JP2015182209A - Surface-coated cutting tool having hard coating layer excellent in chipping resistance and fracture resistance - Google Patents

Surface-coated cutting tool having hard coating layer excellent in chipping resistance and fracture resistance Download PDF

Info

Publication number
JP2015182209A
JP2015182209A JP2014063117A JP2014063117A JP2015182209A JP 2015182209 A JP2015182209 A JP 2015182209A JP 2014063117 A JP2014063117 A JP 2014063117A JP 2014063117 A JP2014063117 A JP 2014063117A JP 2015182209 A JP2015182209 A JP 2015182209A
Authority
JP
Japan
Prior art keywords
layer
lower layer
interface
hard coating
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014063117A
Other languages
Japanese (ja)
Other versions
JP6198141B2 (en
Inventor
文雄 対馬
Fumio Tsushima
文雄 対馬
興平 冨田
Kohei Tomita
興平 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014063117A priority Critical patent/JP6198141B2/en
Publication of JP2015182209A publication Critical patent/JP2015182209A/en
Application granted granted Critical
Publication of JP6198141B2 publication Critical patent/JP6198141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool whose hard coating layer exerts excellent chipping resistance and fracture resistance in the high-speed intermittent cutting work of an alloy tool steel, heat-resistant steel or the like.SOLUTION: There is provided the surface-coated cutting tool in which a hard coating layer comprising (a) a lower layer composed of a Ti compound layer and (b) an upper layer composed of an aluminum oxide layer is formed by vapor deposition on the surface of a tool base composed of a WC cemented carbide and TiCN-based cermet. In the cutting tool, a layer wealthy in microvacancies having a hole diameter of 2 to 70 nm and having bimodal hole diameter distribution is formed in the lower layer in the vicinity of boundary face between the lower and upper layers, and the vacancies having a hole diameter of 90 to 150 nm are formed in a vacancy density of 1 to 3 pieces/μm of the unit length of the boundary face contacting the face between the lower and upper layers.

Description

本発明は、高熱発生を伴うとともに、切れ刃に断続的・衝撃的な高負荷が作用する合金工具鋼、耐熱鋼等の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性、耐欠損性を備えることにより、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is accompanied by high chipping resistance and chipping resistance with a high hard coating layer in high-speed intermittent cutting of alloy tool steel, heat-resistant steel, etc. with high heat generation and intermittent / impact high loads acting on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着形成された酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具は、各種の鋼や鋳鉄などの切削加工に用いられている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer in which the upper layer is formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer constituted of (a) and (b) above is known, and this coated tool is used for cutting various types of steel and cast iron.

ただ、このような被覆工具は、切れ刃に大きな負荷がかかる切削条件では、チッピング、欠損等を発生しやすく、工具寿命が短命であるという問題があるため、これを解消するために、従来からいくつかの提案がなされている。   However, such a coated tool has a problem that chipping, chipping, etc. are likely to occur under cutting conditions where a heavy load is applied to the cutting edge, and the tool life is short-lived. Several proposals have been made.

例えば、特許文献1には、工具基体の表面に、Ti化合物からなる下部層、酸化アルミニウムからなる上部層、窒化チタンからなる表面層を形成した被覆工具において、上部層に5〜30%の空孔を形成することで、炭素鋼、合金鋼、鋳鉄の断続重切削加工における耐チッピング性を改善することが提案されている。   For example, in Patent Document 1, in a coated tool in which a lower layer made of a Ti compound, an upper layer made of aluminum oxide, and a surface layer made of titanium nitride are formed on the surface of a tool base, 5 to 30% of voids are formed in the upper layer. It has been proposed to improve chipping resistance in intermittent heavy cutting of carbon steel, alloy steel, and cast iron by forming holes.

また、特許文献2には、工具基体の表面に、Ti化合物層からなる下部層と酸化アルミニウム層からなる上部層を形成した被覆工具において、下部層の層厚方向に0.1μmの厚み幅間隔で、各厚み幅領域に存在する孔径2〜30nmの空孔の空孔密度を測定した場合に、空孔密度が200〜500個/μmの厚み幅領域と、空孔密度が0〜20個/μmの厚み幅領域とを、下部層の層厚方向に沿って、交互に少なくとも複数領域形成される空孔分布形態を形成するで、炭素鋼、合金鋼、ダクタイルの高速断続切削加工における耐チッピング性、耐欠損性を改善することが提案されている。 Further, in Patent Document 2, in a coated tool in which a lower layer made of a Ti compound layer and an upper layer made of an aluminum oxide layer are formed on the surface of a tool base, a thickness width interval of 0.1 μm in the layer thickness direction of the lower layer is disclosed. Then, when the pore density of pores having a pore diameter of 2 to 30 nm existing in each thickness width region is measured, the thickness width region having a pore density of 200 to 500 / μm 2 , and the pore density is 0 to 20 High-speed intermittent cutting of carbon steel, alloy steel, and ductile by forming a pore distribution form in which at least a plurality of regions are alternately formed along the thickness direction of the lower layer with a thickness width region of pieces / μm 2 It has been proposed to improve chipping resistance and chipping resistance.

さらに、特許文献3には、工具基体の表面に、Ti化合物層からなる下部層と酸化アルミニウム層からなる上部層を形成した被覆工具において、下部層と上部層との界面近傍の下部層中に孔径2〜70nmの微小空孔を有する微小空孔富裕層を形成し、該微小空孔富裕層の層厚を0.1〜1μmとすることによって、炭素鋼、合金鋼、鋳鉄の高速断続切削加工における耐チッピング、耐欠損性を改善することが提案されている。   Further, in Patent Document 3, in a coated tool in which a lower layer made of a Ti compound layer and an upper layer made of an aluminum oxide layer are formed on the surface of a tool base, the lower layer near the interface between the lower layer and the upper layer is included in the lower layer. High-speed intermittent cutting of carbon steel, alloy steel, and cast iron is performed by forming a microvoid-rich layer having micropores with a pore diameter of 2 to 70 nm and setting the thickness of the micropore-rich layer to 0.1 to 1 μm. It has been proposed to improve chipping resistance and fracture resistance in processing.

特開2003−19603号公報JP 2003-19603 A 特開2012−187659号公報JP 2012-187659 A 特開2013−126709号公報JP2013-126709A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、被覆工具は一段と過酷な条件下で使用されるようになってきているが、例えば、前記特許文献1〜3に示される被覆工具においては、炭素鋼、合金鋼、鋳鉄の断続切削加工においてはすぐれた耐チッピング性、耐欠損性を示すが、これを、高熱発生を伴うとともに、より一段と切れ刃に断続的・衝撃的な高負荷が作用する合金工具鋼、耐熱鋼等の高速断続切削加工に用いた場合には、上部層の耐機械的衝撃性、耐熱的衝撃性が未だ十分とはいえず、切削加工時の高負荷によって切れ刃にチッピング、欠損が発生し、これを原因として工具寿命に至る場合があり、より一段と耐チッピング性、耐欠損性にすぐれた被覆工具が求められている。   In recent years, there is a strong demand for energy saving and energy saving in cutting, and with this, the coated tool has come to be used under more severe conditions. Coated tools exhibit excellent chipping resistance and fracture resistance in intermittent cutting of carbon steel, alloy steel, and cast iron, but this is accompanied by high heat generation and more intermittent and shocking to the cutting edge. When used for high-speed intermittent cutting of alloy tool steel, heat-resistant steel, etc., where high loads are applied, the mechanical shock resistance and thermal shock resistance of the upper layer are still not sufficient, Chipping and chipping may occur in the cutting edge due to high load, and this may lead to tool life, and there is a need for a coated tool with even higher chipping resistance and chipping resistance.

そこで、本発明者らは、前述のような観点から、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的な高負荷が作用する合金工具鋼、耐熱鋼等の高速断続切削加工に用いた場合であっても、硬質被覆層がすぐれた熱的・機械的な衝撃吸収性を備え、その結果、長期の使用にわたってすぐれた耐チッピング性、耐欠損性を発揮する被覆工具について鋭意研究を行った。   In view of the above, the present inventors have used high-speed intermittent cutting of alloy tool steel, heat-resistant steel and the like that are accompanied by high heat generation and an intermittent and impactful high load acts on the cutting edge. Even if it is, the hard coating layer has excellent thermal and mechanical shock absorption, and as a result, intensive research on coated tools that exhibit excellent chipping resistance and fracture resistance over a long period of use. went.

即ち、特許文献3に示される被覆工具においては、上部層と下部層との界面近傍の下部層中に孔径2〜70nmの微小空孔を有する微小空孔富裕層を形成し、該微小空孔富裕層を所定の層厚と定め、さらに、微小空孔の孔径分布の第1ピークが2〜10nmに存在し、孔径2nmごとに微小空孔を数えたときの第1ピークにおける微小空孔数密度が200〜500個/μmであって、第2ピークが20〜50nmに存在し、孔径2nmごとに微小空孔を数えたときの第2ピークにおける微小空孔数密度が10〜50個/μmであるような微小空孔のバイモーダルな孔径分布を形成することによって、Al層の高温強度と高温硬さの低下を招くことなく、機械的、熱的な耐衝撃性の向上を図っていた。 That is, in the coated tool shown in Patent Document 3, a microvoid-rich layer having micropores having a pore diameter of 2 to 70 nm is formed in the lower layer in the vicinity of the interface between the upper layer and the lower layer, and the micropores are formed. The rich layer is defined as a predetermined layer thickness, and the number of micropores in the first peak when the first peak of the pore size distribution of the micropores exists at 2 to 10 nm and the micropores are counted every 2 nm of pore size The density is 200 to 500 / μm 2 , the second peak is present at 20 to 50 nm, and the micropore number density at the second peak is 10 to 50 when the micropores are counted every 2 nm of the pore diameter. By forming a bimodal pore size distribution of micropores such as / μm 2 , mechanical and thermal shock resistance without causing a decrease in the high temperature strength and high temperature hardness of the Al 2 O 3 layer I was trying to improve.

そして、特許文献3に示される被覆工具は、炭素鋼、合金鋼、鋳鉄の高速断続切削加工に使用した場合には、満足できる耐チッピング、耐欠損性を発揮するが、これを、合金工具鋼、耐熱鋼等の高速断続切削加工に使用した場合には、切れ刃がより高熱に曝されるため、特許文献3に記載されるような硬質被覆層構造では、十分な耐チッピング性、耐欠損性が発揮されるとはいえなかった。
そこで、上記特許文献3に記載される被覆工具において、その上部層と下部層との界面に着目して、空孔の適正な分布形態についてさらに研究を進めたところ、特許文献3に記載されるような硬質被覆層の空孔分布形態に加えて、上部層と下部層の界面に接して、所定孔径かつ所定密度の空孔を形成することにより、切れ刃がより高熱に曝される合金工具鋼、耐熱鋼等の高速断続切削加工に供した場合であっても、すぐれた熱的・機械的な衝撃吸収性を備え、長期の使用にわたってすぐれた耐チッピング性、耐欠損性を発揮することを見出したのである。
The coated tool disclosed in Patent Document 3 exhibits satisfactory chipping resistance and fracture resistance when used for high-speed intermittent cutting of carbon steel, alloy steel, and cast iron. When used for high-speed intermittent cutting of heat-resistant steel, etc., the cutting edge is exposed to higher heat, so that the hard coating layer structure described in Patent Document 3 has sufficient chipping resistance and chipping resistance. It could not be said that sex was exhibited.
Therefore, in the coated tool described in Patent Document 3, the research on the appropriate distribution form of the pores is made while paying attention to the interface between the upper layer and the lower layer, which is described in Patent Document 3. In addition to the hole distribution form of the hard coating layer, an alloy tool in which the cutting edge is exposed to higher heat by forming holes with a predetermined hole diameter and a predetermined density in contact with the interface between the upper layer and the lower layer Even when subjected to high-speed intermittent cutting of steel, heat-resistant steel, etc., it has excellent thermal and mechanical shock absorption, and exhibits excellent chipping resistance and fracture resistance over long-term use Was found.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が下部層と上部層とからなり、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)前記上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層であり、
(c)前記下部層と上部層との界面近傍の下部層中に、孔径2〜70nmの微小空孔を有する微小空孔富裕層が存在し、該微小空孔富裕層が0.1〜1μmの層厚を有し、
(d)前記下部層と上部層との界面に接して、界面の単位長さ当たり1〜3個/μmの空孔密度で孔径90〜150nmの空孔を形成したことを特徴とする表面被覆切削工具。
(2)前記下部層中に存在する微小空孔の孔径分布がバイモーダルな分布をとることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記微小空孔の孔径分布の第1ピークが2〜10nmに存在し、孔径2nmごとに微小空孔を数えたときの第1ピークにおける微小空孔数密度が200〜500個/μmであって、第2ピークが20〜50nmに存在し、孔径2nmごとに微小空孔を数えたときの第2ピークにおける微小空孔数密度が10〜50個/μmであることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer comprises a lower layer and an upper layer,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The upper layer is an aluminum oxide layer having an average layer thickness of 1 to 25 μm,
(C) In the lower layer in the vicinity of the interface between the lower layer and the upper layer, there is a microvoid rich layer having micropores having a pore diameter of 2 to 70 nm, and the micropore rich layer is 0.1 to 1 μm. Having a layer thickness of
(D) A surface coating characterized by forming pores having a pore diameter of 90 to 150 nm at a pore density of 1 to 3 per μm per unit length of the interface in contact with the interface between the lower layer and the upper layer Cutting tools.
(2) The surface-coated cutting tool according to (1), wherein the pore size distribution of the micropores existing in the lower layer is a bimodal distribution.
(3) The first peak of the pore size distribution of the micropores exists at 2 to 10 nm, and the micropore number density at the first peak when the micropores are counted every 2 nm of pore size is 200 to 500 / μm. 2 and the second peak is present at 20 to 50 nm, and the micropore number density in the second peak when the micropores are counted every 2 nm of pore diameter is 10 to 50 / μm 2 The surface-coated cutting tool according to (1) or (2). "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

下部層のTi化合物層:
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層は、通常の化学蒸着条件で形成することができ、それ自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体とAl層からなる上部層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、チッピングを発生しやすくなることから、その合計平均層厚を3〜20μmと定めた。
Lower Ti compound layer:
The lower layer composed of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer is formed under normal chemical vapor deposition conditions. In addition to having high-temperature strength, the hard coating layer has high-temperature strength by itself, and firmly adheres to both the tool base and the upper layer composed of the Al 2 O 3 layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted, whereas the total average layer thickness When the thickness exceeds 20 μm, chipping is likely to occur. Therefore, the total average layer thickness is determined to be 3 to 20 μm.

上部層のAl層:
上部層を構成するAl層が、高温硬さと耐熱性を備えることは既に良く知られているが、その平均層厚が1μm未満では、長期の使用にわたっての耐摩耗性を確保することができず、一方、その平均層厚が25μmを越えるとAl結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、高速断続切削加工時の耐チッピング性、耐欠損性が低下するようになることから、その平均層厚を1〜25μmと定めた。
Upper layer Al 2 O 3 layer:
It is already well known that the Al 2 O 3 layer constituting the upper layer has high-temperature hardness and heat resistance, but if the average layer thickness is less than 1 μm, it should ensure wear resistance over a long period of use. On the other hand, if the average layer thickness exceeds 25 μm, the Al 2 O 3 crystal grains are likely to be coarsened. As a result, in addition to the decrease in high-temperature hardness and strength, chipping resistance during high-speed intermittent cutting Since the chipping resistance is lowered, the average layer thickness is determined to be 1 to 25 μm.

下部層と上部層との界面近傍の下部層中に設けた微小空孔富裕層:
図1に示すように、本発明のTi化合物層で構成された下部層とAl層で構成された上部層との界面近傍の下部層中に孔径2〜70nmの微小空孔を有する微小空孔富裕層が存在している下部層は、切れ刃が高温に曝され、しかも、機械的・熱的衝撃を受ける高速断続切削加工においても、すぐれた高温強度、高温硬さを備え、同時に、すぐれた耐チッピング性、耐欠損性を発揮する。さらに、該微小空孔富裕層の微小空孔の孔径を2nmから70nmにわたって均一に分布させるのではなく、バイモーダルな分布(双峰分布)をとることにより、より高い耐チッピング性、耐欠損性を発揮する。
A microporous rich layer in the lower layer near the interface between the lower and upper layers:
As shown in FIG. 1, the lower layer in the vicinity of the interface between the lower layer composed of the Ti compound layer of the present invention and the upper layer composed of the Al 2 O 3 layer has micropores having a pore diameter of 2 to 70 nm. The lower layer where the microporous rich layer exists has excellent high-temperature strength and high-temperature hardness even in high-speed intermittent cutting where the cutting edge is exposed to high temperature and mechanical and thermal shock is applied. At the same time, it exhibits excellent chipping resistance and chipping resistance. In addition, the micropore size of the micropore-rich layer is not evenly distributed from 2 nm to 70 nm, but by taking a bimodal distribution (bimodal distribution), higher chipping resistance and fracture resistance. Demonstrate.

微小空孔富裕層の形成:
本発明の微小空孔富裕層は、通常の化学蒸着条件で成膜した下部層の表面を次の2つの条件によるエッチングを施すことによって形成することができる。
下部層成膜用の反応ガスの導入と、以下の2つ条件によるエッチングを交互に行うことにより、下部層と上部層との界面近傍の下部層中に所定の孔径分布を有する微小空孔富裕層が形成される。
(A条件)
反応ガス組成(容量%):
SF:5〜10%,
:残
反応雰囲気温度:800〜950℃、
反応雰囲気圧力: 4〜9kPa、
の条件で5〜30分間SFエッチングを行う。
(B条件)
反応ガス組成(容量%):
SF:5〜10%,
:残
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力: 13〜27kPa、
の条件で4〜30分間SFエッチングを行う。
Formation of microporous rich layer:
The microvoid rich layer of the present invention can be formed by etching the surface of the lower layer formed under normal chemical vapor deposition conditions under the following two conditions.
By introducing the reaction gas for forming the lower layer and etching under the following two conditions alternately, the rich micropores having a predetermined pore size distribution in the lower layer near the interface between the lower layer and the upper layer A layer is formed.
(Condition A)
Reaction gas composition (volume%):
SF 6 : 5 to 10%,
H 2 : Residual reaction atmosphere temperature: 800 to 950 ° C.
Reaction atmosphere pressure: 4-9 kPa,
The SF 6 etching is performed for 5 to 30 minutes under the above conditions.
(Condition B)
Reaction gas composition (volume%):
SF 6 : 5 to 10%,
H 2 : residual reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 13-27 kPa,
The SF 6 etching is performed for 4 to 30 minutes under the above conditions.

微小空孔富裕層の孔径分布形態:
図2に、前記のエッチング条件を用いて形成された本発明の下部層と上部層との界面近傍の下部層中の微小空孔富裕層に形成された微小空孔の孔径分布図を示す。
図2に示されるように、本発明の下部層と上部層との界面近傍の下部層中の微小空孔富裕層には、孔径2〜70nmの微小空孔が存在しているが、その孔径分布は、第1ピークが2〜10nmに存在し、孔径2nmごとに微小空孔を数えたときの第1ピークにおける微小空孔数密度が200〜500個/μmであって、第2ピークが20〜50nmに存在し、孔径2nmごとに微小空孔を数えたときの第2ピークにおける微小空孔数密度が10〜50個/μmである形態のバイモーダルな分布をとっている。
Pore size distribution pattern of the microporous rich layer:
FIG. 2 shows a pore size distribution diagram of microvoids formed in the microvoid rich layer in the lower layer in the vicinity of the interface between the lower layer and the upper layer of the present invention formed using the above etching conditions.
As shown in FIG. 2, the microvoid-rich layer in the lower layer in the vicinity of the interface between the lower layer and the upper layer of the present invention has micropores having a pore diameter of 2 to 70 nm. The distribution is such that the first peak is in the range of 2 to 10 nm, and the micropore number density in the first peak when the micropores are counted every 2 nm of pore diameter is 200 to 500 / μm 2 , and the second peak Is present in a range of 20 to 50 nm, and has a bimodal distribution in which the micropore number density in the second peak when the micropores are counted every 2 nm of pore diameter is 10 to 50 / μm 2 .

本発明で、微小空孔の孔径分布において、孔径2〜10nmである小さな微小空孔の第1ピークを200〜500個/μmの範囲内と定めたのは、孔径2〜10nmである小さな微小空孔の孔径分布における第1ピークが200個/μm未満であるとAlの核生成数向上という効果が十分に発揮しえなくなり、一方、500個/μmを超えると空隙率が高くなりすぎ、下部層と上部層との界面近傍の脆化とともに耐摩耗性の低下が生じるからである。 In the present invention, in the pore size distribution of the micropores, the first peak of small micropores having a pore size of 2 to 10 nm is determined to be within the range of 200 to 500 / μm 2. effect that the minute pores of the pore size first peak in fabric 200 / [mu] m is less than 2 and Al 2 O 3 nucleation number increase is not E sufficiently exhibited, while when it exceeds 500 / [mu] m 2 void This is because the rate becomes too high, and the wear resistance decreases with embrittlement in the vicinity of the interface between the lower layer and the upper layer.

また、微小空孔の孔径分布において、孔径20〜50nmである大きな微小空孔の第2ピークを10〜50個/μmの範囲内と定めたのは、10個/μm以下あるいは50個/μmを超える範囲では、熱的および機械的衝撃を吸収緩和するという効果が十分に発揮しえなくなり、耐チッピング性、耐欠損性向上という効果が十分に発揮されないという理由による。 In addition, in the pore size distribution of the micropores, the second peak of the large micropores having a pore size of 20 to 50 nm is determined to be within the range of 10 to 50 / μm 2 , which is 10 pieces / μm 2 or less or 50 pieces. In the range exceeding / μm 2 , the effect of absorbing and relaxing thermal and mechanical shocks cannot be sufficiently exhibited, and the effect of improving chipping resistance and chipping resistance is not sufficiently exhibited.

また、本発明で、微小空孔の孔径を2〜70nmと定めたのは、下部層と上部層との界面近傍の下部層中の微小空孔富裕層に形成される空孔の孔径が2nm未満では、衝撃緩和効果が期待できず、一方、孔径が70nmを超えると、下部層の靭性低下が大きくなるためであり、下部層の高温強度、高温硬さを維持しつつ、断続的・衝撃的負荷に対する衝撃緩和効果を保持するためには、下部層と上部層との界面近傍の下部層内部に形成される微小空孔の孔径は2〜70nmでなければならない。
また、本発明で、下部層と上部層との界面近傍の下部層中の微小空孔富裕層の層厚を0.1〜1μmの範囲内と定めたのは、0.1μm未満では、微小空孔による衝撃緩和効果が十分に期待できず、一方、1μmを超えると、界面近傍の靭性が低下し、耐チッピング性、耐欠損性向上という効果が十分に発揮されないという理由による。
In the present invention, the pore size of the micropores is set to 2 to 70 nm because the pore size of the micropore-rich layer in the lower layer near the interface between the lower layer and the upper layer is 2 nm. If the pore diameter is less than 70 nm, the impact relaxation effect cannot be expected. On the other hand, if the pore diameter exceeds 70 nm, the toughness of the lower layer is greatly reduced. In order to maintain the impact mitigating effect against the mechanical load, the pore size of the micropores formed in the lower layer near the interface between the lower layer and the upper layer must be 2 to 70 nm.
Also, in the present invention, the layer thickness of the microvoid-rich layer in the lower layer in the vicinity of the interface between the lower layer and the upper layer is determined to be within the range of 0.1 to 1 μm. The impact relaxation effect due to the pores cannot be sufficiently expected. On the other hand, if it exceeds 1 μm, the toughness in the vicinity of the interface is lowered, and the effects of improving chipping resistance and fracture resistance are not sufficiently exhibited.

下部層と上部層の界面に接した空孔:
下部層と上部層との界面近傍の下部層中には、前述の微小空孔富裕層を形成して衝撃緩和作用により、耐チッピング性、耐欠損性の向上を図ったが、これに加えて、本発明では、下部層と上部層との界面に接して、界面の単位長さ当たり1〜3個/μmの空孔密度で孔径90〜150nmの空孔を形成することによって、衝撃緩和効果をさらに向上させることができる。
即ち、切削時に切れ刃に作用する断続的・衝撃的な高負荷によって、硬質被覆層の上部層にはクラックが発生するが、このクラックが伝播進展した場合においても、この空孔でクラックの進展を停止させ、その結果、下部層にまでクラックが伝播進展することが抑制されることによって耐チッピング性、耐欠損性がさらに向上する。
また、下部層と上部層との界面に接して形成された空孔は、界面における残留応力をも緩和することによって、より一層、耐チッピング性、耐欠損性が向上する。
本発明において、空孔密度が界面の単位長さ当たり1個/μm未満、空孔の孔径が90nm未満では、衝撃緩和効果、残留応力緩和効果が少なく、一方、空孔密度が3個/μmを超える場合、あるいは、空孔の孔径が150nmを超える場合には、界面剥離を生じやすくなるので、本発明では、界面の単位長さ当たりの空孔密度を1〜3個/μmと定め、また、空孔の孔径を90〜150nmと定めた。
ここで、空孔の孔径とは、被覆工具を下部層と上部層の界面を含む縦断面で観察した場合に、界面に接して形成されている空孔の最大幅をいう。
Holes in contact with the interface between the lower and upper layers:
In the lower layer in the vicinity of the interface between the lower layer and the upper layer, the above-mentioned microvoid-rich layer was formed to improve the chipping resistance and fracture resistance by impact relaxation. In the present invention, the impact relaxation effect is achieved by forming holes having a hole diameter of 90 to 150 nm at a hole density of 1 to 3 holes / μm per unit length of the interface in contact with the interface between the lower layer and the upper layer. Can be further improved.
That is, cracks are generated in the upper layer of the hard coating layer due to intermittent and shocking high loads acting on the cutting edge during cutting, but even if this crack propagates and propagates, the cracks propagate in these holes. As a result, the chipping resistance and chipping resistance are further improved by suppressing the propagation of cracks to the lower layer.
Moreover, the vacancy formed in contact with the interface between the lower layer and the upper layer further improves the chipping resistance and chipping resistance by relaxing the residual stress at the interface.
In the present invention, when the pore density is less than 1 / μm per unit length of the interface and the pore diameter is less than 90 nm, the impact relaxation effect and residual stress relaxation effect are small, while the pore density is 3 / μm. Or when the pore diameter exceeds 150 nm, interfacial delamination is likely to occur. Therefore, in the present invention, the pore density per unit length of the interface is defined as 1 to 3 / μm, Further, the hole diameter was set to 90 to 150 nm.
Here, the hole diameter of the hole means the maximum width of the hole formed in contact with the interface when the coated tool is observed in a longitudinal section including the interface between the lower layer and the upper layer.

下部層と上部層の界面に接した空孔の形成法:
下部層と上部層の界面に接した空孔の形成は、下部層として、前述の微小空孔富裕層を有する下部層を形成した後、例えば、以下の(C条件)、(D条件)により下部層を処理し、次いで、通常のAl形成条件で蒸着することによって、下部層と上部層の界面に接した空孔を有する上部層を形成することができる。
(C条件)
反応ガス組成(容量%):
TiCl:0.8〜1.5%,
:0.8〜2.0%
CO:3.0〜5.0%
HCl:0.05〜0.1%
:残
反応雰囲気温度:800〜850℃、
反応雰囲気圧力: 53〜67kPa、
の条件で10〜15分間の処理を行う。
(D条件)
反応ガス組成(容量%):
AlCl:3.5〜4.5%,
HCl:2.0〜3.0%
:残
反応雰囲気温度:1200〜1300℃、
反応雰囲気圧力: 3〜5kPa、
の条件で5〜15分間の処理を行う。
上記(C条件)による処理を行った後、(D条件)による処理を行うことで、反応ガス組成中のAlClが、すでに基体上に被覆された膜中のO(酸素原子)を吸い上げ、自らはAlとなり基体上に被覆し、さらにその後、通常のAl蒸着条件で成膜することによって、下部層と上部層の界面に接して所定の空孔が形成された上部層を成膜することができる。
図1に、下部層と上部層との界面近傍の下部層中に所定の微小空孔富裕層が形成された下部層と、下部層と上部層の界面に接して所定の空孔が形成された上部層からなる本発明被覆工具の硬質被覆層の縦断面模式図を示す。
Formation of vacancies in contact with the interface between the lower and upper layers:
The formation of the vacancies in contact with the interface between the lower layer and the upper layer is performed by, for example, the following (C condition) and (D condition) after forming the lower layer having the above-described minute vacancy rich layer as the lower layer. By treating the lower layer and then depositing under normal Al 2 O 3 formation conditions, an upper layer having vacancies in contact with the interface between the lower layer and the upper layer can be formed.
(C condition)
Reaction gas composition (volume%):
TiCl 4: 0.8~1.5%,
C 2 H 4: 0.8~2.0%
CO: 3.0-5.0%
HCl: 0.05-0.1%
H 2 : residual reaction atmosphere temperature: 800 to 850 ° C.
Reaction atmosphere pressure: 53-67 kPa,
The treatment is performed for 10 to 15 minutes under the above conditions.
(D condition)
Reaction gas composition (volume%):
AlCl 3 : 3.5 to 4.5%,
HCl: 2.0-3.0%
H 2 : Residual reaction atmosphere temperature: 1200 to 1300 ° C.
Reaction atmosphere pressure: 3-5 kPa,
The treatment is performed for 5 to 15 minutes under the above conditions.
After performing the treatment according to the above (C condition), by performing the treatment according to (D condition), AlCl 3 in the reaction gas composition sucks up O (oxygen atoms) in the film already coated on the substrate, The upper part in which predetermined vacancies are formed in contact with the interface between the lower layer and the upper layer by forming Al 2 O 3 on the substrate and forming a film under normal Al 2 O 3 deposition conditions. Layers can be deposited.
FIG. 1 shows a lower layer in which a predetermined micro-vacancy rich layer is formed in the lower layer near the interface between the lower layer and the upper layer, and predetermined holes are formed in contact with the interface between the lower layer and the upper layer. The longitudinal cross-sectional schematic diagram of the hard coating layer of this invention coated tool which consists of a further upper layer is shown.

本発明の被覆工具は、硬質被覆層として、Ti化合物層からなる下部層とAl層からなる上部層を被覆形成し、かつ、下部層と上部層との界面近傍の下部層中に孔径分布がバイモーダルな分布をとる所定の微小空孔富裕層が形成されていることに加え、下部層と上部層との界面に接して所定の空孔が形成されていることにより、合金工具鋼や耐熱鋼等の高熱発生を伴い、しかも、切れ刃に断続的・衝撃的な高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用にわたってすぐれた耐摩耗性を発揮し、被覆工具の長寿命化が達成されるものである。 In the coated tool of the present invention, as a hard coating layer, a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer are formed by coating, and in the lower layer near the interface between the lower layer and the upper layer In addition to the formation of a predetermined microvoid-rich layer in which the pore size distribution is bimodal, the alloy tool is formed by forming a predetermined hole in contact with the interface between the lower layer and the upper layer. Even when it is used for high-speed intermittent cutting with high heat generation such as steel and heat-resistant steel, and intermittent and shocking high loads on the cutting edge, it has excellent chipping resistance and chipping resistance. It exhibits excellent wear resistance over a long period of use, and a long tool life is achieved.

本発明被覆工具の下部層と上部層との界面を含む硬質被覆層の縦断面模式図を示す。The longitudinal cross-sectional schematic diagram of the hard coating layer containing the interface of the lower layer and upper layer of this invention coated tool is shown. 本発明被覆工具の下部層と上部層との界面近傍の下部層中に形成される微小空孔富裕層の孔径分布図を示す。The hole diameter distribution map of the micropore rich layer formed in the lower layer of the vicinity of the interface between the lower layer and the upper layer of the coated tool of the present invention is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to E made of WC-base cemented carbide having an insert shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC
粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体a〜eを形成した。
In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC all having an average particle diameter of 0.5 to 2 μm.
Powder, WC powder, Co powder, and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then compacted at a pressure of 98 MPa. The green compact was sintered in a 1.3 kPa nitrogen atmosphere at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge was subjected to a honing process of R: 0.07 mm. As a result, tool bases a to e made of TiCN-based cermet having an ISO standard / CNMG120408 insert shape were formed.

つぎに、これらの工具基体A〜Eおよび工具基体a〜eの表面に、通常の化学蒸着装置を用い、
(a)硬質被覆層の下部層として、表3に示される条件でTi化合物層を蒸着形成する。
(b)次いで、(a)のTi化合物層成膜を停止し、表4に示されるA条件によるSFエッチングを所定時間行い、さらに(a)の成膜工程を再度行ない、再度停止した後に表4に示されるB条件によるSFエッチングを所定時間行い、さらに(a)の成膜工程を再度行なう。
(c)前記(b)の工程を表4に示される所定回数繰り返し行い微小空孔富裕層を形成し、表6に示される目標層厚でTi化合物層を蒸着形成する。
(d)次いで、表5に示されるC条件により、下部層の表面を所定時間処理し、引き続き、表5に示されるD条件で所定時間処理する。
(e)次いで、硬質被覆層の上部層として、表3に示される条件で所定の層厚のAl層を蒸着形成する。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases A to E and tool bases a to e,
(A) A Ti compound layer is formed by vapor deposition under the conditions shown in Table 3 as the lower layer of the hard coating layer.
(B) Next, the Ti compound layer film formation of (a) is stopped, SF 6 etching is performed for a predetermined time under the condition A shown in Table 4, and the film formation process of (a) is performed again and stopped again. SF 6 etching under the conditions B shown in Table 4 is performed for a predetermined time, and the film forming step (a) is performed again.
(C) The step (b) is repeated a predetermined number of times as shown in Table 4 to form a microvoid-rich layer, and a Ti compound layer is formed by vapor deposition with the target layer thickness shown in Table 6.
(D) Next, the surface of the lower layer is treated for a predetermined time according to the C condition shown in Table 5, and subsequently, the surface is treated for a predetermined time under the D condition shown in Table 5.
(E) Next, as an upper layer of the hard coating layer, an Al 2 O 3 layer having a predetermined layer thickness is formed by vapor deposition under the conditions shown in Table 3.

前記(a)〜(e)によって、表6に示される下部層、表7に示される下部層と上部層との界面近傍の下部層中に孔径分布がバイモーダルな分布をとる微小空孔富裕層、同じく表7に示される下部層と上部層との界面に接する空孔、および、表5に示される目標層厚の上部層(Al層)からなる硬質被覆層を蒸着形成することにより表7に示される本発明被覆工具1〜15を製造した。 According to the above (a) to (e), the pore size distribution is bimodal in the lower layer shown in Table 6 and the lower layer in the vicinity of the interface between the lower layer and the upper layer shown in Table 7. The hard coating layer is formed by vapor deposition of a layer, a hole in contact with the interface between the lower layer and the upper layer shown in Table 7, and an upper layer (Al 2 O 3 layer) having a target layer thickness shown in Table 5 Thus, the inventive coated tools 1 to 15 shown in Table 7 were produced.

前記本発明被覆工具1〜15の下部層のTi化合物層について、走査型電子顕微鏡(倍率50000倍)を用いて複数視野にわたって観察したところ、いずれも、図1に示した縦断面模式図に示される下部層と上部層との界面近傍の下部層中に微小空孔富裕層が存在する膜構造が確認された。
また、同じく走査型電子顕微鏡(倍率50000倍)を用いて複数視野にわたって観察したところ、いずれも、図1の縦断面模式図に示されるように、下部層と上部層との界面に接して空孔が形成されていることが確認された。
さらに、前記本発明被覆工具1〜15の下部層と上部層との界面近傍の下部層中の微小空孔富裕層について、走査型電子顕微鏡(倍率50000倍)及び透過型電子顕微鏡(倍率200000倍)を用いて界面に沿って長さ10μmに亘って複数視野観察し、それぞれの視野について微小空孔を観察したところ、図2に示した孔径分布図に示される孔径分布形態が確認された。
また、前記本発明被覆工具1〜15の下部層と上部層との界面に接して形成されている空孔について、走査型電子顕微鏡(倍率50000倍)及び透過型電子顕微鏡(倍率200000倍)を用いて界面に沿って長さ10μmに亘って複数視野観察し、それぞれの視野について空孔の孔径及び空孔密度を測定した。
When the Ti compound layer of the lower layer of the coated tools 1 to 15 of the present invention is observed over a plurality of visual fields using a scanning electron microscope (magnification 50000 times), all are shown in the schematic longitudinal sectional view shown in FIG. It was confirmed that there was a microporous rich layer in the lower layer near the interface between the lower layer and the upper layer.
Similarly, when observed over a plurality of fields of view using a scanning electron microscope (magnification 50000 times), as shown in the vertical cross-sectional schematic diagram of FIG. 1, all of them are in contact with the interface between the lower layer and the upper layer. It was confirmed that a hole was formed.
Further, for the microvoid-rich layer in the lower layer in the vicinity of the interface between the lower layer and the upper layer of the coated tools 1 to 15 of the present invention, a scanning electron microscope (magnification 50000 times) and a transmission electron microscope (magnification 200000 times) ) Was used to observe a plurality of visual fields over a length of 10 μm along the interface, and micropores were observed for each visual field, and the pore size distribution form shown in the pore size distribution diagram shown in FIG. 2 was confirmed.
Moreover, about the void | hole formed in contact with the interface of the lower layer and upper layer of the said coating tool 1-15 of this invention, a scanning electron microscope (50000 times magnification) and a transmission electron microscope (20000 times magnification) are used. A plurality of visual fields were observed over a length of 10 μm along the interface, and the pore diameter and the pore density were measured for each visual field.

また、比較の目的で、工具基体A〜Eおよび工具基体a〜eの表面に、表3に示される条件かつ表6に示される目標層厚で、硬質被覆層の下部層としてのTi化合物層を蒸着形成した。
次いで、硬質被覆層の上部層として、表3に示される条件かつ表6に示される目標層厚でAl層からなる上部層を蒸着形成することにより、表6に示される下部層及び表6に示される目標層厚の上部層(Al層)からなる硬質被覆層を蒸着形成した表8に示される比較被覆工具1〜10を作製した。
For comparison purposes, a Ti compound layer as a lower layer of the hard coating layer on the surfaces of the tool bases A to E and the tool bases a to e under the conditions shown in Table 3 and the target layer thickness shown in Table 6 Was formed by vapor deposition.
Next, an upper layer composed of an Al 2 O 3 layer is formed by vapor deposition as the upper layer of the hard coating layer under the conditions shown in Table 3 and the target layer thickness shown in Table 6, and the lower layer shown in Table 6 and Comparative coated tools 1 to 10 shown in Table 8 in which a hard coating layer consisting of an upper layer (Al 2 O 3 layer) having a target layer thickness shown in Table 6 was formed by evaporation were prepared.

さらに、比較の目的で、工具基体A〜Eの表面に、表3に示される条件で、かつ、前記(a)、(b)、(c)の工程で表5に示される目標層厚の下部層を形成した。
次いで、硬質被覆層の上部層として、表3に示される条件かつ表6に示される目標層厚でAl層からなる上部層を蒸着形成することにより、表6に示される下部層、表8に示される下部層と上部層との界面近傍の下部層中に孔径分布がバイモーダルな分布をとる微小空孔富裕層および表6に示される目標層厚の上部層(Al層)からなる硬質被覆層を蒸着形成した表8に示される比較被覆工具11〜15を作製した。
つまり、比較被覆工具1〜10は、前記(b)、(c)、(d)の工程を行っていない点、また、比較被覆工具11〜15は、前記(d)の工程を行っていない点で、それぞれ、本発明被覆工具とその製造方法が相違している。
Furthermore, for the purpose of comparison, on the surfaces of the tool bases A to E, the conditions shown in Table 3 and the target layer thicknesses shown in Table 5 in the steps (a), (b), and (c) are as follows. A lower layer was formed.
Next, as the upper layer of the hard coating layer, the lower layer shown in Table 6 is formed by vapor-depositing an upper layer composed of an Al 2 O 3 layer under the conditions shown in Table 3 and the target layer thickness shown in Table 6. In the lower layer in the vicinity of the interface between the lower layer and the upper layer shown in Table 8, a microporous rich layer in which the pore size distribution is bimodal and the upper layer (Al 2 O 3 with the target layer thickness shown in Table 6) Comparative coating tools 11 to 15 shown in Table 8 on which a hard coating layer consisting of (layer) was formed by vapor deposition were prepared.
That is, the comparative coating tools 1 to 10 do not perform the steps (b), (c), and (d), and the comparative coating tools 11 to 15 do not perform the step (d). In this respect, the coated tool of the present invention and its manufacturing method are different.

また、本発明被覆工具1〜15および比較被覆工具1〜15の各構成層の層厚を、走査型電子顕微鏡を用いて測定したところ、いずれも表5に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, when the layer thickness of each component layer of this invention coated tool 1-15 and comparative coated tool 1-15 was measured using the scanning electron microscope, all were substantially with the target layer thickness shown in Table 5. The same average layer thickness was shown.




つぎに、上記本発明被覆工具1〜15および比較被覆工具1〜15について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SKD11の長さ方向等間隔4本縦溝入り丸棒、、
切削速度:350m/min.、
切り込み:1.8mm、
送り:0.3mm/rev.、
切削時間:15分、
の条件(切削条件1という)での合金工具鋼の乾式高速断続切削加工試験、
被削材:JIS・SKD61の長さ方向等間隔4本縦溝入り丸棒、、
切削速度:300m/min.、
切り込み:2.0mm、
送り:0.2mm/rev.、
切削時間:20分、
の条件(切削条件2という)での合金工具鋼の湿式高速断続切削加工試験、
被削材:JIS・SUH330の長さ方向等間隔4本縦溝入り丸棒、、
切削速度:370m/min.、
切り込み:1.5mm、
送り:0.4mm/rev.、
切削時間:18分、
の条件(切削条件3という)での耐熱鋼の湿式高速断続切削加工試験、
を行い、逃げ面摩耗幅(mm)を測定した。
表9に、その結果を示す。
Next, for the present invention coated tools 1-15 and comparative coated tools 1-15, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SKD11 lengthwise equidistant round bars with four vertical grooves,
Cutting speed: 350 m / min. ,
Cutting depth: 1.8mm,
Feed: 0.3 mm / rev. ,
Cutting time: 15 minutes,
Dry high-speed intermittent cutting test of alloy tool steel under the above conditions (referred to as cutting condition 1),
Work material: JIS · SKD61 lengthwise equidistant 4 vertical grooved round bars,
Cutting speed: 300 m / min. ,
Cutting depth: 2.0 mm
Feed: 0.2 mm / rev. ,
Cutting time: 20 minutes,
Wet high-speed intermittent cutting test of alloy tool steel under the following conditions (referred to as cutting condition 2),
Work material: JIS / SUH330 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 370 m / min. ,
Incision: 1.5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 18 minutes
Wet high-speed intermittent cutting test of heat-resistant steel under the above conditions (referred to as cutting condition 3),
The flank wear width (mm) was measured.
Table 9 shows the results.

表7〜9に示される結果から、本発明被覆工具1〜15は、硬質被覆層の下部層と上部層の界面近傍の下部層中に微小空孔富裕層を有し、さらに、下部層と上部層との界面に接して所定の空孔が形成されていることにより、合金工具鋼や耐熱鋼等の高熱発生を伴い、しかも、切れ刃に断続的・衝撃的な高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用にわたってすぐれた耐摩耗性を発揮することが明らかである。   From the results shown in Tables 7 to 9, the present invention coated tools 1 to 15 have a microporous rich layer in the lower layer in the vicinity of the interface between the lower layer and the upper layer of the hard coating layer, High-speed generation of high heat such as alloy tool steel and heat-resistant steel due to the formation of predetermined holes in contact with the interface with the upper layer, and intermittent and impactful high loads act on the cutting edge. Even when used for intermittent cutting, it is clear that chipping resistance and chipping resistance are excellent, and as a result, excellent wear resistance is exhibited over a long period of use.

これに対して、下部層に微小空孔富裕層を有さず、さらに、下部層と上部層との界面に接した空孔を有さない比較被覆工具1〜10は、チッピング、欠損等の発生により短時間で寿命となり、また、下部層と上部層との界面に接して所定の空孔が形成されていない比較被覆工具11〜15については、チッピング、欠損等の発生は見られないものの、本発明被覆工具1〜15に比して耐摩耗性が劣ることは明らかである。   On the other hand, the comparative coating tools 1 to 10 that do not have the microporous rich layer in the lower layer and further do not have the pores in contact with the interface between the lower layer and the upper layer are chipping, chipping, etc. In comparison comparative tools 11-15, which have a short lifetime due to the occurrence and are not in contact with the interface between the lower layer and the upper layer and have a predetermined hole formed, chipping, chipping, etc. are not observed. It is clear that the wear resistance is inferior to the coated tools 1 to 15 of the present invention.

前述のように、本発明の被覆工具は、例えば、合金工具鋼、耐熱鋼等の高熱発生を伴い、かつ、切れ刃に断続的・衝撃的な高負荷が作用する高速断続切削加工において、すぐれた耐チッピング性、耐欠損性を発揮し、使用寿命の延命化を可能とするものであるが、高速断続切削加工条件ばかりでなく、高速切削加工条件、高切込み、高送りの高速重切削加工条件等で使用することも勿論可能である。   As described above, the coated tool of the present invention is excellent in high-speed intermittent cutting with high heat generation such as alloy tool steel, heat-resistant steel and the like, and an intermittent and impactful high load acts on the cutting edge. It has excellent chipping resistance and chipping resistance, and can extend the service life, but not only high-speed interrupted cutting conditions, but also high-speed cutting conditions, high cutting depth, high feed, high-speed heavy cutting. Of course, it is possible to use it under conditions.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が下部層と上部層とからなり、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)前記上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層であり、
(c)前記下部層と上部層との界面近傍の下部層中に、孔径2〜70nmの微小空孔を有する微小空孔富裕層が存在し、該微小空孔富裕層が0.1〜1μmの層厚を有し、
(d)前記下部層と上部層との界面に接して、界面の単位長さ当たり1〜3個/μmの空孔密度で孔径90〜150nmの空孔を形成したことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer comprises a lower layer and an upper layer,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The upper layer is an aluminum oxide layer having an average layer thickness of 1 to 25 μm,
(C) In the lower layer in the vicinity of the interface between the lower layer and the upper layer, there is a microvoid rich layer having micropores having a pore diameter of 2 to 70 nm, and the micropore rich layer is 0.1 to 1 μm. Having a layer thickness of
(D) A surface coating characterized by forming pores having a pore diameter of 90 to 150 nm at a pore density of 1 to 3 per μm per unit length of the interface in contact with the interface between the lower layer and the upper layer Cutting tools.
前記下部層中に存在する微小空孔の孔径分布がバイモーダルな分布をとることを特徴とする請求項1に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein the pore size distribution of the micropores existing in the lower layer is a bimodal distribution. 前記微小空孔の孔径分布の第1ピークが2〜10nmに存在し、孔径2nmごとに微小空孔を数えたときの第1ピークにおける微小空孔数密度が200〜500個/μmであって、第2ピークが20〜50nmに存在し、孔径2nmごとに微小空孔を数えたときの第2ピークにおける微小空孔数密度が10〜50個/μmであることを特徴とする請求項1または2に記載の表面被覆切削工具。 The first peak of the pore size distribution of the micropores exists at 2 to 10 nm, and the micropore number density at the first peak when the micropores are counted every 2 nm of pore size is 200 to 500 / μm 2. The second peak is present at 20 to 50 nm, and the fine hole number density at the second peak when the fine holes are counted every 2 nm of pore diameter is 10 to 50 / μm 2. Item 3. A surface-coated cutting tool according to item 1 or 2.
JP2014063117A 2014-03-26 2014-03-26 Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer Expired - Fee Related JP6198141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063117A JP6198141B2 (en) 2014-03-26 2014-03-26 Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063117A JP6198141B2 (en) 2014-03-26 2014-03-26 Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer

Publications (2)

Publication Number Publication Date
JP2015182209A true JP2015182209A (en) 2015-10-22
JP6198141B2 JP6198141B2 (en) 2017-09-20

Family

ID=54349351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063117A Expired - Fee Related JP6198141B2 (en) 2014-03-26 2014-03-26 Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer

Country Status (1)

Country Link
JP (1) JP6198141B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017221992A (en) * 2016-06-14 2017-12-21 住友電工ハードメタル株式会社 Surface-coated cutting tool
WO2018181034A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Coated tool and cutting tool
WO2020050261A1 (en) * 2018-09-05 2020-03-12 京セラ株式会社 Coated tool and cutting tool
CN112654450A (en) * 2018-09-05 2021-04-13 京瓷株式会社 Coated cutting tool and cutting tool
CN112672839A (en) * 2018-09-05 2021-04-16 京瓷株式会社 Coated cutting tool and cutting tool
US11992883B2 (en) 2018-09-05 2024-05-28 Kyocera Corporation Coated tool and cutting tool
US11998991B2 (en) 2018-09-05 2024-06-04 Kyocera Corporation Coated tool and cutting tool
US12023742B2 (en) 2018-09-05 2024-07-02 Kyocera Corporation Coated tool and cutting tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071108A (en) * 1998-08-31 2000-03-07 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property
JP2002144109A (en) * 2000-09-04 2002-05-21 Mitsubishi Materials Corp Surface coat cemented carbide cutting tool having excellent chipping resistance
JP2012143827A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer with excellent chipping resistance and defect resistance
JP2012161847A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having excellent chipping resistance and defect resistance
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2013126709A (en) * 2011-02-03 2013-06-27 Mitsubishi Materials Corp Surface-coated cutting tool having hard-coating layer with excellent chipping resistance and fracturing resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071108A (en) * 1998-08-31 2000-03-07 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property
JP2002144109A (en) * 2000-09-04 2002-05-21 Mitsubishi Materials Corp Surface coat cemented carbide cutting tool having excellent chipping resistance
JP2012143827A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer with excellent chipping resistance and defect resistance
JP2012161847A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having excellent chipping resistance and defect resistance
JP2013126709A (en) * 2011-02-03 2013-06-27 Mitsubishi Materials Corp Surface-coated cutting tool having hard-coating layer with excellent chipping resistance and fracturing resistance
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10987738B2 (en) 2016-06-14 2021-04-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2017217012A1 (en) * 2016-06-14 2017-12-21 住友電工ハードメタル株式会社 Surface-coated cutting tool
US20190232380A1 (en) * 2016-06-14 2019-08-01 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
EP3470153A4 (en) * 2016-06-14 2020-02-26 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2017221992A (en) * 2016-06-14 2017-12-21 住友電工ハードメタル株式会社 Surface-coated cutting tool
WO2018181034A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Coated tool and cutting tool
KR20190122743A (en) 2017-03-29 2019-10-30 쿄세라 코포레이션 Coated and Cutting Tools
DE112018001654T5 (en) 2017-03-29 2019-12-24 Kyocera Corporation COATED TOOL AND CUTTING TOOL
US11253926B2 (en) 2017-03-29 2022-02-22 Kyocera Corporation Coated tool and cutting tool
JPWO2020050260A1 (en) * 2018-09-05 2021-08-30 京セラ株式会社 Covering tools and cutting tools
JP7261805B2 (en) 2018-09-05 2023-04-20 京セラ株式会社 coated tools and cutting tools
CN112654450A (en) * 2018-09-05 2021-04-13 京瓷株式会社 Coated cutting tool and cutting tool
CN112638565A (en) * 2018-09-05 2021-04-09 京瓷株式会社 Coated cutting tool and cutting tool
JPWO2020050261A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
WO2020050261A1 (en) * 2018-09-05 2020-03-12 京セラ株式会社 Coated tool and cutting tool
JP7133629B2 (en) 2018-09-05 2022-09-08 京セラ株式会社 coated tools and cutting tools
CN112672839A (en) * 2018-09-05 2021-04-16 京瓷株式会社 Coated cutting tool and cutting tool
CN112654450B (en) * 2018-09-05 2024-02-23 京瓷株式会社 Coated cutting tool and cutting tool
CN112672839B (en) * 2018-09-05 2024-02-23 京瓷株式会社 Coated cutting tool and cutting tool
CN112638565B (en) * 2018-09-05 2024-03-19 京瓷株式会社 Coated cutting tool and cutting tool
US11964328B2 (en) 2018-09-05 2024-04-23 Kyocera Corporation Coated tool and cutting tool
US11992883B2 (en) 2018-09-05 2024-05-28 Kyocera Corporation Coated tool and cutting tool
US11998991B2 (en) 2018-09-05 2024-06-04 Kyocera Corporation Coated tool and cutting tool
US12023742B2 (en) 2018-09-05 2024-07-02 Kyocera Corporation Coated tool and cutting tool
US12030127B2 (en) 2018-09-05 2024-07-09 Kyocera Corporation Coated tool and cutting tool

Also Published As

Publication number Publication date
JP6198141B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5818159B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP6198141B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5590335B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP6139058B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5321094B2 (en) Surface coated cutting tool
JP5590329B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5590327B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP2014198362A (en) Surface coated cutting tool
JP2014188598A (en) Surface coated wc base super hard alloy cutting tool excellent in toughness and defect resistance
JP2013139064A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work
JP2017159409A (en) Surface-coated cutting tool exerting excellent wear resistance
JP5246518B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP2013094853A (en) Surface coated cutting tool including hard coating layer which exhibits excellent peel resistance in high-speed intermittent cutting
JP6614447B2 (en) Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer
JP5561607B2 (en) Surface-coated WC-based cemented carbide insert
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP5636971B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP2012143829A (en) Surface-coated wc-based cemented carbide cutting tool
JP2011195846A (en) Surface-coated cutting tool made from wc-base cemented carbide
JP2010207930A (en) Surface coated cutting tool
JP2017024138A (en) Surface-coated cutting tool
JP2013208697A (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance
JP2013208698A (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6198141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees