第2の単位画素が光電変換する第2の光線の波長とを異なる波長にすることもできる。
なお、第1〜第4の実施形態の固体撮像装置では、それぞれの基板に配置された構成要素が、接続電極アレイ部115に配置されたそれぞれの接続電極部を介して電気的に接続される構成について説明した。しかし、上述したように、接続電極部は、マイクロバンプの構造であってもよい。つまり、それぞれの基板の同じ位置に配置された接続電極アレイ部115内に形成されたTSV構造の接続電極部を介してではなく、それぞれの構成要素が配置された位置に形成されたマイクロバンプ構造の接続電極部を介して、固体撮像装置内のそれぞれの構成要素同士が電気的に接続される構成であってもよい。
<第5の実施形態>
次に、固体撮像装置を構成する複数の基板がマイクロバンプ構造の接続電極部を介して接続される構成である場合について説明する。以下の説明においては、本第5の実施形態の固体撮像装置(以下、「固体撮像装置50」という)が、2枚の基板を積層することによって構成されている場合の一例について説明する。なお、本第5の実施形態の固体撮像装置50の構成は、図1〜図4に示した第1の実施形態の固体撮像装置10と同様の構成を含んでいる。従って、以下の説明においては、本第5の実施形態の固体撮像装置50のそれぞれの構成要素において、第1の実施形態の固体撮像装置10と同様の構成要素には、固体撮像装置10と同一の符号を用いて説明し、それぞれの構成要素に関する詳細な説明は省略する。
図8は、本第5の実施形態の固体撮像装置50における第1の基板の概略構成を示した平面図である。図8に示した第1の基板51の平面図は、第1の基板51に光が入射する側から見たときの平面を示している。第1の基板51は、入射された第1の光線を電気信号に変換して出力する半導体基板である。第1の基板51には、第1の画素アレイ部111と、第1の垂直走査回路112と、第1の水平走査回路113と、ボンディングパッド114とが配置されている。また、第1の基板51に入射された第1の光線は、光線が入射した面と反対側の面から、第2の光線として出射される。
なお、第1の基板51に配置されたそれぞれの構成要素は、第1の実施形態の固体撮像装置10における第1の基板11に配置されたそれぞれの構成要素の構成と同様である。従って、第1の基板51に配置されたそれぞれの構成要素に関する詳細な説明は省略する。
図9は、本第5の実施形態の固体撮像装置50における第2の基板の概略構成を示した平面図である。図9に示した第2の基板52の平面図は、第1の基板51から出射された第2の光線が第2の基板52に入射する側から見たときの平面を示している。第2の基板52は、第1の基板51から出射された第2の光線を電気信号に変換して出力する半導体基板である。第2の基板52には、第2の画素アレイ部121と、第2の垂直走査回路122と、第2の水平走査回路123とが配置されている。
なお、第2の基板52に配置されたそれぞれの構成要素は、第1の実施形態の固体撮像装置10における第2の基板12に配置されたそれぞれの構成要素の構成と同様である。従って、第2の基板52に配置されたそれぞれの構成要素に関する詳細な説明は省略する。
図2および図3に示した第1の実施形態の固体撮像装置10を構成する第1の基板11および第2の基板12と、図8および図9に示した第1の基板51および第2の基板52とのそれぞれを比べてわかるように、第1の基板51および第2の基板52では、第1の実施形態の第1の基板11と第2の基板12とのそれぞれに配置されていた接続電極アレイ部115が配置されていない。これは、固体撮像装置50が、マイクロバンプ構造の接続電極部を介して第1の基板51と第2の基板52とを電気的に接続する構成であるためである。
次に、本第5の実施形態の固体撮像装置50の構造について説明する。図10は、本第5の実施形態の固体撮像装置50の構造を示した断面図である。図10には、図8に示した第1の基板51に配置された第1の画素アレイ部111内の第1の単位画素と、図9に示した第2の基板52に配置された第2の画素アレイ部121内の第2の単位画素との領域の構造の一部を示している。固体撮像装置50では、第1の基板51と第2の基板52とが接続層53によって接合されている。なお、固体撮像装置50では、第1の実施形態の固体撮像装置10と同様に、第1の基板51の第1の画素アレイ部111内に配置された第1の単位画素の位置と、第2の基板52の第2の画素アレイ部121内に配置された第2の単位画素の位置とが同様の位置となるように配置されている。図10に示した固体撮像装置50においても、第1の単位画素と第2の単位画素とを区別しない場合には、単に「単位画素」という。
なお、図10には、第1の基板51が裏面照射型のCMOS型固体撮像装置と同様の構成であり、第2の基板52が表面照射型のCMOS型固体撮像装置と同様の構成である場合を示している。しかし、第1の基板51および第2の基板52の構成は、第1の実施形態の固体撮像装置10と同様に、図10に示した構成に限定されるものではない。つまり、第1の基板51および第2の基板52の構成は、表面照射型または裏面照射型のCMOS型固体撮像装置のいずれの構成であっても、CCD型の固体撮像装置(表面照射型および裏面照射型を含む)と同様の構成であっても、同様に考えることができる。
第1の基板51は、マイクロレンズ1111と、カラーフィルター1112と、透明樹脂層1113と、遮光膜1114と、シリコン酸化膜1115と、第1の反射防止膜1116と、第1の半導体層1117と、金属配線層5120とで構成される。また、第1の基板51と第2の基板52とを接合する接続層53は、接続電極531と絶縁部532とで構成される。また、接続層53によって第1の基板51と接合される第2の基板52は、金属配線層5211と第2の半導体層1215とによって構成される。
マイクロレンズ1111と、カラーフィルター1112と、透明樹脂層1113と、遮光膜1114と、シリコン酸化膜1115と、第1の反射防止膜1116と、第1の半導体層1117とのそれぞれは、第1の実施形態の固体撮像装置10において第1の基板11を構成する対応する構成要素(膜や層など)と同様であるため、それぞれの構成要素に関する詳細な説明は省略する。
金属配線層5120は、第1の単位画素の構成要素同士、または第1の基板51内に配置されるそれぞれの構成要素同士を接続する金属配線が形成される層である。また、金属配線層5120は、第1の基板51に第1の光線が入射した面と反対側の外面に形成される、第2の基板52と電気的に接続するためのマイクロバンプと接続される金属配線が形成される層でもある。図10に示した固体撮像装置50の構成では、金属配線層5120内に、金属配線5121が形成されている場合を示している。この金属配線層5120内に形成された一部の金属配線5121は、第1の基板51に配置された構成要素を構成する回路要素同士を接続する。また、一部の金属配線5121は、第1の基板51に形成されたマイクロバンプおよび第2の基板52に形成されたマイクロバンプを介して、第1の基板51に配置された構成要素を構成する回路要素と、第2の基板52に配置された構成要素を構成する回路要素とを接続する。
また、固体撮像装置50においては、金属配線層5120において第1の半導体層1117に接する第2の面に、第2の反射防止膜1119も形成される。この第2の反射防止膜1119は、第1の実施形態の固体撮像装置10において第1の基板11内の金属配線層1120に形成された第2の反射防止膜1119と同様であるため、第2の反射防止膜1119に関する詳細な説明は省略する。
接続電極531は、第1の基板51に形成されたマイクロバンプと第2の基板52に形成されたマイクロバンプとが接合されることによって形成される電極である。この接続電極531を介して、接合した第1の基板51および第2の基板52に配置された構成要素同士が、それぞれの電気信号の送受信を行う。なお、接続電極531は、固体撮像装置50に第1の光線が入射する側から見たときに、第1の基板51の第1の半導体層1117内に形成される第1の光電変換部1118、および第2の基板52の第2の半導体層1215内に形成される第2の光電変換部1214と重複する面積が小さくなるように配置(形成)されることが望ましい。
絶縁部532は、第1の基板51に形成されたマイクロバンプと第2の基板52に形成されたマイクロバンプとが接続することによって形成されたそれぞれの接続電極531同士を絶縁する。絶縁部532は、例えば、それぞれの接続電極531の間に存在する空間に接着剤などの絶縁部材を充填することによって形成される。
金属配線層5211は、第2の単位画素の構成要素同士、または第2の基板52内に配置されるそれぞれの構成要素同士を接続する金属配線が形成される層である。また、金属配線層5211は、固体撮像装置50に入射され、第1の半導体層1117を透過して出射された第2の光線が第2の基板52に入射する側の外面に形成される、第1の基板51と電気的に接続するためのマイクロバンプと接続される金属配線が形成される層でもある。図10に示した固体撮像装置50の構成では、金属配線層5211内に、金属配線5212が形成されている場合を示している。この金属配線層5211内に形成された一部の金属配線5212は、第2の基板52に配置された構成要素を構成する回路要素同士を接続する。また、一部の金属配線5212は、第2の基板52に形成されたマイクロバンプおよび第1の基板51に形成されたマイクロバンプを介して、第2の基板52に配置された構成要素を構成する回路要素と、第1の基板51に配置された構成要素を構成する回路要素とを接続する。
また、固体撮像装置50においては、金属配線層5211おいて第2の半導体層1215に接する第3の面に、第3の反射防止膜1213も形成される。この第3の反射防止膜1213は、第1の実施形態の固体撮像装置10において第2の基板12内の金属配線層1211に形成された第3の反射防止膜1213と同様であるため、第3の反射防止膜1213に関する詳細な説明は省略する。
第2の半導体層1215は、第1の実施形態の固体撮像装置10における第2の基板12を構成する第2の半導体層1215と同様であるため、第2の半導体層1215に関する詳細な説明は省略する。
このような構成の固体撮像装置50に入射された第1の光線は、第1の基板51に形成されたマイクロレンズ1111によって、例えば、第1の半導体層1117と第2の半導体層1215との間に集光され、カラーフィルター1112、透明樹脂層1113、シリコン酸化膜1115、および第1の反射防止膜1116のそれぞれを透過して、第1の半導体層1117に入射される。そして、第1の半導体層1117に入射された第1の光線は、第1の光電変換部1118によって一部の第1の光線が吸収されて第1の画素信号に変換され、一部の第1の光線が第1の半導体層1117を透過して、金属配線層5120に出射される。ここで、出射された第1の光線は、金属配線層5120(第2の反射防止膜1119を含む)および接続層53の絶縁部532の領域を透過して、第2の光線として第2の基板52に入射される。そして、第2の光線は、金属配線層5211(第3の反射防止膜1213を含む)を透過して、第2の半導体層1215に入射され、第2の光電変換部1214によって吸収されて第2の画素信号に変換される。
上記に述べたように、本第5の実施形態の固体撮像装置50でも、第1の基板51内の第1の半導体層1117の両面(第1の面および第2の面)に反射防止膜を形成する。また、本第5の実施形態の固体撮像装置50でも、第2の基板52に、第1の基板51を透過した第2の光線が入射する側の第2の半導体層1215の面(第3の面)にも第3の反射防止膜1213を形成する。これにより、本第5の実施形態の固体撮像装置50でも、第1の実施形態の固体撮像装置10と同様に、第1の光線が入射する1段目の半導体基板である第1の基板51を透過して第2の光線が出射する側の第2の面の界面と、2段目の半導体基板である第2の基板52に第2の光線が入射する側の第3の面の界面とにおける第2の光線の反射を低減して、第2の基板52に形成された第2の単位画素に十分な第2の光線を届けることができる。このことにより、第2の単位画素は、十分な光量が確保された第2の光線を光電変換し、レベルを向上した第2の画素信号を出力することができる。このことにより、本第5の実施形態の固体撮像装置50でも、第1の実施形態の固体撮像装置10と同様に、感度を向上させることができる。
なお、本第5の実施形態の固体撮像装置50では、それぞれの反射防止膜における分光透過特性(分光透過率のピーク)に関しては、特に規定しない。しかし、本第5の実施形態の固体撮像装置50でも、第2の実施形態の固体撮像装置20と同様に、それぞれの反射防止膜の分光透過特性(分光透過率のピーク)を規定することによって、第1の単位画素が光電変換する第1の光線の波長と、第2の単位画素が光電変換する第2の光線の波長とを異なる波長にすることもできる。これにより、本第5の実施形態の固体撮像装置50の機能を向上させることができる。
また、本第5の実施形態の固体撮像装置50では、第1の基板51と第2の基板52との2枚の基板を積層した構成について説明したが、上述したように、固体撮像装置50において積層する基板の枚数は2枚に限らず、図6に示した第3の実施形態の固体撮像装置30と同様に考えて、さらに多くの枚数の基板を積層した構成にすることもできる。
上記に述べたように、本発明を実施するための形態によれば、光電変換部が形成された半導体基板を複数段に積層した構成の固体撮像装置において、光線が入射する側に配置され、入射した光線を透過して出射する基板の半導体層の両面に反射防止膜を形成する。これにより、本発明を実施するための形態では、入射した光線を透過して出射する側の半導体層の界面における光線の反射を低減し、透過した光線が入射される他の基板の半導体層に十分な光線を届けることができる。このことにより、透過した光線が入射される他の基板の半導体層に形成された光電変換部は、十分な光量が確保された光線を光電変換することができ、光電変換した電気信号のレベルを向上し、固体撮像装置の感度を向上させることができる。
また、本発明を実施するための形態では、他の基板を透過した光線が入射する基板の半導体層にも反射防止膜を形成する。このとき、本発明を実施するための形態では、入射した光線を透過して出射する他の基板において透過した光線を出射する側の面に形成する反射防止膜の分光透過特性(分光透過率のピーク)と、この他の基板から出射された光線が入射する基板において光線が入射する側の面に形成する反射防止膜の分光透過特性(分光透過率のピーク)とを、同じ分光透過特性(分光透過率のピーク)にする。これにより、本発明を実施するための形態では、他の基板を透過した光線が入射する側の半導体層の界面における光線の反射を低減し、この基板に形成された半導体層に十分な光線を届けることができる。このことにより、透過した光線が入射されるこの基板の半導体層に形成された光電変換部は、さらに十分な光量が確保された光線を光電変換することができ、光電変換した電気信号のレベルをさらに向上して、固体撮像装置の感度をさらに向上させることができる。
また、本発明を実施するための形態では、他の基板から出射された光線が入射する基板が、入射した光線を透過してさらに出射しない基板である場合には、光線が入射する側の面にのみ反射防止膜を形成する。これにより、本発明を実施するための形態では、入射した光線を透過してさらに出射しない基板に、不要な反射防止膜を形成することがなくなる。
このことにより、本発明を実施するための形態による固体撮像装置を搭載した撮像装置では、感度が向上された電気信号に基づいて、良好な画質の画像を生成(撮影)することができる。
なお、本実施形態においては、複数の基板が電気的に接続されている固体撮像装置の構成の一例について説明した。しかし、固体撮像装置の構成は、本発明を実施するための形態においてに示した構成に限定されるものではない。例えば、画素信号を出力する複数の基板が積層されているが、積層されたそれぞれの基板は電気的に接続されてはおらず、それぞれの基板が独立に動作する、すなわち、それぞれの基板から別々に画素信号を読み出す構成であっても同様に、本発明の考え方を適用することができる。
以上、本発明の実施形態について、図面を参照して説明してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲においての種々の変更も含まれる。
10,20,30,40,50・・・固体撮像装置
11,51・・・第1の基板
111・・・第1の画素アレイ部(画素,画素部)
1111・・・マイクロレンズ
1112・・・カラーフィルター
1113・・・透明樹脂層
1114・・・遮光膜
1115・・・シリコン酸化膜
1116・・・第1の反射防止膜
1117・・・第1の半導体層
1118・・・第1の光電変換部
1119・・・第2の反射防止膜
1120,5120・・・金属配線層
1121,5121・・・金属配線
112・・・第1の垂直走査回路
113・・・第1の水平走査回路
114・・・ボンディングパッド
115・・・接続電極アレイ部(接続電極部)
12,42,52・・・第2の基板
121・・・第2の画素アレイ部(画素,画素部)
1211,4211,5211・・・金属配線層
1212,4212,5212・・・金属配線
1213,4213・・・第3の反射防止膜
1214,4214・・・第2の光電変換部
1215,4215・・・第2の半導体層
1216・・・第4の反射防止膜
1217・・・透明樹脂層
1218・・・遮光膜
122・・・第2の垂直走査回路
123・・・第2の水平走査回路
13・・・接続層(接続電極部)
33・・・第3の基板
3311・・・金属配線層
3312・・・金属配線
3313・・・第5の反射防止膜
3314・・・第3の光電変換部
3315・・・第3の半導体層
34・・・接続層(接続電極部)
53・・・接続層(接続電極部)
531・・・接続電極(接続電極部)
532・・・絶縁部

Claims (7)

  1. 光電変換部を有する画素が二次元のマトリクス状に複数配置された画素部を具備した複数の基板が積層される構造の固体撮像装置であって、
    入射された第1の光線を電気信号に変換する第1の光電変換部が形成された第1の半導体層を有する第1の基板と、
    前記第1の基板を透過して入射された第2の光線を電気信号に変換する第2の光電変換部が形成された第2の半導体層を有する第2の基板と、
    を備え、
    前記第1の基板は、
    前記第1の半導体層に前記第1の光線が入射する側の面である第1の面に接して形成され、該第1の面における該第1の光線の反射を低減する第1の反射防止膜と、
    前記第1の半導体層に入射した前記第1の光線が該第1の半導体層を透過して前記第2の光線として出射される、前記第1の面と反対側の面である第2の面に接して形成され、該第2の面における該第2の光線の反射を低減する第2の反射防止膜と、
    を備えることを特徴とする固体撮像装置。
  2. 前記第1の反射防止膜と前記第2の反射防止膜とは、
    異なる材料によって形成される、
    ことを特徴とする請求項1に記載の固体撮像装置。
  3. 前記第1の反射防止膜と前記第2の反射防止膜とは、
    同じ材料によって形成される、
    ことを特徴とする請求項1に記載の固体撮像装置。
  4. 前記第1の反射防止膜が前記第1の光線を透過する分光透過特性と、
    前記第2の反射防止膜が前記第2の光線を透過する分光透過特性とは、
    異なる分光透過特性である、
    ことを特徴とする請求項1から請求項3のいずれか1の項に記載の固体撮像装置。
  5. 前記第2の反射防止膜の分光透過率が最も高い波長は、
    前記第1の反射防止膜の分光透過率が最も高い波長よりも長波長側にある、
    ことを特徴とする請求項4に記載の固体撮像装置。
  6. 前記第2の基板は、
    前記第2の半導体層に前記第2の光線が入射する側の面である第3の面に接して形成され、該第3の面における該第2の光線の反射を低減する第3の反射防止膜、
    を備え、
    前記第3の反射防止膜の分光透過率が最も高い波長は、
    前記第2の反射防止膜の分光透過率が最も高い波長と同じ波長である、
    ことを特徴とする請求項1から請求項5のいずれか1の項に記載の固体撮像装置。
  7. 前記第2の基板を透過して入射された第3の光線を電気信号に変換する第3の光電変換部が形成された第3の半導体層を有する第3の基板、
    をさらに備え、
    前記第2の基板は、
    前記第2の半導体層に入射した前記第2の光線が該第2の半導体層を透過して前記第3の光線として出射される、前記第3の面と反対側の面である第4の面に接して形成され、該第4の面における該第3の光線の反射を低減する第4の反射防止膜、
    を備え、
    前記第3の基板は、
    前記第3の半導体層に前記第3の光線が入射する側の面である第5の面に接して形成され、該第5の面における該第3の光線の反射を低減する第5の反射防止膜、
    を備え、
    前記第4の反射防止膜の分光透過率が最も高い波長は、
    前記第5の反射防止膜の分光透過率が最も高い波長と同じ波長である、
    ことを特徴とする請求項6に記載の固体撮像装置。
JP2014067931A 2014-03-28 2014-03-28 固体撮像装置 Pending JP2015192015A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014067931A JP2015192015A (ja) 2014-03-28 2014-03-28 固体撮像装置
PCT/JP2015/051650 WO2015146253A1 (ja) 2014-03-28 2015-01-22 固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067931A JP2015192015A (ja) 2014-03-28 2014-03-28 固体撮像装置

Publications (1)

Publication Number Publication Date
JP2015192015A true JP2015192015A (ja) 2015-11-02

Family

ID=54194795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067931A Pending JP2015192015A (ja) 2014-03-28 2014-03-28 固体撮像装置

Country Status (2)

Country Link
JP (1) JP2015192015A (ja)
WO (1) WO2015146253A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225755A (ja) * 2016-06-24 2017-12-28 富士フイルム株式会社 内視鏡装置
KR101926007B1 (ko) * 2016-12-21 2018-12-06 남동욱 양면 이미지 센서 및 그 제조 방법
JP2019004001A (ja) * 2017-06-13 2019-01-10 ルネサスエレクトロニクス株式会社 固体撮像素子およびその製造方法
WO2020149096A1 (ja) * 2019-01-18 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US12009382B2 (en) 2019-01-18 2024-06-11 Sony Semiconductor Solutions Corporation Imaging device and electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068713A1 (ja) * 2015-10-23 2017-04-27 オリンパス株式会社 固体撮像装置および撮像装置
US9786705B2 (en) * 2015-12-21 2017-10-10 Qualcomm Incorporated Solid state image sensor with extended spectral response
JP6974485B2 (ja) 2017-09-26 2021-12-01 富士フイルム株式会社 積層体、及び、固体撮像素子
JP2021064722A (ja) * 2019-10-16 2021-04-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142510A (ja) * 2003-11-10 2005-06-02 Matsushita Electric Ind Co Ltd 固体撮像装置およびその製造方法
US8471939B2 (en) * 2008-08-01 2013-06-25 Omnivision Technologies, Inc. Image sensor having multiple sensing layers
JP2012038938A (ja) * 2010-08-06 2012-02-23 Canon Inc 固体撮像素子およびカメラ
JP2013070030A (ja) * 2011-09-06 2013-04-18 Sony Corp 撮像素子、電子機器、並びに、情報処理装置
TW201415613A (zh) * 2012-08-02 2014-04-16 Sony Corp 固體攝像裝置、固體攝像裝置之製造方法及電子機器
JP6045250B2 (ja) * 2012-08-10 2016-12-14 オリンパス株式会社 固体撮像装置および撮像装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225755A (ja) * 2016-06-24 2017-12-28 富士フイルム株式会社 内視鏡装置
KR101926007B1 (ko) * 2016-12-21 2018-12-06 남동욱 양면 이미지 센서 및 그 제조 방법
JP2019004001A (ja) * 2017-06-13 2019-01-10 ルネサスエレクトロニクス株式会社 固体撮像素子およびその製造方法
WO2020149096A1 (ja) * 2019-01-18 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US12009382B2 (en) 2019-01-18 2024-06-11 Sony Semiconductor Solutions Corporation Imaging device and electronic device

Also Published As

Publication number Publication date
WO2015146253A1 (ja) 2015-10-01

Similar Documents

Publication Publication Date Title
WO2015146253A1 (ja) 固体撮像装置
US9780136B2 (en) Composite wafer semiconductor devices using offset via arrangements and methods of fabricating the same
KR102278755B1 (ko) 반도체 장치, 고체 촬상 장치 및 전자기기
US9153565B2 (en) Image sensors with a high fill-factor
US9294691B2 (en) Imaging device, imaging apparatus, manufacturing apparatus and manufacturing method
US11688753B2 (en) Solid-state imaging device configured by electrically bonding the respective electrodes of a plurality of semiconductor chips
US9177981B2 (en) Solid-state imaging device having a metallic pad periphery guard ring
JP2012064709A (ja) 固体撮像装置及び電子機器
US9337232B2 (en) Substrate stacked image sensor having a dual detection function
KR20120037876A (ko) 고체 촬상 장치, 고체 촬상 장치의 제조 방법, 및 전자 기기
JP2013041941A (ja) 撮像装置およびカメラモジュール
WO2019171787A1 (ja) 撮像素子および撮像素子の製造方法
JP6079807B2 (ja) 固体撮像装置及び電子機器
JP2009259934A (ja) 固体撮像素子
JP5990867B2 (ja) 固体撮像装置、および、その製造方法、電子機器
US9961286B2 (en) Solid-state imaging device
WO2015022795A1 (ja) 固体撮像装置およびその製造方法、ならびに撮像装置
WO2013122015A1 (ja) 固体撮像素子
WO2016035184A1 (ja) 固体撮像装置
WO2018116697A1 (ja) 固体撮像装置およびその製造方法
TWI808688B (zh) 影像感測器配置、影像感測器裝置及用於操作影像感測器配置的方法
WO2022210064A1 (ja) センサ装置