JP2001179504A - Hard carbon film-coated tool - Google Patents

Hard carbon film-coated tool

Info

Publication number
JP2001179504A
JP2001179504A JP36898699A JP36898699A JP2001179504A JP 2001179504 A JP2001179504 A JP 2001179504A JP 36898699 A JP36898699 A JP 36898699A JP 36898699 A JP36898699 A JP 36898699A JP 2001179504 A JP2001179504 A JP 2001179504A
Authority
JP
Japan
Prior art keywords
tool
hard carbon
diamond
carbon film
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36898699A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
敏夫 石井
Hiroyuki Tejima
博幸 手島
Shiro Okayama
史郎 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP36898699A priority Critical patent/JP2001179504A/en
Publication of JP2001179504A publication Critical patent/JP2001179504A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard carbon film-coated tool capable of realizing a coated tool superior in both of abrasion resistance and slidability, by coating the tool with a hard carbon film including proper amounts of diamond superior in the crystalline property and the abrasion resistance and graphite superior in slidability with high adhesiveness, and remarkably elongating the life of the tool in comparison with a conventional one. SOLUTION: In this tool coated with a hard carbon film including diamond, both of diamond where the maximum structural coefficient TC (hkl) is TC (400) and hexagonal graphite satisfying that the strongest peak of an X-ray diffraction is (008) face index, are included in the hard carbon film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硬質炭素膜被覆工
具に関するものである。
The present invention relates to a tool coated with a hard carbon film.

【0002】[0002]

【従来の技術】近年の被加工部材の高硬度及び軽量化に
伴って、高硬度、高熱伝導であるダイヤモンド膜を被覆
した切削工具や耐摩耗部材を活用する機運が高まってい
る。特に、ダイヤモンド被覆工具は、アルミ合金やグラ
ファイト材の加工に有望であり、盛んに研究されてい
る。これらのダイヤモンド膜は、一般に、炭化水素など
の炭素を含む原料ガスを熱フィラメント(特開昭58−
91100)やマイクロ波プラズマ等(特開昭58−1
10494)により励起し、反応させることにより基体
表面に成膜される。
2. Description of the Related Art With the recent increase in hardness and weight of workpieces, there is an increasing trend to use cutting tools and wear-resistant members coated with a diamond film having high hardness and high thermal conductivity. In particular, diamond-coated tools are promising for processing aluminum alloys and graphite materials, and are being actively studied. In general, these diamond films are prepared by using a raw material gas containing carbon such as hydrocarbons as a hot filament (Japanese Patent Laid-Open No.
91100), microwave plasma, etc.
10494), and a film is formed on the substrate surface by causing a reaction.

【0003】このように化学蒸着(CVD)法により成
膜されたダイヤモンド膜は高硬度であるものの、(11
1)面や(220)面が基体表面と平行方向に配向して
おり、膜表面の凹凸が大きく、摺動性が劣る欠点があ
る。また、(111)面は劈開し易い欠点がある。これ
に対して、特公平7−13298では、刃部がファセッ
ト状の平均粒径0.1μm以上の多結晶質で、且つその
表面の50%以上の面積が、劈開の少ない(100)又
は(110)の結晶面であることを特徴とするダイヤモ
ンド被覆切削工具が開示されている。また、ダイヤモン
ド以外に非晶質カーボンやグラファイト、あるいは水素
などを硬質膜中に存在させることにより、膜表面の凹凸
を小さくし、平滑な膜を得ようとする試みも提案されて
いる。例えば、特開昭60−71597では摺動面にダ
イヤモンドと六方晶のグラファイトとの混晶からなる硬
質カーボン膜を有する摺動用機構部品が開示されてい
る。しかし、これらの方法では、ダイヤモンドと六方晶
グラファイトの結晶性や配向および両物質間の密着性に
関する考察が行われておらず、工具として用いた場合、
耐摩耗性が劣る欠点があった。
[0003] Although the diamond film formed by the chemical vapor deposition (CVD) method has a high hardness, it is (11)
The 1) plane and the (220) plane are oriented in a direction parallel to the surface of the base, and the surface of the film has large irregularities, and thus has a drawback of poor slidability. Further, the (111) plane has a disadvantage that it is easily cleaved. On the other hand, in Japanese Patent Publication No. 7-13298, the edge portion is a facet-shaped polycrystalline material having an average particle diameter of 0.1 μm or more, and an area of 50% or more of the surface has less cleavage (100) or ( 110) A diamond-coated cutting tool characterized by having a crystal face is disclosed. Further, an attempt has been made to reduce unevenness on the film surface and obtain a smooth film by making amorphous carbon, graphite, hydrogen, or the like other than diamond in the hard film. For example, Japanese Patent Application Laid-Open No. Sho 60-71597 discloses a sliding mechanism component having a hard carbon film made of a mixed crystal of diamond and hexagonal graphite on a sliding surface. However, these methods do not consider the crystallinity and orientation of diamond and hexagonal graphite and the adhesion between the two materials, and when used as a tool,
There was a disadvantage that the wear resistance was poor.

【0004】[0004]

【発明が解決しようとする課題】上記の、従来のダイヤ
モンド被覆工具の欠点を踏まえて、本発明が解決しよう
とする課題は結晶性が良く耐摩耗性の優れたダイヤモン
ドと摺動性が優れたグラファイトの両者が、相互に密着
性良く、適当量含まれている硬質炭素膜を被覆すること
により、耐摩耗性と摺動性の両者が優れた被覆工具を実
現し、従来に比して格段に工具寿命の長い硬質炭素膜被
覆工具を提供することである。
In view of the above-mentioned drawbacks of the conventional diamond-coated tools, the problem to be solved by the present invention is to provide a diamond having excellent crystallinity and abrasion resistance and excellent slidability. Both graphites have good adhesion to each other and are coated with an appropriate amount of a hard carbon film to provide a coated tool with excellent wear resistance and sliding properties. Another object of the present invention is to provide a hard carbon film coated tool having a long tool life.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究してきた結果、組織係数TC
(hkl)の中でTC(400)が最大であるダイヤモ
ンドとX線回折最強ピークが(008)面指数である六
方晶グラファイトの両者を含有している硬質炭素膜を被
覆することにより、優れた切削耐久特性を持つ工具を実
現できることを見出し、本発明に想到した。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that the organization coefficient TC
By coating a hard carbon film containing both diamond having the largest TC (400) in (hkl) and hexagonal graphite having the strongest X-ray diffraction peak (008) plane index, The present inventors have found that a tool having cutting durability characteristics can be realized, and have reached the present invention.

【0006】すなわち本発明は、ダイヤモンドを含有す
る硬質炭素膜を被覆した硬質炭素膜被覆工具において、
組織係数TC(hkl)の中でTC(400)が最大で
あるダイヤモンドとX線回折の最強ピークが(008)
面指数である六方晶グラファイトの両者を含有している
ことを特徴とする硬質炭素膜被覆工具である。組織係数
TC(hkl)の中でTC(400)が最大であるダイ
ヤモンドとX線回折最強ピークが(008)面指数であ
る六方晶グラファイトの両者を含有していることによ
り、ダイヤモンドの優れた耐摩耗性とグラファイトの優
れた摺動特性の両者を併せ持った、優れた工具特性が実
現されていると判断される。
That is, the present invention relates to a hard carbon film-coated tool coated with a diamond-containing hard carbon film,
Diamond having the largest TC (400) among the texture coefficients TC (hkl) and the strongest peak of X-ray diffraction are (008)
A tool coated with a hard carbon film, characterized by containing both hexagonal graphite having a plane index. The diamond having the highest TC (400) in the texture coefficient TC (hkl) and the hexagonal graphite having the strongest X-ray diffraction peak having the (008) plane index contain both diamond, so that the excellent resistance to diamond is obtained. It is judged that excellent tool characteristics having both abrasion and excellent sliding characteristics of graphite are realized.

【0007】ここで、組織係数TC(hkl)は次式に
より定義される。 TC(hkl)=4×{I(hkl)/I0(hkl)}/[{I(111)/I0(111)}+{I(311)/I0(311)} +{I(400)/I0(400)}+{I(331)/I0(331)}] …数式1 但し、(hkl)=(111)、(311)、(40
0)、(331)I(hkl)はダイヤモンド膜の(h
kl)面からの実測X線回折強度である。I(hkl)
はJCPDS ファイルNo.6−0675(Powder Di
ffractionFile Published by JCPDS International Cen
ter for Diffraction Data)に記載されているダイヤモ
ンドの標準X線回折強度であり、等方的に配向したダイ
ヤモンド粉末粒子の(hkl)面からのX線回折強度を
表すものである。数式1で定義されたTC(hkl)
は、ダイヤモンド膜の(hkl)面からの実測X線回折
ピーク強度の相対強度を示しており、TC(hkl)値
が大きい程(hkl)面が基体表面の接線方向に強く配
向していることを示すものである。なお、ダイヤモンド
は(111)、(220)、(311)、(400)、
(331)の五つのX線回折ピークが観察されるが(2
20)のX線回折ピーク(2θ=75.30°)はWC
の(200)ピーク(2θ=75.51°)と重なるた
め、数式1の組織係数TC(hkl)の計算には用いな
かった。
Here, the texture coefficient TC (hkl) is defined by the following equation. TC (hkl) = 4 × {I (hkl) / I 0 (hkl)} / [{I (111) / I 0 (111)} + {I (311) / I 0 (311)} + {I ( 400) / I 0 (400)} + {I (331) / I 0 (331)}] (1) where (hkl) = (111), (311), (40)
0) and (331) I (hkl) are (h) of the diamond film.
It is the measured X-ray diffraction intensity from the (kl) plane. I 0 (hkl)
Is the JCPDS file No. 6-0675 (Powder Di
ffractionFile Published by JCPDS International Cen
ter for Diffraction Data), and represents the X-ray diffraction intensity from the (hkl) plane of isotropically oriented diamond powder particles. TC (hkl) defined by Equation 1
Indicates the relative intensity of the measured X-ray diffraction peak intensity from the (hkl) plane of the diamond film. The larger the TC (hkl) value, the stronger the (hkl) plane is oriented in the tangential direction to the substrate surface. It shows. The diamonds are (111), (220), (311), (400),
Five X-ray diffraction peaks of (331) are observed.
The X-ray diffraction peak of (20) (2θ = 75.30 °) has a WC
(200) peak (2θ = 75.51 °), and was not used in the calculation of the texture coefficient TC (hkl) in Expression 1.

【0008】本発明の硬質炭素膜に含有されているダイ
ヤモンド成分は、組織係数TC(hkl)の中でTC
(400)が最大であるため、ダイヤモンドの(10
0)結晶面が基体の接線方向に配向しており、結晶粒の
劈開が少なく、表面が平坦であり、優れた耐摩耗性を有
していると判断される。同時に、X線回折最強ピークが
(008)面指数である六方晶グラファイトを含有して
いることにより、優れた摺動性を有していると判断され
る。しかも、本発明の硬質炭素膜は、後述の理由によ
り、これらダイヤモンド成分と六方晶グラファイト成分
との間に優れた結合力が期待され、その結果、耐摩耗性
と摺動性の両特性が優れていると判断される。
[0008] The diamond component contained in the hard carbon film of the present invention has a TC of the texture coefficient TC (hkl).
Since (400) is the largest, (10)
0) The crystal plane is oriented in the tangential direction of the substrate, the cleavage of the crystal grains is small, the surface is flat, and it is judged that it has excellent wear resistance. At the same time, since the strongest peak of the X-ray diffraction contains hexagonal graphite having a (008) plane index, it is determined to have excellent slidability. Moreover, the hard carbon film of the present invention is expected to have an excellent bonding force between the diamond component and the hexagonal graphite component for the reasons described below, and as a result, both the wear resistance and the sliding property are excellent. Is determined to be.

【0009】図2はダイヤモンドの単位格子を図示した
ものである。立方構造で、格子定数は0.35667n
mである。図2より、ダイヤモンドは(400)面の位
置、即ち面間距離0.08916nmの位置に二個の炭
素原子が存在していることがわかる。本発明の一つの特
徴は、この(400)のX線回折ピーク強度が強いこと
である。
FIG. 2 illustrates a unit cell of diamond. Cubic structure, lattice constant is 0.35667n
m. FIG. 2 shows that diamond has two carbon atoms at the position of the (400) plane, that is, at the position of the distance between the planes of 0.08916 nm. One feature of the present invention is that the (400) X-ray diffraction peak intensity is strong.

【0010】図3は六方晶グラファイト(JCPDS
File No.23−64と25−284)の単位格
子を図示したもので、格子定数はa=0.2456n
m、c=0.6696nm(File No.25−
284)乃至はa=0.2463nm、c=0.6
714nm(File No.23−64)である。六
方晶グラファイトの、C軸の実際の長さは結晶度や層の
配向の乱れに依存しており、0.6696〜0.688
nmに変化する。表1、2はそれぞれ、JCPDSのF
ile No.23−64と25−284に示されてい
る、六方晶グラファイトの各面指数に対する標準X線回
折強度の(002〜8)に関する部分を抜粋したもので
ある。表1、2より、(008)のX線回折強度IG
(008)は(002)のX線回折強度IG(002)
の10分の1乃至は100分の1であることがわかる。
FIG. 3 shows hexagonal graphite (JCPDS).
File No. 23-64 and 25-284), and the lattice constant is a 0 = 0.2456n
m, c 0 = 0.6696nm (File No.25-
284) or a 0 = 0.2463 nm, c 0 = 0.6
714 nm (File No. 23-64). The actual length of the C-axis of the hexagonal graphite depends on the degree of crystallinity and the disorder of the orientation of the layer, and is 0.6696 to 0.688.
nm. Tables 1 and 2 respectively show the JCPDS F
ile No. It is a part extracted from (002-8) of the standard X-ray diffraction intensity with respect to each plane index of hexagonal graphite shown in 23-64 and 25-284. From Tables 1 and 2, the X-ray diffraction intensity IG of (008) was obtained.
(008) is the X-ray diffraction intensity IG of (002) (002)
It can be seen that the ratio is 1/10 to 1/100.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】図3からもわかるように、六方晶グラファ
イトの(008)面が基体表面の接線方向に配向してい
ることと(002)面が配向していることとは同一であ
り、本来は、IG(008)/IG(002)は常に
0.1乃至は0.01である。しかし、本発明品の場
合、IG(008)≫IG(002)である。この理由
は明確ではないが、六方晶グラファイトの(008)面
の位置、即ち面間距離0.08370nmの位置に原子
が存在している確率が高くなっていると考えられる。
As can be seen from FIG. 3, the fact that the (008) plane of hexagonal graphite is oriented in the tangential direction to the substrate surface is the same as the orientation of the (002) plane. , IG (008) / IG (002) is always 0.1 to 0.01. However, in the case of the product of the present invention, IG (008) ≫IG (002). Although the reason is not clear, it is considered that the probability that atoms are present at the position of the (008) plane of hexagonal graphite, that is, at the position of 0.08370 nm between planes is high.

【0014】このように、本発明品に於いては、含有さ
れている六方晶グラファイト成分とダイヤモンド成分の
両者において、面間距離が0.08370nmと0.0
8916nmの位置に原子が存在している確立が高いこ
とから、両者の間で、原子の共有等、何らかの干渉があ
ると見られ、両者間に強い結合力が存在している可能性
があると判断される。なお、以上の考察からもわかるよ
うに、本発明における(008)X線回折ピークが最強
の六方晶グラファイトとは、面間距離が0.08370
nm近傍にX線回折ピーク強度を有するグラファイト系
の物質であれば良く、一概に六方晶グラファイトである
必要は無いことは明らかである。
As described above, according to the present invention, both the hexagonal graphite component and the diamond component contained a distance between planes of 0.08370 nm and 0.08 nm.
Since there is a high probability that atoms exist at the position of 8916 nm, it is considered that there is some interference such as atom sharing between the two, and there is a possibility that a strong bonding force exists between the two. Is determined. As can be seen from the above discussion, the hexagonal graphite having the strongest (008) X-ray diffraction peak in the present invention has an interplanar distance of 0.08370.
As long as it is a graphite-based substance having an X-ray diffraction peak intensity in the vicinity of nm, it is apparent that it is not absolutely necessary to use hexagonal graphite.

【0015】上記と同時に、本発明の被覆工具は、六方
晶グラファイトの(008)X線回折ピーク強度がダイ
ヤモンドの(400)X線回折ピーク強度の0.1〜3
倍であることが好ましく、0.15〜2.5倍あること
が更に好ましく、さらに0.35〜2倍であることが最
も好ましい。六方晶グラファイトの(008)X線回折
ピーク強度とダイヤモンドの(400)X線回折ピーク
強度との比IG(008)/ID(400)が0.1〜
3であることにより、耐摩耗性の優れたダイヤモンド成
分と、摺動性の優れたグラファイト成分が適当量含有さ
れており、耐摩耗性と摺動性のバランスが優れ、優れた
工具耐久特性が実現されていると判断される。上記X線
回折ピーク強度比IG(008)/ID(400)が
0.1倍未満では、六方晶グラファイトの含有量が少な
く、摺動特性が劣る欠点が現れ、同3倍を越えると膜の
硬度が低下し、耐摩耗性が低下する欠点が現れる。ま
た、上記X線回折ピーク強度比IG(008)/ID
(400)が0.15〜2であることにより、耐摩耗性
と耐摺動性のバランスが良く、さらに長い工具寿命が得
られ、0.35〜2であることにより最も長い工具寿命
が得られる。
At the same time as the above, the coated tool of the present invention has a (008) X-ray diffraction peak intensity of hexagonal graphite which is 0.1 to 3 times that of diamond (400) X-ray diffraction peak.
Preferably, the ratio is 0.15 to 2.5 times, more preferably 0.35 to 2 times. The ratio of the (008) X-ray diffraction peak intensity of hexagonal graphite to the (400) X-ray diffraction peak intensity of diamond is IG (008) / ID (400) of 0.1 to
3, the diamond component having excellent wear resistance and the graphite component having excellent slidability are contained in appropriate amounts, and the balance between wear resistance and slidability is excellent, and excellent tool durability characteristics are obtained. It is determined that it has been realized. When the X-ray diffraction peak intensity ratio IG (008) / ID (400) is less than 0.1 times, the content of hexagonal graphite is small, and the sliding characteristics are inferior. There is a disadvantage that the hardness is reduced and the wear resistance is reduced. Further, the X-ray diffraction peak intensity ratio IG (008) / ID
When (400) is 0.15 to 2, the wear resistance and sliding resistance are well balanced, and a longer tool life is obtained. When (400) is 0.35 to 2, the longest tool life is obtained. Can be

【0016】また、本発明の被覆工具において、周期律
表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化
物のうちの少なくとも一種以上とFe、Ni、Co、
W、Mo、Crのうちの少なくとも一種以上とよりなる
超硬合金を基体とすることが更に好ましく、更にはWの
炭化物、窒化物、炭窒化物のうちの少なくとも一種以上
とCoからなり、他の周期律表のIVa、Va、VIa族金
属の炭化物、窒化物、炭窒化物成分が1質量%以下であ
る超硬合金を基体とすることが最も好ましい。上記の超
硬合金を基体とすることにより本発明の被覆工具全体の
靭性、硬度、耐熱性がバランス良く高まり、被覆工具と
して良好な切削耐久特性が実現されていると判断され
る。また、Wの炭化物、窒化物、炭窒化物のうちの少な
くとも一種以上とCoからなり、Wを除く周期律表のIV
a、Va、VIa族金属の炭化物、窒化物、炭窒化物成分
が1質量%以下である超硬合金を基体とすることによ
り、超硬合金基体と硬質炭素膜との間の密着性が高ま
り、更に良好な工具耐久特性が実現されていると判断さ
れる。
Further, in the coated tool of the present invention, at least one of carbides, nitrides and carbonitrides of metals belonging to the group IVa, Va and VIa of the periodic table and Fe, Ni, Co,
It is more preferable that the substrate is a cemented carbide consisting of at least one of W, Mo, and Cr. Further, the carbide of W, a nitride, and at least one of carbonitrides are made of Co, and It is most preferable to use a cemented carbide having a carbide, nitride, or carbonitride component of a Group IVa, Va, or VIa metal in the periodic table of 1% by mass or less as the base. By using the cemented carbide as a base, the toughness, hardness and heat resistance of the entire coated tool of the present invention are improved in a well-balanced manner, and it is judged that good cutting durability characteristics are realized as the coated tool. In addition, at least one of carbides, nitrides, and carbonitrides of W is composed of Co, and IV of the periodic table excluding W is included.
The adherence between the cemented carbide substrate and the hard carbon film is increased by using a cemented carbide having a carbide, nitride, or carbonitride component of a, Va, or VIa group metal of 1% by mass or less as a substrate. , It is determined that better tool durability characteristics have been realized.

【0017】[0017]

【発明の実施の形態】以下に、本発明における硬質炭素
膜被覆工具の代表例である硬質炭素膜被覆エンドミルに
則って、本発明をより具体的に詳説する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail with reference to a hard carbon film coated end mill which is a typical example of a hard carbon film coated tool in the present invention.

【0018】本発明の被覆工具において、ダイヤモンド
のX線回折ピークの同定は、先述のJCPDSファイル
のX線回折データ(ファイルNo.6−0675)を用
い、六方晶グラファイトのX線回折ピークの同定は、同
ファイルNo.25−284のデータを用いて行った。
In the coated tool of the present invention, the X-ray diffraction peak of diamond is identified by using the X-ray diffraction data of the above-mentioned JCPDS file (File No. 6-0675). Is the same as the file No. Performed using data of 25-284.

【0019】本発明の被覆工具を製作するためには、熱
フィラメント化学蒸着法(熱フィラメントCVD法)や
マイクロ波CVD法、rfプラズマCVD法、ECRプ
ラズマCVD法等を用いることができる。用途はソリッ
ドエンドミル型切削工具に限るものではなく、スローア
ウェイインサートを用いたエンドミル型切削工具やフラ
イス用工具、旋削用工具でも良い。また、硬質炭素膜を
被覆した耐摩耗材や金型、溶湯部品等でもよい。
In order to manufacture the coated tool of the present invention, a hot filament chemical vapor deposition method (hot filament CVD method), a microwave CVD method, an rf plasma CVD method, an ECR plasma CVD method, or the like can be used. The application is not limited to a solid end mill type cutting tool, but may be an end mill type cutting tool using a throw-away insert, a milling tool, or a turning tool. Further, a wear resistant material, a mold, a molten metal part, or the like coated with a hard carbon film may be used.

【0020】本発明の被覆工具において、硬質炭素膜の
成分は炭素だけに限るものではない。本発明の効果を消
失しない範囲でCoやW等の不可避の添加物、不純物を
例えば数質量%程度まで含むことが許容される。
In the coated tool of the present invention, the component of the hard carbon film is not limited to carbon. As long as the effects of the present invention are not lost, unavoidable additives and impurities such as Co and W may be contained, for example, up to about several mass%.

【0021】[0021]

【実施例】次に本発明の被覆工具を実施例によって具体
的に説明するが、これら実施例により本発明が限定され
るものでない。
EXAMPLES Next, the coated tool of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

【0022】(実施例1)WC:94質量%、Co:6
質量%の組成よりなり、同一ロットで焼結し作製したボ
ールエンドミル型の切削工具用超硬合金基体(直径6m
m、2枚刃)とX線回折測定用直方体基板(5×5×1
0mm)を炉内にセットし、それらの表面に、熱フィ
ラメントCVD法により、約8μm厚さの硬質炭素膜を
成膜した。即ち、エンドミルの周辺に配置したタングス
テン製フィラメントに電流を流すことにより、これを約
2,500℃に加熱し、これにCH4/H2比が0.5〜
3%のCH4とH2の混合ガスを10〜150cm/m
inだけ流し、圧力1.33〜13.3kPa、基板温
度900〜1200℃で成膜した。
(Example 1) WC: 94% by mass, Co: 6
% By mass, and a ball end mill type cemented carbide substrate for a cutting tool (diameter 6 m) manufactured by sintering in the same lot.
m, two blades) and a rectangular parallelepiped substrate for X-ray diffraction measurement (5 × 5 × 1
0 mm 3 ) was set in a furnace, and a hard carbon film having a thickness of about 8 μm was formed on those surfaces by hot filament CVD. That is, by passing an electric current through a tungsten filament disposed around the end mill, the tungsten filament is heated to about 2,500 ° C., and the CH 4 / H 2 ratio is adjusted to 0.5 to 0.5 ° C.
10% to 150 cm 3 / m 3% mixed gas of CH 4 and H 2
in, and a film was formed at a pressure of 1.33 to 13.3 kPa and a substrate temperature of 900 to 1200 ° C.

【0023】図1は実施例1の条件で作製した本発明品
の代表的なX線回折パターンである。直方体基板の表面
に成膜した硬質炭素膜のX線回折パターンを、理学電気
(株)製のX線回折装置(RU−200BH)で、CuK
α1線(λ=0.15405nm)を用いて、2θ−θ
走査法により測定した。2θの測定範囲は10〜145
°で、ノイズ(バックグランド)は装置に内蔵されたソ
フトにより除去した。表3に、図1のX線回折パターン
より求まった本発明品の硬質炭素膜の2θ値とX線回折
強度、および各ピークに対応する物質のJCPDSファ
イルに記載されている2θ、面指数、X線回折強度の値
を示す。
FIG. 1 is a representative X-ray diffraction pattern of the product of the present invention prepared under the conditions of Example 1. The X-ray diffraction pattern of the hard carbon film formed on the surface of the rectangular parallelepiped substrate was measured using an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd.
2θ−θ using α1 ray (λ = 0.15405 nm)
It was measured by the scanning method. The measurement range of 2θ is 10 to 145
In °, noise (background) was removed by software built into the device. Table 3 shows the 2θ value and X-ray diffraction intensity of the hard carbon film of the product of the present invention obtained from the X-ray diffraction pattern of FIG. The value of X-ray diffraction intensity is shown.

【0024】[0024]

【表3】 [Table 3]

【0025】表4に、表3のダイヤモンド成分の実測値
と数式1とより求めたTC(hkl)値を示す。
Table 4 shows the measured values of the diamond components in Table 3 and the TC (hkl) value obtained from Equation 1.

【0026】[0026]

【表4】 [Table 4]

【0027】図1と表3、4より、本発明品の硬質炭素
膜がダイヤモンドと六方晶グラファイトとより構成され
ており、ダイヤモンドの組織係数TC(hkl)が最大
であるピークは(400)であり、六方晶グラファイト
は(008)が最強であることがわかる。また、六方晶
グラファイトの(008)のX線回折ピーク強度IG
(008)はダイヤモンドの(400)のX線回折ピー
ク強度ID(400)の0.51倍であることが分か
る。
FIG. 1 and Tables 3 and 4 show that the hard carbon film of the present invention is composed of diamond and hexagonal graphite, and the peak at which the texture coefficient TC (hkl) of diamond is the maximum is (400). It can be seen that (008) is the strongest in hexagonal graphite. Further, the X-ray diffraction peak intensity IG of (008) of hexagonal graphite
(008) is 0.51 times the X-ray diffraction peak intensity ID (400) of diamond (400).

【0028】表5に実施例1によって作製した硬質炭素
膜被覆工具のX線回折測定結果を示す。
Table 5 shows the results of X-ray diffraction measurement of the tool coated with the hard carbon film produced in Example 1.

【0029】[0029]

【表5】 [Table 5]

【0030】いずれの試料も、ダイヤモンドの組織係数
はTC(400)が最大であった。これらの結果より、
本発明品は、いずれの硬質炭素膜も、組織係数TC(4
00)が最大であるダイヤモンドと、(008)が最強
である六方晶グラファイトとから成っていることがわか
る。また、六方晶グラファイトの(008)のX線回折
ピーク強度IG(008)はダイヤモンドの(400)
のX線回折ピーク強度ID(400)の0.05〜3.
72倍であることがわかる。
In each of the samples, TC (400) was the largest in the texture coefficient of diamond. From these results,
In the product of the present invention, any of the hard carbon films has a texture coefficient TC (4
It can be seen that (008) is composed of diamond having the maximum value and (008) being hexagonal graphite having the strongest value. The X-ray diffraction peak intensity IG (008) of (008) of hexagonal graphite is (400) of diamond.
X-ray diffraction peak intensity ID (400) of 0.05 to 3.
It turns out that it is 72 times.

【0031】本発明品は、900〜1200℃の範囲内
で基板温度を高めるにつれてIG(008)とTC(4
00)とが強まり、0.5〜3%の範囲内で成膜ガスの
CH 4/H2比を下げるにつれてID(400)が強まっ
た。
The product of the present invention is in the range of 900 to 1200 ° C.
As the substrate temperature is increased by IG (008) and TC (4
00) and the film forming gas within the range of 0.5 to 3%.
CH Four/ HTwoID (400) increases as ratio decreases
Was.

【0032】表5に本発明品の工具寿命の評価結果をま
とめて示す。工具寿命は、作製した発明品各3個を用い
て、グラファイト材を下記の条件で切削し、外周刃の刃
先の逃げ面摩耗量が0.05mmに達するまでに切削し
た切削長さにより示した。 被削材 グラファイト(Hs105) 工具形状 ボールノーズエンドミル(6φ、二枚刃) 工具回転数 7958 回転/分 切削速度 150 m/分 送り速度 398mm/分(0.025mm/刃) 切り込み 0.5mm 切削油 使用せず ショアー硬度Hsが105と硬いグラファイト材を被削
材に用いることにより、工具の耐摩耗性を早期に評価で
きるようにした。逃げ面摩耗量は倍率100の実体顕微
鏡と分解能1μmのスライドテーブルを用いて測定し
た。
Table 5 summarizes the results of evaluating the tool life of the product of the present invention. The tool life was indicated by the length of cutting the graphite material under the following conditions using each of the three manufactured invention products until the flank wear of the cutting edge of the outer peripheral edge reached 0.05 mm. . Work material Graphite (Hs105) Tool shape Ball nose end mill (6φ, 2 flutes) Tool rotation speed 7958 rotations / min Cutting speed 150 m / min Feed speed 398 mm / min (0.025 mm / tooth) Cutting 0.5 mm Cutting oil Abrasion resistance of the tool can be evaluated at an early stage by using a graphite material having a Shore hardness Hs of 105 and hard as a work material without using it. The flank wear was measured using a stereo microscope with a magnification of 100 and a slide table with a resolution of 1 μm.

【0033】表5より、本発明品は、いずれも切削可能
長が5m以上と長く、工具寿命が優れていることがわか
る。また、六方晶グラファイトの(008)X線回折ピ
ーク強度IG(008)がダイヤモンドの(400)X
線回折ピーク強度ID(400)の0.1〜3倍の時切
削可能長が10m以上と長く、優れた工具寿命が得ら
れ、IG(008)/ID(400)が0.15〜2.
5の時は切削可能長が15m以上と更に長く、更に優れ
た工具寿命が得られ、IG(008)/ ID(40
0)が0.35〜2の時は切削可能長が18m以上と最
も長く、最も優れた工具寿命が得られることがわかる。
From Table 5, it can be seen that all of the products of the present invention have a long cuttable length of 5 m or more and have an excellent tool life. The (008) X-ray diffraction peak intensity IG (008) of hexagonal graphite is (400) X of diamond.
When the diffraction intensity is 0.1 to 3 times the line diffraction peak ID (400), the cutting length is as long as 10 m or more, excellent tool life is obtained, and IG (008) / ID (400) is 0.15 to 2.0.
In the case of No. 5, the cuttable length is as long as 15 m or more, and a more excellent tool life can be obtained, and IG (008) / ID (40
When 0) is 0.35 to 2, the cuttable length is 18 m or longer, which is the longest, indicating that the best tool life can be obtained.

【0034】(比較例1)硬質炭素膜において、TC
(400)が最大であるダイヤモンドと(008)のX
線回折強度が最強であるグラファイトの両者を含有する
ことの有無による工具寿命への影響を明らかにするため
に、実施例1と同一の組成と形状よりなるボールエンド
ミル型の切削工具用超硬合金基体(直径6mm、2枚
刃)とX線回折測定用直方体基板(5×5×10m
)を炉内にセットし、それらの表面に、熱フィラメ
ントCVD法により、約8μm厚さの硬質炭素膜を成膜
した。タングステン製フィラメントを約2,300℃に
加熱し、これに炭素濃度が4%のCH 4とH2の混合ガス
を150cm/minだけ流し、圧力13.3kP
a、基板温度800℃で成膜した。
(Comparative Example 1) In a hard carbon film, TC
Diamond with the largest (400) and X of (008)
Contains both graphite, which has the strongest line diffraction intensity
To determine the effect of tooling on tool life
A ball end having the same composition and shape as in Example 1
Cemented carbide substrate for mill-type cutting tools (diameter 6 mm, 2 pieces
Blade) and rectangular parallelepiped substrate for X-ray diffraction measurement (5 × 5 × 10 m
m3) Is set in the furnace, and heat filament
Hard carbon film of about 8μm thickness is formed
did. Tungsten filament to about 2,300 ° C
Heat and add 4% CH FourAnd HTwoMixed gas
Is 150cm3/ Min, at a pressure of 13.3 kP
a, A film was formed at a substrate temperature of 800 ° C.

【0035】作製した比較例1品の硬質炭素膜は、TC
(111)が最大のダイヤモンドから構成されており、
六方晶グラファイトのピークは観察されなかった。
The prepared hard carbon film of Comparative Example 1 was made of TC
(111) is composed of the largest diamond,
No hexagonal graphite peak was observed.

【0036】比較例1の条件で作製した切削工具各3個
を用いて実施例1と同一の条件で工具寿命を評価した結
果、3m以内で外周刃の刃先摩耗量が0.05mmに達
し、本発明品よりも工具寿命が短く、工具として劣るこ
とがわかった。
The tool life was evaluated under the same conditions as in Example 1 using each of the three cutting tools manufactured under the conditions of Comparative Example 1. As a result, the wear amount of the outer edge reached 0.05 mm within 3 m. It was found that the tool life was shorter than the product of the present invention, and the tool was inferior.

【0037】(実施例2)WC:95.5質量%、C
o:4.5質量%の組成よりなるスケアエンドミル型の
切削工具用超硬合金基体(直径6mm、2枚刃)を炉内
にセットし、それらの表面に、熱フィラメントCVD法
により、約8μm厚さの硬質炭素膜を成膜した。即ち、
エンドミルの周辺に配置したタングステン製フィラメン
トに電流を流すことにより、これを約2,500℃に加
熱し、これにCH4/H2比が0.5〜3%のCH4とH2
の混合ガスを10〜150cm/minだけ流し、圧
力1.33〜13.3kPa、基板温度900〜120
0℃で成膜した。
Example 2 WC: 95.5% by mass, C
o: A scare end mill type cemented carbide substrate for cutting tools (diameter 6 mm, two blades) having a composition of 4.5% by mass was set in a furnace, and the surface thereof was about 8 μm by hot filament CVD. A hard carbon film having a thickness was formed. That is,
By passing a current in a tungsten filament which is disposed around the end mill, which was heated to about 2,500 ° C., this CH 4 / H 2 ratio of 0.5% to 3% of CH 4 and H 2
Flowing a mixed gas of only 10~150cm 3 / min, pressure 1.33~13.3KPa, substrate temperature 900-120
A film was formed at 0 ° C.

【0038】作製した本発明品の、スケアエンドミルの
刃先先端にある平坦部を試料面にして、X線回折パター
ンを、実施例1と同一の条件で測定した。スケアエンド
ミルの刃先先端の平坦部は面積が少ないため、平坦部以
外は出来るだけ加工で除去するとともに、ビニールテー
プで覆うことにより、出来るだけ、X線回折パターンに
影響しないように工夫した。
An X-ray diffraction pattern of the manufactured product of the present invention was measured under the same conditions as in Example 1 using the flat portion at the tip of the edge of the scare end mill as a sample surface. Since the flat part at the tip of the cutting edge of the scare end mill has a small area, the part other than the flat part is removed by processing as much as possible, and by covering it with vinyl tape, it is devised so as not to affect the X-ray diffraction pattern as much as possible.

【0039】表6に上記の方法で測定した、本発明品の
硬質炭素膜中に含まれるダイヤモンドのX線回折ピーク
の代表的な測定結果を記した。
Table 6 shows typical measurement results of X-ray diffraction peaks of diamond contained in the hard carbon film of the present invention, measured by the above method.

【0040】[0040]

【表6】 [Table 6]

【0041】表6より、本発明品の硬質炭素膜中は組織
係数TC(400)が最大のダイヤモンドと(008)
X線回折強度が最大の六方晶グラファイトの両者から成
っていることがわかる。また、六方晶グラファイトの
(008)のX線回折ピーク強度IG(008)はダイ
ヤモンドの(400)のX線回折ピーク強度ID(40
0)の1.57倍であることがわかる。
From Table 6, it can be seen that the hard carbon film of the present invention has the largest texture coefficient TC (400) compared to diamond (008).
It can be seen that the X-ray diffraction intensity is composed of both hexagonal graphite having the maximum intensity. The hexagonal graphite (008) X-ray diffraction peak intensity IG (008) of diamond (400) is the X-ray diffraction peak intensity ID (40) of diamond (400).
0) is 1.57 times as large.

【0042】表7に、実施例2によって作製した硬質炭
素膜被覆工具のX線回折測定結果を示す。
Table 7 shows the results of X-ray diffraction measurement of the tool coated with the hard carbon film produced in Example 2.

【0043】[0043]

【表7】 [Table 7]

【0044】実施例1と同様に、いずれの試料も、ダイ
ヤモンドの組織係数はTC(400)がTC(hkl)
中、最大であった。これらの結果より、本発明品は、い
ずれの硬質炭素膜も、組織係数TC(400)が最大で
あるダイヤモンドと、(008)が最強である六方晶グ
ラファイトとから成っていることがわかる。
As in Example 1, in all samples, the texture coefficient of diamond was TC (400) and TC (hkl)
Medium and maximum. From these results, it can be seen that all the hard carbon films of the present invention are composed of diamond having the largest texture coefficient TC (400) and hexagonal graphite having the strongest (008).

【0045】作製した発明品各3個を用いて、本発明品
の工具寿命を下記の条件で評価した。 被削材 Al−11質量%Si合金 工具形状 スケアエンドミル(6φ、二枚刃) 工具回転数 7958 回転/分 切削速度 150 m/分 送り速度 477mm/分(0.03mm/刃) 切り込み 0.1mm 切削油 使用せず 工具寿命は実施例1と同様に、刃先の逃げ面摩耗量が
0.05mmに達するまでに切削した切削長さで示し
た。
The tool life of the product of the present invention was evaluated under the following conditions using each of the three manufactured products of the present invention. Work material Al-11 mass% Si alloy Tool shape Scare end mill (6φ, two blades) Tool rotation speed 7958 rotations / min Cutting speed 150 m / min Feed speed 477 mm / min (0.03 mm / blade) Depth of cut 0.1 mm No cutting oil was used. The tool life was indicated by the length of cutting until the flank wear of the cutting edge reached 0.05 mm, as in Example 1.

【0046】表7に工具寿命を併記する。これより本発
明品は、いずれも切削可能長が20m以上と長く、工具
寿命が優れていることがわかる。また、六方晶グラファ
イトの(008)X線回折ピーク強度IG(008)が
ダイヤモンドの(400)X線回折ピーク強度ID(4
00)の0.1〜3倍の時、切削可能長が30m以上と
長く、優れた工具寿命が得られ、IG(008)/ I
D(400)が0.15〜2.5の時は切削可能長が4
0m以上と更に長く、更に優れた工具寿命が得られ、I
G(008)/ ID(400)が0.35〜2の時は
切削可能長が50m以上と最も長く、特に優れた工具寿
命が得られることがわかる。
Table 7 also shows the tool life. From this, it can be seen that all of the products of the present invention have a long cuttable length of 20 m or more and have an excellent tool life. The (008) X-ray diffraction peak intensity IG (008) of hexagonal graphite is (400) X-ray diffraction peak intensity ID (4) of diamond.
00), the cutting length is as long as 30 m or more, excellent tool life is obtained, and IG (008) / I
When D (400) is 0.15 to 2.5, the cuttable length is 4
0m or more, longer tool life is obtained,
When G (008) / ID (400) is 0.35 to 2, the cuttable length is as long as 50 m or more, and it can be seen that a particularly excellent tool life can be obtained.

【0047】(比較例2)硬質炭素膜において、TC
(400)が最大であるダイヤモンドと(008)のX
線回折強度が最強であるグラファイトの両者を含有する
ことの有無による工具寿命への影響を明らかにするため
に、実施例2と同一の組成と形状よりなるスケアエンド
ミル型の切削工具用超硬合金基体を炉内にセットし、そ
れらの表面に、熱フィラメントCVD法により、約8μ
m厚さの硬質炭素膜を成膜した。タングステン製フィラ
メントを約2,300℃に加熱し、これにCH4/H2
が0.4%のCH4とH2の混合ガスを150cm/m
inだけ流し、圧力13.3kPa、基板温度800℃
で成膜した。
(Comparative Example 2) In a hard carbon film, TC
Diamond with the largest (400) and X of (008)
In order to clarify the effect on the tool life due to the presence or absence of both graphite having the strongest line diffraction intensity, a cemented carbide for a Scare end mill type cutting tool having the same composition and shape as in Example 2 The substrates were set in a furnace, and their surfaces were coated with about 8 μm by hot filament CVD.
A hard carbon film having a thickness of m was formed. The tungsten filament is heated to about 2,300 ° C., and a mixed gas of CH 4 and H 2 having a CH 4 / H 2 ratio of 0.4% is added to the tungsten filament at 150 cm 3 / m
in, at a pressure of 13.3 kPa, and a substrate temperature of 800 ° C.
Was formed.

【0048】作製した比較例2品の硬質炭素膜は、TC
(400)が最大のダイヤモンド成分を含有しているも
のの、六方晶グラファイトのピークは観察されなかっ
た。
The hard carbon film of Comparative Example 2 was made of TC
Although (400) contained the largest diamond component, no hexagonal graphite peak was observed.

【0049】比較例2の条件で作製した切削工具各3個
を用いて実施例2と同一の条件で工具寿命を評価した結
果、10m以内で外周刃の刃先摩耗量が0.05mmに
達し、本発明品よりも工具寿命が短く、工具として劣る
ことが判明した。
The tool life was evaluated under the same conditions as in Example 2 using each of the three cutting tools manufactured under the conditions of Comparative Example 2, and as a result, the wear of the outer edge reached 0.05 mm within 10 m. It was found that the tool life was shorter than that of the product of the present invention, and the tool was inferior.

【0050】[0050]

【発明の効果】上述のように、本発明によれば、耐摩耗
性と摺動性の両特性が良好であり、優れた工具耐久特性
を示す硬質炭素膜被覆工具を実現することができる。
As described above, according to the present invention, it is possible to realize a hard carbon film-coated tool having both good wear resistance and good sliding properties and excellent tool durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の硬質炭素膜被覆工具のX線回
折パターンの一例を示す。
FIG. 1 shows an example of an X-ray diffraction pattern of a tool coated with a hard carbon film of the present invention.

【図2】図2は、ダイヤモンドの単位格子を示す説明図
を示す。
FIG. 2 is an explanatory view showing a unit cell of diamond.

【図3】図3は、六方晶グラファイトの単位格子を示す
説明図を示す。
FIG. 3 is an explanatory view showing a unit cell of hexagonal graphite.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF03 FF12 4G077 AA03 AB08 BA03 DB07 HA13 TA03 TA04 4K030 AA10 AA17 BA28 CA03 FA01 FA10 HA14 JA13 JA20 LA22 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3C046 FF03 FF12 4G077 AA03 AB08 BA03 DB07 HA13 TA03 TA04 4K030 AA10 AA17 BA28 CA03 FA01 FA10 HA14 JA13 JA20 LA22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ダイヤモンドを含有する硬質炭素膜を被
覆した硬質炭素膜被覆工具において、硬質炭素膜は組織
係数TC(hkl)の中でTC(400)が最大である
ダイヤモンドとX線回折の最強ピークが(008)面指
数である六方晶グラファイトの両者を含有していること
を特徴とする硬質炭素膜被覆工具。
1. A hard carbon film-coated tool coated with a diamond-containing hard carbon film, wherein the hard carbon film has the highest TC (400) among the texture coefficients TC (hkl) and the strongest X-ray diffraction. A hard carbon film-coated tool containing both hexagonal graphite whose peaks are (008) plane index.
【請求項2】 請求項1に記載の硬質炭素膜被覆工具に
おいて、前記六方晶グラファイトの(008)面指数の
X線回折ピーク強度がダイヤモンドの(400)面指数
のX線回折ピーク強度の0.1〜3倍であることを特徴
とする硬質炭素膜被覆工具。
2. The hard carbon film-coated tool according to claim 1, wherein the hexagonal graphite has an X-ray diffraction peak intensity of (008) plane index of diamond which is 0% of an X-ray diffraction peak intensity of (400) plane index of diamond. A tool coated with a hard carbon film, characterized in that the tool is 1 to 3 times.
JP36898699A 1999-12-27 1999-12-27 Hard carbon film-coated tool Withdrawn JP2001179504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36898699A JP2001179504A (en) 1999-12-27 1999-12-27 Hard carbon film-coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36898699A JP2001179504A (en) 1999-12-27 1999-12-27 Hard carbon film-coated tool

Publications (1)

Publication Number Publication Date
JP2001179504A true JP2001179504A (en) 2001-07-03

Family

ID=18493275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36898699A Withdrawn JP2001179504A (en) 1999-12-27 1999-12-27 Hard carbon film-coated tool

Country Status (1)

Country Link
JP (1) JP2001179504A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011902A1 (en) * 2003-07-31 2005-02-10 A.L.M.T.Corp. Diamond film coated tool and process for producing the same
JP2005524801A (en) * 2002-04-24 2005-08-18 ディアッコン ゲーエムベーハー Sliding member and method for manufacturing the sliding member
JP2010156026A (en) * 2008-12-29 2010-07-15 Sumitomo Electric Ind Ltd Hard carbon film, and method for forming the same
JP2011121142A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2011121143A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool
EP2671967A1 (en) * 2012-06-07 2013-12-11 Union Tool Co. Diamond film for cutting-tools

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524801A (en) * 2002-04-24 2005-08-18 ディアッコン ゲーエムベーハー Sliding member and method for manufacturing the sliding member
WO2005011902A1 (en) * 2003-07-31 2005-02-10 A.L.M.T.Corp. Diamond film coated tool and process for producing the same
US7883775B2 (en) 2003-07-31 2011-02-08 A.L.M.T. Corp. Diamond film coated tool and process for producing the same
KR101065572B1 (en) * 2003-07-31 2011-09-19 스미토모덴키고교가부시키가이샤 Diamond film coated tool and process for producing the same
JP2010156026A (en) * 2008-12-29 2010-07-15 Sumitomo Electric Ind Ltd Hard carbon film, and method for forming the same
JP2011121142A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2011121143A (en) * 2009-12-11 2011-06-23 Mitsubishi Materials Corp Diamond-coated cutting tool
EP2671967A1 (en) * 2012-06-07 2013-12-11 Union Tool Co. Diamond film for cutting-tools
US9061397B2 (en) 2012-06-07 2015-06-23 Union Tool Co. Diamond film for cutting-tools

Similar Documents

Publication Publication Date Title
CN108290223B (en) Cutting tool
JP3678924B2 (en) Aluminum oxide coated tool
JP5641124B2 (en) Method for producing hard coating member
JP4832108B2 (en) Surface coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
KR20040093037A (en) Layer with controlled grain size and morphology for enhanced wear resistance
WO2012144088A1 (en) Surface-coated cutting tool and method for manufacturing same
JP4004133B2 (en) Titanium carbonitride coated tool
US7276301B2 (en) Surface-coated cermet cutting tool with a hard coating layer exhibiting excellent chipping resistance
JP6519057B2 (en) Method of manufacturing surface coated cutting tool
JP3392115B2 (en) Hard coating tool
JP2018030193A (en) Surface coated cutting tool and method for manufacturing the same
US10744568B2 (en) Coated tool
JP3962300B2 (en) Aluminum oxide coated tool
JP3436169B2 (en) Surface-coated cemented carbide cutting tool with an aluminum oxide layer that forms the hard coating layer exhibits excellent toughness
JP2001179504A (en) Hard carbon film-coated tool
JP2001322008A (en) Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance
JP2005153098A (en) Surface coated cutting tool
JP7190111B2 (en) surface coated cutting tools
JP2005264194A (en) alpha-TYPE ALUMINUM OXIDE COATED MEMBER
JP4022042B2 (en) Coated tool and manufacturing method thereof
JP4845490B2 (en) Surface coated cutting tool
JP4565464B2 (en) Covering member
JP2001328007A (en) Hard carbon film-covered tool
JP3818961B2 (en) Aluminum oxide coated tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090304