JP2000071108A - Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property - Google Patents

Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property

Info

Publication number
JP2000071108A
JP2000071108A JP24511398A JP24511398A JP2000071108A JP 2000071108 A JP2000071108 A JP 2000071108A JP 24511398 A JP24511398 A JP 24511398A JP 24511398 A JP24511398 A JP 24511398A JP 2000071108 A JP2000071108 A JP 2000071108A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
hard coating
titanium
ticn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24511398A
Other languages
Japanese (ja)
Inventor
Toru Nakamura
徹 中村
Kazuhiro Kono
和弘 河野
Atsushi Sugawara
淳 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP24511398A priority Critical patent/JP2000071108A/en
Publication of JP2000071108A publication Critical patent/JP2000071108A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the surface coated cemented carbide cutting tool of a hard coating layer displaying excellent delamination-proof property. SOLUTION: A surface coating cemented carbide cutting tool, which is made by chemical evaporation and/or physical evaporation on the surface of a WC base cemented carbide substrate in an average layer thickness of 3 to 20 μm of a hard coating layer composed of a Ti compound layer composed of two or more layers among a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, a TiNO layer and a TiCNO layer, an α type Al2O3 layer and/or a κ type Al2O3 layer, and a TiCN layer including a longitudinally grown crystaline structure, is formed of a minute hole dispersion zone covering [the depth within the range of 1 μm to (average layer thickness of the longitudinally grown crystaline structure TiCN layer × 0.5) μm] from the surface along the Al2O3 layer existing lateral of the longitudinally grown crystaline structure TiCN layer by structural observation using a scanning type electron microscope of a square polished section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱発生の著し
い、例えば鋼の高速連続切削に用いた場合にも、硬質被
覆層がすぐれた耐層間剥離性を発揮する表面被覆超硬合
金製切削工具(以下、被覆超硬工具と云う)に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool made of a surface-coated cemented carbide in which a hard coating layer exhibits excellent delamination resistance even when it is used for high-speed continuous cutting of steel, for example. (Hereinafter referred to as coated carbide tool).

【0002】[0002]

【従来の技術】従来、一般に、炭化タングステン基超硬
合金基体(以下、超硬基体という)の表面に、いずれも
粒状結晶組織を有する、炭化チタン(以下、TiCで示
す)層、窒化チタン(以下、同じくTiNで示す)層、
炭窒化チタン(以下、TiCNで示す)層、炭酸化チタ
ン(以下、TiCOで示す)層、窒酸化チタン(以下、
TiNOで示す)層、および炭窒酸化チタン(以下、T
iCNOで示す)層のうちの2種以上からなるTi化合
物層と、同じく粒状結晶組織を有する、α型酸化アルミ
ニウム(以下、α−Al23 で示す)層および/また
はκ型酸化アルミニウム(以下、κ−Al23 で示
す)層と、例えば特開平3−87369号公報および特
開平6−8008号公報などに記載されるように、反応
ガスとして有機炭窒化物を含む混合ガスを使用して70
0〜950℃の中温温度域で化学蒸着を行うことにより
形成した縦長成長結晶組織を有する炭窒化チタン(以
下、l−TiCNで示す)層、で構成された硬質被覆層
を3〜20μmの平均層厚で化学蒸着および/または物
理蒸着してなる被覆超硬工具が知られており、またこの
被覆超硬工具が鋼や鋳鉄などの連続切削や断続切削に用
いられていることも知られている。
2. Description of the Related Art Conventionally, a titanium carbide (hereinafter referred to as TiC) layer and a titanium nitride (hereinafter referred to as TiC) layer each having a granular crystal structure are generally provided on the surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate). Hereinafter, also denoted by TiN) layer,
Titanium carbonitride (hereinafter referred to as TiCN) layer, titanium carbonate (hereinafter referred to as TiCO) layer, titanium oxynitride (hereinafter referred to as TiCO)
TiNO) layer and titanium carbonitride (hereinafter referred to as T
a Ti compound layer composed of two or more of the following layers; an α-type aluminum oxide (hereinafter, referred to as α-Al 2 O 3 ) layer and / or a κ-type aluminum oxide (also referred to as α-Al 2 O 3 ) having a granular crystal structure. Hereinafter, referred to as κ-Al 2 O 3 ) layer and a mixed gas containing an organic carbonitride as a reaction gas, as described in, for example, JP-A-3-87369 and JP-A-6-8008. Use 70
A hard coating layer composed of a titanium carbonitride (hereinafter referred to as l-TiCN) layer having a vertically elongated crystal structure formed by performing chemical vapor deposition in a medium temperature range of 0 to 950 ° C. has an average of 3 to 20 μm. Known is a coated carbide tool formed by chemical vapor deposition and / or physical vapor deposition at a layer thickness. It is also known that this coated carbide tool is used for continuous or interrupted cutting of steel, cast iron, and the like. I have.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
の省力化および省エネ化に対する要求は益々強く、これ
に伴って、切削加工は高速化し、かつ使用寿命の延命化
の目的で硬質被覆層を構成するAl23 層およびl−
TiCN層は厚膜化の傾向にあるが、上記の従来被覆超
硬工具においては、これを熱発生の著しい、例えば鋼の
高速連続切削に用いた場合、前記Al23 層とl−T
iCN層の間には熱膨張に大きな差がある、すなわち熱
膨張係数が前者は小さく、後者は大きいために、これら
両層間には剥離が発生し易く、この層間剥離現象はAl
23 層およびl−TiCN層が厚膜化するほど顕著に
現れるようになり、この結果比較的短時間で使用寿命に
至るのが現状である。
On the other hand, in recent years, there has been an increasing demand for labor saving and energy saving of the cutting work, and with this, the cutting speed has been increased and the hard coating layer has been used for the purpose of extending the service life. Al 2 O 3 layer and l-
The TiCN layer tends to be thick, but in the above-mentioned conventional coated carbide tool, when this is used for high-speed continuous cutting of steel, for example, where heat is remarkable, the Al 2 O 3 layer and the l-T
There is a large difference in thermal expansion between the iCN layers, that is, the former has a small thermal expansion coefficient and the latter has a large thermal expansion coefficient, so that separation between these two layers is likely to occur.
At present, the more the 2 O 3 layer and the 1-TiCN layer are made thicker, the more they appear, and as a result, the service life is relatively short.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具の硬質
被覆層に着目し、これを構成するAl23 層とl−T
iCN層との耐層間剥離性を向上せしめるべく研究を行
った結果、l−TiCN層におけるAl23 層存在側
面にそって、直角研磨断面の走査型電子顕微鏡による組
織観察で、表面から、1μm〜(上記l−TiCN層の
平均層厚×0.5)μmの範囲内の深さ、に亘って微小
空孔が分散した帯域を設けると、この微小空孔帯域が、
Al23層とl−TiCN層の間の熱膨張の差を十分
に吸収することから、熱発生の大きい切削条件下でもA
23 層とl−TiCN層間に剥離の発生なく、この
耐層間剥離性の向上はAl23 層およびl−TiCN
層を厚膜化しても変わらないという研究結果を得たので
ある。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoint, attention is paid to the hard coating layer of the conventional coated carbide tool, and the Al 2 O 3 layer and the 1-T
As a result of conducting a study to improve the delamination resistance with the iCN layer, along the side surface of the 1-TiCN layer where the Al 2 O 3 layer is present, the structure of the perpendicular-polished cross section was observed with a scanning electron microscope. When a band in which micropores are dispersed over a depth in the range of 1 μm to (the average layer thickness of the l-TiCN layer × 0.5) μm is provided, the micropore band becomes
Since the difference in thermal expansion between the Al 2 O 3 layer and the 1-TiCN layer is sufficiently absorbed, the A
l 2 O 3 layer and l-TiCN without occurrence of peeling between layers, the delamination improvement of the Al 2 O 3 layer and l-TiCN
The research results showed that even if the layer was thickened, it did not change.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、TiC層、T
iN層、TiCN層、TiCO層、TiNO層、および
TiCNO層のうちの2種以上からなるTi化合物層
と、α−Al23 層および/またはκ−Al23
と、l−TiCN層、で構成された硬質被覆層を3〜2
0μmの平均層厚で化学蒸着および/または物理蒸着し
てなる被覆超硬工具において、上記l−TiCN層にお
けるAl23 層存在側面にそって、直角研磨断面の走
査型電子顕微鏡による組織観察で、表面から、1μm〜
(上記l−TiCN層の平均層厚×0.5)μmの範囲
内の深さ、に亘って微小空孔分散帯域を形成してなる、
硬質被覆層がすぐれた耐層間剥離性を発揮する被覆超硬
工具に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a TiC layer and a T
a Ti compound layer composed of two or more of an iN layer, a TiCN layer, a TiCO layer, a TiNO layer, and a TiCNO layer; an α-Al 2 O 3 layer and / or a κ-Al 2 O 3 layer; Hard coating layer composed of 3 to 2 layers
In a coated cemented carbide tool formed by chemical vapor deposition and / or physical vapor deposition with an average layer thickness of 0 μm, the structure of a right-angled polished cross section is observed by a scanning electron microscope along the side surface on which the Al 2 O 3 layer is present in the 1-TiCN layer. And from the surface 1μm ~
(Average layer thickness of the l-TiCN layer × 0.5) μm, and a micropore dispersion zone is formed over a depth of
The present invention is characterized by a coated carbide tool in which a hard coating layer exhibits excellent delamination resistance.

【0006】なお、この発明の被覆超硬工具において、
硬質被覆層を構成するl−TiCN層のAl23 層存
在側面部にそって形成した微小空孔分散帯域の表面から
の深さを、1μm〜(上記l−TiCN層の平均層厚×
0.5)μmとしたのは、その深さが1μm未満では、
熱発生に伴うAl23 層とl−TiCN層間の熱膨張
差を十分に吸収することができず、この結果これら両層
間の剥離は避けられず、一方その深さがl−TiCN層
の平均層厚×0.5μmを越えると、l−TiCN層の
もつすぐれた靭性を保持することができなくなるという
理由によるものである。
[0006] In the coated carbide tool of the present invention,
The depth from the surface of the microvoid dispersion zone formed along the side surface of the 1-TiCN layer forming the hard coating layer along the Al 2 O 3 layer-existing side is 1 μm to (the average layer thickness of the 1-TiCN layer ×
0.5) μm because the depth is less than 1 μm
The difference in thermal expansion between the Al 2 O 3 layer and the l-TiCN layer due to heat generation cannot be sufficiently absorbed, and as a result, separation between these two layers cannot be avoided. If the average thickness exceeds 0.5 μm, the excellent toughness of the l-TiCN layer cannot be maintained.

【0007】また、上記l−TiCN層における微小空
孔分散帯域は、通常の化学蒸着装置および物理蒸着装置
を用い、 反応ガス組成(容量%で)−TiCl4 :1〜5%、N
2 :2〜15%、CH 3 CN:1〜4%、H2 :残り、 反応雰囲気温度:800〜950℃、 反応雰囲気圧力:30〜100Torr、 の条件で上記l−TiCN層を形成するに際して、反応
ガス中のCH3 CNの含有割合を6〜15%と相対的に
多くすると共に、反応雰囲気圧力も150〜500To
rrと高くした条件(他の条件は同じ)にすると、l−
TiCN層中に微小空孔が分散出現するようになること
により形成される。
[0007] Further, the minute void in the l-TiCN layer.
The pore dispersion zone is the same as that used in ordinary chemical vapor deposition and physical vapor deposition equipment.
And the reaction gas composition (in% by volume)-TiClFour : 1 to 5%, N
Two : 2 to 15%, CH ThreeCN: 1-4%, HTwo : The remaining reaction atmosphere temperature: 800 to 950 ° C., reaction atmosphere pressure: 30 to 100 Torr.
CH in gasThreeThe content ratio of CN is relatively 6-15%.
The reaction atmosphere pressure is increased to 150 to 500 To
Under the condition where rr is increased (the other conditions are the same), l-
Dispersion and appearance of microvoids in TiCN layer
Formed by

【0008】さらに、硬質被覆層の平均層厚を3〜20
μmとしたのは、その層厚が3μmでは所望のすぐれた
耐摩耗性を確保することができず、一方その層厚が20
μmを越えると、切刃に欠けやチッピングが発生し易く
なるという理由からである。
Further, the average thickness of the hard coating layer is 3 to 20.
The reason why the thickness is set to μm is that if the layer thickness is 3 μm, the desired excellent wear resistance cannot be secured, while the layer thickness is 20 μm.
If the thickness exceeds μm, chipping and chipping of the cutting edge are likely to occur.

【0009】[0009]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、い
ずれも0.5〜5μmの範囲内の所定の平均粒径を有す
るWC粉末、(Ti,W)C(重量比で、以下同じ、T
iC/WC=30/70)粉末、(Ti,W)CN(T
iC/TiN/WC=24/20/56)粉末、(T
a,Nb)C(TaC/NbC=90/10)粉末、C
3 2 粉末、およびCo粉末を用意し、これら原料粉
末を表1に示される配合組成に配合し、ボールミルで7
2時間湿式混合し、乾燥した後、圧粉体にプレス成形
し、この圧粉体を、10-2Torrの真空中、1350
〜1500℃の範囲内の所定の温度に1時間保持の条件
で焼結することによりISO・CNMG120408に
定める形状をもったスローアウエイチップ型の超硬基体
A〜Eをそれぞれ製造した。なお、上記超硬基体A、
B、およびCには、焼結したままで、表面部に結合相形
成成分であるCoの含有量が基体内部に比して相対的に
高いCo富化帯域が基体表面から任意深さ位置に任意幅
で、かつ基体表面にそって形成されており、残りの超硬
基体DおよびEには、前記Co富化帯域の形成がなく、
全体的に均質な組織をもつものであった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. As the raw material powder, WC powder having a predetermined average particle diameter in the range of 0.5 to 5 μm, (Ti, W) C (hereinafter, the same in terms of weight ratio, T
iC / WC = 30/70) powder, (Ti, W) CN (T
iC / TiN / WC = 24/20/56) powder, (T
a, Nb) C (TaC / NbC = 90/10) powder, C
An r 3 C 2 powder and a Co powder were prepared, and these raw material powders were blended into the blending composition shown in Table 1, and then mixed with a ball mill.
2 hours wet mixed, dried, and pressed into a green compact, the green compact in a vacuum of 10 -2 Torr, 1350
By sintering at a predetermined temperature in the range of ℃ 1500 ° C. for one hour, the carbide substrates A to E of a throw-away chip type having the shape specified in ISO · CNMG120408 were manufactured. In addition, the said super-hard substrate A,
In B and C, a Co-enriched zone in which the content of Co, which is a binder phase forming component, is relatively high as compared with the inside of the base body at an arbitrary depth position from the base body surface while being sintered. Arbitrary width and formed along the surface of the substrate, the remaining carbide substrates D and E have no formation of the Co-rich zone,
It had an overall homogeneous structure.

【0010】ついで、これらの超硬基体A〜Eの表面
に、ホーニングを施した状態で、通常の化学蒸着装置を
用い、表2(表中のl−TiCN層は特開平6−801
0号公報に記載される縦長成長結晶組織を有するTiC
N層に相当するものである)に示される条件にて、表
3、4に示される組成および目標層厚の硬質被覆層を形
成することにより硬質被覆層のl−TiCN層中に微小
空孔分散帯域が形成された本発明被覆超硬工具1〜1
0、および前記微小空孔分散帯域の形成がない従来被覆
超硬工具1〜10をそれぞれ製造した。なお、上記本発
明被覆超硬工具1〜10の硬質被覆層を構成するl−T
iCN層の直角研磨断面を走査型電子顕微鏡により観察
したところ、それぞれ表3に示される深さに亘って微小
空孔が分散分布した組織の微小空孔分散帯域の存在が確
認された。
Then, the surface of each of the superhard substrates A to E was honed, and an ordinary chemical vapor deposition apparatus was used.
TiC having a vertically elongated crystal structure described in Japanese Patent Publication No. 0
Under the conditions shown in Tables 3 and 4 to form micropores in the 1-TiCN layer of the hard coating layer by forming a hard coating layer having the composition and target thickness shown in Tables 3 and 4. The coated carbide tool of the present invention having a dispersion zone formed therein.
No. 0 and conventional coated carbide tools 1 to 10 having no formation of the micropore dispersion zone were produced. It should be noted that the l-T constituting the hard coating layer of the coated carbide tools 1 to 10 according to the present invention described above.
Observation of the right-angle polished cross section of the iCN layer with a scanning electron microscope confirmed the presence of a microvoid dispersion zone in a tissue in which micropores were dispersed and distributed over the depths shown in Table 3, respectively.

【0011】つぎに、上記本発明被覆超硬工具1〜10
および従来被覆超硬工具1〜10について、 被削材:JIS・SCM440の丸棒、 切削速度:600m/min.、 切り込み:2mm、 送り:0.3mm/rev.、 切削時間:10分、 の条件で合金鋼の乾式高速連続切削試験を行い、切刃の
逃げ面摩耗幅を測定した。これらの測定結果を表5に示
した。
Next, the coated carbide tools 1 to 10 according to the present invention will be described.
Workpiece: JIS SCM440 round bar, Cutting speed: 600 m / min. Infeed: 2 mm Feed: 0.3 mm / rev. The cutting speed was 10 minutes, and a dry high-speed continuous cutting test of the alloy steel was performed under the following conditions, and the flank wear width of the cutting edge was measured. Table 5 shows the results of these measurements.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】[0016]

【表5】 [Table 5]

【0017】[0017]

【発明の効果】表3〜5に示される結果から、硬質被覆
層のl−TiCN層中に微小空孔分散帯域が存在する本
発明被覆超硬工具1〜10は、いずれも熱発生の著しい
鋼の高速連続切削でも、硬質被覆層を構成するAl2
3 層とl−TiCN層間に生じた大きな熱膨張差は前記
微小空孔分散帯域によって十分に吸収されることから、
これら両層間に剥離が発生することはなく、すぐれた切
削性能を長期に亘って発揮するのに対して、前記微小空
孔分散帯域の形成がない従来被覆超硬工具1〜10にお
いては、切削時にAl23 層とl−TiCN層間に生
じた大きな熱膨張差が原因で、これら両層間に剥離が発
生し、これが原因で比較的短時間で使用寿命に至ること
が明らかである。上述のように、この発明の被覆超硬工
具は、鋼や鋳鉄などの通常の条件での連続切削や断続切
削は勿論のこと、特に著しい熱発生を伴う、例えば鋼の
連続切削を高速で行う場合に用いても、硬質被覆層はす
ぐれた耐層間剥離性を示し、すぐれた切削性能を長期に
亘って発揮するものであり、切削加工の省力化および省
エネ化に寄与するものである。
From the results shown in Tables 3 to 5, the coated carbide tools 1 to 10 according to the present invention, in which the micropore dispersion zone is present in the 1-TiCN layer of the hard coating layer, all have remarkable heat generation. Al 2 O forming hard coating layer even in high-speed continuous cutting of steel
Since the large thermal expansion difference generated between the three layers and the l-TiCN layer is sufficiently absorbed by the microvoid dispersion zone,
No separation occurs between these layers, and excellent cutting performance is exhibited over a long period of time. On the other hand, in the conventional coated carbide tools 1 to 10 having no formation of the micropore dispersion zone, cutting is not performed. It is evident that the large thermal expansion that sometimes occurred between the Al 2 O 3 layer and the 1-TiCN layer caused delamination between the two layers, resulting in a relatively short service life. As described above, the coated cemented carbide tool of the present invention performs not only continuous cutting and interrupted cutting under ordinary conditions such as steel and cast iron, but also particularly involves continuous heat cutting at a high speed, for example, with remarkable heat generation. Even when used in such a case, the hard coating layer exhibits excellent delamination resistance, exhibits excellent cutting performance over a long period of time, and contributes to labor saving and energy saving in cutting.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 淳 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C046 FF17 FF25 FF32 FF40 FF42 4K030 AA03 AA10 AA14 AA17 AA18 AA24 BA18 BA35 BA36 BA38 BA41 BA43 BB01 BB03 BB06 BB11 BB12 CA03 JA01 LA01 LA22  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Atsushi Sugawara 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Pref. BA18 BA35 BA36 BA38 BA41 BA43 BB01 BB03 BB06 BB11 BB12 CA03 JA01 LA01 LA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、 (a)いずれも粒状結晶組織を有する炭化チタン層、窒
化チタン層、炭窒化チタン層、炭酸化チタン層、窒酸化
チタン層、および炭窒酸化チタン層のうちの2種以上
と、 (b)縦長成長結晶組織を有する炭窒化チタン層と、 (c)粒状結晶組織を有するα型および/またはκ型酸
化アルミニウム層、以上(a)〜(c)で構成された硬
質被覆層を3〜20μmの全体平均層厚で化学蒸着およ
び/または物理蒸着してなる表面被覆超硬合金製切削工
具において、 上記縦長成長結晶組織を有する炭窒化チタン層における
上記酸化アルミニウム層存在側面にそって、直角研磨断
面の走査型電子顕微鏡による組織観察で、表面から、 1μm〜(上記縦長成長結晶組織を有する炭窒化チタン
層の平均層厚×0.5)μmの範囲内の深さ、に亘って
微小空孔分散帯域を形成したことを特徴とする硬質被覆
層がすぐれた耐層間剥離性を発揮する表面被覆超硬合金
製切削工具。
1. A surface of a tungsten carbide-based cemented carbide substrate comprising: (a) a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, a titanium oxynitride layer, each having a granular crystal structure; (B) a titanium carbonitride layer having a vertically-grown crystal structure, and (c) an α-type and / or κ-type aluminum oxide layer having a granular crystal structure. A) a surface-coated cemented carbide cutting tool obtained by chemical vapor deposition and / or physical vapor deposition of the hard coating layer composed of (c) to (3) to 20 μm in total thickness of 3 to 20 μm; Observation of the structure of the right-angled polished cross section along the side surface on which the aluminum oxide layer exists in the titanium nitride layer by scanning electron microscopy revealed that from the surface, 1 μm to (from the titanium carbonitride layer having the above-described vertically grown crystal structure) Surface coated cemented carbide having a hard coating layer exhibiting excellent delamination resistance, characterized in that a micropore dispersion zone is formed over a depth in the range of (average layer thickness × 0.5) μm. Cutting tools.
JP24511398A 1998-08-31 1998-08-31 Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property Withdrawn JP2000071108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24511398A JP2000071108A (en) 1998-08-31 1998-08-31 Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24511398A JP2000071108A (en) 1998-08-31 1998-08-31 Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property

Publications (1)

Publication Number Publication Date
JP2000071108A true JP2000071108A (en) 2000-03-07

Family

ID=17128824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24511398A Withdrawn JP2000071108A (en) 1998-08-31 1998-08-31 Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property

Country Status (1)

Country Link
JP (1) JP2000071108A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2013078836A (en) * 2011-06-29 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2013078837A (en) * 2011-09-20 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2015182209A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and fracture resistance
JP2015188995A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abnormal damage resistance
KR101844606B1 (en) * 2011-02-03 2018-04-02 미쓰비시 마테리알 가부시키가이샤 Surface-coated cutting tool having hard-coating film with excellent chipping resistance and fracturing resistance
DE112017000972T5 (en) 2016-02-24 2018-11-29 Kyocera Corporation COATED TOOL
JPWO2018181034A1 (en) * 2017-03-29 2020-02-06 京セラ株式会社 Coated and cutting tools
WO2020050259A1 (en) * 2018-09-05 2020-03-12 京セラ株式会社 Coated tool and cutting tool
CN112654450A (en) * 2018-09-05 2021-04-13 京瓷株式会社 Coated cutting tool and cutting tool
JPWO2020050261A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
JPWO2020050262A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
US11992883B2 (en) 2018-09-05 2024-05-28 Kyocera Corporation Coated tool and cutting tool

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844606B1 (en) * 2011-02-03 2018-04-02 미쓰비시 마테리알 가부시키가이샤 Surface-coated cutting tool having hard-coating film with excellent chipping resistance and fracturing resistance
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2013078836A (en) * 2011-06-29 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2013078837A (en) * 2011-09-20 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2015182209A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and fracture resistance
JP2015188995A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abnormal damage resistance
DE112017000972T5 (en) 2016-02-24 2018-11-29 Kyocera Corporation COATED TOOL
US10717135B2 (en) 2016-02-24 2020-07-21 Kyocera Corporation Coated tool
JPWO2018181034A1 (en) * 2017-03-29 2020-02-06 京セラ株式会社 Coated and cutting tools
US11253926B2 (en) * 2017-03-29 2022-02-22 Kyocera Corporation Coated tool and cutting tool
JP7018934B2 (en) 2017-03-29 2022-02-14 京セラ株式会社 Covering tools and cutting tools
JPWO2020050259A1 (en) * 2018-09-05 2021-08-30 京セラ株式会社 Covering tools and cutting tools
JP7089038B2 (en) 2018-09-05 2022-06-21 京セラ株式会社 Covering tools and cutting tools
JPWO2020050260A1 (en) * 2018-09-05 2021-08-30 京セラ株式会社 Covering tools and cutting tools
JPWO2020050261A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
JPWO2020050262A1 (en) * 2018-09-05 2021-09-02 京セラ株式会社 Covering tools and cutting tools
CN112654451A (en) * 2018-09-05 2021-04-13 京瓷株式会社 Coated cutting tool and cutting tool
WO2020050259A1 (en) * 2018-09-05 2020-03-12 京セラ株式会社 Coated tool and cutting tool
CN112654450A (en) * 2018-09-05 2021-04-13 京瓷株式会社 Coated cutting tool and cutting tool
JP7133629B2 (en) 2018-09-05 2022-09-08 京セラ株式会社 coated tools and cutting tools
JP7142097B2 (en) 2018-09-05 2022-09-26 京セラ株式会社 coated tools and cutting tools
JP7261805B2 (en) 2018-09-05 2023-04-20 京セラ株式会社 coated tools and cutting tools
CN112654450B (en) * 2018-09-05 2024-02-23 京瓷株式会社 Coated cutting tool and cutting tool
CN112654451B (en) * 2018-09-05 2024-02-23 京瓷株式会社 Coated cutting tool and cutting tool
US11964328B2 (en) 2018-09-05 2024-04-23 Kyocera Corporation Coated tool and cutting tool
US11992883B2 (en) 2018-09-05 2024-05-28 Kyocera Corporation Coated tool and cutting tool

Similar Documents

Publication Publication Date Title
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP2000071108A (en) Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property
JP2867803B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3331929B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP2001322008A (en) Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP2000218409A (en) Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance
JP3109272B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JP3922330B2 (en) Cutting tool made of surface-coated cemented carbide with excellent thermal barrier and interlayer adhesion
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3230375B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer
JP2000158207A (en) Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent wear resistance
JP3371823B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH081408A (en) Cutting tool made of surface-covered tungsten carbide base cemented carbide having excellent in-layer adhesion of hard covered layer
JPH08118108A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP2000317705A (en) Cutting tool made of surface coating tungsten carbide group cemented carbide alloy having hard coating layer exhibiting excellent abrasion-resistance
JP2000096235A (en) Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in chipping resistance
JP2000158208A (en) Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent chipping resistance
JP2738233B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101