JP2013078837A - Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance - Google Patents

Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance Download PDF

Info

Publication number
JP2013078837A
JP2013078837A JP2012143114A JP2012143114A JP2013078837A JP 2013078837 A JP2013078837 A JP 2013078837A JP 2012143114 A JP2012143114 A JP 2012143114A JP 2012143114 A JP2012143114 A JP 2012143114A JP 2013078837 A JP2013078837 A JP 2013078837A
Authority
JP
Japan
Prior art keywords
layer
ticn
fine
carbonitride
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143114A
Other languages
Japanese (ja)
Other versions
JP5928807B2 (en
Inventor
Sho Tatsuoka
翔 龍岡
Naoyuki Iwasaki
直之 岩崎
Akira Osada
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012143114A priority Critical patent/JP5928807B2/en
Priority to CN201210338653.1A priority patent/CN103008696B/en
Publication of JP2013078837A publication Critical patent/JP2013078837A/en
Application granted granted Critical
Publication of JP5928807B2 publication Critical patent/JP5928807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool with a hard coating layer exhibiting superior chipping and fracture resistance in high-speed intermittent cutting.SOLUTION: A hard coating layer comprises a lower layer and an upper layer formed through chemical vapor deposition, wherein (a) the lower layer is at least one Ti carbonitride layer and one or more Ti compound layers having a total average layer thickness of 3-20 μm, (b) the upper layer is an alumimum oxide layer having an average layer thickness of 1-25 μm, and the at least one Ti carbonitride layer constituting the lower layer has a columnar longitudinal growth TiCN crystal structure in which fine-grain TiCN is dispersed and distributed.

Description

本発明は、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用する各種の鋼や鋳鉄の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, high-speed intermittent cutting of various steels and cast irons with high heat generation and intermittent / impact loads acting on the cutting edge, the hard coating layer has excellent chipping resistance, which makes it possible to The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着形成された酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具は、各種の鋼や鋳鉄などの切削加工に用いられていることが知られている。
ただ、前記被覆工具は、切れ刃に大きな負荷がかかる切削条件では、チッピング損等を発生しやすく、工具寿命が短命であるという問題があるため、これを解消するために、従来からいくつかの提案がなされている。
Conventionally, the surface of a tool substrate (hereinafter collectively referred to as a tool substrate) generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. In addition,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer in which the upper layer is formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated tool is known to be used for cutting various steels and cast irons. It has been.
However, the above-described coated tool has a problem that chipping loss or the like is likely to occur under a cutting condition in which a heavy load is applied to the cutting edge, and the tool life is short-lived. Proposals have been made.

例えば、特許文献1には、硬質被覆層をTiCNの単層または2層以上の積層で構成すると共に、これら構成層のうちの1層または2層以上を、(a)粒状結晶組織から縦長成長結晶組織へ変わる結晶構造、(b)粒状結晶組織から縦長成長結晶組織へ、さらにこの縦長成長結晶組織から粒状結晶組織へ変わる結晶構造、(c)縦長成長結晶組織から粒状結晶組織へ変わる結晶構造のうちのいずれか1種または2種以上の結晶構造で構成することによって、被覆工具の耐チッピング性を改善することが提案されている。
また、特許文献2には、硬質被覆層が、柱状晶のTiCN層を含む単層または多層で構成され、該TiCN層の上端から該TiCN層の厚さの1/5の距離の位置におけるTiCN柱状結晶粒の水平方向の平均粒径d1と、該TiCN層の下端から該TiCN層の厚さの2/5の距離の位置におけるTiCN柱状結晶粒の水平方向の平均粒径d2の比を1≦d1/d2≦1.3とする構成を有することによって、断続切削を含む長時間の切削加工に耐える被覆工具を提供することが提案されている。
For example, in Patent Document 1, a hard coating layer is composed of a single layer of TiCN or a laminate of two or more layers, and one or two or more of these constituent layers are (a) vertically grown from a granular crystal structure. A crystal structure that changes to a crystal structure, (b) a crystal structure that changes from a granular crystal structure to a vertically grown crystal structure, and a crystal structure that changes from this vertically grown crystal structure to a granular crystal structure, and (c) a crystal structure that changes from a vertically elongated crystal structure to a granular crystal structure. It has been proposed to improve the chipping resistance of the coated tool by constituting one or two or more crystal structures.
In Patent Document 2, the hard coating layer is formed of a single layer or a multilayer including a columnar TiCN layer, and TiCN is located at a distance of 1/5 of the thickness of the TiCN layer from the upper end of the TiCN layer. The ratio of the horizontal average grain size d1 of the columnar crystal grains to the horizontal average grain size d2 of the TiCN columnar crystal grains at a position 2/5 of the thickness of the TiCN layer from the lower end of the TiCN layer is 1. It has been proposed to provide a coated tool that can withstand long-time cutting including intermittent cutting by having a configuration of ≦ d1 / d2 ≦ 1.3.

特開平6−8009号公報Japanese Patent Laid-Open No. 6-8009 特開平10−109206号公報JP-A-10-109206

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、被覆工具は一段と過酷な条件下で使用されるようになってきているが、例えば、前記特許文献1、2に示される被覆工具においても、高熱発生を伴うとともに、より一段と切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工に用いられた場合には、下部層の耐機械的衝撃性、耐熱的衝撃性が十分ではないために、切削加工時の高負荷によって切れ刃にチッピング、欠損が発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, there is a strong demand for energy saving and energy saving in cutting, and with this, coated tools are increasingly used under harsh conditions. Even when a coated tool is used for high-speed interrupted cutting that is accompanied by high heat generation and more intermittent and impact loads are applied to the cutting edge, the mechanical impact resistance and thermal shock resistance of the lower layer Therefore, chipping and chipping are likely to occur on the cutting edge due to a high load during cutting, and as a result, the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工に用いられた場合でも、硬質被覆層がすぐれた衝撃吸収性を備え、その結果、長期の使用に亘ってすぐれた耐チッピング性、耐欠損性を発揮する被覆工具について鋭意研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention have an excellent hard coating layer even when used in high-speed intermittent cutting with high heat generation and intermittent and impact loads acting on the cutting edge. As a result of earnest research on coated tools that have excellent shock absorption and, as a result, excellent chipping resistance and fracture resistance over long-term use, the following findings were obtained.

すなわち、硬質被覆層として、前記従来のTiの炭窒化物層を含む下部層を形成したものにおいては、Tiの炭窒化物層が基体に垂直方向に柱状をなして形成されている。そのため、硬さと耐摩耗性は向上するが、その反面、Tiの炭窒化物層の異方性が高くなるほどTiの炭窒化物層の靭性が低下する結果、十分な耐チッピング性、耐欠損性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
そこで、本発明者らは、硬質被覆層の下部層を構成するTi化合物層の中の特にTiの炭窒化物層について鋭意研究したところ、Tiの炭窒化物層の異方性を緩和し靭性を高めることによって、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, in the case where the conventional lower layer including the Ti carbonitride layer is formed as the hard coating layer, the Ti carbonitride layer is formed in a columnar shape in a direction perpendicular to the substrate. Therefore, hardness and wear resistance are improved, but on the other hand, as the anisotropy of the Ti carbonitride layer increases, the toughness of the Ti carbonitride layer decreases, resulting in sufficient chipping resistance and fracture resistance. In addition, the tool life was not satisfactory.
Therefore, the present inventors have intensively researched the Ti carbonitride layer in the Ti compound layer constituting the lower layer of the hard coating layer, and as a result, relaxed the anisotropy of the Ti carbonitride layer and improved toughness. The inventors have found a novel finding that the chipping resistance and the chipping resistance of the hard coating layer can be improved by increasing the thickness.

具体的には、下部層を構成する少なくとも1層のTiの炭窒化物層が、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが分散分布していることにより、Tiの炭窒化物層の異方性が緩和され、靭性が高められる(以下、改質TiCN層という)。   Specifically, at least one Ti carbonitride layer constituting the lower layer has a columnar vertically grown TiCN crystal structure, and fine TiCN is dispersed and distributed in the structure. The anisotropy of the carbonitride layer is relaxed and the toughness is increased (hereinafter referred to as a modified TiCN layer).

そして、前述のような構成の改質TiCN層は、例えば、以下の化学蒸着法によって成膜することができる。
工具基体表面に、反応ガス組成(容量%)を、TiCl:1.7〜1.9%、TDMAT(テトラキスジメチルアミノチタン):0.06〜0.10%、CHCN:0.7〜0.9%、N:20%、H:残、として、反応雰囲気圧力を、5〜12kPaとして、反応雰囲気温度を、820〜970℃として、化学蒸着法を行うことにより、微粒TiCNが膜中に分散した柱状縦長成長TiCN結晶組織を得ることができる。ここで、本発明において、微粒TiCNとは、粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相との混合相を意味している。すなわち、前述の化学蒸着法でTiの炭窒化物層を成膜した場合、成膜条件の微妙な違いにより、膜中に分散形成される微粒TiCNは、(1)粒状TiCN結晶相である場合、(2)アモルファスTiCN相である場合、(3)粒状TiCN結晶相とアモルファスTiCN相との混合相である場合、が確認された。しかも、前記(1)乃至(3)のいずれの場合においても前述したTiの炭窒化物層の異方性が緩和され、靱性が高められるという効果に格別の差異はないことも確認された。したがって、本発明においては、前記(1)乃至(3)を総称して微粒TiCNと呼ぶ。
The modified TiCN layer having the above-described configuration can be formed by, for example, the following chemical vapor deposition method.
On the surface of the tool base, the reaction gas composition (volume%) is TiCl 4 : 1.7 to 1.9%, TDMAT (tetrakisdimethylaminotitanium): 0.06 to 0.10%, CH 3 CN: 0.7 ~0.9%, N 2: 20% , H 2: remainder, as the reaction atmosphere pressure, as 5~12KPa, the reaction atmosphere temperature, as 820-970 ° C., by performing chemical vapor deposition, fine TiCN A columnar vertically grown TiCN crystal structure in which is dispersed in the film can be obtained. Here, in the present invention, fine TiCN means a granular TiCN crystal phase or an amorphous TiCN phase or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase. That is, when a Ti carbonitride layer is formed by the above-described chemical vapor deposition method, the fine TiCN dispersed and formed in the film is (1) a granular TiCN crystal phase due to a subtle difference in film formation conditions. (2) Amorphous TiCN phase, (3) A mixed phase of granular TiCN crystal phase and amorphous TiCN phase were confirmed. Moreover, it was confirmed that in any of the cases (1) to (3), there was no particular difference in the effect that the anisotropy of the Ti carbonitride layer described above was relaxed and the toughness was increased. Therefore, in the present invention, the above (1) to (3) are collectively referred to as fine grain TiCN.

そして、Tiの炭窒化物層中の微粒TiCNの断面の面密度が層厚方向に沿って周期0.5μm〜5μmで周期的に変化する面密度分布形態を有する場合には、微粒TiCNの面密度の低い領域が存在することにより、柱状縦長成長TiCN結晶の優れた硬さや耐摩耗性という特性を高く発揮し、かつ、微粒TiCNの面密度の高い領域が存在することにより、微粒TiCNによる優れた衝撃吸収性という特性を高く発揮し、この上記特性を高い水準で併せ持つことが出来る。したがって、特に、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的負荷が作用する鋼や鋳鉄の高速断続切削加工に用いた場合でも、硬質被覆層が耐チッピング性、耐欠損性にすぐれ、長期の使用に亘ってすぐれた耐摩耗性を発揮し得ることを見出した。   When the surface density of the cross section of the fine TiCN in the Ti carbonitride layer has a surface density distribution form that periodically changes at a period of 0.5 μm to 5 μm along the layer thickness direction, the surface of the fine TiCN Due to the presence of the low density region, the columnar vertically grown TiCN crystal exhibits excellent properties such as excellent hardness and wear resistance, and the presence of the high surface density region of the fine TiCN makes it excellent by the fine TiCN. In addition, it exhibits a high characteristic of shock absorption and can have the above characteristics at a high level. Therefore, the hard coating layer has excellent chipping resistance and fracture resistance, especially when it is used for high-speed intermittent cutting of steel or cast iron that generates high heat and has intermittent and impact loads on the cutting edge. The present inventors have found that excellent wear resistance can be exhibited over a long period of use.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が化学蒸着された下部層と上部層とからなるとともに、
(a)前記下部層は、少なくとも1層のTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有する1層または2層以上からなるTi化合物層、
(b)前記上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層、
からなり、
前記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが分散分布しており、該微粒TiCNが粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相との混合相であり、柱状縦長成長TiCN結晶の平均粒子幅Wは50〜2000nm、平均アスペクト比Aが5〜50であり、前記微粒TiCNの平均粒径Rが、50nmを超えて300nm以下であることを特徴とする表面被覆切削工具。
(2) 前記下部層を構成する少なくとも1層のTiの炭窒化物層に存在する微粒TiCNの断面の面密度が 5〜30%であることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記微粒TiCNの断面の面密度が層厚方向に沿って周期0.5〜5μmで周期的に変化する面密度分布形態を有していることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is composed of a lower layer and an upper layer chemically vapor-deposited,
(A) The lower layer includes at least one Ti carbonitride layer, and has a total average layer thickness of 3 to 20 μm, a Ti compound layer composed of one layer or two or more layers,
(B) the upper layer is an aluminum oxide layer having an average layer thickness of 1 to 25 μm;
Consists of
The at least one Ti carbonitride layer constituting the lower layer of (a) has a columnar vertically grown TiCN crystal structure, in which fine TiCN is dispersed and distributed, and the fine TiCN Is a granular TiCN crystal phase or an amorphous TiCN phase or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase. A surface-coated cutting tool, wherein an average particle diameter R of the fine TiCN is more than 50 nm and 300 nm or less.
(2) The surface-coated cutting according to (1), wherein the surface density of the cross section of the fine TiCN present in at least one Ti carbonitride layer constituting the lower layer is 5 to 30%. tool.
(3) (1) or (2) characterized in that the surface density of the cross section of the fine TiCN has a surface density distribution form that periodically changes along the layer thickness direction at a period of 0.5 to 5 μm. ) Surface-coated cutting tool. "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

下部層のTi化合物層:
少なくともTiの炭窒化物層を含み、かつ、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層は、通常の化学蒸着条件で形成することができるが、少なくとも1層のTiの炭窒化物層については後述するような別の方法によって形成する。下部層を構成するTi化合物層は、それ自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体とAlからなる上部層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、チッピングを発生しやすくなることから、その合計平均層厚を3〜20μmと定めた。
Lower Ti compound layer:
It includes at least a Ti carbonitride layer, and is composed of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer. The lower layer can be formed under normal chemical vapor deposition conditions, but at least one Ti carbonitride layer is formed by another method as described later. The Ti compound layer constituting the lower layer itself has a high temperature strength, and due to the presence of the Ti compound layer, the hard coating layer has a high temperature strength, and any of the upper layer composed of the tool base and Al 2 O 3 In addition, it has an action that contributes to improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 3 μm, the above action cannot be sufficiently exerted, If the total average layer thickness exceeds 20 μm, chipping is likely to occur. Therefore, the total average layer thickness was set to 3 to 20 μm.

下部層中の少なくとも1層のTiの炭窒化物層:
下部層中の少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが分散分布している構成とする。このような構成にすることによって、耐衝撃性が向上し、すぐれた耐チッピング性を示すようになる。ところが、柱状縦長成長TiCN結晶の各結晶粒について、基体表面に平行な方向の粒子幅をwとし、その平均値を平均粒子幅Wとした場合、平均粒子幅Wの最大粒子幅が50nmよりも小さいと、長期の使用に亘っての耐摩耗性を確保できず、一方、2000nmを超えると、粒子の粗大化により耐チッピング性、耐欠損性が低下する。したがって、柱状縦長成長TiCN結晶の平均粒子幅Wは、50〜2000nmとすることが好ましい。また、柱状縦長成長TiCN結晶の各結晶粒について、基体表面に垂直な方向の粒子長さをlとし、前記粒子幅wとlとの比を各結晶粒のアスペクト比aとし、さらに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとした場合、平均アスペクト比Aが5より小さいと、柱状縦長成長TiCNの特徴である高い耐摩耗性を確保できず、一方、50を超えると、かえって靭性が低下し、耐チッピング性、耐欠損性が低下する。したがって、柱状縦長成長TiCN結晶の平均アスペクト比Aは5〜50とすることが望ましい。ここで本発明では、柱状縦長成長TiCN結晶の1つの粒子を計測したとき、基体表面に平行な方向の定方向最大径を粒子幅wと呼び、一方、基体表面に垂直な方向の定方向接線径を粒子長さlと呼ぶ。
さらに、微粒TiCNについて、個々の微粒TiCNの粒径をrとし、その平均値を平均粒径Rとした場合、平均粒径Rが50nm以下であると、微粒TiCNを分散分布させることによる耐衝撃性向上の効果が十分に発揮されず、一方、300nmを超えると、かえって靭性が低下する。したがって、微粒TiCNの平均粒径Rは、50nmを超え300nm以下とすることが好ましい。ここで本発明では、個々の微粒TiCNの析出相の最も長い径である長軸径を微粒TiCNの粒径rと呼ぶ。
また、微粒TiCNは、断面の面密度が5%より小さいと、微粒TiCNを分散分布させることの効果が発揮されず、一方、30%を超えると、柱状縦長成長TiCN結晶の成長を阻害し、かえって耐摩耗性が低下する。したがって、微粒TiCNの断面の面密度は、5〜30%であることが望ましい。さらに、微粒TiCNは、一様に分布させるのではなく、面密度が周期0.5〜5μmで層厚方向に沿って周期的に変化する面密度分布形態とすることによって、より一層、耐衝撃性が向上する。
なお、以下、前述のように改質されたTiの炭窒化物層を「改質TiCN層」という。
At least one Ti carbonitride layer in the lower layer:
At least one Ti carbonitride layer in the lower layer has a columnar vertically grown TiCN crystal structure, and fine TiCN is dispersed and distributed in the structure. By adopting such a configuration, impact resistance is improved, and excellent chipping resistance is exhibited. However, for each crystal grain of the columnar vertically grown TiCN crystal, when the particle width in the direction parallel to the substrate surface is w and the average value is the average particle width W, the maximum particle width of the average particle width W is more than 50 nm. If it is small, the wear resistance over long-term use cannot be ensured. On the other hand, if it exceeds 2000 nm, the chipping resistance and chipping resistance deteriorate due to the coarsening of the particles. Therefore, the average particle width W of the columnar vertically grown TiCN crystal is preferably 50 to 2000 nm. In addition, for each crystal grain of the columnar vertically grown TiCN crystal, the grain length in the direction perpendicular to the substrate surface is l, the ratio of the grain width w and l is the aspect ratio a of each crystal grain, When the average aspect ratio A determined for the crystal grains is the average aspect ratio A, if the average aspect ratio A is smaller than 5, the high wear resistance characteristic of the columnar vertically grown TiCN cannot be ensured. On the other hand, the toughness is lowered, and the chipping resistance and fracture resistance are lowered. Therefore, the average aspect ratio A of the columnar vertically grown TiCN crystal is desirably 5-50. Here, in the present invention, when one particle of the columnar vertically grown TiCN crystal is measured, the constant direction maximum diameter in the direction parallel to the substrate surface is called the particle width w, while the constant direction tangent in the direction perpendicular to the substrate surface. The diameter is called the particle length l.
Further, for fine TiCN, when the particle size of each fine TiCN is r and the average value is the average particle size R, if the average particle size R is 50 nm or less, the impact resistance by dispersing and distributing fine TiCN On the other hand, if it exceeds 300 nm, the toughness is lowered. Therefore, the average particle diameter R of the fine TiCN is preferably more than 50 nm and 300 nm or less. Here, in the present invention, the long axis diameter, which is the longest diameter of the precipitated phase of each fine TiCN, is called the particle diameter r of the fine TiCN.
In addition, if the surface density of the fine TiCN is less than 5%, the effect of dispersing and distributing the fine TiCN is not exhibited, while if it exceeds 30%, the growth of the columnar vertically grown TiCN crystal is inhibited, On the contrary, the wear resistance decreases. Therefore, the surface density of the cross section of the fine TiCN is desirably 5 to 30%. Further, the fine TiCN is not uniformly distributed, but is further improved in impact resistance by adopting a surface density distribution form in which the surface density periodically changes along the layer thickness direction with a period of 0.5 to 5 μm. Improves.
Hereinafter, the Ti carbonitride layer modified as described above is referred to as a “modified TiCN layer”.

上部層のAl層:
上部層を構成するAl層が、高温硬さと耐熱性を備えることは既に良く知られているが、その平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が25μmを越えるとAl結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、高速断続切削加工時の耐チッピング性、耐欠損性が低下するようになることから、その平均層厚を1〜25μmと定めた。
Upper layer Al 2 O 3 layer:
Al 2 O 3 layer constituting the upper layer is already well known to have high temperature hardness and heat resistance, but if the average layer thickness is less than 1 μm, it will ensure wear resistance over a long period of use. On the other hand, if the average layer thickness exceeds 25 μm, the Al 2 O 3 crystal grains are liable to be coarsened. Since the chipping property and chipping resistance are lowered, the average layer thickness is set to 1 to 25 μm.

分散分布している微粒TiCNの形成:
本発明の微粒TiCNは、通常の化学蒸着条件で成膜した下部層の形成過程中に次の条件による化学蒸着法を行うことによって形成することができる。
微粒TiCNの核となるTDMATを反応ガス中に添加することによって、分散分布している微粒TiCNが形成される。
反応ガス組成(容量%):
TiCl:1.7〜1.9%,
TDMAT:0.06〜0.10%
CHCN:0.7〜0.9%
:20%
:残
反応雰囲気温度:820〜970℃、
反応雰囲気圧力:5〜12kPa、
図1に、前記の化学蒸着条件で形成された本発明の下部層に含まれる改質TiCN層の微粒TiCN分布形態の概略模式図を示す。
また、微粒TiCNは、TDMATの添加量を周期的に変化させることによって、面密度が周期0.5〜5μmで層厚方向に沿って周期的に変化する面密度分布形態を有して形成される。図2にその概略模式図を示す。
図3により、更に詳細に説明する。
図3は、前記化学蒸着条件で形成された本発明の微粒TiCNが周期的に変化する面密度分布をとる下部層における、層厚方向位置−面密度の相関の一例を表す面密度分布形態図を示す。
この面密度分布形態図は、以下の方法で求めることができる。
まず、下部層を、工具基体表面と平行に0.1μmの厚み幅領域に夫々区分し(図4において、工具基体表面に平行に引かれた複数の平行線で仕切られた区画が、0.1μmの厚み幅領域に相当する。)、区分された各厚み幅領域に存在する微粒TiCNの占める面積を長さ合計10μmに亘って測定し、走査型電子顕微鏡(倍率50000倍)を用いて測定し、該0.1μmの厚み幅領域の面密度(%)を求め、各厚み幅領域で求められた面密度を層厚方向に沿ってグラフ化することにより、図3として示されるような層厚方向の面密度分布形態図を作成する。
図5は、柱状縦長成長TiCN結晶組織層内における柱状縦長成長TiCN結晶粒子の成長状態を模式的に表した図である。
Formation of dispersed finely divided TiCN:
The fine TiCN of the present invention can be formed by performing chemical vapor deposition under the following conditions during the formation process of the lower layer formed under normal chemical vapor deposition conditions.
By adding TDMAT, which is the core of fine TiCN, to the reaction gas, finely divided TiCN having a distributed distribution is formed.
Reaction gas composition (volume%):
TiCl 4: 1.7~1.9%,
TDMAT: 0.06-0.10%
CH 3 CN: 0.7~0.9%
N 2 : 20%
H 2 : residual reaction atmosphere temperature: 820 to 970 ° C.
Reaction atmosphere pressure: 5-12 kPa,
FIG. 1 is a schematic diagram showing a fine TiCN distribution form of a modified TiCN layer included in the lower layer of the present invention formed under the above chemical vapor deposition conditions.
Further, the fine TiCN is formed to have a surface density distribution form in which the surface density periodically changes along the layer thickness direction with a period of 0.5 to 5 μm by periodically changing the amount of TDMAT added. The FIG. 2 shows a schematic diagram thereof.
This will be described in more detail with reference to FIG.
FIG. 3 is a surface density distribution pattern diagram showing an example of a layer thickness direction position-surface density correlation in a lower layer having a surface density distribution in which the fine TiCN of the present invention formed under the chemical vapor deposition conditions changes periodically. Indicates.
This surface density distribution pattern can be obtained by the following method.
First, the lower layer is divided into 0.1 μm thickness width regions parallel to the tool base surface (in FIG. 4, the sections partitioned by a plurality of parallel lines drawn in parallel to the tool base surface are 0. It corresponds to a thickness width region of 1 μm), and the area occupied by fine TiCN existing in each divided thickness width region is measured over a total length of 10 μm and measured using a scanning electron microscope (magnification 50000 times). Then, the surface density (%) of the thickness width region of 0.1 μm is obtained, and the surface density obtained in each thickness width region is graphed along the layer thickness direction, whereby a layer as shown in FIG. Create a surface density distribution pattern in the thickness direction.
FIG. 5 is a diagram schematically showing the growth state of columnar vertically grown TiCN crystal grains in the columnar vertically grown TiCN crystal structure layer.

本発明で、柱状縦長成長TiCN結晶組織内に微粒TiCNが分散分布している構造は、微粒TiCNの存在によって、柱状縦長成長TiCN結晶組織に力が加わった際に、1つ1つの柱状縦長成長TiCN結晶にずれが生じるため、大きな靭性を生じることになる。その結果、衝撃吸収性が高まり、耐チッピング性、耐欠損性向上という効果が発揮される。   In the present invention, the structure in which fine TiCN is dispersed and distributed in the columnar vertically grown TiCN crystal structure has a structure in which each columnar vertically elongated growth occurs when force is applied to the columnar vertically grown TiCN crystal structure due to the presence of the fine TiCN. Since a shift occurs in the TiCN crystal, a large toughness is generated. As a result, the impact absorption is enhanced, and the effect of improving chipping resistance and chipping resistance is exhibited.

本発明の被覆工具は、硬質被覆層として、化学蒸着された下部層と上部層とからなり、(a)前記下部層は、少なくとも1層のTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有する1層または2層以上からなるTi化合物層、(b)前記上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層、であり、前記下部層を構成する少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが分散分布していることにより、鋼や鋳鉄等の高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮し、被覆工具の長寿命化が達成されるものである。   The coated tool of the present invention comprises a chemically vapor-deposited lower layer and an upper layer as a hard coating layer, (a) the lower layer includes at least one Ti carbonitride layer, and 3 to 3 Ti compound layer composed of one or more layers having a total average layer thickness of 20 μm, (b) the upper layer is an aluminum oxide layer having an average layer thickness of 1 to 25 μm, and constitutes the lower layer At least one Ti carbonitride layer has a columnar vertically grown TiCN crystal structure, and fine TiCN is dispersed and distributed in the structure, which is accompanied by high heat generation of steel, cast iron, etc. Even when used for high-speed intermittent cutting where intermittent and impact high loads are applied to the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. Longer life of coated tools achieved It is what is done.

本発明の下部層に含まれる改質TiCN層の微粒TiCN分布形態の概略模式図を示す。The schematic diagram of the fine grain TiCN distribution form of the modified TiCN layer contained in the lower layer of the present invention is shown. 周期的に変化する面密度分布形態をとる下部層に含まれる改質TiCN層の概略模式図を示す。The schematic diagram of the modified TiCN layer contained in the lower layer which takes the form of surface density distribution which changes periodically is shown. 下部層における層厚方向位置−面密度の相関を表す面密度分布形態図を示す。The area density distribution form figure showing the correlation of the layer thickness direction position-area density in a lower layer is shown. 図3の面密度分布形態図を求める方法を説明するための概略模式図を示す。The schematic model for demonstrating the method of calculating | requiring the surface density distribution form figure of FIG. 3 is shown. 柱状縦長成長TiCN結晶組織層内における柱状縦長成長TiCN結晶粒子の成長状態を模式的に表した図を示す。The figure which represented typically the growth state of the columnar vertically grown TiCN crystal grain in the columnar vertically grown TiCN crystal structure layer is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to E made of a WC-base cemented carbide having an insert shape specified in ISO · CNMG120212 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.09 mm. Tool bases a to e made of TiCN-based cermet having an insert shape of standard / CNMG12041 were formed.

つぎに、これらの工具基体A〜Eおよび工具基体a〜eの表面に、通常の化学蒸着装置を用い、
(a)硬質被覆層の下部層として、表3及び表4に示される条件かつ表6に示される目標層厚でTi化合物層を蒸着形成する。
(b)この時、表4に示されるk〜o条件でTi化合物層を構成するTiの炭窒化物層を成膜する際には、表4に示されるTDMAT容量%の最大値と最小値の間で添加量を周期的に変化させながらTi化合物層を蒸着形成する。
(c)次いで、表3に示される条件で、かつ、表6に示される目標層厚の上部層(Al層)からなる硬質被覆層を蒸着形成することにより本発明被覆工具1〜15を製造した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases A to E and tool bases a to e,
(A) As a lower layer of the hard coating layer, a Ti compound layer is formed by vapor deposition under the conditions shown in Tables 3 and 4 and the target layer thickness shown in Table 6.
(B) At this time, when the Ti carbonitride layer constituting the Ti compound layer is formed under the k to o conditions shown in Table 4, the maximum value and the minimum value of the TDMAT capacity% shown in Table 4 The Ti compound layer is formed by vapor deposition while periodically changing the addition amount.
(C) Next, the coated tool of the present invention is formed by vapor-depositing a hard coating layer comprising the upper layer (Al 2 O 3 layer) having the target layer thickness shown in Table 6 under the conditions shown in Table 3. 15 was produced.

前記本発明被覆工具1〜10の下部層中の少なくとも1層の改質TiCN層について、走査型電子顕微鏡(倍率50000倍)を用いて複数視野に亘って観察したところ、図1に示した膜構成模式図に示される柱状結晶の粒界および粒内に微粒TiCNが存在する膜構造が確認された。
また、前記本発明被覆工具11〜15の下部層中の少なくとも1層の改質TiCN層について、走査型電子顕微鏡(倍率50000倍)を用いて複数視野に亘って観察したところ、図2に示した膜構成模式図に示される柱状結晶の粒界および粒内に微粒TiCNが存在する膜構造が確認された。
さらに、前記本発明被覆工具1〜15の下部層中の少なくとも1層の改質TiCN層について、透過型電子顕微鏡(倍率200000倍)を用いて複数の視野に亘って観察し、微粒TiCNについて電子線回折を行った結果、前記微粒TiCNは、粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相の混合相であることが確認された。
When at least one modified TiCN layer in the lower layer of the inventive coated tools 1 to 10 is observed over a plurality of fields using a scanning electron microscope (magnification 50000 times), the film shown in FIG. The film structure in which fine grain TiCN exists in the grain boundaries and grains of the columnar crystals shown in the structural schematic diagram was confirmed.
Further, when at least one modified TiCN layer in the lower layer of the coated tools 11 to 15 of the present invention was observed over a plurality of fields using a scanning electron microscope (magnification 50000 times), it is shown in FIG. The film structure in which fine grain TiCN exists in the grain boundaries and in the grains of the columnar crystals shown in the schematic diagram of the film configuration was confirmed.
Further, at least one modified TiCN layer in the lower layer of the coated tools 1 to 15 of the present invention is observed over a plurality of fields using a transmission electron microscope (magnification 200000 times), and the fine TiCN is an electron. As a result of line diffraction, the fine TiCN was confirmed to be a granular TiCN crystal phase or an amorphous TiCN phase or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase.

また、比較の目的で、工具基体A〜Eおよび工具基体a〜eの表面に、表3及び表5に示される条件かつ表7に示される目標層厚で本発明被覆工具1〜15と同様に、硬質被覆層の下部層としてのTi化合物層を蒸着形成した。この時には、Ti化合物層を構成するTiの炭窒化物層の形成には、TDMATを添加せず、柱状縦長成長TiCN結晶組織を形成した。
次いで、硬質被覆層の上部層として、表3に示される条件かつ表7に示される目標層厚でAl層からなる上部層を蒸着形成することにより、表7の比較被覆工具1〜15を作製した。
For comparison purposes, the surfaces of the tool bases A to E and the tool bases a to e are the same as the coated tools 1 to 15 of the present invention under the conditions shown in Tables 3 and 5 and the target layer thicknesses shown in Table 7. Then, a Ti compound layer as a lower layer of the hard coating layer was formed by vapor deposition. At this time, in order to form the Ti carbonitride layer constituting the Ti compound layer, TDMAT was not added, and a columnar vertically grown TiCN crystal structure was formed.
Next, as an upper layer of the hard coating layer, the upper layer composed of Al 2 O 3 layers was formed by vapor deposition under the conditions shown in Table 3 and the target layer thicknesses shown in Table 7, thereby comparing the comparative coating tools 1 to 1 in Table 7. 15 was produced.

また、本発明被覆工具1〜15および比較被覆工具1〜15の各構成層の層厚を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6および表7に示される目標層厚と実質的に同じ平均層厚を示した。
また、本発明被覆工具1〜15および比較被覆工具1〜15については、同じく走査型電子顕微鏡(倍率5000倍)を用いて、下部層に含まれるTiの炭窒化物層を構成する柱状縦長成長TiCN結晶の粒子幅w及び粒子長さlを、工具基体と水平方向に長さ合計10μmの範囲に存在する柱状縦長成長TiCN結晶について測定し、個々の結晶粒について求めた粒子幅wの平均値である平均粒子幅W及び個々の結晶粒について求めた粒子幅wと粒子長さlの比として定義されるアスペクト比aの平均値である平均アスペクト比Aを求めた。
また、本発明被覆工具1〜10については、同じく走査型電子顕微鏡(倍率50000倍)を用いて、下部層に含まれるTiの炭窒化物層中に存在する微粒TiCNの占める面積を工具基体と垂直方向はTiCN膜厚分の厚さに亘って、工具基体と水平方向は長さ合計10μmに亘って測定し、断面の面密度(%)を求めた。
また、本発明被覆工具11〜15については、同じく走査型電子顕微鏡(倍率50000倍)を用いて、下部層に含まれるTiの炭窒化物層を、工具基体表面と平行に0.1μmの厚み幅領域に夫々区分し、区分された各厚み幅領域に存在する微粒TiCNの占める面積を長さ合計10μmに亘って測定し、該0.1μmの厚み幅領域に存在する微粒TiCNの断面の面密度(%)を求めた。
Moreover, the layer thickness of each component layer of this invention coated tool 1-15 and comparative coated tool 1-15 is measured using a scanning electron microscope (5000 times magnification), and the layer thickness of five points in an observation visual field is obtained. When the average layer thickness was determined by measurement and averaged, the average layer thickness was substantially the same as the target layer thickness shown in Tables 6 and 7.
Moreover, about this invention coated tool 1-15 and comparative coated tool 1-15, the columnar vertically long growth which comprises the Ti carbonitride layer contained in a lower layer similarly using a scanning electron microscope (magnification 5000 times). The grain width w and grain length l of the TiCN crystal were measured for columnar vertically grown TiCN crystals existing in the range of a total length of 10 μm in the horizontal direction with respect to the tool substrate, and the average value of the grain width w obtained for each crystal grain. The average aspect ratio A, which is the average value of the aspect ratio a defined as the ratio of the average grain width W and the grain width w and the grain length 1 obtained for each crystal grain, was obtained.
Moreover, about this invention coated tools 1-10, the area which fine TiCN which exists in the carbonitride layer of Ti contained in a lower layer occupies the tool base | substrate similarly using a scanning electron microscope (50000 times magnification). The vertical direction was measured over the thickness of the TiCN film thickness, and the tool base and the horizontal direction were measured over a total length of 10 μm to determine the surface density (%) of the cross section.
For the coated tools 11 to 15 of the present invention, using a scanning electron microscope (50000 times magnification), the Ti carbonitride layer contained in the lower layer is 0.1 μm thick in parallel with the tool base surface. The area of fine TiCN existing in each divided width area is measured over a total length of 10 μm, and the cross-sectional surface of the fine TiCN existing in the thickness area of 0.1 μm Density (%) was determined.




つぎに、前記本発明被覆工具1〜15および比較被覆工具1〜15について、表8に示す条件で切削加工試験を実施し、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
表9に、この測定結果を示した。
Next, with respect to the inventive coated tools 1-15 and comparative coated tools 1-15, a cutting test was performed under the conditions shown in Table 8, and the flank wear width of the cutting edge was measured in any cutting test.
Table 9 shows the measurement results.


表6および表9に示される結果から、本発明の被覆工具は、硬質被覆層の下部層を構成するTiの炭窒化物層が、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが分散分布していることにより、鋼や鋳鉄等の高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた切削性能を発揮することが明らかである。   From the results shown in Table 6 and Table 9, in the coated tool of the present invention, the Ti carbonitride layer constituting the lower layer of the hard coating layer has a columnar vertically grown TiCN crystal structure, Even if it is used for high-speed intermittent cutting with high heat generation of steel, cast iron, etc., and intermittent / impact high loads acting on the cutting edge due to the distribution of fine TiCN in It is apparent that it has excellent chipping resistance, and as a result, exhibits excellent cutting performance over a long period of use.

これに対して、硬質被覆層の下部層を構成するTiの炭窒化物層に微粒TiCNが分散分布していない比較被覆工具1〜15については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命に至ることが明らかである。   On the other hand, the comparative coated tools 1 to 15 in which the fine TiCN is not dispersed and distributed in the Ti carbonitride layer constituting the lower layer of the hard coating layer is accompanied by high heat generation and intermittently on the cutting edge.・ When used for high-speed intermittent cutting with high impact loads, it is clear that chipping, chipping, etc. will lead to short life.

前述のように、本発明の被覆工具は、例えば、鋼や鋳鉄等の高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工において、すぐれた耐チッピング性、耐欠損性を発揮し、使用寿命の延命化を可能とするものである。   As described above, the coated tool of the present invention has excellent chipping resistance in high-speed intermittent cutting with high heat generation such as steel and cast iron and intermittent and impact high load acting on the cutting edge. It exhibits defect resistance and can extend the service life.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が化学蒸着された下部層と上部層とからなるとともに、
(a)前記下部層は、少なくとも1層のTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有する1層または2層以上からなるTi化合物層、
(b)前記上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層、
からなり、
前記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが分散分布しており、該微粒TiCNが粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相との混合相であり、柱状縦長成長TiCN結晶の平均粒子幅Wは50〜2000nm、平均アスペクト比Aは5〜50であり、前記微粒TiCNの平均粒径Rが、50nmを超えて300nm以下であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is composed of a lower layer and an upper layer chemically vapor-deposited,
(A) The lower layer includes at least one Ti carbonitride layer, and has a total average layer thickness of 3 to 20 μm, a Ti compound layer composed of one layer or two or more layers,
(B) the upper layer is an aluminum oxide layer having an average layer thickness of 1 to 25 μm;
Consists of
The at least one Ti carbonitride layer constituting the lower layer of (a) has a columnar vertically grown TiCN crystal structure, in which fine TiCN is dispersed and distributed, and the fine TiCN Is a granular TiCN crystal phase or an amorphous TiCN phase or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase. A surface-coated cutting tool, wherein an average particle diameter R of the fine TiCN is more than 50 nm and 300 nm or less.
前記下部層を構成する少なくとも1層のTiの炭窒化物層に存在する微粒TiCNの断面の面密度が 5〜30%であることを特徴とする請求項1に記載の表面被覆切削工具。   2. The surface-coated cutting tool according to claim 1, wherein the surface density of the cross-section of the fine TiCN existing in at least one Ti carbonitride layer constituting the lower layer is 5 to 30%. 前記微粒TiCNの断面の面密度が層厚方向に沿って周期0.5〜5μmで周期的に変化する面密度分布形態を有していることを特徴とする請求項1または請求項2に記載の表面被覆切削工具。
3. The surface density distribution form in which the surface density of the cross section of the fine TiCN periodically changes along the layer thickness direction at a period of 0.5 to 5 [mu] m. Surface coated cutting tool.
JP2012143114A 2011-09-20 2012-06-26 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Expired - Fee Related JP5928807B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012143114A JP5928807B2 (en) 2011-09-20 2012-06-26 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN201210338653.1A CN103008696B (en) 2011-09-20 2012-09-13 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing knife

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011204228 2011-09-20
JP2011204228 2011-09-20
JP2012143114A JP5928807B2 (en) 2011-09-20 2012-06-26 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2013078837A true JP2013078837A (en) 2013-05-02
JP5928807B2 JP5928807B2 (en) 2016-06-01

Family

ID=48525643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143114A Expired - Fee Related JP5928807B2 (en) 2011-09-20 2012-06-26 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5928807B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311202A (en) * 1989-05-19 1990-12-26 Kyocera Corp Covered cutting tool
JP2000071108A (en) * 1998-08-31 2000-03-07 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property
JP2003342667A (en) * 2002-05-21 2003-12-03 Kyocera Corp TiCN GROUP CERMET AND ITS MANUFACTURING METHOD
US20040265541A1 (en) * 2003-04-24 2004-12-30 Sakari Ruppi Coating with controlled grain size and morphology for enhanced wear resistance and toughness
JP2007260787A (en) * 2006-03-27 2007-10-11 Mitsubishi Materials Corp Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
WO2008078592A1 (en) * 2006-12-25 2008-07-03 Kyocera Corporation Surface-coated tool and method of working cutting object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311202A (en) * 1989-05-19 1990-12-26 Kyocera Corp Covered cutting tool
JP2000071108A (en) * 1998-08-31 2000-03-07 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property
JP2003342667A (en) * 2002-05-21 2003-12-03 Kyocera Corp TiCN GROUP CERMET AND ITS MANUFACTURING METHOD
US20040265541A1 (en) * 2003-04-24 2004-12-30 Sakari Ruppi Coating with controlled grain size and morphology for enhanced wear resistance and toughness
JP2007260787A (en) * 2006-03-27 2007-10-11 Mitsubishi Materials Corp Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
WO2008078592A1 (en) * 2006-12-25 2008-07-03 Kyocera Corporation Surface-coated tool and method of working cutting object

Also Published As

Publication number Publication date
JP5928807B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5590335B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP2013139065A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work
JP5590329B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP5246518B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5003308B2 (en) Surface coated cutting tool
JP2015085441A (en) Surface coated cutting tool excellent in abnormal damage resistance and wear resistance
JP5023896B2 (en) Surface coated cutting tool
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4849234B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5850402B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2008178954A (en) Surface coated cutting tool with its hard coating layer exerting excellent resistance against chipping
JP5928807B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2013116548A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP5928806B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5838805B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5636971B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP5838806B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2013184230A (en) Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP4849233B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4888710B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5928807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees