JPS6148582B2 - - Google Patents
Info
- Publication number
- JPS6148582B2 JPS6148582B2 JP13634782A JP13634782A JPS6148582B2 JP S6148582 B2 JPS6148582 B2 JP S6148582B2 JP 13634782 A JP13634782 A JP 13634782A JP 13634782 A JP13634782 A JP 13634782A JP S6148582 B2 JPS6148582 B2 JP S6148582B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- coated
- cemented carbide
- amorphous
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 33
- 239000010410 layer Substances 0.000 claims description 27
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011247 coating layer Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910003178 Mo2C Inorganic materials 0.000 description 1
- 101150105594 SCM3 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- DWCMDRNGBIZOQL-UHFFFAOYSA-N dimethylazanide;zirconium(4+) Chemical compound [Zr+4].C[N-]C.C[N-]C.C[N-]C.C[N-]C DWCMDRNGBIZOQL-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MNWRORMXBIWXCI-UHFFFAOYSA-N tetrakis(dimethylamido)titanium Chemical compound CN(C)[Ti](N(C)C)(N(C)C)N(C)C MNWRORMXBIWXCI-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
(イ) 技術分野
本発明はアルミナ被覆超硬合金工具の改良に関
する。
(ロ) 背景技術
超硬合金にアルミナを被覆して切削性能を高め
たいわゆるアルミナコーテイング工具は、市場の
切削速度の高速化に伴い主力工具として広く使用
される。しかしながら直接、超硬合金にアルミナ
を被覆した場合、その接着性等、種々問題があ
り、これらを解決するために、超硬合金を周期律
表a、a、a族の炭化物、窒化物等で被覆
した後、外層にアルミナを被覆するという方法が
採用されている。
このアルミナは結晶粒度で特性が変化すること
が知られており、切削工具としての性能は微粒の
方が良好である。このアルミナ層の粒度を細かく
する方法としては、低温で反応速度を落とし、粒
成長を抑制することが一般的な方法ではあるが、
アルミナは元素、TiC、TiN等に比較して成長速
度が遅いため、微粒なアルミナ層をもつコーテイ
ング工具は性能は優れるが生産性が劣るので、性
能を犠牲にして生産性をあげているのが現状であ
る。
(ハ) 発明の開示
本発明者等は、このアルミナの特性を充分に発
揮し、しかも簡便に製造しうるアルミナ被覆工具
を提供すべく研究を重ねた結果、アルミナとして
アモルフアスアルミナと結晶化アルミナとが同時
に生成されるような条件下で得られる、アモルフ
アスアルミナと結晶化アルミナとから構成される
アルミナ膜が、微粒で緻密であり、しかも生産性
が大であることを見出し、本発明に到達したもの
である。
すなわち、AlCl3、H2、CO2もしくはH2Oの雰
囲気中、500〜900℃の低温下でのプラズマ化学蒸
着法またはTi、Zrの有機化合物、もしくはBCl3
等の微量のドーピング物質の存在下での化学蒸着
法により、アモルフアスアルミナと結晶化アルミ
ナとが同時に生成され、しかもこのとき0.5μm
以下の微粒のアルミナ膜が成長することを見出し
たものである。またアルミナのプラズマ化学蒸着
においてドーピング剤としてジメチルアミドチタ
ニウム〔Ti(NMe2)4〕、ジメチルアミドジルコニ
ウム〔Zr(NMe2)4〕等の有機化合物、もしくは
BCl3等を対AlCl3流量に対して0.2以下の比率にお
いて存在させれば、アルミナの成長速度が著しく
速くなり生産性が高くなつて有利である。このア
ルミナ層の粒度およびアモルフアスアルミナ量
は、反応温度、反応ガス組成、プラズマ密度、ド
ーピング量に変化するが、工具材料としては0.01
〜0.5μmの粒度範囲で充分な性能を発揮し、ま
たアモルフアスアルミナは結晶化アルミナに比べ
硬度が低いため、その量は全アルミナ中に60容量
%以上では耐摩耗性が劣るため好ましくなく、10
%以下ではアルミナ粒度が微粒になりにくいの
で、10〜60容量%の範囲が適当である。
外層のアモルフアスアルミナと結晶化アルミナ
については、イオンプレーテイング、スパツタリ
ングなどの成長速度の速い物理蒸着法でも生成さ
れるが、該物理蒸着法では微粒で緻密な膜質を得
ることが困難であるため、上記の化学蒸着法によ
るものが好ましい。
アルミナ層の厚みは0.5〜10μmが好ましく、
0.5μm以下では耐摩耗性の向上が見られず、10
μmを越えると靭性が損なわれる。
また外層の密着性については、外層にアモルフ
アスアルミナが含有されているため、下地との接
着性が結晶化アルミナ単一層に比較して若干劣
る。このため内層としては、Ti、V、Cr、Mo、
W、Siの1種以上からなる炭化物、窒化物、炭窒
化物、硼化物、硼窒化物等を組合せたものが、工
具材料として要求される密着性を満足する。この
具体例としては、TiC、VC、Cr7C3、WC、
Mo2C、SiC、TiN、Si3N4、TiCN、TiB2、Ti
(BN)等が挙げられるが、例えば、TiCやTiNは
1000℃、50トールでTiCl4とCH4もしくはN2およ
びH2雰囲気を用いて通常の化学蒸着法により生
成させることができる。
膜厚は0.5〜5μmが最適で、5μm以上では
コーテイングチツプとしての勒性が下り、0.5μ
m以下では工具の塑性変形が起こり易い。
したがつて本発明はTi、V、Cr、Mo、W、Si
の1種以上の炭化物、窒化物、炭窒化物、硼化
物、硼窒化物の1種以上からなる内層、および
0.01〜0.5μmの粒度のアモルフアスアルミナと
結晶化アルミナで構成されるアルミナからなる外
層からなる被覆層を有することを特徴とする、被
覆超硬合金工具に関する。
また本発明は、超硬合金を母材とし、該母材表
面にTi、V、Cr、Mo、W、Siの1種以上の炭化
物、窒化物、炭窒化物、硼化物、硼窒化物の1種
以上からなる層を被覆し、次いでAlCl3、H2、
CO2もしくはH2Oの雰囲気中、500〜900℃でプラ
ズマ化学蒸着を行つて0.01〜0.5μmの粒度のア
モルフアスアルミナと結晶化アルミナで構成され
る層を更に被覆することからなる、被覆超硬合金
工具の製造方法に関する。
(ニ) 発明を実施するための最良の形態
実施例 1
P−30超硬合金に内層としてのTiCを化学蒸着
法で5μmの厚さで被覆し、しかる後、700℃、
1torr下にて1容量%AlCl3、10容量%CO2、89容
量%H2ガス中に13.56MHzの高周波電力500Wを
かけてプラズマを発生させて、Al2O3Cを0.1μ
m、5μm、10μmの厚さに被覆した。この
Al2O3膜の表面を走査型電子顕微鏡で調べたとこ
ろ、0.1μmの粒度の緻密な膜であり、X線回折
では弱いα−Al2O3のピークが認められた。
比較のため、P−30超硬合金を化学蒸着により
5μTiCで被覆したものの上に、粒度2μmの
Al2O3を0.1μm、5μm、10μmの厚さで被覆し
たコーテイングチツプをつくつた。
本発明および比較例のチツプについて、下記の
条件下で切削性能テストを行つた結果を第1表に
示す。
切削速度 300m/分
送り 0.4m/分
切込み 1.5mm
被削材 SCM3
(a) Technical Field The present invention relates to improvements in alumina-coated cemented carbide tools. (b) Background Art So-called alumina-coated tools, which improve cutting performance by coating cemented carbide with alumina, are widely used as main tools as cutting speeds increase in the market. However, when alumina is directly coated on cemented carbide, there are various problems such as its adhesion. After coating, a method is adopted in which the outer layer is coated with alumina. It is known that the properties of this alumina change depending on the crystal grain size, and fine grained alumina has better performance as a cutting tool. A common method to reduce the grain size of this alumina layer is to slow down the reaction rate at low temperatures and suppress grain growth.
Alumina has a slower growth rate than elements such as TiC, TiN, etc., so coating tools with a fine alumina layer have excellent performance but poor productivity, so productivity is increased at the expense of performance. This is the current situation. (C) Disclosure of the Invention As a result of repeated research in order to provide an alumina-coated tool that fully utilizes the properties of alumina and can be easily manufactured, the present inventors have discovered that amorphous alumina and crystallized alumina can be used as alumina. It was discovered that an alumina film composed of amorphous alumina and crystallized alumina obtained under conditions where amorphous alumina and crystallized alumina are simultaneously produced is fine and dense, and has high productivity, and has developed the present invention. It has been reached. Namely, in an atmosphere of AlCl 3 , H 2 , CO 2 or H 2 O, plasma chemical vapor deposition at a low temperature of 500 to 900°C or organic compounds of Ti, Zr, or BCl 3
Amorphous alumina and crystallized alumina are simultaneously produced by chemical vapor deposition in the presence of trace amounts of doping substances such as 0.5 μm
It was discovered that the following fine-grained alumina film grows. In addition, organic compounds such as dimethylamide titanium [Ti(NMe 2 ) 4 ], dimethylamide zirconium [Zr(NMe 2 ) 4 ], etc. are used as doping agents in the plasma chemical vapor deposition of alumina.
If BCl 3 or the like is present at a ratio of 0.2 or less to the flow rate of AlCl 3 , the growth rate of alumina will be significantly faster and productivity will be increased, which is advantageous. The particle size and amount of amorphous alumina in this alumina layer vary depending on the reaction temperature, reaction gas composition, plasma density, and doping amount, but as a tool material, 0.01
It exhibits sufficient performance in the particle size range of ~0.5 μm, and since amorphous alumina has lower hardness than crystallized alumina, it is not preferable to use more than 60% by volume of amorphous alumina because the wear resistance will be poor. Ten
% or less, the alumina particle size is difficult to become fine, so a range of 10 to 60% by volume is appropriate. The amorphous alumina and crystallized alumina of the outer layer can also be produced by physical vapor deposition methods that have a fast growth rate, such as ion plating and sputtering, but it is difficult to obtain a fine and dense film with these physical vapor deposition methods. , those by the above-mentioned chemical vapor deposition method are preferred. The thickness of the alumina layer is preferably 0.5 to 10 μm,
There is no improvement in wear resistance below 0.5 μm, and 10
If it exceeds μm, toughness will be impaired. Regarding the adhesion of the outer layer, since the outer layer contains amorphous alumina, the adhesion to the base is slightly inferior to that of a single layer of crystallized alumina. Therefore, the inner layer includes Ti, V, Cr, Mo,
A combination of carbides, nitrides, carbonitrides, borides, boronitrides, etc. made of one or more of W and Si satisfies the adhesion required as a tool material. Specific examples include TiC, VC, Cr 7 C 3 , WC,
Mo2C , SiC, TiN, Si3N4 , TiCN , TiB2 , Ti
(BN), etc., but for example, TiC and TiN
It can be produced by conventional chemical vapor deposition methods using TiCl 4 and CH 4 or N 2 and H 2 atmosphere at 1000° C. and 50 Torr. The optimum film thickness is 0.5 to 5 μm. If the thickness is more than 5 μm, the strength as a coating chip decreases.
m or less, plastic deformation of the tool is likely to occur. Therefore, the present invention uses Ti, V, Cr, Mo, W, Si.
an inner layer consisting of one or more of one or more of carbides, nitrides, carbonitrides, borides, and boronitrides, and
The present invention relates to a coated cemented carbide tool, characterized in that it has a coating layer consisting of an outer layer made of alumina made of amorphous alumina and crystallized alumina with a particle size of 0.01 to 0.5 μm. Further, the present invention uses a cemented carbide as a base material, and the surface of the base material contains one or more carbides, nitrides, carbonitrides, borides, and boronitrides of Ti, V, Cr, Mo, W, and Si. coated with a layer of one or more of AlCl 3 , H 2 ,
Supercoating consisting of a further coating of amorphous alumina and crystallized alumina with a grain size of 0.01-0.5 μm by plasma-enhanced chemical vapor deposition at 500-900°C in an atmosphere of CO 2 or H 2 O. This invention relates to a method for manufacturing hard metal tools. (d) Best Mode for Carrying Out the Invention Example 1 P-30 cemented carbide was coated with TiC as an inner layer to a thickness of 5 μm by chemical vapor deposition, and then heated at 700°C.
Plasma was generated by applying 500 W of high frequency power of 13.56 MHz in 1 volume % AlCl 3 , 10 volume % CO 2 , 89 volume % H 2 gas under 1 torr, and Al 2 O 3 C was 0.1μ
It was coated to a thickness of m, 5 μm, and 10 μm. this
When the surface of the Al 2 O 3 film was examined using a scanning electron microscope, it was found to be a dense film with a particle size of 0.1 μm, and a weak α-Al 2 O 3 peak was observed in X-ray diffraction. For comparison, P-30 cemented carbide coated with 5 μTiC by chemical vapor deposition was coated with 2 μm grain size.
Coating chips coated with Al 2 O 3 at thicknesses of 0.1 μm, 5 μm, and 10 μm were prepared. Table 1 shows the results of cutting performance tests conducted on chips of the present invention and comparative examples under the following conditions. Cutting speed 300m/min Feed 0.4m/min Depth of cut 1.5mm Work material SCM3
【表】
A、B、Cのチツプを1300℃で熱処理したとこ
ろ、熱処理前に比較して強いα−Al2O3の回折ピ
ークが認められ、予め作成していたα−Al2O3膜
厚とピーク強度との関係からアモルフアスAl2O3
の容量%を計算するとAは20%、Bは45%、Cは
60%であつた。
実施例 2
P−30超硬合金に実施例1と同様にしてVCを
0.1μm、5μm、10μmの各厚およびCr7C35μ
mを内層として被覆し、しかるのち13.56MHzの
高周波電力を1KW、500W、50Wをかけて0.02μ
m、0.1μm、1μmの粒度のAl2O3膜を3μm厚
で被覆した。これらのチツプを1300℃で熱処理し
てアモルフアスAl2O3の容量%を計算し、これら
のデータを第2表にまとめた。
また比較のために従来の方式で5μmのVC、
10μmのVC、5μmのCr7C3を内層とし、外層
に2μm粒度のAl2O3を3μm厚で被覆したチツ
プを作成し、上記本発明のチツプと比較例のチツ
プについて実施例1と同じ条件で切削テストを行
なつた結果を、第2表にあわせて示す。[Table] When the chips A, B, and C were heat-treated at 1300℃, a stronger α-Al 2 O 3 diffraction peak was observed compared to before the heat treatment, and the previously prepared α-Al 2 O 3 film was From the relationship between thickness and peak intensity, amorphous Al 2 O 3
Calculating the capacity percentage of A is 20%, B is 45%, and C is
It was 60%. Example 2 VC was applied to P-30 cemented carbide in the same manner as in Example 1.
Each thickness of 0.1μm, 5μm, 10μm and Cr 7 C 3 5μ
m as an inner layer, and then apply 1KW, 500W, and 50W of 13.56MHz high frequency power to 0.02μ
Al 2 O 3 films with particle sizes of m, 0.1 μm, and 1 μm were coated with a thickness of 3 μm. These chips were heat treated at 1300° C. and the volume percent of amorphous Al 2 O 3 was calculated, and these data are summarized in Table 2. For comparison, a VC of 5 μm using the conventional method,
A chip was prepared with an inner layer of VC of 10 μm and Cr 7 C 3 of 5 μm, and an outer layer coated with Al 2 O 3 of 2 μm particle size to a thickness of 3 μm. The results of cutting tests under these conditions are also shown in Table 2.
【表】
実施例 3
第3表に示す内層を1000℃、50トールの減圧に
おける化学蒸着法により4μの厚さに生成させ
た。またこの内層の上に0.1μm粒度、厚さ5μ
mで20容量%のアモルフアスAl2O3を実施例1と
同様の条件で作成した。これらのチツプを実施例
1に示す切削条件で切削テストに付した。EXAMPLE 3 The inner layer shown in Table 3 was produced to a thickness of 4μ by chemical vapor deposition at 1000°C and a reduced pressure of 50 Torr. Moreover, on top of this inner layer, 0.1 μm particle size and 5 μm thickness
Amorphous amorphous Al 2 O 3 containing 20% by volume was prepared under the same conditions as in Example 1. These chips were subjected to a cutting test under the cutting conditions shown in Example 1.
【表】
比較のために第3表の内層の上に外層のAl2O3
を通常の化学蒸着法により、1000℃で40トールの
減圧下において厚さ5μm(粒度2μm)生成さ
せて同様の切削条件で切削したところ、本発明品
の約半分以下の時間しか削れなかつた。[Table] For comparison, the outer layer Al 2 O 3 is added to the inner layer in Table 3.
When the product was produced with a thickness of 5 μm (particle size: 2 μm) at 1000° C. and under a reduced pressure of 40 Torr using a conventional chemical vapor deposition method and cut under the same cutting conditions, the cutting time was about half that of the product of the present invention.
Claims (1)
物、窒化物、炭窒化物、硼化物、硼窒化物の1種
以上からなる内層、および0.01〜0.5μmの粒度
のアモルフアスアルミナと結晶化アルミナで構成
されるアルミナからなる外層からなる被覆層を有
することを特徴とする、被覆超硬合金工具。 2 内層の厚みが0.5〜5μm、外層の厚みが0.5
〜10μm、外層中のアモルフアスアルミナ量は10
〜60容量%である、特許請求の範囲第1項記載の
被覆超硬合金工具。 3 超硬合金を母材とし、該母材表面にTi、
V、Cr、Mo、W、Siの1種以上の炭化物、窒化
物、炭窒化物、硼化物、硼窒化物の1種以上から
なる層を被覆し、次いでAlCl3、H2、CO2もしく
はH2Oの雰囲気中、500〜900℃でプラズマ化学蒸
着を行つて0.01〜0.5μmの粒度のアモルフアス
アルミナと結晶化アルミナで構成される層を更に
被覆することからなる、被覆超硬合金工具の製造
方法。[Scope of Claims] 1 An inner layer consisting of one or more of Ti, V, Cr, Mo, W, and Si carbides, nitrides, carbonitrides, borides, and boronitrides, and 0.01 to 0.5 A coated cemented carbide tool, characterized in that it has a coating layer consisting of an outer layer made of alumina made of amorphous alumina and crystallized alumina with a particle size of μm. 2 Inner layer thickness is 0.5 to 5 μm, outer layer thickness is 0.5
~10μm, the amount of amorphous alumina in the outer layer is 10
A coated cemented carbide tool according to claim 1, wherein the coated cemented carbide tool is 60% by volume. 3 The base material is cemented carbide, and the surface of the base material is coated with Ti,
A layer consisting of one or more of V, Cr, Mo, W, and Si carbides, nitrides, carbonitrides, borides, and boronitrides is coated, and then AlCl 3 , H 2 , CO 2 or A coated cemented carbide tool consisting of further coating with a layer consisting of amorphous alumina and crystallized alumina with a grain size of 0.01-0.5 μm by plasma-enhanced chemical vapor deposition at 500-900° C. in an atmosphere of H 2 O. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13634782A JPS5928565A (en) | 1982-08-06 | 1982-08-06 | Coated hard alloy tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13634782A JPS5928565A (en) | 1982-08-06 | 1982-08-06 | Coated hard alloy tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5928565A JPS5928565A (en) | 1984-02-15 |
JPS6148582B2 true JPS6148582B2 (en) | 1986-10-24 |
Family
ID=15173066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13634782A Granted JPS5928565A (en) | 1982-08-06 | 1982-08-06 | Coated hard alloy tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5928565A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61174379A (en) * | 1985-01-29 | 1986-08-06 | Sumitomo Electric Ind Ltd | Sintered hard alloy parts coated with silicon nitride and manufacture thereof |
DE4209975A1 (en) * | 1992-03-27 | 1993-09-30 | Krupp Widia Gmbh | Composite body and its use |
CN102355968B (en) * | 2009-03-18 | 2013-10-30 | 三菱综合材料株式会社 | Surface-coated cutting tool |
DE102009001675A1 (en) * | 2009-03-19 | 2010-09-23 | Eberhard-Karls-Universität Tübingen | cutting tool |
JP5876755B2 (en) * | 2012-03-21 | 2016-03-02 | 三菱マテリアル株式会社 | Surface-coated cutting tool that exhibits excellent lubricity, chipping resistance, and wear resistance in high-speed interrupted cutting |
JP5892335B2 (en) * | 2012-07-27 | 2016-03-23 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance with hard coating layer |
-
1982
- 1982-08-06 JP JP13634782A patent/JPS5928565A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5928565A (en) | 1984-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4786800B2 (en) | Cutting tool coated with PVD- | |
WO1985001465A1 (en) | Coated silicon nitride cutting tools | |
JPS5858273A (en) | Coated sintered hard alloy | |
JP4004133B2 (en) | Titanium carbonitride coated tool | |
JP3962300B2 (en) | Aluminum oxide coated tool | |
JPS58208182A (en) | Coated silicon nitride cutting tool | |
JPS6148582B2 (en) | ||
JP2001269801A (en) | Surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent heat-resistant plastic deformation characteristic | |
JP3291775B2 (en) | Surface coated cutting tool | |
JP3971338B2 (en) | Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same | |
JPS6155591B2 (en) | ||
JPS6229507B2 (en) | ||
JPS6312940B2 (en) | ||
JP2595203B2 (en) | High adhesion diamond coated sintered alloy and method for producing the same | |
JPS6354495B2 (en) | ||
JP3519127B2 (en) | High thermal conductive coated tool | |
JP2001179504A (en) | Hard carbon film-coated tool | |
JPH01180980A (en) | Coated tool material | |
JPS6244572A (en) | Surface coated tool | |
JP3134378B2 (en) | Diamond coated hard material | |
JPS6112029B2 (en) | ||
JP2620971B2 (en) | Diamond coated sintered body with excellent adhesion and method for producing the same | |
JPS60174876A (en) | Manufacture of coated cutting tool | |
JPS6123871B2 (en) | ||
JPH0663092B2 (en) | Diamond-coated sintered body excellent in peeling resistance and method for producing the same |