JP4849233B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer Download PDF

Info

Publication number
JP4849233B2
JP4849233B2 JP2006232692A JP2006232692A JP4849233B2 JP 4849233 B2 JP4849233 B2 JP 4849233B2 JP 2006232692 A JP2006232692 A JP 2006232692A JP 2006232692 A JP2006232692 A JP 2006232692A JP 4849233 B2 JP4849233 B2 JP 4849233B2
Authority
JP
Japan
Prior art keywords
layer
phase
hard coating
cutting
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006232692A
Other languages
Japanese (ja)
Other versions
JP2008055525A (en
Inventor
惠滋 中村
尚志 本間
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006232692A priority Critical patent/JP4849233B2/en
Publication of JP2008055525A publication Critical patent/JP2008055525A/en
Application granted granted Critical
Publication of JP4849233B2 publication Critical patent/JP4849233B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、各種の鋼や鋳鉄などの切削加工を、特に、切刃部に大きな機械的負荷がかかる高切り込みや高送りなどの重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention has an excellent hard coating layer even when cutting various steels and cast irons, especially under heavy cutting conditions such as high cutting and high feed that require a large mechanical load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits chipping resistance and exhibits excellent wear resistance over a long period of time.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層等のTi化合物層を積層構造のものとして蒸着形成した被覆工具(以下、従来被覆工具という)、あるいは、前記Ti化合物層の表面にさらに酸化アルミニウム層を蒸着形成した被覆工具が知られており、これらの被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られている。   Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. As a hard coating layer, a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO) And a coated tool (hereinafter referred to as a conventional coated tool) formed by vapor deposition of a Ti compound layer such as a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer, or further on the surface of the Ti compound layer Coated tools in which an aluminum oxide layer is formed by vapor deposition are known, and it is well known that these coated tools are used for continuous cutting and intermittent cutting of various steels and cast irons, for example. That.

また、上記従来被覆工具の硬質被覆層を構成するTi化合物層は、通常、粒状結晶組織を有するが、前記Ti化合物層の一つであるTiCN層については、該層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより縦長成長結晶組織をもつTiCN(以下、縦長TiCNで示す)層を形成することも知られている。
特開昭58−157964号公報 特開昭58−157965号公報 特開平6−8010号公報
Further, the Ti compound layer constituting the hard coating layer of the above conventional coated tool usually has a granular crystal structure, but the TiCN layer which is one of the Ti compound layers is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a TiCN having a vertically grown crystal structure (hereinafter referred to as a vertically long TiCN) is obtained by chemical vapor deposition in a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas. It is also known to form layers.
JP 58-157964 A JP 58-157965 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常条件での連続切削や断続切削に用いた場合には問題はないが、しかし、これを高切込み、高送りなど切刃部に大きな機械的負荷がかかる重切削加工に用いた場合には、硬質被覆層の高温強度が十分でないために、特に、チッピングが発生し易くなり、さらに偏摩耗が急速に進行し、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor-saving and energy-saving in cutting, and further cost reduction. Although there is a tendency to be strongly demanded, in the above-mentioned conventional coated tool, there is no problem when this is used for continuous cutting or interrupted cutting under normal conditions such as steel or cast iron, but this is high-cut, When used for heavy cutting where a high mechanical load is applied to the cutting edge, such as high feed, the hard coating layer is not sufficiently strong at high temperature, so chipping is particularly likely to occur, and uneven wear rapidly occurs. The current situation is that it progresses and reaches the service life in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記従来被覆工具の硬質被覆層を構成するTi化合物層に着目し、硬質被覆層の耐チッピング性向上を図るべく研究を行った結果、
上記の従来被覆工具の硬質被覆層を構成するTi化合物層の一つである粒状結晶組織を有するTiC層は、一般に、通常の化学蒸着装置にて、
反応ガス組成(容量%):TiCl:2〜5%、CH:4〜20%、H2:残り
反応雰囲気温度:980〜1100℃、
反応雰囲気圧力:6〜50kPa、
の条件(以下、通常条件という)で形成されるが、
(a)同じく通常の化学蒸着装置を用い、
反応ガス組成(容量%):TiCl:2〜5%、CrCl:4〜10%、
CH:4〜20%、Ar:5〜15%、H2:残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:5〜25kPa、
の条件、すなわち、上記通常条件と比較すると、反応ガス組成を調整して上記通常条件の反応ガス組成とは異なった反応ガス組成とした条件(反応雰囲気の温度および圧力は上記通常条件とほぼ同じ)で蒸着層を形成すると、この結果形成された化学蒸着層は、立方晶構造のTiリッチなTiCr複合炭化物相(以下、「(Ti,Cr)C相」で示す)をマトリックスとし、該マトリックス中に、斜方晶構造のCrリッチなCrTi複合炭化物相(以下、「(Cr,Ti)C相」で示す)が10〜40面積%の割合で分散分布する、(Ti,Cr)C相と(Cr,Ti)C相の混合相組織層(以下、「(Ti:Cr)C層」で示す)であること。
Therefore, the present inventors, from the above viewpoint, paying attention to the Ti compound layer constituting the hard coating layer of the conventional coated tool, and as a result of conducting research to improve the chipping resistance of the hard coating layer,
The TiC layer having a granular crystal structure that is one of the Ti compound layers constituting the hard coating layer of the above-described conventional coated tool is generally a normal chemical vapor deposition apparatus.
Reaction gas composition (volume%): TiCl 4 : 2 to 5%, CH 4 : 4 to 20%, H 2 : remaining reaction atmosphere temperature: 980 to 1100 ° C,
Reaction atmosphere pressure: 6-50 kPa,
(Hereinafter referred to as normal conditions)
(A) Using a normal chemical vapor deposition apparatus,
Reaction gas composition (volume%): TiCl 4 : 2 to 5%, CrCl 3 : 4 to 10%,
CH 4: 4~20%, Ar: 5~15%, H 2: remainder,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 5 to 25 kPa,
Compared with the above normal conditions, the reaction gas composition was adjusted to a reaction gas composition different from the normal reaction gas composition (the temperature and pressure of the reaction atmosphere were almost the same as the above normal conditions). ), The resulting chemical vapor deposition layer is formed from a cubic Ti-rich TiCr composite carbide phase (hereinafter referred to as “(Ti, Cr) C phase”) as a matrix. Inside, a (Ti, Cr) C phase in which an orthorhombic Cr-rich CrTi composite carbide phase (hereinafter referred to as “(Cr, Ti) C phase”) is dispersed and distributed at a rate of 10 to 40 area%. And a (Cr, Ti) C phase mixed phase structured layer (hereinafter referred to as “(Ti: Cr) C layer”).

(b)上記(a)の(Ti:Cr)C層を下地層とし、この上に、従来から知られている通常の上部層(即ち、TiN層からなる内部層、TiC層または縦長成長結晶組織のTiCN(以下、「縦長TiCN」で示す)層からなる中間層、TiN層からなる表面層の各層を積層した上部層)を形成し、下地層と上部層で硬質被覆層を構成すると、工具基体と下地層を構成する(Ti:Cr)C層とがすぐれた密着性を有し、下地層と工具基体間の接合強度が改善され、また、下地層は内部層との密着性にもすぐれ、さらに、上部層を構成する各層(内部層−中間層−表面層の各層)の相互密着性もすぐれていることから、硬質被覆層自体および硬質被覆層と工具基体との密着性、接合強度が非常に大となり、その結果、(Ti:Cr)C層を下地層とする硬質被覆層を設けた被覆工具は、硬質被覆層全体としてすぐれた高温強度を備えたものとなり、例えば、高い発熱を伴い、かつ、高切込み、高送りなど切刃部に大きな機械的負荷がかかる重切削加工に用いた場合であっても、優れた耐チッピング性を発揮すること。
以上(a)、(b)に示される研究結果を得たのである。
(B) The (Ti: Cr) C layer of (a) described above is used as an underlayer, and a conventional upper layer (ie, an internal layer comprising a TiN layer, a TiC layer or a vertically grown crystal) is formed thereon. When forming an intermediate layer composed of a TiCN (hereinafter referred to as “longitudinal TiCN”) layer of the structure, and an upper layer formed by laminating each surface layer composed of a TiN layer), and forming a hard coating layer with an underlayer and an upper layer, The tool base and the (Ti: Cr) C layer constituting the base layer have excellent adhesion, the bonding strength between the base layer and the tool base is improved, and the base layer has improved adhesion to the inner layer. Furthermore, since the mutual adhesion of each layer constituting the upper layer (inner layer-intermediate layer-surface layer) is also excellent, the adhesion between the hard coating layer itself and the hard coating layer and the tool substrate, Bond strength is very high, and as a result, the (Ti: Cr) C layer A coated tool provided with a hard coating layer as a layer has excellent high-temperature strength as a whole hard coating layer. For example, it has high heat generation, and has a large mechanical strength on the cutting edge such as high cutting and high feed. Demonstrate excellent chipping resistance even when used for heavy-duty machining with a load.
The research results shown in (a) and (b) have been obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下地層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下地層は、0.1〜2μmの層厚を有し、かつ、
組成式:(Ti1−XCr)C(但し、Xは原子比で0.05〜0.30)
を満足する立方晶のTiCr複合炭化物相をマトリックスとし、該マトリックス中に、斜方晶のCrリッチなCrTi複合炭化物相が10〜40面積%の割合で分散分布する、立方晶のTiCr複合炭化物と斜方晶のCrリッチなCrTi複合炭化物相の混合相組織層からなり、
(b)上部層は、内部層、中間層および表面層の積層構造として構成され、
上記内部層は、0.5〜2μmの層厚を有するTi窒化物層からなり、
上記中間層は、0.5〜5μmの層厚を有し、粒状結晶組織を有するTi炭化物層または縦長成長結晶組織を有するTi炭窒化物層からなり、
上記表面層は、0.3〜2μmの層厚を有するTi窒化物層からなること、
を特徴とする硬質被覆層がすぐれた耐チッピング性を発揮する被覆工具(表面被覆切削工具)」に特徴を有するものである。
This invention was made based on the above research results,
“In a surface-coated cutting tool in which a hard coating layer composed of an underlayer and an upper layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) the underlayer has a layer thickness of 0.1 to 2 μm, and
Composition formula: (Ti 1-X Cr X ) C (where X is an atomic ratio of 0.05 to 0.30)
A cubic TiCr composite carbide phase that satisfies the following conditions: a cubic TiCr composite carbide in which an orthorhombic Cr-rich CrTi composite carbide phase is dispersed and distributed in a ratio of 10 to 40 area% in the matrix; It consists of a mixed phase texture layer of orthorhombic Cr-rich CrTi composite carbide phase,
(B) The upper layer is configured as a laminated structure of an inner layer, an intermediate layer, and a surface layer,
The inner layer is composed of a Ti nitride layer having a layer thickness of 0.5 to 2 μm,
The intermediate layer has a layer thickness of 0.5 to 5 μm, and consists of a Ti carbide layer having a granular crystal structure or a Ti carbonitride layer having a vertically long crystal structure,
The surface layer comprises a Ti nitride layer having a layer thickness of 0.3-2 μm;
The hard coating layer characterized by the above is characterized by a “coated tool (surface coated cutting tool) that exhibits excellent chipping resistance”.

以下に、この発明の硬質被覆層について、より詳細に説明する。   Below, the hard coating layer of this invention is demonstrated in detail.

(a)下地層((Ti:Cr)C層)
(Ti:Cr)C層からなる下地層は、工具基体に対して非常に優れた密着性を有し、工具基体と下地層間の接合強度は格段に向上するとともに、また、(上部層の)内部層との密着性もすぐれているため、下地層と上部層(の内部層)との接合強度も大幅に向上する。
すでに述べたように、上記(Ti:Cr)C層は、例えば、通常の化学蒸着装置にて、
反応ガス組成(容量%):TiCl:2〜5%、CrCl:4〜10%、
CH:4〜20%、Ar:5〜15%、H2:残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:5〜25kPa、
の条件で化学蒸着することにより形成することができる。
そして、上記条件で蒸着形成された(Ti:Cr)C層は、10〜40面積%のCrリッチな斜方晶構造の(Cr,Ti)C相が、Tiリッチな立方晶構造の(Ti,Cr)C相からなるマトリックス中に分散分布した、TiCr複合炭化物相とCrTi複合炭化物相の混合相組織を有している。
より具体的には、(Ti:Cr)C層のマトリックスを構成するTiリッチな立方晶構造の(Ti,Cr)C相は、これを、
組成式:(Ti1−XCr)C
で表すと、Xの値(但し、原子比)が、0.05≦X≦0.30を満足する立方晶構造のTiとCrとの複合炭化物相である。
また、上記(Ti,Cr)C相からなるマトリックス中に分散分布するCrリッチな斜方晶構造の(Cr,Ti)C相は、これを組成式で表現した場合、
組成式:(CrTi1−Y(但し、Yは原子比で、0.55≦Y≦0.8)、および/または、
組成式:(CrTi1−Z(但し、Zは原子比で0.85≦Z≦0.95)
を主体とする斜方晶構造のCrとTiとの複合炭化物相である。
(A) Underlayer ((Ti: Cr) C layer)
The underlayer composed of the (Ti: Cr) C layer has very good adhesion to the tool base, the bonding strength between the tool base and the underlayer is greatly improved, and (of the upper layer) Since the adhesion with the inner layer is also excellent, the bonding strength between the underlayer and the upper layer (the inner layer) is greatly improved.
As described above, the (Ti: Cr) C layer is formed by, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition (volume%): TiCl 4 : 2 to 5%, CrCl 3 : 4 to 10%,
CH 4: 4~20%, Ar: 5~15%, H 2: remainder,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 5 to 25 kPa,
It can be formed by chemical vapor deposition under the following conditions.
Then, the (Ti: Cr) C layer formed by vapor deposition under the above conditions has a 10 to 40 area% Cr-rich orthorhombic (Cr, Ti) C phase, and a Ti-rich cubic structure (Ti , Cr) has a mixed phase structure of a TiCr composite carbide phase and a CrTi composite carbide phase dispersed and distributed in a matrix composed of a C phase.
More specifically, the (Ti, Cr) C phase having a Ti-rich cubic structure constituting the matrix of the (Ti: Cr) C layer is expressed as follows:
Formula: (Ti 1-X Cr X ) C
Is a composite carbide phase of Ti and Cr having a cubic structure in which the value of X (however, the atomic ratio) satisfies 0.05 ≦ X ≦ 0.30.
Further, the Cr-rich orthorhombic (Cr, Ti) C phase dispersed and distributed in the matrix composed of the (Ti, Cr) C phase is expressed by a composition formula,
Composition formula: (Cr Y Ti 1-Y ) 3 C 2 (where Y is an atomic ratio, 0.55 ≦ Y ≦ 0.8), and / or
Composition formula: (Cr Z Ti 1-Z ) 7 C 3 ( where, 0.85 ≦ Z ≦ 0.95 Z is atomic ratio)
Is a composite carbide phase of Cr and Ti having an orthorhombic structure mainly composed of.

前記(a)の蒸着条件で蒸着を行うと、組成式:(Ti1−XCr)Cにおいて、0.05≦X(原子比)≦0.30を満たすCr含有割合の(Ti,Cr)C相が形成され、また、組成式:(CrTi1−Yおよび/または組成式:(CrTi1−Zにおいて、0.55≦Y(原子比)≦0.8、0.85≦Z(原子比)≦0.95を満たすみたすCr含有割合の(Cr,Ti)C相が形成されると同時に、(Ti,Cr)C相中に10〜40面積%の(Cr,Ti)C相が分散分布した(Ti:Cr)C層が形成される。
しかし、前記(a)の蒸着条件を外れた条件で蒸着を行うと、上記組成式(Ti1−XCr)Cにおいて、(Ti,Cr)C相のCr含有割合を示すX値が5原子%未満のもの、あるいは、X値が30原子%を超えるものとなるばかりか、組成式:(CrTi1−Yおよび/または組成式:(CrTi1−Zにおいても、Y値は、55原子%未満あるいは80原子%を超えたもの、Z値は、85原子%未満あるいは95原子%を超えたものとなり、さらに、(Cr,Ti)C相の分散分布割合も、10面積%未満あるいは40面積%を超えたものとなり、そして、X値が5原子%未満、Y値が55原子%未満、Z値が85原子%未満あるいは(Cr,Ti)C相の分散分布割合が10面積%未満の場合には、下地層((Ti:Cr)C層)と工具基体間の密着性改善効果が期待できず、また、下地層と工具基体間の接合強度の改善も望めず、一方、X値、Y値、Z値がそれぞれ、30原子%、80原子%、95原子%を超えた場合、あるいは、(Cr,Ti)C相の分散分布割合が40面積%を超えた場合には、分散分布する(Cr,Ti)C相の粗大化、相形態の変化による脆化、マトリックス相−分散相界面の脆化等により、下地層である(Ti:Cr)C層自体が脆弱化し、また、工具基体あるいは(上部層の)内部層との密着性、接合強度も劣化させる。
したがって、上記組成式におけるX値(原子比)を0.05〜0.30、Y値(原子比)を0.55〜0.8、Z値(原子比)を0.8〜0.95と定め、さらに、(Cr,Ti)C相の分散分布割合も、10〜40面積%と定めた。
また、下地層((Ti:Cr)C層)は、その層厚が0.1μm未満では、工具基体と上部層間に介在して、硬質被覆層を工具基体へと密着接合させるという作用を期待することはできず、一方、層厚が2μmを超えると、例えば、高送りや高切り込みのような重切削という厳しい切削条件では、チッピングを発生しやすくなることから、下地層の層厚は0.1〜2μmと定めた。
When vapor deposition is performed under the vapor deposition conditions of (a) above, in the composition formula: (Ti 1-X Cr X ) C, (Ti, Cr having a Cr content ratio satisfying 0.05 ≦ X (atomic ratio) ≦ 0.30. ) C phase is formed, and 0.55 ≦ Y (atomic ratio) in composition formula: (Cr Y Ti 1-Y ) 3 C 2 and / or composition formula: (Cr Z Ti 1-Z ) 7 C 3 ) ≦ 0.8, 0.85 ≦ Z (atomic ratio) ≦ 0.95, a Cr content ratio of (Cr, Ti) C phase is formed, and at the same time, 10 in the (Ti, Cr) C phase. A (Ti: Cr) C layer in which ˜40 area% of (Cr, Ti) C phase is dispersed and distributed is formed.
However, when vapor deposition is performed under conditions other than the vapor deposition conditions of (a), in the composition formula (Ti 1-X Cr X ) C, the X value indicating the Cr content ratio of the (Ti, Cr) C phase is 5 The compositional formula: (Cr Y Ti 1-Y ) 3 C 2 and / or the compositional formula: (Cr Z Ti 1-Z ) is not only less than atomic%, or the X value exceeds 30 atomic%. In 7 C 3 , the Y value is less than 55 atomic% or more than 80 atomic%, the Z value is less than 85 atomic% or more than 95 atomic%, and the (Cr, Ti) C phase The dispersion distribution ratio of is less than 10 area% or more than 40 area%, and the X value is less than 5 atomic%, the Y value is less than 55 atomic%, the Z value is less than 85 atomic% or (Cr, Ti ) When the C phase dispersion distribution ratio is less than 10% by area The effect of improving the adhesion between the underlayer ((Ti: Cr) C layer) and the tool substrate cannot be expected, and the improvement of the bonding strength between the underlayer and the tool substrate cannot be expected. When the Z value exceeds 30 atomic%, 80 atomic%, and 95 atomic%, or when the dispersion distribution ratio of the (Cr, Ti) C phase exceeds 40 area%, the distribution is distributed ( The (Ti: Cr) C layer itself, which is the underlying layer, becomes brittle due to the coarsening of the Cr, Ti) C phase, embrittlement due to changes in phase morphology, embrittlement at the interface between the matrix phase and the dispersed phase, etc. Alternatively, the adhesion and bonding strength with the inner layer (of the upper layer) are also deteriorated.
Therefore, the X value (atomic ratio) in the above composition formula is 0.05 to 0.30, the Y value (atomic ratio) is 0.55 to 0.8, and the Z value (atomic ratio) is 0.8 to 0.95. Furthermore, the dispersion distribution ratio of the (Cr, Ti) C phase was also determined to be 10 to 40 area%.
In addition, if the thickness of the underlayer ((Ti: Cr) C layer) is less than 0.1 μm, it is expected that the hard coating layer is closely bonded to the tool substrate by being interposed between the tool substrate and the upper layer. On the other hand, if the layer thickness exceeds 2 μm, chipping is likely to occur under severe cutting conditions such as heavy cutting such as high feed and high cutting, so the layer thickness of the underlayer is 0. .1 to 2 μm.

(b)上部層(内部層−中間層−表面層の積層構造)
上部層は、0.5〜2μmの層厚のTiN層からなる内部層と、0.5〜5μmの層厚を有するTiC層または縦長TiCN層からなる中間層と、0.3〜2μmの層厚のTiN層からなる表面層の積層構造として形成されるが、内部層、表面層を構成するTiN層が、高い化学的安定性を示し、特に被削材との化学反応に基づく摩耗に対してすぐれた耐摩耗性を発揮するとともに硬質被覆層の高温強度の向上に寄与すること、また、中間層を構成するTiC層は非常に硬度が高いため、被削材との摩擦により発生する摩耗に対してすぐれた耐摩耗性を発揮すること、さらに、中間層を縦長TiCN層で構成した場合に、硬質被覆層の高温強度のさらなる改善が図られることは、従来からよく知られているとおりである。
そして、上部層を構成する内部層、中間層、表面層の各層厚を、それぞれ、0.5〜2μm、0.5〜5μm、0.3〜2μmと定めたのは、各層の層厚が、それぞれの下限値未満になると、切刃部に大きな機械的負荷がかかる重切削という条件下で、各層の備える特性(高温硬さ、高温強度)を十分発揮することができず、一方、各層の層厚がそれぞれの上限値を超えると、各層間の接合強度が低下し、また、チッピング、偏摩耗を生じる恐れがあるという理由による。
(B) Upper layer (laminated structure of inner layer-intermediate layer-surface layer)
The upper layer includes an inner layer made of a TiN layer having a thickness of 0.5 to 2 μm, an intermediate layer made of a TiC layer or a vertically long TiCN layer having a thickness of 0.5 to 5 μm, and a layer having a thickness of 0.3 to 2 μm It is formed as a laminated structure of a surface layer consisting of a thick TiN layer, but the TiN layer constituting the inner layer and the surface layer shows high chemical stability, especially against wear based on chemical reaction with the work material. Exhibits excellent wear resistance and contributes to improving the high-temperature strength of the hard coating layer, and the TiC layer that constitutes the intermediate layer is extremely hard, so wear caused by friction with the work material As is well known in the art, it exhibits excellent wear resistance with respect to, and further improves the high-temperature strength of the hard coating layer when the intermediate layer is composed of a vertically long TiCN layer. It is.
The thicknesses of the inner layer, the intermediate layer, and the surface layer constituting the upper layer were determined to be 0.5 to 2 μm, 0.5 to 5 μm, and 0.3 to 2 μm, respectively. When the value is less than the lower limit value, the characteristics (high-temperature hardness, high-temperature strength) of each layer cannot be fully exerted under the condition of heavy cutting in which a large mechanical load is applied to the cutting edge part. If the layer thickness exceeds the respective upper limit values, the bonding strength between the respective layers decreases, and chipping and uneven wear may occur.

この発明の被覆工具は、硬質被覆層の下地層を、立方晶構造のTiリッチなTiCr複合炭化物相((Ti,Cr)C相)をマトリックスとし、その中に、斜方晶構造のCrリッチなCrTi複合炭化物相((Cr,Ti)C相)が10〜40面積%の割合で分散分布している、立方晶のTiCr複合炭化物と斜方晶のCrTi複合炭化物相の混合相組織層((Ti:Cr)C層)で構成することによって、下地層と工具基体間、また、下地層と上部層(の内部層)間の密着性、接合強度を高めたものであり、各種の鋼や鋳鉄などの切削加工を、例えば、高い機械的負荷が加わる高切り込みや高送りなどの重切削条件で行っても、硬質被覆層がすぐれた高温硬さ、高温強度とともにすぐれた接合強度を有することから、チッピングの発生が防止されるとともに偏摩耗の発生も抑制され、長期に亘ってすぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。   The coated tool of the present invention uses a hard coating layer as an underlayer, a cubic Ti-rich TiCr composite carbide phase ((Ti, Cr) C phase) as a matrix, and includes an orthorhombic Cr-rich layer. A mixed phase structure layer of cubic TiCr composite carbide and orthorhombic CrTi composite carbide phase in which a CrTi composite carbide phase ((Cr, Ti) C phase) is dispersed and distributed at a rate of 10 to 40 area% ( (Ti: Cr) C layer) to improve the adhesion and bonding strength between the underlayer and the tool base, and between the underlayer and the upper layer (inner layer thereof). For example, even hard cutting conditions such as high cutting and high feed with high mechanical loads, such as high-hardness and high-strength hard coating layers, have excellent joint strength along with high-temperature strength. This prevents chipping from occurring. The occurrence of uneven wear suppression while being, exhibit excellent wear resistance for a long time, and makes it possible to further life extension of service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160612に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to F made of WC-base cemented carbide having the insert shape specified in ISO · CNMG160612 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160612のインサート形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having an insert shape of standard / CNMG160612 were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3に示される条件(下地層(1)〜(6))にて、表4、5に示される目標層厚の(Ti:Cr)C層を硬質被覆層の下地層として蒸着形成し、
(b)ついで、同じく表3に示される条件にて、表4、5に示される組合せ、目標層厚で、内部層(1)〜(3)、中間層(1)〜(4)、表面層(1)〜(3)とからなる上部層を蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
なお、表3中の中間層(4)の縦長TiCNは、特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, under the conditions shown in Table 3 (underlayers (1) to (6)), the (Ti: Cr) C layer having the target layer thickness shown in Tables 4 and 5 is used as the underlayer of the hard coating layer. Formed as a vapor deposition
(B) Next, under the same conditions as shown in Table 3, the combinations shown in Tables 4 and 5, the target layer thickness, the inner layers (1) to (3), the intermediate layers (1) to (4), the surface The coated tools 1 to 13 of the present invention were manufactured by vapor-depositing an upper layer composed of the layers (1) to (3).
In addition, the longitudinal TiCN of the intermediate layer (4) in Table 3 indicates the conditions for forming a TiCN layer having a longitudinally grown crystal structure described in JP-A-6-8010. This shows the formation conditions of the crystal structure.

また、比較の目的で、硬質被覆層の下地層を、表3に示される中間層(1)〜(3)の形成条件にて、表6、7に示される組み合わせおよび目標層厚で形成する以外は、上記の本発明被覆工具1〜13と同一の条件で従来被覆工具1〜13をそれぞれ製造した。   For comparison purposes, the base layer of the hard coating layer is formed with the combinations and target layer thicknesses shown in Tables 6 and 7 under the formation conditions of the intermediate layers (1) to (3) shown in Table 3. Except for the above, conventionally coated tools 1 to 13 were produced under the same conditions as the above-described coated tools 1 to 13 of the present invention.

ついで、上記の本発明被覆工具1〜13の硬質被覆層の下地層を構成する下地層(1)〜(6)について、X線回折装置および走査型オージェ電子分光分析装置を用いて、(Cr,Ti)C相の存在形態を確認し、次いで、走査型オージェ電子分光分析装置を用いた倍率2万倍のCrの面分析結果(写真)の画像解析により、その面積割合(5点測定の平均値)を計測した。これらの測定結果を、表8に示す。表8から、本発明被覆工具1〜13では、下地層は、TiリッチなTiCr複合炭化物((Ti,Cr)C)相をマトリックスとして、該マトリックス中に、CrリッチなCrTi複合炭化物((Cr,Ti)C)相が分散分布し、そして、CrリッチなCrTi複合炭化物((Cr,Ti)C)相の占める面積割合は、全体の10〜40面積%であることが確認された。   Next, for the underlayers (1) to (6) constituting the underlayer of the hard coating layer of the present invention-coated tools 1 to 13, using an X-ray diffractometer and a scanning Auger electron spectrometer, (Cr , Ti) The existence form of the C phase was confirmed, and then the area ratio (five-point measurement of the five-point measurement) was performed by image analysis of the surface analysis result (photograph) of Cr at a magnification of 20,000 times using a scanning Auger electron spectrometer. (Average value) was measured. These measurement results are shown in Table 8. From Table 8, in the coated tools 1 to 13 of the present invention, the underlayer has a Ti-rich TiCr composite carbide ((Ti, Cr) C) phase as a matrix and a Cr-rich CrTi composite carbide ((Cr , Ti) C) phase is dispersed and distributed, and the area ratio occupied by the Cr-rich CrTi composite carbide ((Cr, Ti) C) phase is 10 to 40 area% of the whole.

また、本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層を構成する各層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of each layer which comprises the hard coating layer of this invention coated tool 1-13 and the conventional coated tool 1-13 was measured using the scanning electron microscope (longitudinal section measurement), all were target layer thickness. The average layer thickness (average value of 5-point measurement) was substantially the same.

つぎに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の切削条件で切削試験を行った。
[切削条件A]
被削材: JIS・SUS316(HB220)の丸棒 、
切削速度: 100 m/min.、
切り込み: 1.5 mm、
送り: 0.6 mm/rev.、
切削時間: 10 分、
の条件でのステンレス鋼の湿式連続高送り切削試験(通常の送りは0.3mm/rev.)。
[切削条件B]
被削材: JIS・FCD600(引張強度610MPa)の丸棒 、
切削速度: 120 m/min.、
切り込み: 7 mm、
送り: 0.35 mm/rev.、
切削時間: 10 分、
の条件でのダクタイル鋳鉄の湿式連続高切り込み切削試験(通常の切り込みは4mm)。
[切削条件C]
被削材: JIS・SCM440 (HB260)の4本溝入り丸棒 、
切削速度: 110 m/min.、
切り込み: 7 mm、
送り: 0.2 mm/rev.、
切削時間: 10 分、
の条件での合金鋼の湿式断続高切り込み切削試験(通常の切り込みは3mm)。
上記切削条件A〜Cの切削試験における切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Next, for the above-described coated tools 1 to 13 of the present invention and the conventional coated tools 1 to 13, a cutting test was performed under the following cutting conditions in a state where each was fixed with a fixing jig to the tip of the tool steel tool. went.
[Cutting conditions A]
Work material: JIS / SUS316 (HB220) round bar,
Cutting speed: 100 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.6 mm / rev. ,
Cutting time: 10 minutes,
Wet continuous high feed cutting test of stainless steel under normal conditions (normal feed is 0.3 mm / rev.).
[Cutting conditions B]
Work material: JIS / FCD600 (tensile strength 610 MPa) round bar,
Cutting speed: 120 m / min. ,
Cutting depth: 7 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 10 minutes,
Wet continuous high-cut cutting test of ductile cast iron under the conditions (normal cutting is 4 mm).
[Cutting conditions C]
Work material: JIS / SCM440 (HB260) 4-slotted round bar,
Cutting speed: 110 m / min. ,
Cutting depth: 7 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Wet intermittent high-cut cutting test of alloy steel under the conditions (normal cutting is 3 mm).
The flank wear width of the cutting edge in the cutting test under the above cutting conditions A to C was measured. The measurement results are shown in Table 9.

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

Figure 0004849233
Figure 0004849233

表4〜9に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の下地層が、Tiリッチな(Ti,Cr)C相のマトリックス中に、10〜40面積%のCrリッチな(Cr,Ti)C相が分散分布する混合相組織層((Ti:Cr)層)を有し、この結果、硬質被覆層の下地層と工具基体、また、下地層と(上部層の)内部層とがすぐれた密着性、接合強度を有し、さらに、内部層−中間層−表面層の積層構造からなる硬質被覆層の上部層が、それ自体で、すぐれた高温硬さ、高温強度および耐摩耗性を有することから、鋼や鋳鉄の切削加工を、切刃部に大きな機械的負荷がかかる重切削条件で行っても、チッピング・偏摩耗の発生なく、長期にわたってすぐれた耐摩耗性を示すのに対して、硬質被覆層の下地層をTiC層で構成した従来被覆工具1〜13においては、下地層と工具基体、あるいは、下地層と(その上に設けられた)TiN層との密着性、接合強度の不足が原因で、重切削という厳しい切削条件では硬質被覆層にチッピング・偏摩耗が発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 to 9, the coated tools 1 to 13 of the present invention have 10 to 40% by area of the hard coating layer in the Ti-rich (Ti, Cr) C phase matrix. It has a mixed phase structure layer ((Ti: Cr) layer) in which a Cr-rich (Cr, Ti) C phase is dispersed and distributed. As a result, the hard coating layer underlayer and tool substrate, and the underlayer (upper portion) The inner layer (with the inner layer) has excellent adhesion and bonding strength, and the upper layer of the hard coating layer consisting of a laminate structure of inner layer-intermediate layer-surface layer itself has excellent high temperature hardness. Because of its high-temperature strength and wear resistance, even when cutting steel and cast iron under heavy cutting conditions where a large mechanical load is applied to the cutting edge, chipping and uneven wear did not occur and it was excellent over a long period of time. TiC layer is used as the base layer for the hard coating layer while exhibiting wear resistance. In the conventional coated tools 1 to 13 thus configured, severe cutting called heavy cutting due to insufficient adhesion and bonding strength between the underlayer and the tool base, or between the underlayer and the TiN layer (provided thereon). Under the conditions, it is clear that chipping and uneven wear occur in the hard coating layer, and that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃部に大きな機械的負荷がかかる重切削加工という厳しい切削加工条件に用いられた場合であっても、硬質被覆層にチッピングや偏摩耗の発生はなく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also severe cutting processing such as heavy cutting that requires a large mechanical load on the cutting edge. Even when used for conditions, the hard coating layer does not cause chipping or uneven wear, exhibits excellent wear resistance, and exhibits excellent cutting performance over a long period of time. It is possible to sufficiently satisfy the high performance of the machine, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下地層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下地層は、0.1〜2μmの層厚を有し、かつ、
組成式:(Ti1−XCr)C(但し、Xは原子比で0.05〜0.30)
を満足する立方晶のTiCr複合炭化物相をマトリックスとし、該マトリックス中に、斜方晶のCrリッチなCrTi複合炭化物相が10〜40面積%の割合で分散分布する、立方晶のTiCr複合炭化物と斜方晶のCrリッチなCrTi複合炭化物相の混合相組織層からなり、
(b)上部層は、内部層、中間層および表面層の積層構造として構成され、
上記内部層は、0.5〜2μmの層厚を有するTi窒化物層からなり、
上記中間層は、0.5〜5μmの層厚を有し、粒状結晶組織を有するTi炭化物層または縦長成長結晶組織を有するTi炭窒化物層からなり、
上記表面層は、0.3〜2μmの層厚を有するTi窒化物層からなること、
を特徴とする硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of an underlayer and an upper layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) the underlayer has a layer thickness of 0.1 to 2 μm, and
Composition formula: (Ti 1-X Cr X ) C (where X is an atomic ratio of 0.05 to 0.30)
A cubic TiCr composite carbide phase that satisfies the following conditions: a cubic TiCr composite carbide in which an orthorhombic Cr-rich CrTi composite carbide phase is dispersed and distributed in a ratio of 10 to 40 area% in the matrix; It consists of a mixed phase texture layer of orthorhombic Cr-rich CrTi composite carbide phase,
(B) The upper layer is configured as a laminated structure of an inner layer, an intermediate layer, and a surface layer,
The inner layer is composed of a Ti nitride layer having a layer thickness of 0.5 to 2 μm,
The intermediate layer has a layer thickness of 0.5 to 5 μm, and consists of a Ti carbide layer having a granular crystal structure or a Ti carbonitride layer having a vertically long crystal structure,
The surface layer comprises a Ti nitride layer having a layer thickness of 0.3-2 μm;
A surface-coated cutting tool that exhibits excellent chipping resistance due to its hard coating layer.
JP2006232692A 2006-08-29 2006-08-29 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Expired - Fee Related JP4849233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232692A JP4849233B2 (en) 2006-08-29 2006-08-29 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232692A JP4849233B2 (en) 2006-08-29 2006-08-29 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2008055525A JP2008055525A (en) 2008-03-13
JP4849233B2 true JP4849233B2 (en) 2012-01-11

Family

ID=39238877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232692A Expired - Fee Related JP4849233B2 (en) 2006-08-29 2006-08-29 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP4849233B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603387A (en) * 2016-02-11 2016-05-25 广东工业大学 Boron nitride composite coating, graded superfine hard alloy cutter provided with same and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297568A (en) * 1991-03-27 1992-10-21 Kobe Steel Ltd Surface coated member excellent in wear resistance and formation of film
JP2002129306A (en) * 2000-10-25 2002-05-09 Toshiba Tungaloy Co Ltd Dispersion strengthened composite hard coating and tools coated by the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603387A (en) * 2016-02-11 2016-05-25 广东工业大学 Boron nitride composite coating, graded superfine hard alloy cutter provided with same and preparation method thereof
CN105603387B (en) * 2016-02-11 2018-04-03 广东工业大学 Boron nitride system composite coating, the gradient ultra-fine cemented carbide cutter with the composite coating and preparation method thereof

Also Published As

Publication number Publication date
JP2008055525A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5321094B2 (en) Surface coated cutting tool
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5088481B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in heavy cutting
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP4849234B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5003308B2 (en) Surface coated cutting tool
JP5023896B2 (en) Surface coated cutting tool
JP4863071B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5850402B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4849233B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5023897B2 (en) Surface coated cutting tool
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2009056560A (en) Surface-coated cutting tool
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4867572B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5928807B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5077759B2 (en) Surface coated cutting tool
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP5077758B2 (en) Surface coated cutting tool
JP5110377B2 (en) Surface coated cutting tool
JP2010207930A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4849233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees