JPS5925973A - Multiply coated material and its manufacture - Google Patents
Multiply coated material and its manufactureInfo
- Publication number
- JPS5925973A JPS5925973A JP13591482A JP13591482A JPS5925973A JP S5925973 A JPS5925973 A JP S5925973A JP 13591482 A JP13591482 A JP 13591482A JP 13591482 A JP13591482 A JP 13591482A JP S5925973 A JPS5925973 A JP S5925973A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- tin
- sic
- alternately
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は硬質物質を被覆した材料、特に耐摩耗性、耐欠
損性に有効な多重被覆の施された祠Hおよびその製造法
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a material coated with a hard substance, particularly to a shrine H having multiple coatings effective for wear resistance and chipping resistance, and a method for manufacturing the same.
WCC超超硬合金TIC基ナーメット、おにびTiN基
サーメットに炭化物あるいは窒化物を被覆して耐摩耗性
を向上させることが従来にり行なわれてきた。しかし耐
摩耗性といっても、摩耗は、フランク部にみられるアブ
レッシブ摩耗、クレータ一部にみられる被削材との化学
反応に基づく摩耗、および境界摩耗でみられる主として
酸化摩耗の3つの摩耗に大別され、アブレッシブな摩耗
には炭化物、クレータ−摩耗、境界摩耗には窒化物が有
効であることが知られている。Conventionally, WCC cemented carbide TIC-based cermets and TiN-based cermets have been coated with carbides or nitrides to improve their wear resistance. However, although it is said to be wear resistant, there are three kinds of wear: abrasive wear seen on the flank, wear caused by chemical reaction with the work material seen in parts of the crater, and mainly oxidation wear seen as boundary wear. It is known that carbides are effective for abrasive wear, while nitrides are effective for crater wear and boundary wear.
このため従来から、炭化物、窒化物等の単一層を被覆す
るかわりに、
■内層に炭化物、外層に窒化物の2層を被覆づる方法
■固溶炭窒化物を被覆づ−る方法
等が採られてきた。For this reason, conventionally, instead of coating with a single layer of carbide, nitride, etc., methods such as (1) coating with two layers of carbide on the inner layer and nitride on the outer layer, and (2) coating with solid solution carbonitride have been adopted. I've been exposed to it.
しかし、上記■の場合にはフランク部での摩耗の進行が
早く期待されるほどの寿命の延長は実現されず、また■
の場合、炭化物、窒化物両者の特性J−りはむしろ欠点
が助長される傾向にあり、共に有効な改善方法であると
はいえなかった。However, in the case of (■) above, wear progresses quickly on the flank, and the life expectancy is not extended as much as expected, and (■)
In this case, the defects in the properties of both carbides and nitrides tended to be exacerbated, and neither of them could be said to be an effective method for improving them.
本発明は上記従来技術の欠点を改良し、耐摩耗、耐欠損
性に優れl〔新規なコーティング工具を提供づることを
目的とする。It is an object of the present invention to improve the drawbacks of the above-mentioned prior art and to provide a novel coated tool with excellent wear resistance and chipping resistance.
本発明はWCC超超硬合金TiC基サーすツi〜、また
はTIN塁ザーメットの表面に、SiCおよびTiNよ
りなる被覆層が、単層の厚さ1μm以下、好ましくは0
.5μm未満で合計2〜15μmの厚さにSi C,T
i Nを交互に少くとも6層以上、望ましくは20層以
上多重被覆したことを特徴とするものである。The present invention provides a coating layer consisting of SiC and TiN on the surface of a WCC cemented carbide TiC base cermet or a TIN base cermet with a single layer thickness of 1 μm or less, preferably 0.
.. Si C, T to a total thickness of less than 5 μm and 2 to 15 μm
It is characterized in that iN is alternately coated in at least 6 layers, preferably in 20 or more layers.
本発明にJこる月利は、単層の厚さが1μm以下、好ま
しくは0.5μm未満であるので、異種物質を被覆した
ために生ずる熱膨張係数の違いから生ずる歪の発生とい
う欠点゛をカバーすることが可能となり、究極的に被覆
材料層間の歪が均一に分j1りして応力集中をIJ1除
し、耐熱衝撃性を高めることができる。The advantage of the present invention is that the thickness of the single layer is 1 μm or less, preferably less than 0.5 μm, so it covers the disadvantage of distortion caused by the difference in thermal expansion coefficient caused by coating with different materials. As a result, the strain between the layers of the coating material is evenly distributed, the stress concentration is reduced by IJ1, and the thermal shock resistance can be improved.
また、各層の厚みを1μm以下とし、かつ多層に被覆し
ているため、常に炭化物、窒化物の特長が生かされ、耐
クレーター摩耗性、耐フランク摩耗性共に著しく向上す
る結果どなる。また各層はSiCおよびTtNの単層よ
りなるため炭窒化物の欠点は回避できる。Furthermore, since each layer has a thickness of 1 μm or less and is coated in multiple layers, the characteristics of carbides and nitrides are always utilized, resulting in markedly improved crater wear resistance and flank wear resistance. Furthermore, since each layer is made of a single layer of SiC and TtN, the drawbacks of carbonitride can be avoided.
また、本発明にJ3いて被覆層を重ねる順序はIJJ材
、Si C,Ti N、Si IC,Ti N、−♂・
・・・でもよく、母材、Ti N、Si C,Ti N
、Si C・・・・・・の順序の何れでも良い。In addition, in the present invention, the order in which the coating layers are stacked in J3 is IJJ material, Si C, Ti N, Si IC, Ti N, -♂・
...but the base material, TiN, SiC, TiN
, Si C, etc. may be used in any order.
本発明において、被膜としてSiCおJ:び−「iN@
選んだ理由は、SiCは熱伝導性に富み硬さが高いが、
被1’)!l々4との科学的な反応が特にFc基祠判に
おいて生じやすい。一方TiNは熱伝導性がやや悪<r
IllIさがやや低いが、イミ1学的な安定性が高いこ
と、従ってsr c、 T+ N両者が相71の性質を
補完する働さをするためである。In the present invention, SiC film is used as a coating.
The reason for choosing it is that SiC has high thermal conductivity and high hardness, but
Cover 1')! Scientific reactions with l4 are particularly likely to occur in Fc bases. On the other hand, TiN has slightly poor thermal conductivity <r
This is because although the IllI is somewhat low, the imitological stability is high, and therefore both src and T+N work to complement the properties of phase 71.
本発明による製造方法、特に被覆層の形成方法は、化学
気相蒸着法に83いて従来からSiCのCV I)被覆
に用いられているT1およびNを含んだi化合ガスとS
lおよびCを含lυだガスを交互に間欠的に導入するこ
とで簡潔かつ有効に多重被N膜形成が可能どなる。The manufacturing method according to the present invention, particularly the method for forming a coating layer, uses an i compound gas containing T1 and N, which is conventionally used for CV I) coating of SiC, and S
By alternately and intermittently introducing gases containing l and C, it becomes possible to form multiple N films simply and effectively.
さらに従来より知られ°Cいるように、化学気相蒸着法
を用いる場合StC被膜形成温度は約1300’C,T
iN被膜形成温度は970°0と低い。し1=かってS
IC被覆からTiN被覆へ、あるいは逆にTiN被覆か
らSiC被覆へと切替えるどきに被覆温度を変更する必
要があり、このときに被覆粒子の異状成長が生じること
を避けられず、被膜の性質が劣化覆る原因どなっている
。Furthermore, as is conventionally known, when chemical vapor deposition is used, the StC film formation temperature is approximately 1300'C, T.
The iN film formation temperature is as low as 970°0. shi1=katteS
When switching from IC coating to TiN coating, or conversely from TiN coating to SiC coating, it is necessary to change the coating temperature, and at this time, it is inevitable that abnormal growth of coating particles will occur, resulting in deterioration of the properties of the coating. What's the reason for it being covered?
どころか本願発明者らは、ガスを間欠的に切換えて導入
した場合には、気相からの析出粒子の核生成類1良は多
くなるが成長3a度は遅くなることを見出し、これに基
づいて本発明を完成したものである。従って、本発明に
おいては、ガスを間欠的に混入させることが望ましく、
これにより−r−iNを被覆する温度をStCと同一の
高度に洪lυても、微細な粒子を得ることができるとい
う優れた効果が得られる。この場合電磁場をか()℃プ
ラズマ状態どして活性化蒸着を行なうことももちろlυ
可11シである。On the contrary, the inventors of the present invention have found that when the gas is intermittently switched and introduced, the number of nucleation types 1-1 of precipitated particles from the gas phase increases, but the growth of 3-a degrees is slowed down, and based on this, This completes the present invention. Therefore, in the present invention, it is desirable to mix the gas intermittently,
As a result, even if the coating temperature of -r-iN is raised to the same temperature as that of StC, an excellent effect can be obtained in that fine particles can be obtained. In this case, it is of course possible to perform activated deposition by changing the electromagnetic field to ()℃ plasma state.
It is 11 shi.
また、本発明において、多重被覆層は少’t7 くとも
8層以上、望ましくは20層以上が良い、、8層未満で
は前述した多重被覆の効果が十分発揮でき4ヱい。また
各単層の厚みは、被覆月利層間の歪を均一に分散さU゛
るために、1μm以下好ましくは0.5μm以下が良い
。これは、1μn1を越えると耐欠損性が劣化するため
である。In addition, in the present invention, the multiple coating layer is preferably at least 8 layers, preferably 20 layers or more; less than 8 layers cannot sufficiently exhibit the effect of the multiple coating described above. Further, the thickness of each single layer is preferably 1 μm or less, preferably 0.5 μm or less, in order to uniformly disperse strain between the covering layers. This is because if it exceeds 1 μn1, the fracture resistance deteriorates.
実施例1
WC−6%CO超硬合金上にsic、 T; N被膜を
交互に各層0.1μ+n 、金側 6μmの被膜を被覆
した。このチップを試別Aとづる。Example 1 A WC-6%CO cemented carbide was coated with sic, T;N films alternately each layer having a thickness of 0.1 μm+n and a film having a thickness of 6 μm on the gold side. This chip will be referred to as Assay A.
同時に比較材として、上記超硬合金上に下層にSiC”
、上層にTiNをそれぞれ3μmずつ合46μmの膜厚
を有する被膜を被覆した。このチツゾを81(旧Bどづ
る。これら2種の試料を以下の切削糸1′1、叩15、
被削祠 30M3
切削速度 200…/口111]
1ffl リ 0.3nv/
rev切り込み 2m01
にくり削デス1〜を行なった。At the same time, as a comparative material, SiC" was added as a lower layer on the above cemented carbide.
The upper layer was coated with a film having a thickness of 46 μm by adding 3 μm of TiN to each layer. This chitsuzo is 81 (former B Dozuru. These two types of samples are cut with the following cutting thread 1'1, pounding 15, workpiece 30M3, cutting speed 200.../mouth 111] 1ffl ri 0.3nv/
rev cut 2m01 I did the nickel cutting process 1~.
比較量のBチップは40分でフランク部の摩耗が進?J
シズテ命に至ったのに対し、本発明ににるAデツプ(
J、80分間の切削ても良好な切削性能を示した。Does the flank part of the comparative B chip wear out after 40 minutes? J
In contrast, the A depth according to the present invention (
J, showed good cutting performance even after cutting for 80 minutes.
実施例2
WC−43%−11(>8%−1−aC−6%Co超硬
合金上にl−1N、SiC被膜を各層0.05μm合1
1871mの被膜を被覆した。このデツプを試料Cどり
る。同時に比較量どして同じ超硬合金上に下層に一1’
iN、上層にSiCをそれぞれ3μm、5μm 1合8
18μn1の膜厚を有する被膜を被覆した。Example 2 WC-43%-11 (>8%-1-aC-6%Co cemented carbide with l-1N, SiC coating, each layer 0.05 μm thick)
1871 m of coating was applied. Take sample C from this depth. At the same time, a comparative amount was added to the lower layer on the same cemented carbide.
iN, upper layer SiC 3μm, 5μm respectively 1 go 8
A coating having a film thickness of 18 μn1 was applied.
このデツプを試11 Dとづる。This depth is called Trial 11D.
次にこれ1う2f重の試料を以下の断続切削条件、即ら
切削速度 220m/+++in
送 リ 0.4mm/ rev
切り込み 1.5mm
被削拐 30M3
101111111m の)b1イ;J eにて切削テ
ス1−を行なった。Next, this 1-2f sample was cut under the following interrupted cutting conditions: cutting speed 220 m/+++in feed rate 0.4 mm/rev
Cutting test 1- was carried out at )b1a;Je with depth of cut of 1.5mm and workpiece depth of 30M3, 101111111m.
仕較月のDデツプは15回の衝撃で欠損したが、本発明
ににる試!l!il Cチップは270回の1Φi撃゛
Cも欠損に至らなかった。The D-depth of the trial month was damaged by 15 impacts, but the present invention will work! l! The il C chip did not break even after 270 1Φi shots.
以上詳述した如く、本発明にJ:れば、S; C。As detailed above, the present invention includes J:, S; C.
1iNの薄い被膜を交互に多重波)WりることにJ、す
、耐塵耗性、′に4衝撃性に富む被T(i超硬含金を1
−することができるのでその工業」二の効果は人(′あ
る。A thin coating of 1iN (multiple waves) is applied alternately to a coating with high impact resistance.
-The second effect is that people (') can do so.
Claims (1)
N曇サーメットの表面に、S i CおにびTiNより
なる被覆層が、単層の厚さ1μm以下であって、合31
2〜15μmの厚さに交互に少くとも8層以上多重被覆
されてなることを特徴とすg多重被覆材料。 2、上記単層の厚さが0.5μm以下であることを特徴
とする特許請求の範囲第1項記載の多重被覆材料。 3、上記被覆層が20層以上であることを特徴とする特
許請求の範囲第1項または第2項記載の多重波%′j1
材料。 4、WCC超超硬合金SiC基”す゛−メット、または
TiN基1ノーメツ]−を基体として装入しである炉内
に、1− iおよびNを含んだ混合ガスと3iおよびC
を含んだ混合ガスを、交互に間欠的に導入し、化学蒸着
法にでSiCどTiNを交互にかっ多層被覆することを
特徴とする多重波m +A M’31の製造法。[Claims] 1. WCC cemented carbide TiC-based cermet or Ti
On the surface of the N cloudy cermet, there is a coating layer made of SiC and TiN with a single layer thickness of 1 μm or less, and a total of 31
1. A multi-coated material, characterized in that it is formed by alternately coating at least 8 or more layers to a thickness of 2 to 15 μm. 2. The multi-coated material according to claim 1, wherein the thickness of the single layer is 0.5 μm or less. 3. Multiplexed wave %'j1 according to claim 1 or 2, characterized in that the coating layer is 20 or more layers.
material. 4. A mixed gas containing 1-i and N and 3i and C
A method for producing a multi-wave m+A M'31, which is characterized by alternately and intermittently introducing a mixed gas containing .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13591482A JPS5925973A (en) | 1982-08-04 | 1982-08-04 | Multiply coated material and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13591482A JPS5925973A (en) | 1982-08-04 | 1982-08-04 | Multiply coated material and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5925973A true JPS5925973A (en) | 1984-02-10 |
JPS6112030B2 JPS6112030B2 (en) | 1986-04-05 |
Family
ID=15162784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13591482A Granted JPS5925973A (en) | 1982-08-04 | 1982-08-04 | Multiply coated material and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5925973A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585583A1 (en) * | 1992-07-31 | 1994-03-09 | Ykk Corporation | Hard multilayer film and method for production thereof |
JP2013515455A (en) * | 2009-12-21 | 2013-05-02 | ホガナス アクチボラグ (パブル) | Rotor for modulating pole machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52105396A (en) * | 1976-02-28 | 1977-09-03 | Toshiba Tungaloy Co Ltd | Wear proof damage proof multiilayer coating material |
JPS55137803A (en) * | 1979-04-09 | 1980-10-28 | Mitsubishi Metal Corp | Cutting tool covered with cemented carbide and manufacture thereof |
-
1982
- 1982-08-04 JP JP13591482A patent/JPS5925973A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52105396A (en) * | 1976-02-28 | 1977-09-03 | Toshiba Tungaloy Co Ltd | Wear proof damage proof multiilayer coating material |
JPS55137803A (en) * | 1979-04-09 | 1980-10-28 | Mitsubishi Metal Corp | Cutting tool covered with cemented carbide and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585583A1 (en) * | 1992-07-31 | 1994-03-09 | Ykk Corporation | Hard multilayer film and method for production thereof |
JP2013515455A (en) * | 2009-12-21 | 2013-05-02 | ホガナス アクチボラグ (パブル) | Rotor for modulating pole machine |
Also Published As
Publication number | Publication date |
---|---|
JPS6112030B2 (en) | 1986-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5915162A (en) | Coated cutting tool and a process for the production of the same | |
US5972495A (en) | Alumina coated tool and production method thereof | |
US5364209A (en) | CVD and PVD coated cutting tools | |
EP2276874B1 (en) | A coated cutting tool and a method of making thereof | |
KR20120140642A (en) | Method for high speed machining and coated cutting tool | |
JP4004133B2 (en) | Titanium carbonitride coated tool | |
JPH068008A (en) | Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property | |
JP2003117706A (en) | Covered tool | |
JPS6173882A (en) | Material coated with very hard layer | |
JPS5925973A (en) | Multiply coated material and its manufacture | |
JPS6112029B2 (en) | ||
JP2876130B2 (en) | Coated cutting tool | |
JPS586969A (en) | Surface clad sintered hard alloy member for cutting tool | |
JPS6354495B2 (en) | ||
JPH0364469A (en) | Coated sintered hard alloy tool | |
JPS6229507B2 (en) | ||
JPH0433865B2 (en) | ||
JPS5959879A (en) | Multi-coated material and its production | |
JPS58209554A (en) | Multiple coating material and its manufacture | |
JPS6146436B2 (en) | ||
JPH04240005A (en) | Cutting tool made of hard layer covering sintered hard alloy and manufacture thereof | |
JPH0515786B2 (en) | ||
JPH01180980A (en) | Coated tool material | |
JP2002192401A (en) | Coated tool and method of manufacturing the same | |
JPH0890311A (en) | Composite head layer surface coat cutting tool |