JPH02311202A - Covered cutting tool - Google Patents

Covered cutting tool

Info

Publication number
JPH02311202A
JPH02311202A JP12747389A JP12747389A JPH02311202A JP H02311202 A JPH02311202 A JP H02311202A JP 12747389 A JP12747389 A JP 12747389A JP 12747389 A JP12747389 A JP 12747389A JP H02311202 A JPH02311202 A JP H02311202A
Authority
JP
Japan
Prior art keywords
film
crystal structure
hard
columnar
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12747389A
Other languages
Japanese (ja)
Other versions
JP2876130B2 (en
Inventor
Shigeo Nagato
永戸 栄男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1127473A priority Critical patent/JP2876130B2/en
Publication of JPH02311202A publication Critical patent/JPH02311202A/en
Application granted granted Critical
Publication of JP2876130B2 publication Critical patent/JP2876130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent cracks from spread in coating film and improve resilience by providing a mixture of a granulated crystal structure and columnar crystal structure as a crystal structure in hard coating film. CONSTITUTION:A base metal of sintered hard alloy is coated with a hard film formed of one or at least two layers of compound selected from carbide, nitride, carbonitride, acid nitride, etc. in the 4a-6a groups on the periodic law table. In the method of information, the cemented hard alloy is used for the base metal. A columnar crystal Tin film is formed by a CVD method at about 1,000 deg.C of substrate temperature for about 6 hours in a mixture flow having about 45% H2, about 5% TiCL4, about 50% N2 and about 60mbar pressure in a fur nace and then the pressure in the furnace is raised to about 800mbar to deposit a granulated crystal structure Tin in a cavity of the columnar crystal Tin for forming a coating film having a mixture of about 10mum thick columnar crystal structure and granulated crystal structure. Thus, the resilience of the hard film is remarkably improved and the breakage resisting performance is improved without degrading the antiwear property.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面に硬質膜が形成された切削工具の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a cutting tool having a hard film formed on its surface.

(従来技術) 従来、切削工具としては、サーメット、超硬合金あるい
はセラミック等が主として使用されているが、近年に至
り、これらを母材としてその表面に化学気相成長(CV
D )等によって耐摩耗性に優れた硬質膜を形成したい
わゆる被覆切削工具が知られている。通常、この硬質膜
には、周期律表第4a族、第5a族あるいは第68族の
炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭酸
窒化物あるいは^lの酸化物、酸窒化物から選ばれる1
種又は2種以上の単層あるいは複層が用いられている。
(Prior art) Conventionally, cermets, cemented carbide, ceramics, etc. have been mainly used as cutting tools, but in recent years, chemical vapor deposition (CVD) has been applied to the surfaces of these as base materials.
D) etc., so-called coated cutting tools are known in which a hard film with excellent wear resistance is formed. Usually, this hard film contains carbides, nitrides, carbonitrides, carbonates, nitrides, and carbonitrides of Groups 4a, 5a, or 68 of the periodic table, or oxides and oxides of ^l. 1 selected from nitrides
A single layer or a multilayer of two or more types is used.

(発明が解決しようとする問題点) しかし、これら硬質膜は、硬度が高く、耐摩耗性には優
れるものの著しく靭性が低いために硬質膜自体にクラ・
)り、割れ等が生じやすかった。よって被覆切削工具で
は、これら被膜に生じたクラック、割れ等が切り欠きと
なり被覆切削工具全体としても、未被覆切削工具と比べ
、著しく靭性、耐欠損性が劣化するという欠点を有して
いた。
(Problem to be solved by the invention) However, although these hard films have high hardness and excellent wear resistance, they have extremely low toughness, so cracks and cracks occur in the hard film itself.
) and cracks were likely to occur. Therefore, in coated cutting tools, the cracks, cracks, etc. that occur in the coating become notches, and the coated cutting tool as a whole has the disadvantage that the toughness and fracture resistance are significantly deteriorated compared to uncoated cutting tools.

(発明の目的) 本発明においては、上述の問題点を解決することを主た
る目的とするもので、耐摩耗性を劣化させることなく、
耐欠損性にも優れた長寿命の被覆切削工具を提供するこ
とを目的とする。
(Objective of the Invention) The main purpose of the present invention is to solve the above-mentioned problems, without deteriorating wear resistance.
The purpose of the present invention is to provide a long-life coated cutting tool with excellent fracture resistance.

(問題点を解決するための手段) 発明者は、上記問題点について、研究を重ねた結果、被
覆層の結晶構造として、粒状晶組織と、柱状晶組織とを
混在させることにより硬質被膜中でのクラック伝播を防
くとともに被膜自体の靭性を向上させ、被覆切削工具全
体としても、耐摩耗性を損なうことなく耐欠損性の向上
が得られるという知見が得られた。
(Means for Solving the Problems) As a result of repeated research regarding the above problems, the inventors found that by mixing a granular crystal structure and a columnar crystal structure as the crystal structure of the coating layer, it is possible to solve the problem in a hard coating. It was found that the coating can prevent crack propagation and improve the toughness of the coating itself, and improve the chipping resistance of the coated cutting tool as a whole without impairing its wear resistance.

すなわち、本発明は、サーメット、超硬合金、窒化珪素
質材料など高強度材料として知られた材料を母材として
、この母材表面に周期律表第4a族、第5a族、および
第68族の炭化物、窒化物、炭窒化物、炭酸化物、窒酸
化物、酸炭窒化物あるいは八1の酸化物、酸窒化物から
選ばれる1種又は2種以上の単層あるいは複層を被覆し
た被覆切削工具において、前記被覆層中に柱状晶組織と
粒状晶Mi織とが混在する組織を有することを特徴とす
るものである。
That is, the present invention uses a material known as a high-strength material such as cermet, cemented carbide, and silicon nitride material as a base material, and the surface of this base material is coated with materials belonging to groups 4a, 5a, and 68 of the periodic table. A single layer or multilayer coating of one or more selected from carbides, nitrides, carbonitrides, carbonates, nitrides, oxycarbonitrides, or 81 oxides and oxynitrides. The cutting tool is characterized in that the coating layer has a structure in which a columnar crystal structure and a granular crystal Mi structure are mixed.

一般に、化学気相成長法(CVD)によって周期律表第
4a族、第58族、および第68族の炭化物、窒化物、
炭窒化物、炭酸化物、窒酸化物、酸炭窒化物を形成させ
る場合、まず母材表面に核が発生し、これら核からさら
に成長し、最終的に膜が生成されるが、この成長過程に
おける反応条件によっていわゆる結晶配向が伴って成長
してなる柱状晶と、配向することなくランダム状に成長
してなる粒状晶のほぼ2種類の結晶組織構造に分類され
る。このうち、被覆切削工具における被膜の組織構造は
一般には後者が用いられる。
Generally, by chemical vapor deposition (CVD), carbides, nitrides of Groups 4a, 58, and 68 of the periodic table,
When carbonitrides, carbonates, nitrides, and oxycarbonitrides are formed, nuclei are first generated on the surface of the base material, and these nuclei grow further to finally form a film, but this growth process Depending on the reaction conditions, crystallographic structures are classified into roughly two types: columnar crystals that grow with so-called crystal orientation, and granular crystals that grow randomly without orientation. Of these, the latter is generally used for the structure of the coating in coated cutting tools.

これら2種類の組織構造を生成するための反応条件は、
基板温度、原料ガス濃度、炉内圧力という基本条件の他
に、原料ガスの種類、プラズマ状態や炉口体の性質など
各種要因により決定されるため、−概に表現することは
難しいが、およそ次のようなことが言える。通常粒状晶
組織が生成される条件に対して、基板温度については上
昇を、炉内圧力、原料ガス過飽和度については低下させ
ることによって柱状晶結晶構造が得られる。これは、前
述した金属炭化物、窒化物、炭窒化物等のいずれの場合
においても同様な傾向にあると言える。
The reaction conditions for generating these two types of tissue structures are:
In addition to the basic conditions of substrate temperature, raw material gas concentration, and furnace pressure, it is determined by various factors such as the type of raw material gas, plasma state, and properties of the furnace mouth body. The following can be said. A columnar crystal structure can be obtained by increasing the substrate temperature and decreasing the furnace pressure and raw material gas supersaturation under conditions that normally produce a granular crystal structure. This can be said to be the same tendency in any of the metal carbides, nitrides, carbonitrides, etc. mentioned above.

具体的には、例えばTiN膜の生成にあたり、基板温度
1000℃、H245χ、TiC145χ、N250χ
、炉内圧力100mbarの混合気流中で生成すると第
1図の電子顕微鏡写真に示すような柱状晶結晶が生成さ
れる。これに対し、前記反応条件のうち炉内圧力を80
0mbarに変更して生成すると、第2図の電顕写真に
示すような粒状晶結晶が生成される。
Specifically, for example, when generating a TiN film, the substrate temperature is 1000°C, H245χ, TiC145χ, N250χ
When produced in a mixed gas flow with an internal pressure of 100 mbar, columnar crystals as shown in the electron micrograph of FIG. 1 are produced. On the other hand, among the above reaction conditions, the furnace pressure was set to 80
When the temperature is changed to 0 mbar, granular crystals as shown in the electron micrograph of FIG. 2 are produced.

本発明の特徴は、このような2種類の組織構造、即ち、
柱状晶結晶と粒状晶結晶とが混在した組織構造の被膜を
生成させる点にある。このような組織構造を得るために
は、まず、基板上に先に第1図に示したような柱状晶結
晶の結晶を生成させて、次いで第2図に示したような粒
状晶結晶の結晶生成させると、第1図からも明らかなよ
うに柱状晶結晶中に存在する空隙中に粒状晶結晶が生成
成長し、最終的に第3図の電顕写真に示すような柱状晶
結晶と粒状晶結晶とが混在した組織の硬質膜が得られる
。このような混在組織は、柱状晶結晶と粒状品結晶が体
積比で10:90乃至90:10 、特に3〇ニア0乃
至70:30の比率であることが望ましく、柱状晶結晶
が多過ぎると逆に膜の特性が低下する傾向にあり、粒状
晶結晶が多過ぎると、柱状晶の混在効果がほとんどなく
、本発明の目的が達成されない場合がある。
The characteristics of the present invention are such two types of organizational structures, namely:
The point is that a film having a texture structure in which columnar crystals and granular crystals are mixed is produced. In order to obtain such a structure, first, columnar crystals as shown in Fig. 1 are formed on a substrate, and then granular crystals as shown in Fig. 2 are formed. As it is clear from Fig. 1, granular crystals form and grow in the voids existing in the columnar crystals, and finally columnar crystals and granular crystals are formed as shown in the electron micrograph of Fig. 3. A hard film with a mixed structure of crystals and crystals is obtained. In such a mixed structure, it is desirable that the volume ratio of columnar crystals and granular crystals be 10:90 to 90:10, especially 300 to 70:30, and if there are too many columnar crystals, On the contrary, the properties of the film tend to deteriorate, and if there are too many granular crystals, there is almost no effect of the presence of columnar crystals, and the object of the present invention may not be achieved.

被覆切削工具において上記の結晶の混在した組織は工具
母材上に単層として存在する他、複層構造の硬質膜中の
1つの層として存在しても硬質膜内でのクランクの伝播
を混在組織形成層にて防ぐことができるのである。
In coated cutting tools, the above-mentioned crystal-mixed structure exists as a single layer on the tool base material, and even if it exists as one layer in a multilayered hard film, it may cause crank propagation within the hard film. This can be prevented by the tissue formation layer.

また、本発明において用いられる工具母材としては、被
覆切削工具用母材として従来から知られているいずれの
ものが採用され、例えばWC−Coを主成分としたある
いはTiC、T1CN等を主成分とし、硬質相として周
期律表第48族、第5a族、および第68族の炭化物、
窒化物、炭窒化物、炭酸化物、窒酸化物、酸炭窒化物を
加えた超硬合金やサーメット焼結体、窒化珪素に周期律
表第1[[a族酸化物の他Ah(h 、5t(h、Mg
O、Zr0z等を加えた窒化珪素質焼結体等が採用され
るが、これらの中でも超硬合金が母材として最も有効で
ある。
In addition, as the tool base material used in the present invention, any conventionally known base material for coated cutting tools can be adopted, such as those mainly composed of WC-Co or mainly composed of TiC, T1CN, etc. and carbides of Group 48, Group 5a, and Group 68 of the periodic table as the hard phase,
Cemented carbide and cermet sintered bodies containing nitrides, carbonitrides, carbonates, nitrides, and oxycarbonitrides, silicon nitrides, silicon nitrides, and silicon nitrides in addition to oxides of group A of the periodic table, Ah (h, 5t(h, Mg
A silicon nitride sintered body containing O, Zr0z, etc. is used, but among these, cemented carbide is the most effective as a base material.

一方、硬質膜はTi、Zr、11[等周期律第48族、
Ta、Nb、 V等の第58族、およびCr等の第68
族の炭化物、窒化物、炭窒化物、酸炭窒化物、あるいは
旧の酸化物、酸窒化物から選ばれる1種又は2種以上の
単層あるいは複層であり、これらのうち、前述した混在
組織形成層を形成し得るものとしては酪化合物を除く他
の立方晶構造を有する化合物が挙げられ、これらの中で
もTiC、TiN 、 T1CN、  TiCN0が最
も望ましく、前述したへ1化合物は最外層として一般に
形成される。
On the other hand, the hard film contains Ti, Zr, 11 [group 48 of the isoperiodic law,
Group 58 such as Ta, Nb, and V, and Group 68 such as Cr.
It is a single layer or multilayer of one or more types selected from carbides, nitrides, carbonitrides, oxycarbonitrides, old oxides, and oxynitrides of the group, and among these, the above-mentioned mixtures. Examples of compounds capable of forming a texture forming layer include compounds having a cubic crystal structure other than butyric compounds. Among these, TiC, TiN, T1CN, and TiCN0 are the most desirable, and the above-mentioned He1 compound is generally used as the outermost layer. It is formed.

これら硬質膜は母材上に5〜20μmの厚めで形成され
、このうち、混在組織形成層は2μm以上の厚みで存在
していることが望ましく、2μmを下回ると混在組織に
よる効果が十分に発揮されない。
These hard films are formed on the base material with a thickness of 5 to 20 μm, and among these, it is desirable that the mixed structure forming layer exists with a thickness of 2 μm or more, and when it is less than 2 μm, the effect of the mixed structure is fully exhibited. Not done.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例1) 母材としてl5OP30(超硬合金製、型番CNMG1
20408)を用い、公知のCVO法にて基板温度10
00℃、Hz45X 、TiCIt5χ、N250χ、
炉内圧力60mbarの混合気流中に柱状晶TiN膜を
6時間生成し、次いで炉内圧力を80On+barに上
昇させ、柱状晶TiNの空隙に粒状晶TiNを析出させ
、膜厚10μmの柱状晶組織と粒状晶組織とが混在した
被膜を形成した。
(Example 1) 15OP30 (made of cemented carbide, model number CNMG1) was used as the base material.
20408) using the known CVO method at a substrate temperature of 10
00℃, Hz45X, TiCIt5χ, N250χ,
A columnar TiN film was produced for 6 hours in a mixed air flow with a furnace pressure of 60 mbar, and then the furnace pressure was increased to 80 On+bar to precipitate granular TiN in the voids of the columnar TiN to form a columnar crystal structure with a film thickness of 10 μm. A film containing a granular crystal structure was formed.

比較として同一材種の母材上に前述と同一条件で柱状晶
TiNのみの被膜を10μM形成したもの、および同様
にして粒状晶TiNのみの被膜を10μm形成したもの
を作成した。
For comparison, a 10 μm film of only columnar TiN was formed on the base material of the same grade under the same conditions as described above, and a 10 μm film of only granular TiN was formed in the same manner.

上記で得られた3つのサンプルに対し、下記の条件で切
削試験を行なった。
A cutting test was conducted on the three samples obtained above under the following conditions.

摩耗テスト  被削材  SCM435R切削速度 1
50m/min 送り    0.3mm/rev 切込み  2mm 時間   15分 上記条件で切削後フランク摩耗量を測定した。
Wear test Work material SCM435R Cutting speed 1
50 m/min Feed: 0.3 mm/rev Depth of cut: 2 mm Time: 15 minutes After cutting, the amount of flank wear was measured under the above conditions.

耐欠損テスト 被削材  SCM435 (10mmの
幅の溝が4本人ったもの) 切削速度 80印/m1n −只 − 送り    0.3mm/rev 切込み  3闘 衝撃回数 約500回 上記条件で切削後各サンプル(それぞれ30個)につい
て欠損した割合(欠損率)を求めた。
Fracture resistance test Work material: SCM435 (4 grooves of 10 mm width) Cutting speed: 80 marks/m1n - Only - Feed: 0.3 mm/rev Depth of cut: 3 cycles Number of impacts: Approximately 500 times Each sample was cut under the above conditions. (30 pieces each), the percentage of missing pieces (missing rate) was determined.

結果は第1表に示す。The results are shown in Table 1.

〔以下余白〕[Margin below]

第1表から明らかなように、フランク摩耗に関しては柱
状晶TiN膜が劣るが、混在TiN膜および粒状晶Ti
Nは同レベルであった。欠損性において、混在TiN膜
は他の単一膜に比べ、優れていることがわかり、膜の靭
性が向上したことが理解される。
As is clear from Table 1, the columnar TiN film is inferior in terms of flank wear, but the mixed TiN film and the granular TiN film are inferior.
N was at the same level. It was found that the mixed TiN film was superior to other single films in terms of defectiveness, and it was understood that the toughness of the film was improved.

(実施例2) 実施例1と同一の工具母材およびCVD法を用いて、基
板温度1150°CでH292χ、TiC144χ、c
H4,4χ、炉内圧力60mbarの混合気流中で針状
晶TiC膜を4時間形成し、次いで温度を1020℃に
低下させて粒状晶TiC膜を析出させ、膜厚10μmの
柱状晶組織と粒状晶組織とが混在した被覆を作成した。
(Example 2) Using the same tool base material and CVD method as in Example 1, H292χ, TiC144χ, c were prepared at a substrate temperature of 1150°C.
An acicular TiC film was formed in a mixed air flow with H4,4χ and a furnace pressure of 60 mbar for 4 hours, and then the temperature was lowered to 1020°C to precipitate a granular TiC film. A coating with a mixed crystal structure was created.

比較例として前述の条件でそれぞれ膜厚10μmの柱状
脱晶Tic膜のみおよび粒状晶TiC膜のみの被膜を形
成したものを作成した。
As a comparative example, a film was prepared in which only a columnar decrystallized Tic film and only a granular TiC film were formed, each having a film thickness of 10 μm under the above-mentioned conditions.

これらを実施例1と同様に摩耗テスト、耐欠損テストを
行い、結果を第2表に示した。
These were subjected to wear tests and fracture resistance tests in the same manner as in Example 1, and the results are shown in Table 2.

〔以下余白〕[Margin below]

= 11− 第2表 第2表の結果によれば、実施例1と同様、混在TiC膜
は優れた特性を示した。
= 11-Table 2 According to the results shown in Table 2, the mixed TiC film showed excellent characteristics as in Example 1.

(実施例3) 実施例1と同一の工具母材およびCVO法を用いて、基
板温度1150°CでH292χ、TiC1a4χ、C
I+4.4χ、炉内圧力50mbarの混合気流中で柱
状晶TiC膜を2時間形成し、次いで温度を1000°
Cに低下させ、粒状晶TiC膜を析出させ、膜厚7μm
の柱状晶組織と粒状晶組織とが混合した被覆とし、その
上に、温度1000°CでH260χ、CO□14χ、
lICl3χ、A10320χ、炉内圧力50mbar
の混合気流中でAlzOi膜を3μm析出させ、全膜厚
10μmのTiC+ΔI2O3複層膜を作成した。
(Example 3) Using the same tool base material and CVO method as in Example 1, H292χ, TiC1a4χ, C
A columnar TiC film was formed for 2 hours in a mixed gas flow with I+4.4χ and a furnace pressure of 50 mbar, and then the temperature was raised to 100°.
C to precipitate a granular TiC film with a film thickness of 7 μm.
The coating is a mixture of a columnar crystal structure and a granular crystal structure, and on top of that, H260χ, CO□14χ,
lICl3χ, A10320χ, furnace pressure 50 mbar
An AlzOi film having a thickness of 3 μm was deposited in a mixed air flow to create a TiC+ΔI2O3 multilayer film with a total thickness of 10 μm.

また、比較品として柱状晶TiCのみ7μmにA1□0
3膜を3μm設けたもの、粒状晶Ticのみ7μmにA
l2O3膜を3μm設けたものを作成し、実施例1と同
様の試験を行なった。結果は第3表に示す。
In addition, as a comparison product, only columnar crystal TiC was made with A1□0 of 7 μm.
3 films with a thickness of 3 μm, and A with only granular crystal Tic of 7 μm.
A 3 μm thick l2O3 film was prepared and tested in the same manner as in Example 1. The results are shown in Table 3.

〔以下余白〕[Margin below]

(発明の効果) 以上詳述した通り、本発明によれば、硬質膜中に柱状晶
結晶と粒状晶結晶とが混在した組織を形成することによ
って硬質膜の靭性を著しく向上させることが出来、被覆
切削工具として耐摩耗性を劣化させること無く、耐欠損
性能を改善することが出来る。よって、これら工具を用
いることにより切削の安定性、長寿命化を得ることが出
来る。
(Effects of the Invention) As detailed above, according to the present invention, the toughness of the hard film can be significantly improved by forming a structure in which columnar crystals and granular crystals are mixed in the hard film. As a coated cutting tool, chipping resistance can be improved without deteriorating wear resistance. Therefore, by using these tools, cutting stability and long life can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は柱状晶結晶TiN膜の組織構造を示す電子顕微
鏡写真、第2図は粒状晶結晶TiN膜の組織構造を示す
電子顕微鏡写真、第3図は柱状晶結晶TiN膜と粒状晶
結晶TiN膜とが混在した膜の組織構造を示す電子顕微
鏡写真である。
Fig. 1 is an electron micrograph showing the structure of a columnar crystalline TiN film, Fig. 2 is an electron micrograph showing the structure of a granular crystalline TiN film, and Fig. 3 is a columnar crystalline TiN film and a granular crystalline TiN film. It is an electron micrograph showing the tissue structure of a film in which a film is mixed with a film.

Claims (1)

【特許請求の範囲】[Claims] 高強度材料から成る工具母材表面に、周期律表第4a族
、第5a族及び第6a族金属の炭化物、窒化物、炭窒化
物、炭酸化物、酸窒化物、酸炭窒化物あるいはAlの酸
化物、酸窒化物から運ばれる1種又は2種以上の単層あ
るいは複層から成る硬質膜を被覆してなる被覆切削工具
において、前記硬質膜中に柱状晶結晶と粒状晶結晶とが
混在した組織を有することを特徴とする被覆切削工具。
The surface of the tool base material made of high-strength material is coated with carbides, nitrides, carbonitrides, carbonates, oxynitrides, oxycarbonitrides of metals from Groups 4a, 5a and 6a of the periodic table, or Al. In a coated cutting tool coated with a hard film consisting of one or more single or multiple layers of oxides and oxynitrides, columnar crystals and granular crystals coexist in the hard film. A coated cutting tool characterized by having a textured structure.
JP1127473A 1989-05-19 1989-05-19 Coated cutting tool Expired - Lifetime JP2876130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1127473A JP2876130B2 (en) 1989-05-19 1989-05-19 Coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127473A JP2876130B2 (en) 1989-05-19 1989-05-19 Coated cutting tool

Publications (2)

Publication Number Publication Date
JPH02311202A true JPH02311202A (en) 1990-12-26
JP2876130B2 JP2876130B2 (en) 1999-03-31

Family

ID=14960798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127473A Expired - Lifetime JP2876130B2 (en) 1989-05-19 1989-05-19 Coated cutting tool

Country Status (1)

Country Link
JP (1) JP2876130B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657429A (en) * 1992-08-11 1994-03-01 Mitsubishi Materials Corp Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance
WO1999024198A1 (en) * 1997-11-06 1999-05-20 Sumitomo Electric Industries, Ltd. Coated tool of cemented carbide
EP1985726A1 (en) * 2007-04-27 2008-10-29 WMF Aktiengesellschaft Cutter tool with a cutting edge reinforced with hard material
JP2013078836A (en) * 2011-06-29 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2013078837A (en) * 2011-09-20 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2013139065A (en) * 2012-01-04 2013-07-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462859B2 (en) 2001-02-01 2003-11-05 住友電気工業株式会社 Coated cutting tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148582A (en) * 1984-08-10 1986-03-10 Agency Of Ind Science & Technol Fine processing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148582A (en) * 1984-08-10 1986-03-10 Agency Of Ind Science & Technol Fine processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657429A (en) * 1992-08-11 1994-03-01 Mitsubishi Materials Corp Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance
WO1999024198A1 (en) * 1997-11-06 1999-05-20 Sumitomo Electric Industries, Ltd. Coated tool of cemented carbide
US6187421B1 (en) 1997-11-06 2001-02-13 Sumitomo Electric Industries, Ltd. Coated tool of cemented carbide
EP1985726A1 (en) * 2007-04-27 2008-10-29 WMF Aktiengesellschaft Cutter tool with a cutting edge reinforced with hard material
JP2013078836A (en) * 2011-06-29 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2013078837A (en) * 2011-09-20 2013-05-02 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2013139065A (en) * 2012-01-04 2013-07-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work

Also Published As

Publication number Publication date
JP2876130B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
EP0701982B1 (en) Layered film made of ultrafine particles and a hard composite material for tools possessing the film
US6423403B2 (en) PVD Al2O3 coated cutting tool
US6093479A (en) Coated hard alloy blade member
EP0816531B1 (en) Alumina coated tool and production method thereof
US6337152B1 (en) Cutting tool made of A12O3-coated cBN-based sintered material
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
US6338894B1 (en) Coated cemented carbide cutting tool member and process for producing the same
JP2867803B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP2876132B2 (en) Coated cutting tool
JP3291775B2 (en) Surface coated cutting tool
JPH02311202A (en) Covered cutting tool
JPS6173882A (en) Material coated with very hard layer
US6638571B2 (en) Coated cemented carbide cutting tool member and process for producing the same
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP2747584B2 (en) Hard film coated member
JPH07328808A (en) Surface covered tungsten car bidf rdadical cemented carbide cutting tool having hard overlater superior in interlayer a adhesion performance
JPH0433865B2 (en)
JP2001062603A (en) Surface coated cutting tool made of tungsten cemented carbide super hard alloy whose hard coated layer displays excellent tipping resistance in interrupted heavy cutting
JP2757580B2 (en) Surface coated cutting tool and method of manufacturing the same
JP2668221B2 (en) Coated cemented carbide
JP2001096404A (en) Surface-coated cutting tool of tungsten carbide-based cemented carbide exhibiting appreciable chipping resistance of hard coating layer in intermittent heavy cutting
JPH08187604A (en) Cutting tool of surface coated tungsten carbide based cemented carbide with its hard coating layer having excellent inter-layer adhesion
JPH0649646A (en) Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance and wear resistance
JPH07122138B2 (en) Surface coated cemented carbide member
JPS5925973A (en) Multiply coated material and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11