WO2022210064A1 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
WO2022210064A1
WO2022210064A1 PCT/JP2022/012946 JP2022012946W WO2022210064A1 WO 2022210064 A1 WO2022210064 A1 WO 2022210064A1 JP 2022012946 W JP2022012946 W JP 2022012946W WO 2022210064 A1 WO2022210064 A1 WO 2022210064A1
Authority
WO
WIPO (PCT)
Prior art keywords
spad
circuit
semiconductor substrate
pixel
pixels
Prior art date
Application number
PCT/JP2022/012946
Other languages
English (en)
French (fr)
Inventor
英信 津川
綾子 梶川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202280014376.0A priority Critical patent/CN116830270A/zh
Priority to US18/551,254 priority patent/US20240170525A1/en
Publication of WO2022210064A1 publication Critical patent/WO2022210064A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Definitions

  • the present disclosure relates to sensor devices.
  • the image sensor and distance sensor chips are created in separate camera modules. ⁇ The image and the distance information are matched in the data processing of the subsequent circuit. In this case, a plurality of camera modules are required, increasing the cost. In addition, the mounting area of the modules becomes large, and the optical axes are different for each module, so the parallax becomes large at a short distance, and data processing in consideration of this becomes necessary.
  • a laminated sensor has been proposed in which a chip in which SPAD (Single Photon Avaranche Diode) pixels are arranged in an array (hereinafter referred to as a SPAD array) and a logic circuit are laminated (see, for example, Patent Document 1). .
  • SPAD Single Photon Avaranche Diode
  • the size of the SPAD pixel is limited to the size of the SPAD circuit. There is a problem that miniaturization is difficult.
  • the present disclosure has been made in view of such circumstances, and aims to provide a sensor device that enables miniaturization of SPAD pixels.
  • a sensor device includes a first substrate portion and a second substrate portion bonded to the first substrate portion.
  • the first substrate section includes a first semiconductor substrate, and a pixel region provided on the first semiconductor substrate and having a mixture of SPAD pixels and a plurality of visible light pixels in an array.
  • the second substrate section includes: a second semiconductor substrate facing the first semiconductor substrate; a SPAD circuit provided on the second semiconductor substrate and connected to the SPAD pixels; provided on the second semiconductor substrate; and a visible light pixel circuit connected to the plurality of visible light pixels.
  • the sensor device can use a plurality of visible light pixels as pixels for imaging (that is, for image acquisition) and use SPAD pixels as pixels for distance measurement (that is, for acquisition of range image). can. Since the SPAD pixels and the plurality of visible light pixels are arranged in an array on the first semiconductor substrate, the sensor device can acquire the image image and the range image on the same optical axis.
  • the SPAD pixels in plan view when the size of the SPAD pixels in plan view is reduced (that is, miniaturized), an empty area is generated around the SPAD pixels corresponding to the miniaturization.
  • the SPAD pixels and a plurality of visible light pixels are mixedly arranged in an array, so that the visible light pixels can be arranged in the empty areas generated by miniaturization of the SPAD pixels. Accordingly, the SPAD pixel can be miniaturized without being restricted by the size of the SPAD circuit.
  • FIG. 1 is a block diagram showing a configuration example of a sensor device according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration example of an imaging unit according to Embodiment 1 of the present disclosure;
  • FIG. 3 is a block diagram illustrating a configuration example of a distance measurement unit according to Embodiment 1 of the present disclosure;
  • 4A is a plan view showing Configuration Example 1 of a first substrate unit according to Embodiment 1 of the present disclosure.
  • FIG. 4B is a plan view showing Configuration Example 1 of the second substrate unit according to Embodiment 1 of the present disclosure;
  • FIG. 5A is a plan view showing Configuration Example 2 of the first substrate unit according to Embodiment 1 of the present disclosure.
  • FIG. 5B is a plan view showing Configuration Example 2 of the second substrate unit according to Embodiment 1 of the present disclosure
  • FIG. FIG. 6 is a diagram showing a configuration example of a SPAD circuit located directly under the pixel area.
  • FIG. 7 is a diagram showing a connection example of a SPAD pixel, an AFE circuit and a TDC circuit, and a configuration example of the AFE circuit.
  • FIG. 8 is a flow chart showing operation examples of the SPAD circuit and the CIS circuit in the sensor device.
  • FIG. 9 is a cross-sectional view showing a configuration example of a sensor device according to Embodiment 1 of the present disclosure.
  • FIG. 10 is a cross-sectional view showing a configuration example of a SPAD pixel according to Embodiment 1 of the present disclosure.
  • FIG. 11 is a plan view showing a size example (first example) of a SPAD pixel and a SPAD circuit according to Embodiment 1 of the present disclosure.
  • FIG. 12 is a plan view showing a size example (second example) of a SPAD pixel and a SPAD circuit according to Embodiment 1 of the present disclosure.
  • FIG. 13 is a plan view showing a size example (third example) of a SPAD pixel and a SPAD circuit according to Embodiment 1 of the present disclosure.
  • FIG. 11 is a plan view showing a size example (first example) of a SPAD pixel and a SPAD circuit according to Embodiment 1 of the present disclosure.
  • FIG. 12 is a plan view showing a size example (second example) of a SPAD pixel and a SPAD circuit according to Embodiment 1 of the present disclosure
  • FIG. 14 is a plan view showing a size example (fourth example) of a SPAD pixel and a SPAD circuit according to Embodiment 1 of the present disclosure.
  • 15A is a plan view showing a configuration example (Modification 1) of a first substrate unit according to Embodiment 1 of the present disclosure
  • FIG. 15B is a plan view showing a configuration example (Modification 1) of the second substrate unit according to Embodiment 1 of the present disclosure
  • FIG. 16 is a cross-sectional view showing a configuration example (Modification 2) of the sensor device according to Embodiment 1 of the present disclosure.
  • FIG. 17 is a cross-sectional view showing a configuration example (Modification 3) of the sensor device according to Embodiment 1 of the present disclosure.
  • FIG. 18 is a cross-sectional view showing a configuration example (Modification 4) of the first substrate unit according to Embodiment 1 of the present disclosure.
  • FIG. 19A is a plan view showing a configuration example (Modification 4) of the rear surface side of the first semiconductor substrate.
  • FIG. 19B is a plan view showing a configuration example (Modification 4) of the surface side of the first semiconductor substrate.
  • FIG. 20 is a cross-sectional view showing a configuration example (Modification 5) of the first substrate unit according to Embodiment 1 of the present disclosure.
  • FIG. 21 is a cross-sectional view showing a configuration example (Modification 6) of the first substrate unit according to Embodiment 1 of the present disclosure.
  • FIG. 22 is a cross-sectional view showing a configuration example (Modification 7) of the first substrate unit according to Embodiment 1 of the present disclosure.
  • FIG. 23 is a cross-sectional view showing a configuration example (Modification 7) of the first substrate unit according to Embodiment 1 of the present disclosure.
  • 24A is a cross-sectional view showing a method for manufacturing a sensor device according to Embodiment 2 of the present disclosure in order of steps.
  • FIG. FIG. 24B is a cross-sectional view showing the manufacturing method of the sensor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 24C is a cross-sectional view showing the manufacturing method of the sensor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 24D is a cross-sectional view showing the manufacturing method of the sensor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 24E is a cross-sectional view showing the manufacturing method of the sensor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 24F is a cross-sectional view showing the manufacturing method of the sensor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 25 is a cross-sectional view showing a configuration example of a sensor device according to Embodiment 3 of the present disclosure.
  • FIG. 26A is a circuit diagram showing an arrangement example of CIS pixels according to Embodiment 3 of the present disclosure.
  • FIG. 26B is a circuit diagram showing an arrangement example of CIS pixels according to Embodiment 3 of the present disclosure.
  • FIG. 27 is a circuit diagram showing an arrangement example (Modification 1) of SPAD pixels and SPAD circuits according to Embodiment 3 of the present disclosure.
  • FIG. 28 is a circuit diagram illustrating an arrangement example (Modification 2) of SPAD pixels and SPAD circuits according to Embodiment 3 of the present disclosure.
  • the X-axis direction and the Y-axis direction are examples of the "first direction” and the "second direction” of the present disclosure, respectively, and are parallel to the back surface (light-receiving surface) 5a of the first semiconductor substrate 5.
  • the X-axis direction and the Y-axis direction may also be referred to as horizontal directions.
  • the Z-axis direction is a direction perpendicular to the back surface 5 a of the first semiconductor substrate 5 .
  • the Z-axis direction is also the thickness direction of the sensor device 100 .
  • the X-axis direction, Y-axis direction and Z-axis direction are orthogonal to each other.
  • FIG. 1 is a block diagram showing a configuration example of a sensor device 100 according to Embodiment 1 of the present disclosure.
  • a sensor device 100 according to Embodiment 1 of the present disclosure includes an imaging unit 1 and a distance measuring unit 2, and a plurality of CIS pixels 20 (CIS: CMOS Image Sensor, this An example of the disclosed “visible light pixel”) and one or more SPAD pixels 10 included in the distance measurement unit 2 are arranged in the same pixel region 51 .
  • CIS CMOS Image Sensor
  • FIG. 2 is a block diagram showing a configuration example of the imaging unit 1 according to Embodiment 1 of the present disclosure.
  • the imaging unit 1 includes a plurality of CIS pixels 20 provided in a pixel region 51, a vertical drive circuit 13, a column signal processing circuit 14, a horizontal drive circuit 15, an output circuit 16, and a control circuit 17.
  • Prepare. CIS pixels 20 detect visible light.
  • the CIS pixel 20 is a light receiving area that receives visible light condensed by an optical system (not shown).
  • a plurality of CIS pixels 20 are arranged in a matrix.
  • the plurality of CIS pixels 20 are connected to the vertical drive circuit 13 for each row via horizontal signal lines 22 and are connected to the column signal processing circuit 14 for each column via vertical signal lines 23 .
  • the plurality of CIS pixels 20 each output a pixel signal whose level corresponds to the amount of visible light received. An image of the subject is constructed from these pixel signals.
  • the vertical drive circuit 13 supplies a drive signal for driving (transferring, selecting, resetting, etc.) each of the CIS pixels 20 to the CIS pixels 20 via a horizontal signal line 22 in sequence for each row of the plurality of CIS pixels 20 .
  • supply to The column signal processing circuit 14 performs CDS (Correlated Double Sampling) processing on the pixel signals output from the plurality of CIS pixels 20 via the vertical signal line 23, thereby AD-converting the pixel signals. and remove the reset noise.
  • CDS Correlated Double Sampling
  • the horizontal driving circuit 15 sequentially supplies the column signal processing circuit 14 with a driving signal for outputting the pixel signal from the column signal processing circuit 14 to the data output signal line 24 for each column of the plurality of CIS pixels 20 .
  • the output circuit 16 amplifies the pixel signal supplied from the column signal processing circuit 14 via the data output signal line 24 at the timing according to the driving signal of the horizontal driving circuit 15, and outputs it to the subsequent signal processing circuit.
  • the control circuit 17 controls driving of each block inside the imaging unit 1 . For example, the control circuit 17 generates a clock signal according to the driving cycle of each block and supplies it to each block.
  • the CIS pixel 20 includes a PN photodiode 31 that photoelectrically converts visible light, a transfer transistor 32, a floating diffusion 33, an amplification transistor 34, a selection transistor 35, and a reset transistor 36.
  • the transfer transistor 32 , floating diffusion 33 , amplification transistor 34 , selection transistor 35 , and reset transistor 36 constitute a readout circuit 30 that reads out charges (pixel signals) photoelectrically converted by the PN photodiode 31 .
  • the PN photodiode 31 is a photoelectric conversion unit that converts incident visible light into charges by photoelectric conversion and accumulates the charges.
  • the transfer transistor 32 is driven according to the transfer signal TRG supplied from the vertical drive circuit 13 , and when the transfer transistor 32 is turned on, the charge accumulated in the PN photodiode 31 is transferred to the floating diffusion 33 .
  • the floating diffusion 33 is a floating diffusion region having a predetermined storage capacity connected to the gate electrode of the amplification transistor 34 and temporarily stores charges transferred from the PN photodiode 31 .
  • the amplification transistor 34 outputs a pixel signal having a level corresponding to the charge accumulated in the floating diffusion 33 (that is, the potential of the floating diffusion 33) to the vertical signal line 23 via the selection transistor 35. That is, with the configuration in which the floating diffusion 33 is connected to the gate electrode of the amplification transistor 34, the floating diffusion 33 and the amplification transistor 34 amplify the charge generated in the PN photodiode 31 and convert the pixel signal to a level corresponding to the charge. It functions as a converter that converts.
  • the selection transistor 35 is driven according to the selection signal SEL supplied from the vertical drive circuit 13 , and when the selection transistor 35 is turned on, the pixel signal output from the amplification transistor 34 can be output to the vertical signal line 23 .
  • the reset transistor 36 is driven according to the reset signal RST supplied from the vertical drive circuit 13. When the reset transistor 36 is turned on, the charges accumulated in the floating diffusion 33 are discharged to the drain power supply Vdd, and the floating diffusion 33 is reset.
  • the CIS pixels 20 arranged in an array are mixed with blank areas.
  • SPAD pixels 10 are arranged in this blank area.
  • FIG. 3 is a block diagram showing a configuration example of the distance measurement unit 2 according to Embodiment 1 of the present disclosure.
  • the distance measuring unit 2 is a device that performs direct distance measurement by, for example, ToF (Time of Flight), and measures the distance from the time it takes for the light emitted from an external light source (not shown) to be reflected and returned. It is a device that calculates.
  • the distance measurement unit 2 includes one or more SPAD pixels 10 arranged in a pixel region 51, a distance measurement processing unit 101, a pixel control unit 102, an overall control unit 103, and a clock generator.
  • a unit 104 and an interface (I/F) 106 are included.
  • the SPAD pixels 10 detect, for example, infrared rays as monitor light. These SPAD pixels 10, distance measurement processing section 101, pixel control section 102, overall control section 103, clock generation section 104 and I/F 106 are arranged on a laminated substrate in which a plurality of semiconductor substrates are laminated.
  • the overall control section 103 controls the overall operation of the distance measuring section 2 according to, for example, a preinstalled program. Further, the general control unit 103 can also execute control according to an external control signal supplied from the outside.
  • the clock generation unit 104 generates one or more clock signals used within the distance measurement unit 2 based on a reference clock signal supplied from the outside.
  • the operation of the SPAD pixel 10 is controlled by the pixel control unit 102 according to instructions from the overall control unit 103 .
  • the pixel controller 102 can control a single SPAD pixel 10 or each block including a plurality of SPAD pixels 10 .
  • the ranging processing unit 101 includes a conversion unit 110 , a generation unit 111 and a signal processing unit 112 .
  • a pixel signal read from each SPAD pixel 10 is supplied to the conversion unit 110 .
  • pixel signals are asynchronously read from each SPAD pixel 10 and supplied to the conversion unit 110 . That is, the pixel signal is read out and output from each SPAD pixel 10 according to the timing at which each SPAD pixel 10 receives light.
  • the conversion unit 110 converts the pixel signal output from each SPAD pixel 10 into digital information. That is, the pixel signal output from each SPAD pixel 10 is output at the timing when the SPAD pixel 10 corresponding to the pixel signal receives light.
  • the conversion unit 110 converts the pixel signal output from the SPAD pixel 10 into time information indicating the timing.
  • the generation unit 111 generates a histogram based on time information obtained by converting the pixel signal by the conversion unit 110 .
  • the signal processing unit 112 performs predetermined arithmetic processing based on the histogram data generated by the generating unit 111, and calculates distance information, for example.
  • the signal processing unit 112 creates curve approximation of the histogram based on the histogram data generated by the generating unit 111 .
  • the signal processing unit 112 can detect the peak of the curve approximated by this histogram, and obtain the distance based on the detected peak.
  • the signal processing unit 112 can filter the curve approximated by the histogram when performing curve approximation of the histogram. For example, the signal processing unit 112 can suppress noise components by applying low-pass filter processing to the histogram-approximated curve.
  • the distance information obtained by the signal processing unit 112 is supplied to the interface 106.
  • the interface 106 outputs the distance information supplied from the signal processing unit 112 to the outside as output data.
  • MIPI Mobile Industry Processor Interface
  • MIPI Mobile Industry Processor Interface
  • the distance information obtained by the signal processing unit 112 is output to the outside via the interface 106 in the above description, it is not limited to this example. That is, the histogram data generated by the generation unit 111 may be output from the interface 106 to the outside.
  • the histogram data output from the interface 106 is supplied to, for example, an external information processing device and processed as appropriate.
  • each function of the distance measurement processing unit 101 shown in FIG. 3 is executed by the SPAD circuit 210, which will be described later.
  • the relationship between each function of the distance measurement processing unit 101 and the SPAD circuit 210 will be described later with reference to FIG. 5A.
  • FIG. 4A is a plan view showing Configuration Example 1 of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • the first substrate portion FB includes a first semiconductor substrate 5, a pixel region 51 provided on the first semiconductor substrate 5, and a peripheral region 52 provided on the first semiconductor substrate 5. have.
  • a peripheral region 52 is located around the pixel region 51 .
  • SPAD pixels 10 and a plurality of CIS pixels 20 are mixedly arranged in an array in a pixel region 51 .
  • the SPAD pixels 10 and the CIS pixels 20 are not arranged in the peripheral area 52 .
  • FIG. 4A shows the peripheral area 52 relatively large with respect to the pixel area 51, this is only an example.
  • the peripheral area 52 may be sufficiently smaller than the pixel area 51 .
  • FIG. 4B is a plan view showing Configuration Example 1 of the second substrate portion SB according to Embodiment 1 of the present disclosure.
  • the second substrate portion SB includes a second semiconductor substrate 6, a first circuit region 61 provided on the second semiconductor substrate 6, and a second circuit region provided on the second semiconductor substrate 6. 62 and .
  • a second circuit region 62 is positioned around the first circuit region 61 .
  • a SPAD circuit 210 connected to the SPAD pixel 10 is arranged in the first circuit region 61 .
  • a CIS circuit 220 (an example of a “visible light pixel circuit” in the present disclosure) connected to a plurality of CIS pixels 20 is arranged in the second circuit region 62 .
  • the CIS circuit 220 has a first CIS circuit 221 and a second CIS circuit 222 .
  • the first CIS circuit 221 includes the vertical drive circuit 13, horizontal drive circuit 15 and control circuit 17 shown in FIG.
  • the second CIS circuit 222 includes the column signal processing circuit 14 and the output circuit 16 shown in FIG.
  • the second substrate portion SB is joined to the first substrate portion FB.
  • the pixel region 51 of the first substrate portion FB and the first circuit region 61 of the second substrate portion SB are arranged in the direction in which the first semiconductor substrate 5 and the second semiconductor substrate 6 face each other (for example, the Z-axis direction). facing each other in Assuming that the light receiving surface of the pixel region 51 faces upward, the first circuit region 61 is positioned directly below the pixel region 51 .
  • a SPAD circuit 210 arranged in the first circuit region 61 is located directly below the pixel region 51 .
  • the peripheral region 52 of the first substrate portion FB and the second circuit region 62 of the second substrate portion SB are separated from each other in the Z-axis direction by facing each other.
  • the second circuit region 62 is positioned directly below the peripheral region 52 .
  • the CIS circuit 220 arranged in the second circuit area 62 is located directly below the peripheral area 52 .
  • the CIS circuit 220 is not positioned directly below the pixel region 51 .
  • the sensor device 100 according to Embodiment 1 of the present disclosure may include a plurality of SPAD pixels 10 in the pixel region 51 of the first semiconductor substrate 5.
  • FIG. 5A is a plan view showing Configuration Example 2 of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • a plurality of SPAD pixels 10 and a plurality of CIS pixels 20 may be mixedly arranged in an array. Also in this case, the SPAD pixels 10 and the CIS pixels 20 are not arranged in the peripheral region 52 of the first semiconductor substrate 5 .
  • the size of the SPAD pixel 10 in a plan view (that is, the pixel area) is 16 times the pixel area of the CIS pixel 20 (4 times the length in the X-axis direction and 4 times the length in the Y-axis direction). ), but this is just an example.
  • the pixel area of the SPAD pixel 10 is four times the pixel area of the CIS pixel 20 (twice the length in the X-axis direction and twice the length in the Y-axis direction), good.
  • FIG. 5B is a plan view showing Configuration Example 2 of the second substrate portion SB according to Embodiment 1 of the present disclosure.
  • a plurality of SPAD circuits 210 may be arranged in the first circuit area 61 of the second semiconductor substrate 6 .
  • a plurality of SPAD circuits 210 are arranged corresponding to the plurality of SPAD pixels 10 shown in FIG. 5A.
  • One SPAD circuit 210 corresponding to one SPAD pixel 10 is arranged directly below one SPAD pixel 10 .
  • a CIS circuit 220 is located directly below the peripheral region 52 shown in FIG. 5A.
  • FIG. 6 is a diagram showing a configuration example of the SPAD circuit 210 located directly below the pixel region 51.
  • the SPAD circuit 210 has an AFE (Analog Front End) circuit 211 , a TDC (Time to Digital Converter) circuit 212 , a Histogram circuit 213 and an Output section 214 .
  • the SPAD circuit 210 executes at least part of each function of the distance measurement processing section 101 .
  • the AFE circuit 211 converts the pixel signal output from each SPAD pixel 10 into digital information as part of the function of the conversion unit 110 of the distance measurement processing unit 101 shown in FIG.
  • the TDC circuit 212 converts the digital information output from the AFE circuit 211 into time information as another part of the functions of the conversion section 110 .
  • the Histgram circuit 213 generates a histogram based on the time information output from the TDC circuit 212 as each function of the generating unit 111 and the signal processing unit 112 of the distance measurement processing unit 101 shown in FIG. Based on the above, predetermined arithmetic processing is performed to calculate the distance information.
  • the output unit 214 outputs the calculated distance information to the outside as output data.
  • FIG. 7 is a diagram showing a connection example of the SPAD pixel 10, the AFE circuit 211 and the TDC circuit 212, and a configuration example of the AFE circuit 211.
  • the AFE circuit 211 has a quench circuit 2111 and an inverter circuit 2112 connected to the output side of the quench circuit 2111 .
  • the SPAD pixel 10 is connected to the input side of the quench circuit 2111 .
  • the TDC circuit 212 is connected to the output side of the inverter circuit 2112 .
  • FIG. 8 is a flow chart showing operation examples of the SPAD circuit 210 and the CIS circuit 220 in the sensor device 100 . As shown in FIG. 8, while the signal for one screen is read out (that is, from frame start to frame end), the CIS circuit 220 sequentially reads out rows. Simultaneous pixel readout operation is performed.
  • the CIS circuit 220 performs PD (Photo Diode) reset, exposure, and PD read in the order of the n-th row (n is an integer of 1 or more), the n+1-th row, the n+2-th row, and so on. , row selection, and AD (Analog to Digital) conversion are sequentially performed.
  • the CIS circuit 220 resets the PD of the (n+1)th row at the timing of the exposure of the nth row.
  • the SPAD circuit 210 performs counter reset, SPAD pixel (SPAD element) ON, laser irradiation, detection, histogram processing, and distance detection. Processing from SPAD pixel ON to detection is performed m times (m is an integer equal to or greater than 1) as required.
  • FIG. 9 is a cross-sectional view showing a configuration example of the sensor device 100 according to Embodiment 1 of the present disclosure.
  • the sensor device 100 includes a first substrate portion FB, a second substrate portion SB bonded to the first substrate portion FB, a color filter CF, and a microlens array MLA (a “lens body” of the present disclosure). ”) and .
  • the sensor device 100 is, for example, a back-illuminated optical sensor, and the back surface 5a (upper surface in FIG. 9) side of the first semiconductor substrate 5 is the light incident surface side. Therefore, the color filter CF and the microlens array MLA are arranged on the rear surface 5a side of the first semiconductor substrate 5 .
  • the first substrate portion FB is provided on the side of the first semiconductor substrate 5 and the surface 5b of the first semiconductor substrate 5 (lower surface in FIG. 9; an example of the “surface facing the second semiconductor substrate” in the present disclosure). and a wiring layer 55 .
  • the first semiconductor substrate 5 is, for example, a silicon substrate formed by polishing a silicon wafer by CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • One or more SPAD pixels 10 and a plurality of CIS pixels 20 are provided on the first semiconductor substrate 5 .
  • a color filter CF and a microlens array MLA are laminated in this order on the back surface 5a of the first semiconductor substrate 5 via a translucent insulating film (not shown).
  • the microlens array MLA has microlenses ML1 arranged in the SPAD pixels 10 and microlenses ML2 arranged in the CIS pixels 20 .
  • the ends of adjacent microlenses ML1 and ML2, and the ends of adjacent microlenses ML2 and ML2 are connected to each other to form one microlens array MLA.
  • the color filters CF are arranged in the CIS pixels 20 but not in the SPAD pixels 10 .
  • the microlens ML1 is arranged on the back surface 5a of the first semiconductor substrate 5 via a translucent insulating film (not shown). As a result, the light transmitted through the microlens array MLA enters the SPAD pixel 10 without passing through the color filter CF. Light transmitted through the microlens array MLA enters the CIS pixels 20 through the color filters CF.
  • the first semiconductor substrate 5 is provided with a first isolation portion 53 having a trench structure and a second isolation portion 54 having a trench structure.
  • the first isolation portion 53 is located between the SPAD pixel 10 and the CIS pixel 20 .
  • the second element isolation portion 54 is positioned between one CIS pixel 20 and the other CIS pixel 20 adjacent to each other among the plurality of CIS pixels 20 .
  • Each of the first isolation portion 53 and the second isolation portion 54 has a trench formed in the depth direction from the back surface 5a side of the first semiconductor substrate 5 and a filling film embedded in the trench.
  • the filling film is, for example, an insulating film such as a silicon oxide film (SiO 2 film) or a polysilicon film.
  • the filling film may have a fixed charge film provided in contact with the inner side surface of the trench.
  • the trench of the first isolation portion 53 is an example of the "first trench” of the present disclosure
  • the trench of the second isolation portion 64 is an example of the "second trench” of the present disclosure.
  • the first wiring layer 55 includes first wirings 551 connected to the SPAD pixels 10, second wirings 552 connected to the plurality of CIS pixels 20, and a first interlayer insulating film 553 covering the first wirings 551 and the second wirings 552. and
  • the first wiring 551 and the second wiring 552 are, for example, multilayer wirings formed over a plurality of layers.
  • the first interlayer insulating film 553 is, for example, a laminated film formed through a plurality of film formation processes.
  • the first wiring 551 and the second wiring 552 are made of metal such as aluminum (Al) or copper (Cu).
  • the first interlayer insulating film 553 is composed of an insulating film such as a SiO2 film.
  • the second substrate part SB includes a second semiconductor substrate 6 and a second semiconductor substrate provided on the surface 6a of the second semiconductor substrate 6 (the upper surface in FIG. 9; an example of the “surface facing the first semiconductor substrate” in the present disclosure). It has a wiring layer 65 .
  • the second semiconductor substrate 6 is, for example, a silicon substrate formed by polishing a silicon wafer by CMP.
  • a SPAD circuit 210 is provided in the first circuit region 61 of the second semiconductor substrate 6 .
  • a CIS circuit 220 is provided in the second circuit region 62 of the second semiconductor substrate 6 .
  • the second wiring layer 65 includes a third wiring 651 connected to the SPAD circuit 210, a fourth wiring 652 connected to the CIS circuit 220, and a second interlayer insulating film 653 covering the third wiring 651 and the fourth wiring 652.
  • the third wiring 651 and the fourth wiring 652 are, for example, multilayer wirings formed over a plurality of layers.
  • the second interlayer insulating film 653 is, for example, a laminated film formed through a plurality of film formation processes.
  • the third wiring 651 and the fourth wiring 652 are made of metal such as Al or Cu.
  • the second interlayer insulating film 653 is composed of an insulating film such as a SiO2 film.
  • the first interlayer insulating film 553 and the second interlayer insulating film 653 are bonded to each other.
  • the first wiring 551 and the third wiring 651 are Cu--Cu bonded
  • the second wiring 552 and the fourth wiring 652 are bonded with Cu. -Cu bonded.
  • the first junction J1 where the first wiring 551 and the third wiring 651 are Cu--Cu bonded is between the pixel region 51 of the first semiconductor substrate 5 and the first circuit region 61 of the second semiconductor substrate 6.
  • the second junction J2 where the second wiring 552 and the fourth wiring 652 are Cu--Cu bonded is between the peripheral region 52 of the first semiconductor substrate 5 and the second circuit region 62 of the second semiconductor substrate 6. To position.
  • FIG. 10 is a cross-sectional view showing a configuration example of the SPAD pixel 10 according to Embodiment 1 of the present disclosure.
  • FIG. 10 is a cross-sectional view showing a configuration example of the SPAD pixel 10 applicable to the direct ToF rangefinder 2 according to the first embodiment of the present disclosure.
  • the SPAD pixel 10 is provided with an N-type semiconductor region 501 and a P-type semiconductor region 502 in contact with the N-type semiconductor region 501 .
  • the N-type semiconductor region 501 and the P-type semiconductor region 502 are provided within the well layer 503 .
  • the well layer 503 may be an N-type semiconductor region or a P-type semiconductor region.
  • the well layer 503 is preferably a low-concentration N-type or P-type semiconductor region, for example, on the order of 1E14 or less. It is possible to improve the detection efficiency called .
  • the N-type semiconductor region 501 is an N-type semiconductor region made of Si (silicon), for example, and having a high impurity concentration.
  • the P-type semiconductor region 502 is a P-type semiconductor region with a high impurity concentration.
  • the P-type semiconductor region 502 forms a pn junction at the interface with the N-type semiconductor region 501 .
  • the P-type semiconductor region 502 has a multiplication region for avalanche multiplication of carriers generated by incident light to be detected.
  • the P-type semiconductor region 502 is preferably depleted, thereby improving PDE.
  • the N-type semiconductor region 501 functions as a cathode and is connected via a contact 504 to the SPAD circuit 210 (see FIG. 9, for example).
  • An anode 505 for the cathode is in the same layer as the N-type semiconductor region 501 and is provided between the N-type semiconductor region 501 and the isolation region 508 .
  • Anode 505 is connected to SPAD circuit 210 via contact 506 .
  • An isolation region 508 is formed for isolating the SPAD pixels 10 from each other, and a hole accumulation region 507 a is provided between the isolation region 508 and the well layer 503 .
  • a hole accumulation region 507a is formed above the anode 505 and is provided in a state of being electrically connected to the anode 505 .
  • the hole accumulation region 507 a is provided between the well layer 503 and the isolation region 508 .
  • the hole accumulation region 507a is also provided on the upper portion of the well layer 503 (on the light incident surface side of the SPAD pixel 10).
  • the hole accumulation region 507a is formed in a portion where different materials are in contact.
  • the isolation region 508 is made of, for example, a silicon oxide film, and since the material is different from that of the well layer 503, a hole accumulation region 507a is provided to suppress the dark current generated at the interface. .
  • a hole accumulation region 507a is also formed at the interface with the well layer 503 on the side where the microlens ML2 is formed.
  • the hole accumulation region 507a is provided on a surface other than the lower surface of the well layer 503 (the surface on which the N-type semiconductor region 501 is provided).
  • the hole accumulation region 507a may be provided on a surface other than the top surface and bottom surface of the well layer 503 .
  • the hole accumulation region 507a can be formed as a P-type semiconductor region.
  • An isolation region 508 is formed between SPAD pixels 10 to isolate each SPAD pixel 10 . That is, the isolation region 508 is formed so that the multiplication region is formed in one-to-one correspondence with each SPAD pixel 10 .
  • the isolation region 508 is formed in a two-dimensional grid shape so as to completely surround each multiplication region (SPAD pixel 10).
  • the isolation region 508 shown in FIG. 10 is included, for example, in the first element isolation portion 53 of the trench structure shown in FIG.
  • the isolation region 508 is provided to penetrate from the upper surface side to the lower surface side of the well layer 503 in the stacking direction. It should be noted that, other than the configuration in which the entire substrate is penetrated from the upper surface side to the lower surface side, for example, a configuration in which only a portion of the substrate is penetrated and the separation region 508 is inserted halfway through the substrate may be used.
  • FIG. 11 is a plan view showing a size example (first example) of the SPAD pixel 10 and the SPAD circuit 210 according to Embodiment 1 of the present disclosure.
  • the pixel area of the SPAD pixel 10 is 16 times the pixel area of the CIS pixel 20 (the length of 4 pixels in the X-axis direction, length of 4 pixels).
  • the arrangement interval of the SPAD pixels 10 is ten times the arrangement interval of the CIS pixels 20 . That is, the arrangement interval of the SPAD pixels 10 is the length of 10 pixels of the CIS pixels 20 .
  • the size of the SPAD circuit 210 in plan view is 100 times the pixel area of the CIS pixel 20 (10 times the length in the X-axis direction and 10 times the length in the Y-axis direction). length).
  • One SPAD circuit 210 is located directly below one SPAD pixel 10 .
  • the plurality of SPAD pixels 10 are arranged in the X-axis direction (an example of the “first direction” of the present disclosure) and the Y-axis direction (“the (an example of the "second direction") are arranged at regular intervals.
  • the arrangement interval of the SPAD pixels 10 in the X-axis direction is a first pitch length
  • the arrangement interval of the SPAD pixels 10 in the Y-axis direction is a second pitch length
  • the first pitch length and the second pitch length are respectively the CIS pixels 20 is 10 pixels long.
  • the circuit area of one SPAD circuit 210 is equivalent to 100 pixels of the CIS pixels 20, and has the same value as the product of the first pitch length and the second pitch length.
  • the circuit area of one SPAD circuit 210 may be smaller than the product of the first pitch length and the second pitch length.
  • FIG. 12 is a plan view showing a size example (second example) of the SPAD pixel 10 and the SPAD circuit 210 according to Embodiment 1 of the present disclosure.
  • the pixel area of the SPAD pixel 10 is four times the pixel area of the CIS pixel 20 (2 pixels long in the X-axis direction, 2 pixels long in the Y-axis direction). length of 2 pixels).
  • the arrangement interval of the SPAD pixels 10 is ten times the arrangement interval of the CIS pixels 20 . That is, the arrangement interval of the SPAD pixels 10 is the length of 10 pixels of the CIS pixels 20 .
  • the circuit area of the SPAD circuit 210 is 100 times the pixel area of the CIS pixel 20 (10 times the length in the X-axis direction and 10 times the length in the Y-axis direction).
  • One SPAD circuit 210 is located directly below one SPAD pixel 10 .
  • the plurality of SPAD pixels 10 are arranged at regular intervals in the X-axis direction and the Y-axis direction.
  • the arrangement interval of the SPAD pixels 10 in the X-axis direction is a first pitch length
  • the arrangement interval of the SPAD pixels 10 in the Y-axis direction is a second pitch length
  • the first pitch length and the second pitch length are respectively the CIS pixels 20 is 10 pixels long.
  • the circuit area of one SPAD circuit 210 is equivalent to 100 pixels of the CIS pixels 20, and has the same value as the product of the first pitch length and the second pitch length.
  • the circuit area of one SPAD circuit 210 may be smaller than the product of the first pitch length and the second pitch length.
  • FIG. 13 is a plan view showing a size example (third example) of the SPAD pixel 10 and the SPAD circuit 210 according to Embodiment 1 of the present disclosure.
  • the pixel area of the SPAD pixel 10 is four times the pixel area of the CIS pixel 20 (2 pixels long in the X-axis direction, 2 pixels long in the Y-axis direction). length of 2 pixels).
  • the arrangement interval of the SPAD pixels 10 is six times the arrangement interval of the CIS pixels 20 . That is, the arrangement interval of the SPAD pixels 10 is the length of 6 pixels of the CIS pixels 20 .
  • the circuit area of the SPAD circuit 210 is 36 times the pixel area of the CIS pixel 20 (6 times the length in the X-axis direction and 6 times the length in the Y-axis direction).
  • One SPAD circuit 210 is located directly below one SPAD pixel 10 .
  • the plurality of SPAD pixels 10 are arranged at regular intervals in the X-axis direction and the Y-axis direction. Assuming that the arrangement interval of the SPAD pixels 10 in the X-axis direction is a first pitch length and the arrangement interval of the SPAD pixels 10 in the Y-axis direction is a second pitch length, the first pitch length and the second pitch length are respectively the CIS pixels 20 is six pixels long.
  • the circuit area of one SPAD circuit 210 is equivalent to 36 pixels of the CIS pixel 20, and has the same value as the product of the first pitch length and the second pitch length.
  • the circuit area of one SPAD circuit 210 may be smaller than the product of the first pitch length and the second pitch length.
  • FIG. 14 is a plan view showing a size example (fourth example) of the SPAD pixel 10 and the SPAD circuit 210 according to Embodiment 1 of the present disclosure.
  • the pixel area of the SPAD pixel 10 is 36 times the pixel area of the CIS pixel 20 (the length of 6 pixels in the X-axis direction and the length of 6 pixels in the Y-axis direction).
  • the arrangement interval of the SPAD pixels 10 is six times the arrangement interval of the CIS pixels 20 . That is, the arrangement interval of the SPAD pixels 10 is the length of 6 pixels of the CIS pixels 20 .
  • the circuit area of the SPAD circuit 210 is 36 times the pixel area of the CIS pixel 20 (6 times the length in the X-axis direction and 6 times the length in the Y-axis direction).
  • One SPAD circuit 210 is located directly below one SPAD pixel 10 .
  • the plurality of SPAD pixels 10 are arranged at regular intervals in the X-axis direction and the Y-axis direction. Assuming that the arrangement interval of the SPAD pixels 10 in the X-axis direction is a first pitch length and the arrangement interval of the SPAD pixels 10 in the Y-axis direction is a second pitch length, the first pitch length and the second pitch length are respectively the CIS pixels 20 is six pixels long.
  • the circuit area of one SPAD circuit 210 is equivalent to 36 pixels of the CIS pixel 20, and has the same value as the product of the first pitch length and the second pitch length.
  • the circuit area of one SPAD circuit 210 may be smaller than the product of the first pitch length and the second pitch length.
  • the sensor device 100 includes the first substrate portion FB and the second substrate portion SB joined to the first substrate portion FB.
  • the first substrate section FB includes a first semiconductor substrate 5 and a pixel region 51 provided on the first semiconductor substrate 5 and having SPAD pixels 10 and a plurality of CIS pixels 20 mixed in an array.
  • the second substrate portion SB includes a second semiconductor substrate 6 facing the first semiconductor substrate 5, a SPAD circuit 210 provided on the second semiconductor substrate 6 and connected to the SPAD pixels 10, and a SPAD circuit 210 provided on the second semiconductor substrate 6. , and a CIS circuit 220 connected to a plurality of CIS pixels 20 .
  • the sensor device 100 uses a plurality of CIS pixels 20 as pixels for imaging (for example, for image acquisition) and uses SPAD pixels 10 as pixels for distance measurement (for example, for acquisition of range image). be able to. Since the SPAD pixels 10 and the plurality of CIS pixels 20 are mixedly arranged in an array on the first semiconductor substrate 5, the sensor device 100 can acquire the image image and the range image on the same optical axis. can.
  • the SPAD pixels 10 are miniaturized in the first semiconductor substrate 5, an empty area is generated around the SPAD pixels 10 by the amount of miniaturization.
  • the SPAD pixels 10 and a plurality of CIS pixels 20 are arranged in an array, so that the CIS pixels 20 can be arranged in empty areas generated by miniaturization of the SPAD pixels 10 .
  • the SPAD pixel 10 can be miniaturized without being restricted by the size of the SPAD circuit 210 positioned directly below the SPAD pixel 10 .
  • the SPAD circuit 210 only needs to perform distance image acquisition processing, and does not need to perform image image acquisition processing. Therefore, compared to the case where the SPAD pixel 10 performs both the image acquisition process and the range image acquisition process, the image processing load of the circuit (for example, the SPAD circuit 210) arranged after the SPAD pixel 10 is reduced. be able to. Since the image processing load can be reduced, power consumption can be reduced.
  • the second semiconductor substrate 6 includes a first circuit region 61 that overlaps the pixel region 51 of the first semiconductor substrate 5 in the Z-axis direction, and is positioned around the first circuit region 61, and Z and a second circuit region 62 that does not overlap the pixel region 51 in the axial direction.
  • a SPAD circuit 210 is arranged in the first circuit region, and a CIS circuit 220 is arranged in the second circuit region.
  • FIG. 15A is a plan view showing a configuration example (Modification 1) of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • FIG. 15B is a plan view showing a configuration example (Modification 1) of the second substrate portion SB according to Embodiment 1 of the present disclosure.
  • the SPAD pixels 10 of the first substrate portion FB may include the front stage portion of the AFE.
  • the quench circuit 2111 shown in FIG. 7 can be used as the front stage of the AFE.
  • the AFE circuit 211 of the second substrate section SB includes the post-stage section of the AFE.
  • the number of circuits included in the AFE circuit 211 can be reduced, so there is a possibility that the circuit area of the SPAD circuit 210 can be reduced.
  • FIG. 16 is a cross-sectional view showing a configuration example (Modification 2) of the sensor device 100 according to Embodiment 1 of the present disclosure.
  • the first wiring 551 and the second wiring 552 are not multilayer wiring formed over a plurality of layers, but single-layer wiring. good too.
  • a first junction J1 where the first wiring 551 and the third wiring 651 are Cu--Cu bonded and a second junction J2 where the second wiring 552 and the fourth wiring 652 are Cu--Cu bonded are Each may be located between the pixel region 51 of the first semiconductor substrate 5 and the first circuit region 61 of the second semiconductor substrate 6 . Even with such a configuration, the sensor device 100 can be miniaturized in pixels.
  • FIG. 17 is a cross-sectional view showing a configuration example (Modification 3) of the sensor device 100 according to Embodiment 1 of the present disclosure.
  • the sensor device 100 may include a bandpass filter BPF (an example of the "optical filter” of the present disclosure) between the SPAD pixel 10 and the microlens ML1.
  • the bandpass filter BPF for example, has a function of transmitting infrared rays (an example of “light of a preset wavelength” in the present disclosure) and blocking light other than infrared rays.
  • the SPAD pixels 10 can detect only infrared rays, so noise can be reduced.
  • FIG. 18 is a cross-sectional view showing a configuration example (Modification 4) of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • the first element isolation portion 53 having a trench structure surrounding the SPAD pixel 10 may have a structure in which a light shielding film is embedded.
  • the first isolation portion 53 includes a trench 531 (an example of a “first trench” in the present disclosure) provided from the rear surface (light receiving surface) 5a of the first semiconductor substrate 5 toward the front surface 5b side, and the trench 531 and a light shielding film 533 embedded in the trench 531 via the insulating film 532 .
  • the light shielding film 533 may be, for example, a metal film such as Al, or may be a polysilicon film. When the light shielding film 533 is a polysilicon film, it is possible to obtain a light shielding function by, for example, a refractive index difference at the contact interface.
  • the trench 531 penetrates through the first semiconductor substrate 5 .
  • the second element isolation portion 54 includes a trench 541 (an example of a “second trench” in the present disclosure) provided from the rear surface 5 a of the first semiconductor substrate 5 toward the front surface 5 b side, and an insulating film embedded in the trench 541 . 542.
  • the trench 541 penetrates through the first semiconductor substrate 5 .
  • FIG. 19A is a plan view showing a configuration example (modification 4) on the back surface 5a side of the first semiconductor substrate 5.
  • FIG. 19A when viewed from the rear surface 5a side of the first semiconductor substrate 5, the SPAD pixel 10 is surrounded by the first isolation portion 53 in which the light shielding film 533 is embedded. Also, the width of the trench 531 of the first isolation portion 53 surrounding the SPAD pixel 10 is wider than the width of the trench 541 of the second isolation portion 54 surrounding the CIS pixel 20 .
  • the first element isolation portion 53 can block light between the SPAD pixel 10 and the CIS pixel 20 in the first semiconductor substrate 5, and the SPAD pixel 10 and the CIS pixel 20 can be separated from one another. Since it is possible to suppress the incidence of light on, noise can be reduced.
  • FIG. 19B is a plan view showing a configuration example (Modification 4) on the front surface 5b side of the first semiconductor substrate 5.
  • the first substrate portion FB includes a light shielding wall SW (“light shielding property” of the present disclosure) provided to surround the SPAD pixels 10 on the front surface 5b side of the first semiconductor substrate 5. (an example of the "wall portion")).
  • the light shielding wall SW may be composed of, for example, a part of the first wiring 551, or may be a contact (for example, the contact 506 shown in FIG. 10) that connects the first wiring 551 and the first isolation section 53. may be configured, or may be configured by a combination of these.
  • the light shielding wall SW may be composed of a light shielding member provided separately from the first wiring 551 and the above contacts.
  • the light shielding wall SW may be in contact with the light shielding film 533 of the first isolation portion 53 .
  • the light blocking wall SW can block light between the SPAD pixel 10 and the CIS pixel 20 in the first wiring layer 55 .
  • the light-shielding wall SW can suppress light from leaking from one of the SPAD pixels 10 and the CIS pixels 20 to the other via the first wiring layer 55, so noise can be reduced.
  • FIG. 19B shows the case where the light shielding walls SW are arranged in a line, this is only an example.
  • the light shielding walls SW may be arranged in dots at narrow intervals.
  • FIG. 20 is a cross-sectional view showing a configuration example (Modification 5) of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • the first isolation portion 53 does not have to penetrate the first semiconductor substrate 5 .
  • the trench 531 of the first isolation portion 53 is formed from the rear surface 5a of the first semiconductor substrate 5 to a midway position between the rear surface 5a and the front surface 5b.
  • the bottom surface of the trench 531 is located between the back surface 5a and the front surface 5b of the first semiconductor substrate 5 and does not reach the front surface 5b.
  • the bottom surface of the trench 531 is closer to the surface of the first semiconductor substrate 5 than the multiplication region of the SPAD pixel 10 (that is, the PN junction surface between the N-type semiconductor region 501 and the P-type semiconductor region 502).
  • 5b that is, the opposite side of the light receiving surface. This makes it easy to shield the multiplication region of the SPAD pixel 10 from the surrounding CIS pixels 20, and noise in the SPAD pixel 10 can be reduced.
  • FIG. 21 is a cross-sectional view showing a configuration example (Modification 6) of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • the trench 531 of the first element isolation portion 53 may be formed from the front surface 5b of the first semiconductor substrate 5 toward the rear surface 5a.
  • side etching progresses more on the front surface 5b side of the first semiconductor substrate 5 than on the back surface 5a side, so that the trench 531 has a larger opening diameter on the front surface 5b side than on the back surface 5a side.
  • the trench 531 penetrates through the first semiconductor substrate 5 . Even with such a configuration, the sensor device 100 can be miniaturized in pixels.
  • FIG. 22 is a cross-sectional view showing a configuration example (Modification 7) of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • the trench 531 of the first isolation portion 53 is formed from the front surface 5b toward the back surface 5a of the first semiconductor substrate 5, the trench 531 penetrates the first semiconductor substrate 5. You don't have to.
  • the bottom surface of the trench 531 is located between the front surface 5b and the rear surface 5a of the first semiconductor substrate 5 and does not reach the rear surface 5a. Even with such a configuration, the sensor device 100 can be miniaturized in pixels.
  • the bottom surface of the trench 531 is closer to the first semiconductor substrate 5 than the multiplication region of the SPAD pixel 10 (that is, the PN junction surface between the N-type semiconductor region 501 and the P-type semiconductor region 502). is preferably closer to the rear surface 5a (that is, the light-receiving surface side). This makes it easy to shield the multiplication region of the SPAD pixel 10 from the surrounding CIS pixels 20, and noise in the SPAD pixel 10 can be reduced.
  • FIG. 23 is a cross-sectional view showing a configuration example (Modification 8) of the first substrate portion FB according to Embodiment 1 of the present disclosure.
  • the second element isolation portion 54 arranged between one CIS pixel 20 and the other CIS pixel 20 adjacent to each other may have a structure in which a light shielding film is embedded.
  • the second isolation portion 54 includes a trench 541 (an example of a “second trench” in the present disclosure) provided from the rear surface (light receiving surface) 5a of the first semiconductor substrate 5 toward the front surface 5b side, and the trench 541 and a light shielding film 543 embedded in the trench 541 with the insulating film 542 interposed therebetween.
  • the light shielding film 543 may be a metal film such as Al, or may be a polysilicon film.
  • the light shielding film 543 is a polysilicon film, it is possible to obtain a light shielding function by, for example, a refractive index difference at the contact interface.
  • the sensor device 100 is manufactured using various devices such as a film forming device (including a CVD (Chemical Vapor Deposition) device, a sputtering device, and a thermal oxidation device), an exposure device, an etching device, and a CMP device.
  • a film forming device including a CVD (Chemical Vapor Deposition) device, a sputtering device, and a thermal oxidation device
  • an exposure device an etching device
  • etching device etching device
  • CMP device CMP device
  • 24A to 24F are cross-sectional views showing the manufacturing method of the sensor device 100 according to the second embodiment of the present disclosure in order of steps.
  • the manufacturing apparatus forms SPAD pixels 10 and CIS pixels 20 on the surface 5 b side of the first semiconductor substrate 5 . Further, the manufacturing apparatus forms the gate electrodes of the SPAD pixels 10 and the CIS pixels 20 on the surface 5 b side of the first semiconductor substrate 5 .
  • the manufacturing apparatus forms the first wiring layer 55 on the surface 5b of the first semiconductor substrate 5.
  • the manufacturing apparatus forms a terminal for Cu--Cu connection, which will be the uppermost layer wiring of the first wiring layer 55.
  • FIG. 24C the manufacturing apparatus forms a terminal for Cu--Cu connection, which will be the uppermost layer wiring of the first wiring layer 55.
  • the manufacturing equipment forms logic circuits including the SPAD circuit 210 and the CIS circuit 220 on the second semiconductor substrate 6 .
  • the manufacturing equipment forms the second wiring layer 65 on the surface 6 a of the second semiconductor substrate 6 .
  • the manufacturing apparatus forms a terminal for Cu--Cu connection, which will be the uppermost layer wiring of the second wiring layer 65.
  • the manufacturing apparatus aligns the surface 5b of the first semiconductor substrate 5 and the surface 6a of the second semiconductor substrate 6, and in this state, the first substrate portion FB and the second substrate portion FB. Paste with SB.
  • the first interlayer insulating film 553 and the second interlayer insulating film 653 are bonded together, and the terminal positioned on the uppermost layer of the first wiring layer 55 and the terminal positioned on the uppermost layer of the second wiring layer 65 are connected. are Cu--Cu bonded.
  • the manufacturing equipment performs a CMP process on the back surface 5a of the first semiconductor substrate 5 to thin the first semiconductor substrate 5 to a desired thickness.
  • the manufacturing apparatus attaches the color filter CF and the microlens array MLA on the back surface 5 a of the first semiconductor substrate 5 .
  • the sensor device 100 is completed.
  • FIG. 25 is a cross-sectional view showing a configuration example of a sensor device 100A according to Embodiment 3 of the present disclosure.
  • the sensor device 100 according to the third embodiment further includes a third substrate portion TB arranged on the opposite side of the first substrate portion FB with the second substrate portion SB interposed therebetween.
  • the third substrate part TB has a third semiconductor substrate 7 .
  • the third semiconductor substrate 7 is, for example, a silicon substrate.
  • the first semiconductor substrate 5 of the first substrate portion FB and the second semiconductor substrate 6 of the second substrate portion SB are connected via through silicon vias TSV provided in the second semiconductor substrate 6 .
  • the second semiconductor substrate 6 and the third semiconductor substrate 7 are formed of Cu through the second wiring layer 65 provided on the second semiconductor substrate 6 and the third wiring layer 75 provided on the third semiconductor substrate 7 . -Cu bonded.
  • the first semiconductor substrate 5 is provided with SPAD pixels 10 (see, for example, FIG. 4A) and CIS pixels 20 (see, for example, FIG. 4A).
  • a SPAD circuit 210 (see FIG. 4B) provided on the second semiconductor substrate 6 is arranged directly below the pixel region 51 (see FIG. 4A, for example) in which the SPAD pixels 10 and the CIS pixels 20 are arranged.
  • the CIS circuit 220 (see, for example, FIG. 4B) is arranged in a portion of the second semiconductor substrate 6 that is located directly below the peripheral region 52 of the first semiconductor substrate 5 .
  • a logic circuit for example, is provided on the third semiconductor substrate 7 .
  • the SPAD circuit 210 is arranged directly under the pixel region 51, and the CIS circuit 220 is arranged directly under the peripheral region 52, so that the sensor device 100 can be miniaturized. is.
  • part of the SPAD circuit 210 is a circuit to which a high voltage is applied (hereinafter referred to as a high voltage circuit), and another part of the SPAD circuit 210 is a circuit to which a low voltage is applied (hereinafter referred to as a low voltage circuit).
  • a high voltage circuit a circuit to which a high voltage is applied
  • a low voltage circuit a circuit to which a low voltage is applied
  • FIG. 26A is a circuit diagram showing an arrangement example of the CIS pixels 20 according to Embodiment 3 of the present disclosure.
  • the PN photodiodes 31 and the transfer transistors 32 are arranged in the pixel region 51 of the first semiconductor substrate 5 .
  • the amplification transistor 34 , selection transistor 35 and reset transistor 36 are arranged in the second circuit region 62 of the second semiconductor substrate 6 .
  • FIG. 26B is a circuit diagram showing an arrangement example of the SPAD pixel 10 and the SPAD circuit 210 according to Embodiment 3 of the present disclosure.
  • the SPAD pixels 10 are arranged in the pixel region 51 of the first semiconductor substrate 5 .
  • the AFE circuit 211 is arranged in the first circuit area 61 of the second semiconductor substrate 6 .
  • the TDC circuit 212 is arranged on the third semiconductor substrate 7 .
  • AFE circuit 211 is part of SPAD circuit 210 and is a high voltage circuit.
  • TDC circuit 212 is another part of SPAD circuit 210 and is a low voltage circuit.
  • the manufacturing process of the second semiconductor substrate 6 is reduced compared to the case where the high voltage circuit and the low voltage circuit are formed on the second semiconductor substrate 6. Shortening is possible, and the manufacturing cost of the second semiconductor substrate 6 can be reduced. Also, the wiring width of the low voltage circuit is smaller than that of the high voltage circuit. Therefore, in the third semiconductor substrate 7, the low voltage circuit and the logic circuit can be formed according to the same design rule. Since the low-voltage circuit and the logic circuit can be formed in parallel in the same manufacturing process, an increase in the manufacturing cost of the third semiconductor substrate 7 can be suppressed. From the above, there is a possibility that the manufacturing cost of the sensor device 100A can be reduced.
  • FIG. 27 is a circuit diagram showing an arrangement example (Modification 1) of the SPAD pixel 10 and the SPAD circuit 210 according to Embodiment 3 of the present disclosure.
  • a resistive element R may be arranged between the SPAD pixel 10 and the SPAD circuit.
  • the resistance element R is made of polysilicon, for example.
  • the resistance element R is provided on the second semiconductor substrate 6, for example. Resistor element R serves as a quenching resistor to suppress abrupt changes in current.
  • FIG. 28 is a circuit diagram showing an arrangement example (Modification 2) of the SPAD pixels 10 and the SPAD circuit 210 according to Embodiment 3 of the present disclosure. As shown in FIG. 28, the resistance element R arranged between the SPAD pixel 10 and the SPAD circuit may be provided on the first semiconductor substrate 5 .
  • the present disclosure can also take the following configuration.
  • the first substrate part is a first semiconductor substrate; a pixel region provided on the first semiconductor substrate and having a mixture of SPAD pixels and a plurality of visible light pixels in an array;
  • the second substrate part is a second semiconductor substrate facing the first semiconductor substrate; a SPAD circuit provided on the second semiconductor substrate and connected to the SPAD pixel; a visible light pixel circuit provided on the second semiconductor substrate and connected to the plurality of visible light pixels.
  • the second semiconductor substrate a first circuit region overlapping the pixel region in a direction in which the first semiconductor substrate and the second semiconductor substrate face each other; a second circuit region located around the first circuit region and not overlapping the pixel region in a direction in which the first semiconductor substrate and the second semiconductor substrate face each other; the SPAD circuit is arranged in the first circuit region;
  • the first substrate part is a first wiring layer provided on a side of the first semiconductor substrate facing the second semiconductor substrate;
  • the second substrate part is a second wiring layer provided on a surface side of the second semiconductor substrate facing the first semiconductor substrate;
  • the first wiring layer is a first wiring connected to the SPAD pixel; a second wiring connected to the plurality of visible light pixels;
  • the second wiring layer is a third wiring connected to the SPAD circuit; and a fourth wiring connected to the visible light pixel circuit, the SPAD pixel and the SPAD circuit are connected to each other via the first wiring and the third wiring;
  • the sensor device according to (2) wherein the plurality of visible light pixels and the visible light pixel circuit are connected to each other via the second wiring and the fourth wiring.
  • the first wiring layer has a first interlayer insulating film
  • the second wiring layer has a second interlayer insulating film bonded to the first interlayer insulating film
  • the first wiring and the third wiring are Cu--Cu bonded at a bonding surface between the first interlayer insulating film and the second interlayer insulating film, and the second wiring and the fourth wiring are bonded with Cu.
  • the sensor device according to (3) which is Cu-bonded.
  • the first semiconductor substrate is a first element isolation portion positioned between the SPAD pixel and the visible light pixel; a second element isolation portion positioned between one visible light pixel and the other visible light pixel adjacent to each other among the plurality of visible light pixels;
  • the first element isolation section has a first trench provided in the first semiconductor substrate,
  • the first element isolation section includes: The sensor device according to (5) above, further comprising a light shielding film arranged in the first trench. (7) The sensor device according to (5) or (6), wherein the first trench is wider than the second trench.
  • the first substrate part is The sensor according to any one of (1) to (7), further comprising a light-shielding wall portion that is provided on the first semiconductor substrate facing the second semiconductor substrate and surrounds the SPAD pixels.
  • Device. (9) A plurality of SPAD pixels are arranged in the pixel region, The sensor device according to any one of (1) to (8), wherein a plurality of the SPAD circuits are arranged on the second semiconductor substrate so as to correspond to the plurality of SPAD pixels.
  • the plurality of SPAD pixels are arranged at regular intervals in a first direction and in a second direction orthogonal to the first direction, Assuming that the arrangement interval of the SPAD pixels in the first direction is a first pitch length, and the arrangement interval of the SPAD pixels in the second direction is a second pitch length,
  • a lens body disposed on the opposite side of the second semiconductor substrate with the first semiconductor substrate therebetween; an optical filter disposed between the SPAD pixel and the lens body;
  • the sensor device according to any one of (1) to (10), wherein the optical filter transmits light of a preset wavelength and blocks light of wavelengths other than the preset wavelength.
  • (12) further comprising a third substrate portion arranged on the opposite side of the first substrate portion with the second substrate portion interposed therebetween; The third substrate portion has a third semiconductor substrate, A part of the SPAD circuit is arranged on the second semiconductor substrate, The sensor device according to any one of (1) to (11), wherein another part of the SPAD circuit is arranged on the third semiconductor substrate.
  • Imaging unit 2 distance measuring unit 5 first semiconductor substrate 5a rear surface (light receiving surface) 5b, 6a surface 6 second semiconductor substrate 7 third semiconductor substrate 10 SPAD pixel 13 vertical drive circuit 14 column signal processing circuit 15 horizontal drive circuit 16 output circuit 17 control circuit 20 CIS pixel 22 horizontal signal line 23 vertical signal line 24 data output Signal line 30 Readout circuit 31 PN photodiode 32 Transfer transistor 33 Floating diffusion 34 Amplification transistor 35 Selection transistor 36 Reset transistor 51 Pixel region 52 Peripheral region 53 First isolation section 54 Second isolation section 55 First wiring layer 61 First Circuit region 62 Second circuit region 65 Second wiring layer 75 Third wiring layer 100, 100A Sensor device 101 Distance measurement processing unit 102 Pixel control unit 103 Overall control unit 104 Clock generation unit 106 Interface (I/F) 106 Interface 110 Conversion Unit 111 Generation Unit 112 Signal Processing Unit 210 SPAD Circuit 211 AFE Circuit 212 TDC Circuit 213 Histgram Circuit 214 Output Unit 220 CIS Circuit 221 First CIS Circuit 222 Second CIS Circuit 501 N-type Semiconductor Region 502 P-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

SPAD画素の微細化を可能としたセンサ装置を提供する。センサ装置は、第1基板部と第1基板部に接合される第2基板部と、を備える。第1基板部は、第1半導体基板と、第1半導体基板に設けられ、SPAD画素と複数の可視光画素とがアレイ状に混在する画素領域と、を有する。第2基板部は、第1半導体基板と向かい合う第2半導体基板と、第2半導体基板に設けられ、SPAD画素に接続されるSPAD回路と、第2半導体基板に設けられ、複数の可視光画素に接続される可視光画素回路と、を有する。

Description

センサ装置
 本開示は、センサ装置に関する。
 一般に、イメージセンサで撮影された画像情報と距離センサで測定された距離情報を合成して、画像に3次元データを付与する場合、イメージセンサと距離センサは各々のチップを別々のカメラモジュールで作成・配置し、後段回路のデータ処理で画像と距離の情報を一致させている。この場合、カメラモジュールが複数必要であり、コストが高くなる。また、モジュールの搭載面積も大きくなる上に、各々のモジュールで光軸が異なるため、近距離では視差が大きくなり、それを考慮したデータ処理が必要となる。
 これを解決するために、SPAD(Single Photon Avaranche Diode)画素をアレイ上に並べたチップ(以下、SPADアレイ)とロジック回路とを積層した積層センサが提案されている(例えば、特許文献1参照)。
特開2019-47486号公報
 複数のSPAD画素がアレイ状に配置されたSPADアレイ下に、複数のSPAD画素の各々に対応してSPAD回路を配置すると、SPAD画素のサイズはSPAD回路のサイズに制限されるため、SPAD画素の微細化が難しい、という課題がある。
 本開示はこのような事情に鑑みてなされたもので、SPAD画素の微細化を可能としたセンサ装置を提供することを目的とする。
 本開示の一態様に係るセンサ装置は、第1基板部と前記第1基板部に接合される第2基板部と、を備える。前記第1基板部は、第1半導体基板と、前記第1半導体基板に設けられ、SPAD画素と複数の可視光画素とがアレイ状に混在する画素領域と、を有する。前記第2基板部は、前記第1半導体基板と向かい合う第2半導体基板と、前記第2半導体基板に設けられ、前記SPAD画素に接続されるSPAD回路と、前記第2半導体基板に設けられ、前記複数の可視光画素に接続される可視光画素回路と、を有する。
 これによれば、センサ装置は、撮像用(すなわち、イメージ画像取得用)の画素として複数の可視光画素を用い、測距用(すなわち、距離画像取得用)の画素としてSPAD画素を用いることができる。第1半導体基板において、SPAD画素と複数の可視光画素はアレイ状に混在して配置されるため、センサ装置は、イメージ画像と距離画像とを同一の光軸で取得することができる。
 また、第1半導体基板において、SPAD画素の平面視によるサイズを小さくする(すなわち、微細化する)と、微細化した分だけSPAD画素の周囲に空き領域が生じる。センサ装置では、SPAD画素と複数の可視光画素とがアレイ状に混在して配置されるため、SPAD画素の微細化により生じる空き領域に可視光画素を配置することができる。これにより、SPAD回路のサイズに制限されずに、SPAD画素を微細化することが可能となる。
図1は、本開示の実施形態1に係るセンサ装置の構成例を示すブロック図である。 図2は、本開示の実施形態1に係る撮像部の構成例を示すブロック図である。 図3は、本開示の実施形態1に係る測距部の構成例を示すブロック図である。 図4Aは、本開示の実施形態1に係る第1基板部の構成例1を示す平面図である。 図4Bは、本開示の実施形態1に係る第2基板部の構成例1を示す平面図である。 図5Aは、本開示の実施形態1に係る第1基板部の構成例2を示す平面図である。 図5Bは、本開示の実施形態1に係る第2基板部の構成例2を示す平面図である。 図6は、画素領域の直下に位置するSPAD回路の構成例を示す図である。 図7は、SPAD画素と、AFE回路及びTDC回路の接続例と、AFE回路の構成例とを示す図である。 図8は、センサ装置におけるSPAD回路とCIS回路の各動作例を示すフローチャートである。 図9は、本開示の実施形態1に係るセンサ装置の構成例を示す断面図である。 図10は、本開示の実施形態1に係るSPAD画素の構成例を示す断面図である。 図11は、本開示の実施形態1に係るSPAD画素、SPAD回路のサイズ例(第1の例)を示す平面図である。 図12は、本開示の実施形態1に係るSPAD画素、SPAD回路のサイズ例(第2の例)を示す平面図である。 図13は、本開示の実施形態1に係るSPAD画素、SPAD回路のサイズ例(第3の例)を示す平面図である。 図14は、本開示の実施形態1に係るSPAD画素、SPAD回路のサイズ例(第4の例)を示す平面図である。 図15Aは、本開示の実施形態1に係る第1基板部の構成例(変形例1)を示す平面図である。 図15Bは、本開示の実施形態1に係る第2基板部の構成例(変形例1)を示す平面図である。 図16は、本開示の実施形態1に係るセンサ装置の構成例(変形例2)を示す断面図である。 図17は、本開示の実施形態1に係るセンサ装置の構成例(変形例3)を示す断面図である。 図18は、本開示の実施形態1に係る第1基板部の構成例(変形例4)を示す断面図である。 図19Aは、第1半導体基板の裏面側の構成例(変形例4)を示す平面図である。 図19Bは、第1半導体基板の表面側の構成例(変形例4)を示す平面図である。 図20は、本開示の実施形態1に係る第1基板部の構成例(変形例5)を示す断面図である。 図21は、本開示の実施形態1に係る第1基板部の構成例(変形例6)を示す断面図である。 図22は、本開示の実施形態1に係る第1基板部の構成例(変形例7)を示す断面図である。 図23は、本開示の実施形態1に係る第1基板部の構成例(変形例7)を示す断面図である。 図24Aは、本開示の実施形態2に係るセンサ装置の製造方法を工程順に示す断面図である。 図24Bは、本開示の実施形態2に係るセンサ装置の製造方法を工程順に示す断面図である。 図24Cは、本開示の実施形態2に係るセンサ装置の製造方法を工程順に示す断面図である。 図24Dは、本開示の実施形態2に係るセンサ装置の製造方法を工程順に示す断面図である。 図24Eは、本開示の実施形態2に係るセンサ装置の製造方法を工程順に示す断面図である。 図24Fは、本開示の実施形態2に係るセンサ装置の製造方法を工程順に示す断面図である。 図25は、本開示の実施形態3に係るセンサ装置の構成例を示す断面図である。 図26Aは、本開示の実施形態3に係るCIS画素の配置例を示す回路図である。 図26Bは、本開示の実施形態3に係るCIS画素の配置例を示す回路図である。 図27は、本開示の実施形態3に係るSPAD画素及びSPAD回路の配置例(変形例1)を示す回路図である。 図28は、本開示の実施形態3に係るSPAD画素及びSPAD回路の配置例(変形例2)を示す回路図である。
 以下において、図面を参照して本開示の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本開示の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
 以下の説明では、X軸方向、Y軸方向及びZ軸方向の文言を用いて、方向を説明する場合がある。X軸方向及びY軸方向は、それぞれ本開示の「第1方向」の一例及び本開示の「第2方向」の一例であり、第1半導体基板5の裏面(受光面)5aに平行な方向である。X軸方向及びY軸方向を水平方向と称してもよい。Z軸方向は、第1半導体基板5の裏面5aと垂直に交わる方向である。Z軸方向は、センサ装置100の厚さ方向でもある。X軸方向、Y軸方向及びZ軸方向は、互いに直交する。
<実施形態1>
(センサ装置の構成例)
 図1は、本開示の実施形態1に係るセンサ装置100の構成例を示すブロック図である。図1に示すように、本開示の実施形態1に係るセンサ装置100は、撮像部1と測距部2とを備え、撮像部1が有する複数のCIS画素20(CIS:CMOS Image Sensor,本開示の「可視光画素」の一例)と測距部2が備える1つ以上のSPAD画素10とが、同一の画素領域51に配置されている装置である。例えば、複数のCIS画素と1つ以上のSPAD画素10は、同一の画素領域51において、アレイ状に混在して配置されている。次に、撮像部1と測距部2の各構成例について説明する。
(撮像部の構成例)
 図2は、本開示の実施形態1に係る撮像部1の構成例を示すブロック図である。図2に示すように、撮像部1は、画素領域51に設けられた複数のCIS画素20と、垂直駆動回路13、カラム信号処理回路14、水平駆動回路15、出力回路16、および制御回路17を備える。CIS画素20は、可視光を検出する。
 CIS画素20は、図示しない光学系により集光される可視光を受光する受光領域である。複数のCIS画素20は、行列状に配置されている。複数のCIS画素20は、水平信号線22を介して行ごとに垂直駆動回路13に接続されるとともに、垂直信号線23を介して列ごとにカラム信号処理回路14に接続される。複数のCIS画素20は、それぞれ受光する可視光の光量に応じたレベルの画素信号をそれぞれ出力する。それらの画素信号から、被写体の画像が構築される。
 垂直駆動回路13は、複数のCIS画素20の行ごとに順次、それぞれのCIS画素20を駆動(転送や、選択、リセットなど)するための駆動信号を、水平信号線22を介してCIS画素20に供給する。カラム信号処理回路14は、複数のCIS画素20から垂直信号線23を介して出力される画素信号に対してCDS(Correlated Double Sampling:相関2重サンプリング)処理を施すことにより、画素信号のAD変換を行うとともにリセットノイズを除去する。
 水平駆動回路15は、複数のCIS画素20の列ごとに順次、カラム信号処理回路14から画素信号をデータ出力信号線24に出力させるための駆動信号を、カラム信号処理回路14に供給する。出力回路16は、水平駆動回路15の駆動信号に従ったタイミングでカラム信号処理回路14からデータ出力信号線24を介して供給される画素信号を増幅し、後段の信号処理回路に出力する。制御回路17は、撮像部1の内部の各ブロックの駆動を制御する。例えば、制御回路17は、各ブロックの駆動周期に従ったクロック信号を生成して、それぞれのブロックに供給する。
 CIS画素20は、可視光を光電変換するPNフォトダイオード31、転送トランジスタ32、フローティングディフュージョン33、増幅トランジスタ34、選択トランジスタ35、およびリセットトランジスタ36を備える。転送トランジスタ32、フローティングディフュージョン33、増幅トランジスタ34、選択トランジスタ35、およびリセットトランジスタ36は、PNフォトダイオード31で光電変換された電荷(画素信号)の読み出しを行う読出回路30を構成している。
 PNフォトダイオード31は、入射した可視光を光電変換により電荷に変換して蓄積する光電変換部であり、アノード端子が接地されているとともに、カソード端子が転送トランジスタ32に接続されている。転送トランジスタ32は、垂直駆動回路13から供給される転送信号TRGに従って駆動し、転送トランジスタ32がオンになると、PNフォトダイオード31に蓄積されている電荷がフローティングディフュージョン33に転送される。フローティングディフュージョン33は、増幅トランジスタ34のゲート電極に接続された所定の蓄積容量を有する浮遊拡散領域であり、PNフォトダイオード31から転送される電荷を一時的に蓄積する。
 増幅トランジスタ34は、フローティングディフュージョン33に蓄積されている電荷に応じたレベル(即ち、フローティングディフュージョン33の電位)の画素信号を、選択トランジスタ35を介して垂直信号線23に出力する。つまり、フローティングディフュージョン33が増幅トランジスタ34のゲート電極に接続される構成により、フローティングディフュージョン33および増幅トランジスタ34は、PNフォトダイオード31において発生した電荷を増幅し、その電荷に応じたレベルの画素信号に変換する変換部として機能する。
 選択トランジスタ35は、垂直駆動回路13から供給される選択信号SELに従って駆動し、選択トランジスタ35がオンになると、増幅トランジスタ34から出力される画素信号が垂直信号線23に出力可能な状態となる。リセットトランジスタ36は、垂直駆動回路13から供給されるリセット信号RSTに従って駆動し、リセットトランジスタ36がオンになると、フローティングディフュージョン33に蓄積されている電荷がドレイン電源Vddに排出されて、フローティングディフュージョン33がリセットされる。
 図2に示す画素領域51では、アレイ状に配列されたCIS画素20の並びに空白で示す領域が混在している。例えば、この空白で示す領域にSPAD画素10が配置されている。
(測距部の構成例)
 図3は、本開示の実施形態1に係る測距部2の構成例を示すブロック図である。測距部2は、例えば直接ToF(Time of Flight)による測距を行う装置であり、外部の光源(図示せず)から照射された照射光が反射して返ってくるまでの時間から距離を算出する装置である。図3に示すように、測距部2は、画素領域51に配置された1つ以上のSPAD画素10と、測距処理部101と、画素制御部102と、全体制御部103と、クロック生成部104と、インタフェース(I/F)106と、を含む。SPAD画素10は、モニタ光として例えば赤外線を検出する。これらSPAD画素10、測距処理部101、画素制御部102、全体制御部103、クロック生成部104およびI/F106は、複数の半導体基板を積層した積層基板に配置される。
 図3において、全体制御部103は、例えば予め組み込まれるプログラムに従い、この測距部2の全体の動作を制御する。また、全体制御部103は、外部から供給される外部制御信号に応じた制御を実行することもできる。クロック生成部104は、外部から供給される基準クロック信号に基づき、測距部2内で用いられる1以上のクロック信号を生成する。
 SPAD画素10の動作は、全体制御部103の指示に従った画素制御部102により制御される。例えば、画素制御部102は、SPAD画素10を単独で、又は、複数のSPAD画素10を含むブロック毎で制御することもできる。
 各SPAD画素10から読み出された画素信号は、測距処理部101に供給される。測距処理部101は、変換部110と、生成部111と、信号処理部112と、を含む。
 各SPAD画素10から読み出された画素信号は、変換部110に供給される。ここで、画素信号は、各SPAD画素10から非同期で読み出され、変換部110に供給される。すなわち、画素信号は、各SPAD画素10において光が受光されたタイミングに応じて各SPAD画素10から読み出され、出力される。
 変換部110は、各SPAD画素10から出力された画素信号を、デジタル情報に変換する。すなわち、各SPAD画素10から出力される画素信号は、当該画素信号が対応するSPAD画素10が光を受光したタイミングに対応して出力される。変換部110は、SPAD画素10から出力された画素信号を、当該タイミングを示す時間情報に変換する。生成部111は、変換部110により画素信号が変換された時間情報に基づきヒストグラムを生成する。信号処理部112は、生成部111により生成されたヒストグラムのデータに基づき所定の演算処理を行い、例えば距離情報を算出する。信号処理部112は、例えば、生成部111により生成されたヒストグラムのデータに基づき、当該ヒストグラムの曲線近似を作成する。信号処理部112は、このヒストグラムが近似された曲線のピークを検出し、検出されたピークに基づき距離を求めることができる。
 信号処理部112は、ヒストグラムの曲線近似を行う際に、ヒストグラムが近似された曲線に対してフィルタ処理を施すことができる。例えば、信号処理部112は、ヒストグラムが近似された曲線に対してローパスフィルタ処理を施すことで、ノイズ成分を抑制することが可能である。
 信号処理部112で求められた距離情報は、インタフェース106に供給される。インタフェース106は、信号処理部112から供給された距離情報を、出力データとして外部に出力する。インタフェース106としては、例えばMIPI(Mobile Industry Processor Interface)を適用することができる。
 なお、上述では、信号処理部112で求められた距離情報を、インタフェース106を介して外部に出力しているが、これはこの例に限定されない。すなわち、生成部111により生成されたヒストグラムのデータであるヒストグラムデータを、インタフェース106から外部に出力する構成としてもよい。インタフェース106から出力されたヒストグラムデータは、例えば外部の情報処理装置に供給され、適宜、処理される。
 なお、図3に示す測距処理部101の各機能の少なくとも一部は、後述のSPAD回路210で実行される。測距処理部101の各機能と、SPAD回路210との関係は、後で図5Aを参照しながら説明する。
(画素領域に対する、SPAD回路及びCIS回路の各位置)
 次に、画素領域に対する、SPAD回路及びCIS回路の各位置について説明する。図4Aは、本開示の実施形態1に係る第1基板部FBの構成例1を示す平面図である。図4Aに示すように、第1基板部FBは、第1半導体基板5と、第1半導体基板5に設けられた画素領域51と、第1半導体基板5に設けられた周辺領域52と、を有する。画素領域51の周囲に周辺領域52が位置する。画素領域51に、SPAD画素10と複数のCIS画素20とがアレイ状に混在して配置されている。周辺領域52には、SPAD画素10及びCIS画素20は配置されていない。
 なお、図4Aでは、画素領域51に対して周辺領域52を比較的大きく示しているが、これはあくまで一例である。第1基板部FBにおいて、周辺領域52は画素領域51に対して十分に小さくてもよい。
 図4Bは、本開示の実施形態1に係る第2基板部SBの構成例1を示す平面図である。図4Bに示すように、第2基板部SBは、第2半導体基板6と、第2半導体基板6に設けられた第1回路領域61と、第2半導体基板6に設けられた第2回路領域62と、を有する。第1回路領域61の周囲に第2回路領域62が位置する。第1回路領域61に、SPAD画素10に接続されるSPAD回路210が配置されている。第2回路領域62に、複数のCIS画素20に接続されるCIS回路220(本開示の「可視光画素回路」の一例)が配置される。
 例えば、CIS回路220は、第1CIS回路221と、第2CIS回路222とを有する。第1CIS回路221は、図2に示した垂直駆動回路13と、水平駆動回路15及び制御回路17を含む。第2CIS回路222は、図2に示したカラム信号処理回路14及び出力回路16を含む。
 本開示の実施形態1に係るセンサ装置100では、第1基板部FBに第2基板部SBが接合される。この状態で、第1基板部FBの画素領域51と、第2基板部SBの第1回路領域61は、第1半導体基板5と第2半導体基板6とが向かい合う方向(例えば、Z軸方向)において、互いに向かい合っている。画素領域51の受光面を上側とすると、画素領域51の直下に第1回路領域61が位置する。画素領域51の直下に、第1回路領域61に配置されたSPAD回路210が位置する。
 同様に、第1基板部FBに第2基板部SBが接合されている状態で、第1基板部FBの周辺領域52と、第2基板部SBの第2回路領域62は、Z軸方向において互いに向かい合っている。画素領域51の受光面を上側とすると、周辺領域52の直下に第2回路領域62が位置する。周辺領域52の直下に、第2回路領域62に配置されたCIS回路220が位置する。CIS回路220は、画素領域51の直下には位置しない。
 また、本開示の実施形態1に係るセンサ装置100は、第1半導体基板5の画素領域51に複数のSPAD画素10を備えてよい。図5Aは、本開示の実施形態1に係る第1基板部FBの構成例2を示す平面図である。図5Aに示すように、第1半導体基板5の画素領域51には、複数のSPAD画素10と複数のCIS画素20とがアレイ状に混在して配置されていてもよい。この場合においても、第1半導体基板5の周辺領域52には、SPAD画素10及びCIS画素20は配置されていない。
 図4Aに示した構成例1では、SPAD画素10の平面視による大きさ(すなわち、画素面積)が、CIS画素20の画素面積の16倍(X軸方向に4倍の長さ、Y軸方向に4倍の長さ)である場合を示したが、これはあくまで一例である。例えば図5Aに示すように、SPAD画素10の画素面積は、CIS画素20の画素面積の4倍(X軸方向に2倍の長さ、Y軸方向に2倍の長さ)であってもよい。
 図5Bは、本開示の実施形態1に係る第2基板部SBの構成例2を示す平面図である。図5Bに示すように、第2半導体基板6の第1回路領域61には、複数のSPAD回路210が配置されていてよい。例えば、第2半導体基板6の第1回路領域61には、図5Aに示した複数のSPAD画素10に対応して複数のSPAD回路210が配置されている。1つのSPAD画素10の直下に、この1つのSPAD画素10に対応する1つのSPAD回路210が配置されている。図5Aに示した周辺領域52の直下には、CIS回路220が位置する。
(SPAD回路の構成例)
 図6は、画素領域51の直下に位置するSPAD回路210の構成例を示す図である。図6に示すように、SPAD回路210は、AFE(Analog Front End)回路211と、TDC(Time to Digital Converter)回路212と、Histgram回路213と、Output部214と、を有する。これにより、SPAD回路210は、測距処理部101の各機能の少なくとも一部を実行する。
 例えば、AFE回路211は、図3に示した測距処理部101の変換部110の機能の一部として、各SPAD画素10から出力された画素信号をデジタル情報に変換する。
 TDC回路212は、変換部110の機能の他の一部として、AFE回路211から出力されたデジタル情報を時間情報に変換する。Histgram回路213は、図3に示した測距処理部101の生成部111及び信号処理部112の各機能として、TDC回路212から出力される時間情報に基づきヒストグラムを生成し、生成したヒストグラムのデータに基づき所定の演算処理を行って距離情報を算出する。Output部214は、インタフェース106の機能として、算出された距離情報を、出力データとして外部に出力する。
 図7は、SPAD画素10と、AFE回路211及びTDC回路212の接続例と、AFE回路211の構成例とを示す図である。図7に示すように、AFE回路211は、quench回路2111と、quench回路2111の出力側に接続されたインバータ回路2112と、を有する。SPAD画素10は、quench回路2111の入力側に接続されている。TDC回路212は、インバータ回路2112の出力側に接続されている。
(回路の動作例)
 図8は、センサ装置100におけるSPAD回路210とCIS回路220の各動作例を示すフローチャートである。図8に示すように、1画面分の信号を読み出す間(すなわち、frame startからframe endまでの間)、CIS回路220は逐次行読出し動作を行い、これと並行して、SPAD回路210は全画素同時読出し動作を行う。
 例えば、1画面分の信号を読み出す間、CIS回路220は、n行目(nは1以上の整数)、n+1行目、n+2行目…の順で、PD(PhotoDiode)リセット、露出、PD読出し、行選択、AD(Analog to Digital)変換を順次行う。CIS回路220は、n行目の露出を行うタイミングで、n+1行目のPDリセットを行う。また、1画面分の信号を読み出す間、SPAD回路210は、カウンタリセット、SPAD画素(SPAD素子)オン、レーザ照射、検出、histgram処理、距離検出を行う。SPAD画素オンから検出までの処理は、必要に応じてm回(mは1以上の整数)行う。
(断面構造の例)
 図9は、本開示の実施形態1に係るセンサ装置100の構成例を示す断面図である。図9に示すように、センサ装置100は、第1基板部FBと第1基板部FBに接合される第2基板部SBと、カラーフィルタCFと、マイクロレンズアレイMLA(本開示の「レンズ体」の一例)と、を備える。センサ装置100は、例えば裏面照射型の光センサであり、第1半導体基板5の裏面5a(図9では、上面)側が光の入射面側となる。このため、第1半導体基板5の裏面5a側にカラーフィルタCFと、マイクロレンズアレイMLAとが配置されている。
 第1基板部FBは、第1半導体基板5と、第1半導体基板5の表面5b(図9では下面;本開示の「第2半導体基板と向かい合う面」の一例)側に設けられた第1配線層55と、を有する。
 第1半導体基板5は、例えば、シリコンウェハーをCMP(Chemical Mechanical Polishing)によって研磨することにより形成された、シリコン基板である。第1半導体基板5には、1つ以上のSPAD画素10と複数のCIS画素20とが設けられている。
 第1半導体基板5の裏面5a上に、透光性の絶縁膜(図示せず)を介して、カラーフィルタCFとマイクロレンズアレイMLAとがこの順で積層されている。また、マイクロレンズアレイMLAは、SPAD画素10に配置されるマイクロレンズML1と、CIS画素20に配置されるマイクロレンズML2とを有する。隣り合うマイクロレンズML1、ML2の端部同士や、隣り合う一方のマイクロレンズML2と他方のマイクロレンズML2の端部同士が互いに接続して、1つのマイクロレンズアレイMLAを構成している。
 カラーフィルタCFは、CIS画素20に配置されているが、SPAD画素10には配置されていない。マイクロレンズML1は、第1半導体基板5の裏面5a上に、透光性の絶縁膜(図示せず)を介して配置されている。これにより、SPAD画素10には、マイクロレンズアレイMLAを透過した光がカラーフィルタCFを通らずに入射する。CIS画素20には、マイクロレンズアレイMLAを透過した光がカラーフィルタCFを通って入射する。
 図9に示すように、第1半導体基板5には、トレンチ構造の第1素子分離部53と、トレンチ構造の第2素子分離部54とが設けられている。第1素子分離部53は、SPAD画素10とCIS画素20との間に位置する。第2素子分離部54は、複数のCIS画素20のうち、互いに隣り合う一方のCIS画素20と他方のCIS画素20との間に位置する。第1素子分離部53及び第2素子分離部54は、それぞれ、第1半導体基板5の裏面5a側から深さ方向に形成されたトレンチと、トレンチ内に埋め込まれた充填膜と、を有する。充填膜は、例えばシリコン酸化膜(SiO膜)等の絶縁膜、又は、ポリシリコン膜である。充填膜は、トレンチの内側面に接するように設けられた固定電荷膜を有してもよい。なお、第1素子分離部53のトレンチが本開示の「第1トレンチ」の一例であり、第2素子分離部64のトレンチが本開示の「第2トレンチ」の一例となる。
 第1配線層55は、SPAD画素10に接続する第1配線551と、複数のCIS画素20に接続する第2配線552と、第1配線551及び第2配線552を覆う第1層間絶縁膜553とを有する。第1配線551と第2配線552は、例えば、複数の層に亘って形成された多層配線である。第1層間絶縁膜553は、例えば複数回の成膜工程を経て形成された積層膜である。第1配線551、第2配線552は、アルミニウム(Al)又は銅(Cu)などの金属で構成されている。第1層間絶縁膜553は、SiO膜等の絶縁膜で構成されている。
 第2基板部SBは、第2半導体基板6と、第2半導体基板6の表面6a(図9では上面;本開示の「第1半導体基板と向かい合う面」の一例)側に設けられた第2配線層65、を有する。
 第2半導体基板6は、例えば、シリコンウェハーをCMPによって研磨することにより形成された、シリコン基板である。第2半導体基板6の第1回路領域61にはSPAD回路210が設けられている。第2半導体基板6の第2回路領域62にはCIS回路220が設けられている。
 第2配線層65は、SPAD回路210に接続する第3配線651と、CIS回路220に接続する第4配線652と、第3配線651及び第4配線652を覆う第2層間絶縁膜653とを有する。第3配線651と第4配線652は、例えば、複数の層に亘って形成された多層配線である。第2層間絶縁膜653は、例えば複数回の成膜工程を経て形成された積層膜である。第3配線651、第4配線652は、Al又はCuなどの金属で構成されている。第2層間絶縁膜653は、SiO膜等の絶縁膜で構成されている。
 例えば、第1層間絶縁膜553と第2層間絶縁膜653とが互いに接合している。第1層間絶縁膜553と第2層間絶縁膜653との接合面において、第1配線551と第3配線651とがCu-Cu接合され、かつ、第2配線552と第4配線652とがCu-Cu接合されている。第1配線551と第3配線651とがCu-Cu接合されている第1接合部J1は、第1半導体基板5の画素領域51と第2半導体基板6の第1回路領域61との間に位置する。第2配線552と第4配線652とがCu-Cu接合されている第2接合部J2は、第1半導体基板5の周辺領域52と第2半導体基板6の第2回路領域62との間に位置する。
(SPAD画素の構成例)
 図10は、本開示の実施形態1に係るSPAD画素10の構成例を示す断面図である。図10は、本開示の実施形態1に係る直接ToF方式の測距部2に適用可能な、SPAD画素10の構成例を示す断面図である。
 図10に示すように、SPAD画素10には、導電型がN型半導体領域501と、N型半導体領域501と接するP型半導体領域502が設けられている。N型半導体領域501とP型半導体領域502は、ウェル層503内に設けられている。
 ウェル層503は、導電型がN型の半導体領域であっても良いし、導電型がP型の半導体領域であっても良い。また、ウェル層503は、例えば、1E14オーダー以下の低濃度のN型またはP型の半導体領域であることが好ましく、これにより、ウェル層503を空乏化させやすくなり、PDE(Photon Detecti on Efficiency) と称される検出効率の向上を図ることができる。
 N型半導体領域501は、例えばSi(シリコン)からなり、不純物濃度が高いN型の半導体領域である。P型半導体領域502は、不純物濃度が高いP型の半導体領域である。P型半導体領域502は、N型半導体領域501との界面でpn接合を構成している。P型半導体領域502は、被検出光の入射によって生じたキャリアをアバランシェ増倍する増倍領域を有する。P型半導体領域502は、空乏化していることが好ましく、これによりPDEの向上を図ることができる。
 N型半導体領域501は、カソードとして機能し、コンタクト504を介してSPAD回路210(例えば、図9参照)に接続されている。カソードに対するアノード505は、N型半導体領域501と同層であり、N型半導体領域501と分離領域508との間に設けられている。アノード505には、コンタクト506を介してSPAD回路210に接続されている。
 SPAD画素10同士を分離するための分離領域508が形成されており、その分離領域508とウェル層503との間にはホール(hole)蓄積領域507aが設けられている。ホール蓄積領域507aは、アノード505の上側に形成され、アノード505と電気的に接続された状態で設けられている。また、ホール蓄積領域507aは、ウェル層503と分離領域508との間に設けられている。さらに、ホール蓄積領域507aは、ウェル層503の上部(SPAD画素10の光入射面側)にも設けられている。
 ホール蓄積領域507aは、異なる材質が接する部分に形成される。図10に示した例では、分離領域508は、例えばシリコン酸化膜から成り、ウェル層503とは異なる材料のため、界面で発生する暗電流を抑制するためにホール蓄積領域507aが設けられている。また、マイクロレンズML2が形成される側のウェル層503との界面にもホール蓄積領域507aは形成される。
 すなわち、ホール蓄積領域507aは、ウェル層503の下面(N型半導体領域501が設けられている面)以外の面に設けられている。または、ホール蓄積領域507aは、ウェル層503の上面と下面以外の面に設けられていてもよい。ホール蓄積領域507aは、P型半導体領域として形成することができる。
 分離領域508は、SPAD画素10の間に形成され、各SPAD画素10を分離する。すなわち、分離領域508は、各SPAD画素10と1対1に対応して増倍領域が形成されるように形成される。分離領域508は、各増倍領域(SPAD画素10)の周囲を完全に囲うように2次元格子状に形成される。
 図10に示す分離領域508は、例えば図9に示したトレンチ構造の第1素子分離部53に含まれる。分離領域508は、積層方向でウェル層503の上面側から下面側まで貫通して設けられている。なお、上面側から下面側まで全部貫通する構成以外、例えば、一部分のみ貫通し、基板の途中まで分離領域508が挿入されている構成などであっても良い。
(CIS画素に対するSPAD画素の大きさ、SPAD回路の大きさの例)
(1)第1の例
 図11は、本開示の実施形態1に係るSPAD画素10、SPAD回路210のサイズ例(第1の例)を示す平面図である。図11に示す例では、図4Aに示した例と同様に、SPAD画素10の画素面積は、CIS画素20の画素面積の16倍(X軸方向に4画素分の長さ、Y軸方向に4画素分の長さ)となっている。また、図示しないが、SPAD画素10の配置間隔は、CIS画素20の配置間隔の10倍となっている。すなわち、SPAD画素10の配置間隔は、CIS画素20の10画素分の長さとなっている。
 図11に示すように、SPAD回路210の平面視によるサイズ(すなわち、回路面積)は、CIS画素20の画素面積の100倍(X軸方向に10倍の長さ、Y軸方向に10倍の長さ)となっている。1つのSPAD画素10の直下に1つのSPAD回路210が位置する。
 すなわち、図11に示す第1の例では、複数のSPAD画素10は、X軸方向(本開示の「第1方向」の一例)と、X軸方向と直交するY軸方向(本開示の「第2方向」の一例)とにそれぞれ一定の間隔で配置されている。SPAD画素10のX軸方向における配置間隔を第1ピッチ長とし、SPAD画素10のY軸方向における配置間隔を第2ピッチ長とすると、第1ピッチ長と第2ピッチ長はそれぞれ、CIS画素20の10画素分の長さである。1つのSPAD回路210の回路面積は、CIS画素20の100画素分であり、上記の第1ピッチ長と第2ピッチ長との積と同じ値となっている。なお、1つのSPAD回路210の回路面積は、上記の第1ピッチ長と第2ピッチ長との積の値よりも小さくてもよい。
(第2の例)
 図12は、本開示の実施形態1に係るSPAD画素10、SPAD回路210のサイズ例(第2の例)を示す平面図である。図12に示す例では、図5Aに示した例と同様に、SPAD画素10の画素面積は、CIS画素20の画素面積の4倍(X軸方向に2画素分の長さ、Y軸方向に2画素分の長さ)となっている。また、図示しないが、SPAD画素10の配置間隔は、CIS画素20の配置間隔の10倍となっている。すなわち、SPAD画素10の配置間隔は、CIS画素20の10画素分の長さとなっている。
 図12に示すように、SPAD回路210の回路面積は、CIS画素20の画素面積の100倍(X軸方向に10倍の長さ、Y軸方向に10倍の長さ)となっている。1つのSPAD画素10の直下に1つのSPAD回路210が位置する。
 すなわち、図12に示す第2の例においても、複数のSPAD画素10は、X軸方向と、Y軸方向とにそれぞれ一定の間隔で配置されている。SPAD画素10のX軸方向における配置間隔を第1ピッチ長とし、SPAD画素10のY軸方向における配置間隔を第2ピッチ長とすると、第1ピッチ長と第2ピッチ長はそれぞれ、CIS画素20の10画素分の長さである。1つのSPAD回路210の回路面積は、CIS画素20の100画素分であり、上記の第1ピッチ長と第2ピッチ長との積と同じ値となっている。なお、1つのSPAD回路210の回路面積は、上記の第1ピッチ長と第2ピッチ長との積の値よりも小さくてもよい。
(第3の例)
 図13は、本開示の実施形態1に係るSPAD画素10、SPAD回路210のサイズ例(第3の例)を示す平面図である。図13に示す例では、図5Aに示した例と同様に、SPAD画素10の画素面積は、CIS画素20の画素面積の4倍(X軸方向に2画素分の長さ、Y軸方向に2画素分の長さ)となっている。また、SPAD画素10の配置間隔は、CIS画素20の配置間隔の6倍となっている。すなわち、SPAD画素10の配置間隔は、CIS画素20の6画素分の長さとなっている。
 図13に示すように、SPAD回路210の回路面積は、CIS画素20の画素面積の36倍(X軸方向に6倍の長さ、Y軸方向に6倍の長さ)となっている。1つのSPAD画素10の直下に1つのSPAD回路210が位置する。
 すなわち、図13に示す第3の例においても、複数のSPAD画素10は、X軸方向と、Y軸方向とにそれぞれ一定の間隔で配置されている。SPAD画素10のX軸方向における配置間隔を第1ピッチ長とし、SPAD画素10のY軸方向における配置間隔を第2ピッチ長とすると、第1ピッチ長と第2ピッチ長はそれぞれ、CIS画素20の6画素分の長さである。1つのSPAD回路210の回路面積は、CIS画素20の36画素分であり、上記の第1ピッチ長と第2ピッチ長との積と同じ値となっている。なお、1つのSPAD回路210の回路面積は、上記の第1ピッチ長と第2ピッチ長との積の値よりも小さくてもよい。
(第4の例)
 図14は、本開示の実施形態1に係るSPAD画素10、SPAD回路210のサイズ例(第4の例)を示す平面図である。図14に示す例では、SPAD画素10の画素面積は、CIS画素20の画素面積の36倍(X軸方向に6画素分の長さ、Y軸方向に6画素分の長さ)となっている。また、SPAD画素10の配置間隔は、CIS画素20の配置間隔の6倍となっている。すなわち、SPAD画素10の配置間隔は、CIS画素20の6画素分の長さとなっている。
 図14に示すように、SPAD回路210の回路面積は、CIS画素20の画素面積の36倍(X軸方向に6倍の長さ、Y軸方向に6倍の長さ)となっている。1つのSPAD画素10の直下に1つのSPAD回路210が位置する。
 すなわち、図14に示す第4の例においても、複数のSPAD画素10は、X軸方向と、Y軸方向とにそれぞれ一定の間隔で配置されている。SPAD画素10のX軸方向における配置間隔を第1ピッチ長とし、SPAD画素10のY軸方向における配置間隔を第2ピッチ長とすると、第1ピッチ長と第2ピッチ長はそれぞれ、CIS画素20の6画素分の長さである。1つのSPAD回路210の回路面積は、CIS画素20の36画素分であり、上記の第1ピッチ長と第2ピッチ長との積と同じ値となっている。なお、1つのSPAD回路210の回路面積は、上記の第1ピッチ長と第2ピッチ長との積の値よりも小さくてもよい。
(実施形態1の効果)
 以上説明したように、本開示の実施形態1に係るセンサ装置100は、第1基板部FBと、第1基板部FBに接合される第2基板部SBと、を備える。第1基板部FBは、第1半導体基板5と、第1半導体基板5に設けられ、SPAD画素10と複数のCIS画素20とがアレイ状に混在する画素領域51と、を有する。第2基板部SBは、第1半導体基板5と向かい合う第2半導体基板6と、第2半導体基板6に設けられ、SPAD画素10に接続されるSPAD回路210と、第2半導体基板6に設けられ、複数のCIS画素20に接続されるCIS回路220と、を有する。
 これによれば、センサ装置100は、撮像用(例えば、イメージ画像取得用)の画素として複数のCIS画素20を用い、測距用(例えば、距離画像取得用)の画素としてSPAD画素10を用いることができる。第1半導体基板5において、SPAD画素10と複数のCIS画素20はアレイ状に混在して配置されているため、センサ装置100は、イメージ画像と距離画像とを同一の光軸で取得することができる。
 また、第1半導体基板5において、SPAD画素10を微細化すると、微細化した分だけSPAD画素10の周囲に空き領域が生じる。センサ装置100では、SPAD画素10と複数のCIS画素20とがアレイ状に混在して配置されるため、SPAD画素10の微細化により生じた空き領域にCIS画素20を配置することができる。これにより、SPAD画素10の直下に位置するSPAD回路210のサイズに制限されずに、SPAD画素10を微細化することが可能となる。
 また、SPAD回路210は、距離画像取得処理を行えばよく、イメージ画像取得処理を行う必要はない。このため、SPAD画素10がイメージ画像取得処理と距離画像取得処理の両方を行う場合と比べて、SPAD画素10の後段に配置される回路(例えば、SPAD回路210)の画像処理の負荷を軽減することができる。画像処理の負荷を軽減できるため、消費電力の低減が可能である。
 また、センサ装置100において、第2半導体基板6は、Z軸方向において第1半導体基板5の画素領域51と位置が重なる第1回路領域61と、第1回路領域61の周囲に位置し、Z軸方向において画素領域51とは位置が重ならない第2回路領域62と、を有する。第1回路領域にSPAD回路210が配置され、第2回路領域にCIS回路220が配置される。
 これによれば、画素領域51の直下でSPAD回路210を密に配置することが容易となる。これにより、画素領域51においてSPAD画素10の配置数を増やしたり、SPAD画素10の配置間隔を狭くしたりすることが容易となる。
(変形例1)
 図15Aは、本開示の実施形態1に係る第1基板部FBの構成例(変形例1)を示す平面図である。図15Bは、本開示の実施形態1に係る第2基板部SBの構成例(変形例1)を示す平面図である。図15Aに示すように、第1基板部FBのSPAD画素10は、AFEの前段部を含んでもよい。AFEの前段部として、例えば、図7に示したquench回路2111が挙げられる。この場合、図15Bに示すように、第2基板部SBのAFE回路211は、AFEの後段部を含む。AFEの後段部として、例えば、図7に示したインバータ回路2112が挙げられる。図15A及び図15Bに示す変形例によれば、AFE回路211に含まれる回路を減らすことができるので、SPAD回路210の回路面積を小さくできる可能性がある。
(変形例2)
 図16は、本開示の実施形態1に係るセンサ装置100の構成例(変形例2)を示す断面図である。図16に示すように、第1基板部FBの第1配線層55は、第1配線551、第2配線552は、複数の層に亘って形成された多層配線ではなく、単層配線あってもよい。第1配線551と第3配線651とがCu-Cu接合されている第1接合部J1と、第2配線552と第4配線652とがCu-Cu接合されている第2接合部J2は、それぞれ、第1半導体基板5の画素領域51と第2半導体基板6の第1回路領域61との間に位置してもよい。このような構成であっても、センサ装置100は、画素の微細化が可能である。
(変形例3)
 図17は、本開示の実施形態1に係るセンサ装置100の構成例(変形例3)を示す断面図である。図17に示すように、センサ装置100は、SPAD画素10とマイクロレンズML1との間に、バンドパスフィルタBPF(本開示の「光学フィルタ」の一例)を備えてもよい。バンドパスフィルタBPFは、例えば、赤外線(本開示の「予め設定された波長の光」の一例)を透過し、赤外線以外の光は遮断する機能を有する。このような構成であれば、SPAD画素10は、赤外線のみを検出することができるので、ノイズの低減が可能である。
(変形例4)
 図18は、本開示の実施形態1に係る第1基板部FBの構成例(変形例4)を示す断面図である。図18に示すように、第1基板部FBにおいて、SPAD画素10の周囲を囲むトレンチ構造の第1素子分離部53は、遮光膜が埋め込まれた構造であってもよい。例えば、第1素子分離部53は、第1半導体基板5の裏面(受光面)5aから表面5b側に向けて設けられたトレンチ531(本開示の「第1トレンチ」の一例)と、トレンチ531の内側面に設けられた絶縁膜532と、絶縁膜532を介してトレンチ531に埋め込まれた遮光膜533とを備えてもよい。遮光膜533は、例えばAl等の金属膜でもよいし、ポリシリコン膜であってもよい。遮光膜533がポリシリコン膜の場合は、例えば接触界面の屈折率差により遮光機能を得ることが可能である。トレンチ531は、第1半導体基板5を貫通している。
 第2素子分離部54は、第1半導体基板5の裏面5aから表面5b側に向けて設けられたトレンチ541(本開示の「第2トレンチ」の一例)と、トレンチ541に埋め込まれた絶縁膜542とを備える。トレンチ541は、第1半導体基板5を貫通している。
 図19Aは、第1半導体基板5の裏面5a側の構成例(変形例4)を示す平面図である。図19Aに示すように、第1半導体基板5の裏面5a側から見て、SPAD画素10は、遮光膜533が埋め込まれた第1素子分離部53で囲まれている。また、SPAD画素10を囲む第1素子分離部53のトレンチ531の幅は、CIS画素20を囲む第2素子分離部54のトレンチ541の幅よりも広い。
 このような構成であれば、第1素子分離部53は、第1半導体基板5においてSPAD画素10とCIS画素20との間を遮光することができ、SPAD画素10及びCIS画素20の一方から他方への光の入射を抑制することができるので、ノイズの低減が可能である。
 図19Bは、第1半導体基板5の表面5b側の構成例(変形例4)を示す平面図である。図18及び図19Bに示すように、第1基板部FBは、第1半導体基板5の表面5b側において、SPAD画素10の周囲を囲むように設けられた遮光壁SW(本開示の「遮光性の壁部」の一例)を備えてもよい。遮光壁SWは、例えば第1配線551の一部で構成されていてもよいし、第1配線551と第1素子分離部53とを接続するコンタクト(例えば、図10に示したコンタクト506)で構成されていてもよいし、これらの組み合わせで構成されていてもよい。また、遮光壁SWは、第1配線551や上記のコンタクトとは別に設けられる遮光部材で構成されていてもよい。遮光壁SWは、第1素子分離部53の遮光膜533と接していてもよい。
 このような構成であれば、遮光壁SWは、第1配線層55においてSPAD画素10とCIS画素20との間を遮光することができる。遮光壁SWは、第1配線層55を介して、SPAD画素10及びCIS画素20の一方から他方へ光が回り込むことを抑制することができるので、ノイズの低減が可能である。
 なお、図19Bでは、遮光壁SWがライン状に配置されている場合を示しているが、これはあくまで一例である。遮光壁SWは狭い間隔でドット状に配置されていてもよい。
(変形例5)
 図20は、本開示の実施形態1に係る第1基板部FBの構成例(変形例5)を示す断面図である。図20に示すように、第1基板部FBにおいて、第1素子分離部53は、第1半導体基板5を貫通していなくてもよい。変形例4では、第1素子分離部53のトレンチ531は、第1半導体基板5の裏面5aから、裏面5aと表面5bとの間の途中の位置まで形成されている。トレンチ531の底面は、第1半導体基板5の裏面5aと表面5bとの間に位置し、表面5bには達していない。
 変形例5では、SPAD画素10の増倍領域(すなわち、N型半導体領域501とP型半導体領域502とのPN接合面)よりも、トレンチ531の底面の方が、第1半導体基板5の表面5b(すなわち、受光面の反対側)に近いほうが好ましい。これにより、SPAD画素10の増倍領域を周囲のCIS画素20から遮光することが容易となり、SPAD画素10のノイズの低減が可能となる。
(変形例6)
 図21は、本開示の実施形態1に係る第1基板部FBの構成例(変形例6)を示す断面図である。図21に示すように、第1基板部FBにおいて、第1素子分離部53のトレンチ531は、第1半導体基板5の表面5bから裏面5aに向けて形成されていてもよい。この場合は、第1半導体基板5の表面5b側は裏面5a側よりもサイドエッチングが進行するため、表面5b側は裏面5a側よりも、トレンチ531の開口径が大きくなる。トレンチ531は、第1半導体基板5を貫通している。このような構成であっても、センサ装置100は、画素の微細化が可能である。
(変形例7)
 図22は、本開示の実施形態1に係る第1基板部FBの構成例(変形例7)を示す断面図である。図22に示すように、第1素子分離部53のトレンチ531が、第1半導体基板5の表面5bから裏面5aに向けて形成されている場合においても、トレンチ531は第1半導体基板5を貫通していなくてもよい。トレンチ531の底面は、第1半導体基板5の表面5bと裏面5aとの間に位置し、裏面5aには達していない。このような構成であっても、センサ装置100は、画素の微細化が可能である。
 また、変形例7では、SPAD画素10の増倍領域(すなわち、N型半導体領域501とP型半導体領域502とのPN接合面)よりも、トレンチ531の底面の方が、第1半導体基板5の裏面5a(すなわち、受光面側)に近いほうが好ましい。これにより、SPAD画素10の増倍領域を周囲のCIS画素20から遮光することが容易となり、SPAD画素10のノイズの低減が可能となる。
(変形例8)
 図23は、本開示の実施形態1に係る第1基板部FBの構成例(変形例8)を示す断面図である。図23に示すように、互いに隣り合う一方のCIS画素20と他方のCIS画素20との間に配置される第2素子分離部54は、遮光膜が埋め込まれた構造であってもよい。例えば、第2素子分離部54は、第1半導体基板5の裏面(受光面)5aから表面5b側に向けて設けられたトレンチ541(本開示の「第2トレンチ」の一例)と、トレンチ541の内側面に設けられた絶縁膜542と、絶縁膜542を介してトレンチ541に埋め込まれた遮光膜543とを備えてもよい。遮光膜543は、例えばAl等の金属膜でもよいし、ポリシリコン膜であってもよい。遮光膜543がポリシリコン膜の場合は、例えば接触界面の屈折率差により遮光機能を得ることが可能である。
<実施形態2>
 次に、本開示の実施形態2として、センサ装置100の製造方法を説明する。センサ装置100は、成膜装置(CVD(Chemical Vapor Deposition)装置、スパッタ装置、熱酸化装置を含む)、露光装置、エッチング装置、CMP装置など、各種の装置を用いて製造される。以下、これらの装置を、製造装置と総称する。
 図24Aから図24Fは、本開示の実施形態2に係るセンサ装置100の製造方法を工程順に示す断面図である。図24Aに示すように、製造装置は、第1半導体基板5の表面5b側に、SPAD画素10とCIS画素20とを形成する。また、製造装置は、第1半導体基板5の表面5b側に、SPAD画素10とCIS画素20の各ゲート電極等を形成する。次に、図24Bに示すように、製造装置は、第1半導体基板5の表面5b上に第1配線層55を形成する。次に、図24Cに示すように、製造装置は、第1配線層55の最上層配線となる、Cu-Cu接続用の端子を形成する。
 次に、図24Dに示すように、製造装置は、第2半導体基板6に、SPAD回路210及びCIS回路220を含むロジック回路を形成する。次に、製造装置は、第2半導体基板6の表面6a上に第2配線層65を形成する。次に、図24Eに示すように、製造装置は、第2配線層65の最上層配線となる、Cu-Cu接続用の端子を形成する。
 次に、図24Fに示すように、製造装置は、第1半導体基板5の表面5bと第2半導体基板6の表面6aとを向かい合わせ、この状態で、第1基板部FBと第2基板部SBとを貼り合わせる。これにより、第1層間絶縁膜553と第2層間絶縁膜653とが接合されるとともに、第1配線層55の最上層に位置する端子と、第2配線層65の最上層に位置する端子とがCu-Cu接合される。
 次に、製造装置は、第1半導体基板5の裏面5aにCMP処理を施して、第1半導体基板5を所望の厚さまで薄肉化する。その後、製造装置は、第1半導体基板5の裏面5a上にカラーフィルタCFと、マイクロレンズアレイMLAとを取り付ける。以上の工程を経て、センサ装置100が完成する。
<実施形態3>
 図25は、本開示の実施形態3に係るセンサ装置100Aの構成例を示す断面図である。図25に示すように、実施形態3に係るセンサ装置100は、第2基板部SBを挟んで第1基板部FBの反対側に配置される第3基板部TB、をさらに備える。第3基板部TBは第3半導体基板7を有する。第3半導体基板7は、例えばシリコン基板である。
 第1基板部FBの第1半導体基板5と第2基板部SBの第2半導体基板6は、第2半導体基板6に設けられたシリコン貫通電極TSVを介して接続されている。また、第2半導体基板6と第3半導体基板7は、第2半導体基板6に設けられた第2配線層65と、第3半導体基板7に設けられた第3配線層75とを介してCu-Cu接合されている。
 この例においても、第1半導体基板5に、SPAD画素10(例えば、図4A参照)及びCIS画素20(例えば、図4A参照)が設けられている。SPAD画素10及びCIS画素20が配置された画素領域51(例えば、図4A参照)の直下には、第2半導体基板6に設けられたSPAD回路210(図4B参照)が配置されている。また、CIS回路220(例えば、図4B参照)は、第2半導体基板6のうち、第1半導体基板5の周辺領域52の直下に位置する部分に配置されている。第3半導体基板7には、例えばロジック回路が設けられている。
 このような構成であっても、画素領域51の直下にはSPAD回路210が配置され、周辺領域52の直下にはCIS回路220が配置されるため、センサ装置100は、画素の微細化が可能である。
 また、第2半導体基板6には、SPAD回路210の全部ではなく、SPAD回路210の一部が配置されていてもよい。第3半導体基板7には、ロジック回路のほかに、SPAD回路210の他の一部が配置されていてもよい。この場合、SPAD回路210の一部は高電圧が印加される回路(以下、高電圧回路)であり、SPAD回路210の他の一部は低電圧が印加される回路(以下、低電圧回路)であってもよい。
 図26Aは、本開示の実施形態3に係るCIS画素20の配置例を示す回路図である。図26Aに示すように、CIS画素20のうち、PNフォトダイオード31と転送トランジスタ32は第1半導体基板5の画素領域51に配置されている。CIS画素20のうち、増幅トランジスタ34、選択トランジスタ35、リセットトランジスタ36は、第2半導体基板6の第2回路領域62に配置されている。
 図26Bは、本開示の実施形態3に係るSPAD画素10及びSPAD回路210の配置例を示す回路図である。図26Bに示すように、SPAD画素10は第1半導体基板5の画素領域51に配置されている。AFE回路211は、第2半導体基板6の第1回路領域61に配置されている。TDC回路212は、第3半導体基板7に配置されている。AFE回路211は、SPAD回路210の一部であり、高電圧回路である。TDC回路212は、SPAD回路210の他の一部であり、低電圧回路である。
 これにより、第2半導体基板6に低電圧回路を形成しないで済むため、第2半導体基板6に高電圧回路と低電圧回路とを形成する場合と比べて、第2半導体基板6の製造工程の短縮が可能であり、第2半導体基板6の製造コストの低減が可能である。また、高電圧回路と比べて、低電圧回路は配線幅が小さい。このため、第3半導体基板7では、低電圧回路とロジック回路とを同一のデザインルールで形成することが可能である。低電圧回路とロジック回路とを同一の製造プロセスで並行して形成することが可能であるため、第3半導体基板7の製造コストの増大を抑制可能である。以上から、センサ装置100Aの製造コストを低減できる可能性がある。
(変形例1)
 図27は、本開示の実施形態3に係るSPAD画素10及びSPAD回路210の配置例(変形例1)を示す回路図である。図27に示すように、SPAD画素10とSPAD回路との間には、抵抗素子Rが配置されていてもよい。抵抗素子Rは、例えばポリシリコンで構成されている。抵抗素子Rは、例えば第2半導体基板6に設けられている。抵抗素子Rはクエンチング抵抗として、急な電流変化を抑える役割を担う。
 図28は、本開示の実施形態3に係るSPAD画素10及びSPAD回路210の配置例(変形例2)を示す回路図である。図28に示すように、SPAD画素10とSPAD回路との間に配置される抵抗素子Rは、第1半導体基板5に設けられていてもよい。
(その他の実施形態)
 上記のように、本開示は実施形態及び変形例によって記載したが、この開示の一部をなす論述及び図面は本開示を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。本技術はここでは記載していない様々な実施形態等を含むことは勿論である。上述した実施形態及び変形例の要旨を逸脱しない範囲で、構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。また、本明細書に記載された効果はあくまでも例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本開示は以下のような構成も取ることができる。
(1)
 第1基板部と
 前記第1基板部に接合される第2基板部と、を備え、
 前記第1基板部は、
 第1半導体基板と、
 前記第1半導体基板に設けられ、SPAD画素と複数の可視光画素とがアレイ状に混在する画素領域と、を有し、
 前記第2基板部は、
 前記第1半導体基板と向かい合う第2半導体基板と、
 前記第2半導体基板に設けられ、前記SPAD画素に接続されるSPAD回路と、
 前記第2半導体基板に設けられ、前記複数の可視光画素に接続される可視光画素回路と、を有するセンサ装置。
(2)
 前記第2半導体基板は、
 前記第1半導体基板と前記第2半導体基板とが向かい合う方向において、前記画素領域と位置が重なる第1回路領域と、
 前記第1回路領域の周囲に位置し、前記第1半導体基板と前記第2半導体基板とが向かい合う方向において、前記画素領域とは位置が重ならない第2回路領域と、を有し、
 前記第1回路領域に前記SPAD回路が配置され、
 前記第2回路領域に前記可視光画素回路が配置される、前記(1)に記載のセンサ装置。
(3)
 前記第1基板部は、
 前記第1半導体基板において前記第2半導体基板と向かい合う面側に設けられた第1配線層、を有し、
 前記第2基板部は、
 前記第2半導体基板において前記第1半導体基板と向かい合う面側に設けられた第2配線層と、を有し、
 前記第1配線層は、
 前記SPAD画素に接続する第1配線と、
 前記複数の可視光画素に接続する第2配線と、を有し、
 前記第2配線層は、
 前記SPAD回路に接続する第3配線と、
 前記可視光画素回路に接続する第4配線と、を有し、
 前記SPAD画素と前記SPAD回路は、前記第1配線及び前記第3配線を介して互いに接続され、
 前記複数の可視光画素と前記可視光画素回路は、前記第2配線及び前記第4配線を介して互いに接続される、前記(2)に記載のセンサ装置。
(4)
 前記第1配線層は第1層間絶縁膜を有し、
 前記第2配線層は、前記第1層間絶縁膜に接合される第2層間絶縁膜を有し、
 前記第1層間絶縁膜と前記第2層間絶縁膜との接合面において、前記第1配線と前記第3配線とがCu-Cu接合され、かつ、前記第2配線と前記第4配線とがCu-Cu接合されている、前記(3)に記載のセンサ装置。
(5)
 前記第1半導体基板は、
 前記SPAD画素と前記可視光画素との間に位置する第1素子分離部と、
 前記複数の可視光画素のうち、互いに隣り合う一方の可視光画素と他方の可視光画素との間に位置する第2素子分離部と、を有し、
 前記第1素子分離部は、前記第1半導体基板に設けられた第1トレンチを有し、
 前記第2素子分離部は、前記第1半導体基板に設けられた第2トレンチを有する、前記(1)から(4)のいずれか1項に記載のセンサ装置。
(6)
 前記第1素子分離部は、
 前記第1トレンチ内に配置される遮光膜、をさらに有する前記(5)に記載のセンサ装置。
(7)
 前記第1トレンチは、前記第2トレンチよりも幅が広い、前記(5)又は(6)に記載のセンサ装置。
(8)
 前記第1基板部は、
 前記第1半導体基板において前記第2半導体基板と向かい合う面側に設けられ、前記SPAD画素を囲む遮光性の壁部をさらに有する、前記(1)から(7)のいずれか1項に記載のセンサ装置。
(9)
 前記画素領域には、前記SPAD画素が複数配置されており、
 前記第2半導体基板には、前記複数のSPAD画素に対応して複数の前記SPAD回路が配置されている、前記(1)から(8)のいずれか1項に記載のセンサ装置。
(10)
 前記複数のSPAD画素は、第1方向と、前記第1方向と直交する第2方向とにそれぞれ一定の間隔で配置されており、
 前記SPAD画素の前記第1方向における配置間隔を第1ピッチ長とし、前記SPAD画素の前記第2方向における配置間隔を第2ピッチ長とすると、
 1つの前記SPAD回路の面積は、前記第1ピッチ長と前記第2ピッチ長との積以下の大きさである、前記(9)に記載のセンサ装置。
(11)
 前記第1半導体基板を挟んで前記第2半導体基板の反対側に配置されるレンズ体と、
 前記SPAD画素と前記レンズ体との間に配置される光学フィルタと、を備え、
 前記光学フィルタは、予め設定された波長の光を透過し、前記予め設定された波長以外の光は遮断する前記(1)から(10)のいずれか1項に記載のセンサ装置。
(12)
 前記第2基板部を挟んで前記第1基板部の反対側に配置される第3基板部、をさらに備え、
 前記第3基板部は第3半導体基板を有し、
 前記第2半導体基板には、前記SPAD回路の一部が配置され、
 前記第3半導体基板には、前記SPAD回路の他の一部が配置される、前記(1)から(11)のいずれか1項に記載のセンサ装置。
(13)
 前記SPAD回路の一部は高電圧が印加される回路であり、
 前記SPAD回路の他の一部は低電圧が印加される回路である、前記(12)に記載のセンサ装置。
1 撮像部
2 測距部
5 第1半導体基板
5a 裏面(受光面)
5b、6a 表面
6 第2半導体基板
7 第3半導体基板
10 SPAD画素
13 垂直駆動回路
14 カラム信号処理回路
15 水平駆動回路
16 出力回路
17 制御回路
20 CIS画素
22 水平信号線
23 垂直信号線
24 データ出力信号線
30 読出回路
31 PNフォトダイオード
32 転送トランジスタ
33 フローティングディフュージョン
34 増幅トランジスタ
35 選択トランジスタ
36 リセットトランジスタ
51 画素領域
52 周辺領域
53 第1素子分離部
54 第2素子分離部
55 第1配線層
61 第1回路領域
62 第2回路領域
65 第2配線層
75 第3配線層
100、100A センサ装置
101 測距処理部
102 画素制御部
103 全体制御部
104 クロック生成部
106 インタフェース(I/F)
106 インタフェース
110 変換部
111 生成部
112 信号処理部
210 SPAD回路
211 AFE回路
212 TDC回路
213 Histgram回路
214 Output部
220 CIS回路
221 第1CIS回路
222 第2CIS回路
501 N型半導体領域
502 P型半導体領域
503 ウェル層
504 コンタクト
505 アノード
506 コンタクト
507a ホール蓄積領域
508 分離領域
531、541 トレンチ
532、542 絶縁膜
533、543 遮光膜
551 第1配線
552 第2配線
553 第1層間絶縁膜
651 第3配線
652 第4配線
653 第2層間絶縁膜
2111 quench回路
2112 インバータ回路
CF カラーフィルタ
FB 第1基板部
J1 第1接合部
J2 第2接合部
ML1 マイクロレンズ
ML2 マイクロレンズ
MLA マイクロレンズアレイ
R 抵抗素子
RST リセット信号
SB 第2基板部
SEL 選択信号
SW 遮光壁
TB 第3基板部
TRG 転送信号
TSV シリコン貫通電極
Vdd ドレイン電源
 

Claims (13)

  1.  第1基板部と
     前記第1基板部に接合される第2基板部と、を備え、
     前記第1基板部は、
     第1半導体基板と、
     前記第1半導体基板に設けられ、SPAD画素と複数の可視光画素とがアレイ状に混在する画素領域と、を有し、
     前記第2基板部は、
     前記第1半導体基板と向かい合う第2半導体基板と、
     前記第2半導体基板に設けられ、前記SPAD画素に接続されるSPAD回路と、
     前記第2半導体基板に設けられ、前記複数の可視光画素に接続される可視光画素回路と、を有するセンサ装置。
  2.  前記第2半導体基板は、
     前記第1半導体基板と前記第2半導体基板とが向かい合う方向において、前記画素領域と位置が重なる第1回路領域と、
     前記第1回路領域の周囲に位置し、前記第1半導体基板と前記第2半導体基板とが向かい合う方向において、前記画素領域とは位置が重ならない第2回路領域と、を有し、
     前記第1回路領域に前記SPAD回路が配置され、
     前記第2回路領域に前記可視光画素回路が配置される、請求項1に記載のセンサ装置。
  3.  前記第1基板部は、
     前記第1半導体基板において前記第2半導体基板と向かい合う面側に設けられた第1配線層、を有し、
     前記第2基板部は、
     前記第2半導体基板において前記第1半導体基板と向かい合う面側に設けられた第2配線層と、を有し、
     前記第1配線層は、
     前記SPAD画素に接続する第1配線と、
     前記複数の可視光画素に接続する第2配線と、を有し、
     前記第2配線層は、
     前記SPAD回路に接続する第3配線と、
     前記可視光画素回路に接続する第4配線と、を有し、
     前記SPAD画素と前記SPAD回路は、前記第1配線及び前記第3配線を介して互いに接続され、
     前記複数の可視光画素と前記可視光画素回路は、前記第2配線及び前記第4配線を介して互いに接続される、請求項2に記載のセンサ装置。
  4.  前記第1配線層は第1層間絶縁膜を有し、
     前記第2配線層は、前記第1層間絶縁膜に接合される第2層間絶縁膜を有し、
     前記第1層間絶縁膜と前記第2層間絶縁膜との接合面において、前記第1配線と前記第3配線とがCu-Cu接合され、かつ、前記第2配線と前記第4配線とがCu-Cu接合されている、請求項3に記載のセンサ装置。
  5.  前記第1半導体基板は、
     前記SPAD画素と前記可視光画素との間に位置する第1素子分離部と、
     前記複数の可視光画素のうち、互いに隣り合う一方の可視光画素と他方の可視光画素との間に位置する第2素子分離部と、を有し、
     前記第1素子分離部は、前記第1半導体基板に設けられた第1トレンチを有し、
     前記第2素子分離部は、前記第1半導体基板に設けられた第2トレンチを有する、請求項1に記載のセンサ装置。
  6.  前記第1素子分離部は、
     前記第1トレンチ内に配置される遮光膜、をさらに有する請求項5に記載のセンサ装置。
  7.  前記第1トレンチは、前記第2トレンチよりも幅が広い、請求項5に記載のセンサ装置。
  8.  前記第1基板部は、
     前記第1半導体基板において前記第2半導体基板と向かい合う面側に設けられ、前記SPAD画素を囲む遮光性の壁部をさらに有する、請求項1に記載のセンサ装置。
  9.  前記画素領域には、前記SPAD画素が複数配置されており、
     前記第2半導体基板には、前記複数のSPAD画素に対応して複数の前記SPAD回路が配置されている、請求項1に記載のセンサ装置。
  10.  前記複数のSPAD画素は、第1方向と、前記第1方向と直交する第2方向とにそれぞれ一定の間隔で配置されており、
     前記SPAD画素の前記第1方向における配置間隔を第1ピッチ長とし、前記SPAD画素の前記第2方向における配置間隔を第2ピッチ長とすると、
     1つの前記SPAD回路の面積は、前記第1ピッチ長と前記第2ピッチ長との積以下の大きさである、請求項9に記載のセンサ装置。
  11.  前記第1半導体基板を挟んで前記第2半導体基板の反対側に配置されるレンズ体と、
     前記SPAD画素と前記レンズ体との間に配置される光学フィルタと、を備え、
     前記光学フィルタは、予め設定された波長の光を透過し、前記予め設定された波長以外の光は遮断する請求項1に記載のセンサ装置。
  12.  前記第2基板部を挟んで前記第1基板部の反対側に配置される第3基板部、をさらに備え、
     前記第3基板部は第3半導体基板を有し、
     前記第2半導体基板には、前記SPAD回路の一部が配置され、
     前記第3半導体基板には、前記SPAD回路の他の一部が配置される、請求項1に記載のセンサ装置。
  13.  前記SPAD回路の一部は高電圧が印加される回路であり、
     前記SPAD回路の他の一部は低電圧が印加される回路である、請求項12に記載のセンサ装置。
PCT/JP2022/012946 2021-03-31 2022-03-22 センサ装置 WO2022210064A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280014376.0A CN116830270A (zh) 2021-03-31 2022-03-22 传感器装置
US18/551,254 US20240170525A1 (en) 2021-03-31 2022-03-22 Sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061853A JP2022157560A (ja) 2021-03-31 2021-03-31 センサ装置
JP2021-061853 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210064A1 true WO2022210064A1 (ja) 2022-10-06

Family

ID=83456137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012946 WO2022210064A1 (ja) 2021-03-31 2022-03-22 センサ装置

Country Status (4)

Country Link
US (1) US20240170525A1 (ja)
JP (1) JP2022157560A (ja)
CN (1) CN116830270A (ja)
WO (1) WO2022210064A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128103A1 (en) * 2022-12-15 2024-06-20 Sony Semiconductor Solutions Corporation Light sensing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160240579A1 (en) * 2015-02-17 2016-08-18 Omnivision Technologies, Inc. Stacked embedded spad image sensor for attached 3d information
JP2019176335A (ja) * 2018-03-28 2019-10-10 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2020008412A (ja) * 2018-07-06 2020-01-16 ソニーセミコンダクタソリューションズ株式会社 測距センサ及びタイムオブフライトセンサ
WO2020036025A1 (ja) * 2018-08-13 2020-02-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
JP2020096225A (ja) * 2018-12-10 2020-06-18 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2020203222A1 (ja) * 2019-03-29 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160240579A1 (en) * 2015-02-17 2016-08-18 Omnivision Technologies, Inc. Stacked embedded spad image sensor for attached 3d information
JP2019176335A (ja) * 2018-03-28 2019-10-10 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2020008412A (ja) * 2018-07-06 2020-01-16 ソニーセミコンダクタソリューションズ株式会社 測距センサ及びタイムオブフライトセンサ
WO2020036025A1 (ja) * 2018-08-13 2020-02-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
JP2020096225A (ja) * 2018-12-10 2020-06-18 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2020203222A1 (ja) * 2019-03-29 2020-10-08 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128103A1 (en) * 2022-12-15 2024-06-20 Sony Semiconductor Solutions Corporation Light sensing device

Also Published As

Publication number Publication date
US20240170525A1 (en) 2024-05-23
CN116830270A (zh) 2023-09-29
JP2022157560A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
KR101899595B1 (ko) 고체 촬상 장치, 고체 촬상 장치의 제조 방법, 및 전자 기기
WO2020202880A1 (ja) アバランシェフォトダイオードセンサおよびセンサ装置
JP2016127264A (ja) 固体撮像素子およびその製造方法、並びに電子機器
WO2016104177A1 (ja) 固体撮像素子およびその製造方法、並びに電子機器
WO2019171787A1 (ja) 撮像素子および撮像素子の製造方法
JP5677238B2 (ja) 固体撮像装置
JP5353965B2 (ja) 固体撮像装置の製造方法
WO2022210064A1 (ja) センサ装置
US20240030257A1 (en) Imaging device and ranging device
JP5246304B2 (ja) 固体撮像装置の製造方法
JP6163511B2 (ja) 固体撮像装置、及び電子機器
JP4987749B2 (ja) 固体撮像素子の製造方法
KR102669948B1 (ko) 이미지 센서
JP5943025B2 (ja) 固体撮像装置、及び電子機器
JP5519827B2 (ja) 固体撮像装置及び電子機器
JP5534081B2 (ja) 固体撮像素子の製造方法
US20240192054A1 (en) Light detection apparatus and electronic device
WO2024014145A1 (ja) 光検出装置及び電子機器
WO2024101028A1 (ja) 光検出装置及び電子機器
WO2023188891A1 (ja) 光検出装置及び電子機器
JP5316667B2 (ja) 固体撮像素子の製造方法
US20240162263A1 (en) Imaging device
WO2023021758A1 (ja) 光検出装置及び電子機器
JP6390759B2 (ja) 固体撮像装置、及び電子機器
JP5252100B2 (ja) 固体撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014376.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18551254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780279

Country of ref document: EP

Kind code of ref document: A1