JPS6229507B2 - - Google Patents
Info
- Publication number
- JPS6229507B2 JPS6229507B2 JP57135954A JP13595482A JPS6229507B2 JP S6229507 B2 JPS6229507 B2 JP S6229507B2 JP 57135954 A JP57135954 A JP 57135954A JP 13595482 A JP13595482 A JP 13595482A JP S6229507 B2 JPS6229507 B2 JP S6229507B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- amorphous
- vapor deposition
- chemical vapor
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims 1
- 150000001247 metal acetylides Chemical class 0.000 claims 1
- 239000010410 layer Substances 0.000 description 26
- 238000005229 chemical vapour deposition Methods 0.000 description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Description
(イ) 技術分野
本発明は切削工具、耐摩部品に用いられる被覆
超硬合金の改良に関するものである。
(ロ) 背景技術
超硬合金を母材として内層にTiC、TiNを被覆
したのち外層として1〜3μのAl2O3を被覆した
コーテイング工具は表面の耐摩耗性と母材の強靭
性を兼ねそなえており優れた切削工具として広く
使用されている。しかしながら要求される切削条
件は年々苛酷になつており切削速度で200m/
min.から300m/min.を越える場合も多くなつて
いる。このような高速切削域では上記のアルミナ
コーテイング工具でも寿命が短く、より高性能の
アルミナコーテイング工具が要求されるようにな
つている。この高性能化のためには表面層のアル
ミナ膜厚をより厚膜化することによりAl2O3の耐
酸化性、耐熱性、耐摩耗性の特性を充分に生かす
ことによつて達成し得ることが考えられる。しか
し通常の化学蒸着法ではAl2O3膜の成長速度が遅
く良質の厚膜Al2O3層から得られにくいのが現状
である。化学蒸着法で成長速度を高めるためには
温度を上げるかドーピング剤を添加するなどの手
法が用いられるがAl2O3粒度が粗くなる、Al2O3
膜純度が低下し性能が劣化するなどの欠点があり
好ましくない。
また、スパツタリング等の物理蒸着法及びプラ
ズマ化学蒸着法は結晶成長速度は高いが接着強度
が低く、高速切削用工具には適さない。
(ハ) 発明の開示
本発明は以上述べた問題点を解消し、高速切削
用に性能の良好な厚膜アルミナコーテイング工具
用被覆超硬合金を提供するものである。
本発明品の特徴は超硬合金の母材表面に内層と
してTiの炭化物、窒化物、炭窒化物、SiC、及び
Si3N4の1種または2種以上被覆され、その上に
外層として2μまで微粒の結晶化Al2O3を化学蒸
着法で被覆し、更にその表面にはプラズマ化学蒸
着法と化学蒸着法とを繰返すことによつて非晶質
Al2O3または非晶者Al2O3と結晶化Al2O3の混合層
と結晶化Al2O3のみの層との積層構造の被覆を施
したコーテイング工具である。被覆厚みは内層は
1〜10μ、外層のAl2O3層は全体で3〜10μであ
つて外層の内層に隣接する2μまでが化学蒸着法
による微結晶化Al2O3でありそれ以上のAl2O3最
外層(1〜8μ)は非晶質Al2O3と結晶化Al2O3
との積層になつているのが特徴である。
内層に最隣接するアルミナ膜は化学蒸着法で生
成するアルミナであるため密着強度が高く、引き
続き行われるプラズマ化学蒸着法で生成するアル
ミナは成長速度が高いためAl2O3膜厚を厚くする
ことができる。又外層のAl2O3の内層に最隣接す
るAl2O3と外表部のAl2O3とは極めて接着性が良
く、従来のプラズマ化学蒸着法のみによる場合の
下層との剥離等の現象が全くみれなかつた。
又、Al2O3膜厚が数μ以上の厚膜Al2O3コーテ
イング工具は耐摩耗性は優れるが、Al2O3膜が脆
性材料であるため刃先強度が低く、刃先部の欠
損、チツピング等による工具寿命の問題があつた
が、本発明はこの問題を解消するため、化学蒸着
法とプラズマ化学蒸着法を交互に繰返すことによ
つて非晶質と結晶質又は結晶質と非晶質の混合層
との積層構造の被覆層とすることによつて刃先強
度を著しく高めることに成功したのである。
又、外表部のアルミナは非晶質もしくは非晶質
と結晶化アルミナの混合にすることによつて1μ
以下の微細なAl2O3層が得られることを見出し
た。
プラズマ化学蒸着法においてもある条件化では
結晶質Al2O3が得られるが、全て結晶化アルミナ
であると粗粒の膜質となつて耐摩耗性が若干劣る
がアルミナのもつ耐熱性、化学的安定性は損なわ
れず本発明の範囲に入る。
内層はアルミナよりも超硬合金母材との密着性
の良い物質としてTiC、TiN、TiCN、SiC、
Si3N4が選択された。その膜厚は1〜10μであ
り、1μ以下では密着性の向上は難かしく、10μ
以上では密着性の向上には効果がない。又外層の
Al2O3は10μを越えると靭性が低下し、3μ以下
では本発明の化学蒸着法とプラズマ化学蒸着法と
の連続プロセスを用いることの利点が失われ、ま
た高速切削用工具として性能が発揮できない。
又内層に最隣接する化学蒸着法によるアルミナ
膜厚が2μ以上では高速切削に耐えうる接着性が
得られない。
以下実施例によつて説明する。
実施例 1
ISO、P30超硬合金からなるSNG432のチツプに
1000℃で5%TiCl4、5%CH4、40%N2残H2の
60Torrの雰囲気中で1時間保持しTiCNを3μ被
覆した。この表面に同じく化学蒸着法で950℃に
て5%AlCl3、10%CO2、残H2、30Torrの雰囲気
中で、3時間保持してAl2O3を1μ被覆し、引き
続き5%AlCl3、5%CO2、90%H2、2Torrの減
圧下にて、13.56MHzの高周波電力200Wで30分間
かけたのち、高周波電力を切つて反応圧力
30Torrで2時間保持してから再度200Wの高周波
電力をかけて30分間保持した。得られた被覆超硬
合金の被覆層をX線解析及び組織観察したとこ
ろ、外表部から2μのアモルフアスAl2O3、1μ
のα−Al2O3、2μのアモルフアスAl2O3、1μ
のα−Al2O3、3μのTiCNが生成していた。こ
れをAとする。
又、3%AlCl3、10%CO2、87%H2、2Torr中
で、同様に高周波電力400Wを30分間、電力を切
つて2時間、さらに200Wの電力で30分間保持し
た。この方法で得た被覆層は外表部から、2μの
Al2O3(うち80%がアモルフアスAl2O3)、1μの
α−Al2O3、2μのAl2O3(20%がアモルフアス
Al2O3)、1.5のα−Al2O3、3μのTiCNであつ
た。これをBとする。
比較のために5μのα−Al2O3を外層とし、3
μのTiCNを内層とする全て通常の化学蒸着法で
作成した被覆超硬合金(母材は上記と同じ)をC
とする。上記の試料を次の切削条件にてテストし
た結果を第1表に示す。
被削材:FC30
切削速度:300m/min.
切り込み:0.5mm
送り:0.4mm/rev.
(a) Technical field The present invention relates to improvements in coated cemented carbide used for cutting tools and wear-resistant parts. (B) Background technology A coated tool that uses cemented carbide as a base material and coats the inner layer with TiC and TiN, and then coats the outer layer with 1 to 3 μm of Al 2 O 3 has both the wear resistance of the surface and the toughness of the base material. It is widely used as an excellent cutting tool. However, the required cutting conditions are becoming more severe year by year, and the cutting speed is now 200 m/200 m/s.
It is becoming more common for speeds to exceed 300 m/min. In such a high-speed cutting range, even the alumina-coated tools described above have a short life, and alumina-coated tools with higher performance are now required. This high performance can be achieved by increasing the thickness of the alumina film on the surface layer, making full use of the oxidation resistance, heat resistance, and wear resistance properties of Al 2 O 3 . It is possible that However, the growth rate of the Al 2 O 3 film is slow with the ordinary chemical vapor deposition method, and it is currently difficult to obtain a high-quality thick Al 2 O 3 layer. In order to increase the growth rate in chemical vapor deposition, methods such as increasing the temperature or adding doping agents are used, but the grain size of Al 2 O 3 becomes coarser.
This is not preferable because it has drawbacks such as a decrease in membrane purity and performance deterioration. In addition, physical vapor deposition methods such as sputtering and plasma chemical vapor deposition methods have high crystal growth rates but low adhesive strength, and are not suitable for high-speed cutting tools. (C) Disclosure of the Invention The present invention solves the above-mentioned problems and provides a coated cemented carbide for thick-film alumina-coated tools that has good performance for high-speed cutting. The characteristics of the product of the present invention are that Ti carbide, nitride, carbonitride, SiC, and Ti carbide, nitride, carbonitride, SiC, and
Si 3 N 4 is coated with one or more types of Si 3 N 4 , and on top of that, fine crystallized Al 2 O 3 of up to 2 μm is coated as an outer layer by chemical vapor deposition, and the surface is coated with plasma chemical vapor deposition and chemical vapor deposition. amorphous by repeating
This coating tool has a layered structure of a mixed layer of Al 2 O 3 or amorphous Al 2 O 3 and crystallized Al 2 O 3 and a layer of only crystallized Al 2 O 3 . The coating thickness is 1 to 10μ for the inner layer, 3 to 10μ for the outer Al 2 O 3 layer, and the outer layer up to 2μ adjacent to the inner layer is microcrystallized Al 2 O 3 by chemical vapor deposition, and the thickness of the outer layer is 3 to 10μ. The outermost layer of Al2O3 (1~8μ) is amorphous Al2O3 and crystallized Al2O3
It is characterized by being laminated with. The alumina film closest to the inner layer is alumina produced by chemical vapor deposition, so it has high adhesion strength, and the alumina produced by the subsequent plasma chemical vapor deposition has a high growth rate, so the thickness of the Al 2 O 3 film must be increased. I can do it. In addition, the Al 2 O 3 closest to the inner layer of the outer layer and the Al 2 O 3 on the outer surface have extremely good adhesion, which prevents phenomena such as separation from the lower layer when using only the conventional plasma chemical vapor deposition method. I couldn't see it at all. In addition, thick-film Al 2 O 3 coated tools with an Al 2 O 3 film thickness of several microns or more have excellent wear resistance, but because the Al 2 O 3 film is a brittle material, the strength of the cutting edge is low, resulting in damage to the cutting edge, There was a problem with tool life due to chipping, etc., but the present invention solves this problem by alternately repeating chemical vapor deposition and plasma chemical vapor deposition to produce amorphous and crystalline or crystalline and amorphous materials. By creating a coating layer with a laminated structure with a mixed layer of high quality, they succeeded in significantly increasing the strength of the cutting edge. In addition, the alumina on the outer surface can be amorphous or a mixture of amorphous and crystallized alumina to reduce the thickness to 1μ.
It was found that the following fine Al 2 O 3 layer could be obtained. Crystalline Al 2 O 3 can also be obtained under certain conditions in the plasma chemical vapor deposition method, but if it is made entirely of crystallized alumina, the film will have coarse grains and its wear resistance will be slightly inferior, but the heat resistance and chemical Stability is not compromised and falls within the scope of the present invention. The inner layer is made of TiC, TiN, TiCN, SiC, and other materials that have better adhesion to the cemented carbide base material than alumina.
Si3N4 was selected . The film thickness is 1 to 10μ; if it is less than 1μ, it is difficult to improve adhesion;
The above is not effective in improving adhesion. Also, the outer layer
When Al 2 O 3 exceeds 10μ, the toughness decreases, and when it is less than 3μ, the advantage of using the continuous process of the chemical vapor deposition method and plasma chemical vapor deposition method of the present invention is lost, and the performance as a high-speed cutting tool is lost. Can not. Furthermore, if the thickness of the alumina film formed by chemical vapor deposition that is closest to the inner layer is 2 μm or more, adhesion that can withstand high-speed cutting cannot be obtained. This will be explained below using examples. Example 1 SNG432 chip made of ISO, P30 cemented carbide
5% TiCl 4 , 5% CH 4 , 40% N 2 balance H 2 at 1000 °C
It was maintained in an atmosphere of 60 Torr for 1 hour and coated with 3μ of TiCN. This surface was coated with 1μ of Al 2 O 3 by the same chemical vapor deposition method at 950°C in an atmosphere of 5% AlCl 3 , 10% CO 2 , residual H 2 , and 30 Torr for 3 hours, and then 5% AlCl 3. Under reduced pressure of 5% CO 2 , 90% H 2 and 2 Torr, apply high frequency power of 200 W at 13.56 MHz for 30 minutes, then turn off the high frequency power and reduce the reaction pressure.
After holding at 30 Torr for 2 hours, high frequency power of 200 W was applied again and holding for 30 minutes. When the coating layer of the obtained coated cemented carbide was subjected to X-ray analysis and structure observation, it was found that 2μ of amorphous Al 2 O 3 and 1μ of amorphous Al 2 O 3 from the outer surface.
α-Al 2 O 3 , 2μ amorphous Al 2 O 3 , 1μ
of α-Al 2 O 3 and 3μ of TiCN were generated. Let this be A. Further, in 3% AlCl 3 , 10% CO 2 , 87% H 2 , 2 Torr, high frequency power of 400 W was similarly applied for 30 minutes, the power was turned off for 2 hours, and then 200 W of power was maintained for 30 minutes. The coating layer obtained by this method has a thickness of 2μ from the outer surface.
Al 2 O 3 (of which 80% is amorphous Al 2 O 3 ), 1 μ α-Al 2 O 3 , 2 μ Al 2 O 3 (20% is amorphous Al 2 O 3 )
Al 2 O 3 ), 1.5 α-Al 2 O 3 and 3 μ TiCN. Let this be B. For comparison, 5 μ of α-Al 2 O 3 was used as the outer layer, and 3
C
shall be. Table 1 shows the results of testing the above samples under the following cutting conditions. Work material: FC30 Cutting speed: 300m/min. Depth of cut: 0.5mm Feed: 0.4mm/rev.
【表】
実施例 2
ISO、M10超硬合金からなるSNG432のチツプ
に、1100℃で、5%SiCl4、5%CH4、残H2、
60Torrの雰囲気中で、3時間保持して3μのSiC
を生成させ、その表面に、950℃で5%AlCl3、10
%CO2、残H2、30Torrの雰囲気中で1.5時間保持
して0.5μのα−Al2O3を被覆した。更にこの上に
実施1と同じ要領によつて、外表部から1μのア
モルフアスAl2O3、2μのAl2O3(20%a−
Al2O3、80%α−Al2O3)の積層被覆(Dとする)
及び外表部が3μのアモルフアスAl2O3被覆(E
とする)を行つた。又比較材として3.5μのα−
Al2O3を外層と、3μのSiCを内層とするもの(F)
を化学蒸着法で作製し、実施例1と同じ切削条件
でテストした。結果を第2表に示す。[Table] Example 2 A chip of SNG432 made of ISO, M10 cemented carbide was exposed to 5% SiCl 4 , 5% CH 4 , residual H 2 ,
3μ SiC in 60Torr atmosphere for 3 hours
5% AlCl 3 at 950℃, 10
% CO 2 , balance H 2 , 30 Torr for 1.5 hours and coated with 0.5 μ of α-Al 2 O 3 . Furthermore, in the same manner as in Example 1, 1μ of amorphous Al 2 O 3 and 2μ of Al 2 O 3 (20% a-
Al 2 O 3 , 80% α-Al 2 O 3 ) laminated coating (designated as D)
and an amorphous Al 2 O 3 coating (E
). Also, as a comparison material, 3.5μ α-
One with Al 2 O 3 as the outer layer and 3μ SiC as the inner layer (F)
was prepared by chemical vapor deposition and tested under the same cutting conditions as in Example 1. The results are shown in Table 2.
【表】
実施例 3
ISO M10超硬合金からなるSNG432のチツプ
に、1000℃で5%TiCl4、5%CH4、残H2、
60Torrの雰囲気中で2時間保持して、3μmの
TiCを生成した。同じ温度で、5%TiCl4、40%
N2、残H2、60Torrの雰囲気中で、2.5時間保持
し、3μmのTiNを、また1100℃で5%SiCl4、
10%NH3、30%N2、残H2、60Torrの雰囲気中で
5時間保持して3μmのSi3N4を生成した。その
表面に950℃で5%AlCl3、20%CO2、残H2の
40Torr雰囲気中で6時間保持して5μmのα−
Al2O3を被覆した。
更にこの表面に実施例1と同様にして2μmの
アモルフアスAl2O3とα−Al2O3の混合層と0.5μ
mのα−Al2O3を生成させた。
これを実施例1と同切削条件でテストを行つ
た。この時、比較品として3μmのTiCの表面に
3μmのα−Al2O3を被覆したものを用いた。
テスト結果を第3表に示す。[Table] Example 3 A chip of SNG432 made of ISO M10 cemented carbide was exposed to 5% TiCl 4 , 5% CH 4 , residual H 2 ,
It was kept in an atmosphere of 60 Torr for 2 hours, and a thickness of 3 μm was obtained.
TiC was generated. At the same temperature, 5% TiCl4 , 40%
In an atmosphere of N 2 , residual H 2 and 60 Torr, 3 μm TiN was stored for 2.5 hours, and 5% SiCl 4 was removed at 1100°C.
It was held for 5 hours in an atmosphere of 10% NH 3 , 30% N 2 , residual H 2 and 60 Torr to produce 3 μm Si 3 N 4 . The surface was exposed to 5% AlCl 3 , 20% CO 2 and residual H 2 at 950°C.
5 μm α-
Coated with Al2O3 . Furthermore, in the same manner as in Example 1, a 2 μm mixed layer of amorphous Al 2 O 3 and α-Al 2 O 3 and a 0.5 μm layer were formed on this surface.
m of α-Al 2 O 3 was produced. This was tested under the same cutting conditions as in Example 1. At this time, as a comparison product, a 3 μm TiC surface coated with 3 μm α-Al 2 O 3 was used. The test results are shown in Table 3.
Claims (1)
Tiの炭化物、窒化物、炭窒化物、SiC、Si3N4の
1種または2種以上からなり、外層の内層に最隣
接する2μ以下のAl2O3層は結晶化Al2O3であ
り、外層の2μm以上の層は非晶質Al2O3層また
は非晶質Al2O3と結晶化Al2O3の混合層と、結晶
化Al2O3層とが交互に3層以上積層してなること
を特徴とする被覆超硬合金。1 The base material is cemented carbide, the outer layer is Al 2 O 3 , and the inner layer is
It consists of one or more of Ti carbides, nitrides, carbonitrides, SiC, and Si 3 N 4 , and the Al 2 O 3 layer of 2μ or less that is closest to the inner layer of the outer layer is crystallized Al 2 O 3 . Yes, the outer layer with a thickness of 2 μm or more consists of three layers of amorphous Al 2 O or a mixed layer of amorphous Al 2 O 3 and crystallized Al 2 O 3 , and three layers of crystallized Al 2 O 3 alternately. A coated cemented carbide characterized by being formed by laminating the above layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13595482A JPS5925970A (en) | 1982-08-03 | 1982-08-03 | Coated sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13595482A JPS5925970A (en) | 1982-08-03 | 1982-08-03 | Coated sintered hard alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5925970A JPS5925970A (en) | 1984-02-10 |
JPS6229507B2 true JPS6229507B2 (en) | 1987-06-26 |
Family
ID=15163720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13595482A Granted JPS5925970A (en) | 1982-08-03 | 1982-08-03 | Coated sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5925970A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60177179A (en) * | 1984-02-23 | 1985-09-11 | Toshiba Corp | Black ornamental article |
DE4239234A1 (en) * | 1992-11-21 | 1994-06-09 | Krupp Widia Gmbh | Tool and method for coating a tool body |
DE19815677C2 (en) * | 1998-04-08 | 2002-02-07 | Dresden Ev Inst Festkoerper | Composite body and method for its production |
JP5831704B2 (en) * | 2012-03-06 | 2015-12-09 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer |
JP5892335B2 (en) * | 2012-07-27 | 2016-03-23 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance with hard coating layer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57135441A (en) * | 1981-02-13 | 1982-08-21 | Sony Corp | Magnetic recording medium |
-
1982
- 1982-08-03 JP JP13595482A patent/JPS5925970A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57135441A (en) * | 1981-02-13 | 1982-08-21 | Sony Corp | Magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPS5925970A (en) | 1984-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4746563A (en) | Multilayer coated cemented carbides | |
US4474849A (en) | Coated hard alloys | |
US4990403A (en) | Diamond coated sintered body | |
KR20000005021A (en) | Substrate having hard coating containing boron and nitrogzn and its manufactwring mathod | |
JP4004133B2 (en) | Titanium carbonitride coated tool | |
EP0446375B1 (en) | Surface-coated hard member for cutting and abrasion-resistant tools | |
JP3671623B2 (en) | Coated cemented carbide | |
JPS6117909B2 (en) | ||
JPS6229507B2 (en) | ||
JPS6173882A (en) | Material coated with very hard layer | |
JP3282592B2 (en) | Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting | |
JPH0549750B2 (en) | ||
JPH11335870A (en) | Titanium carbonitride-aluminum oxide-coated tool | |
JPS6148582B2 (en) | ||
JPH10204639A (en) | Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance | |
JP3360565B2 (en) | Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance | |
EP0435272A1 (en) | Diamond-coated bodies and process for preparation thereof | |
JPS62290870A (en) | Manufacture of coated hard member | |
JPS63306805A (en) | Diamond coated cutting tool | |
JPH01180980A (en) | Coated tool material | |
JPS6244572A (en) | Surface coated tool | |
JPS6136586B2 (en) | ||
JPS5925972A (en) | Coated hard member | |
JP2668221B2 (en) | Coated cemented carbide | |
JPH0515786B2 (en) |