JP2015156342A - 電池用セパレータ - Google Patents

電池用セパレータ Download PDF

Info

Publication number
JP2015156342A
JP2015156342A JP2014031467A JP2014031467A JP2015156342A JP 2015156342 A JP2015156342 A JP 2015156342A JP 2014031467 A JP2014031467 A JP 2014031467A JP 2014031467 A JP2014031467 A JP 2014031467A JP 2015156342 A JP2015156342 A JP 2015156342A
Authority
JP
Japan
Prior art keywords
separator
battery
alumina
lithium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014031467A
Other languages
English (en)
Inventor
高岡 和千代
Kazuchiyo Takaoka
和千代 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2014031467A priority Critical patent/JP2015156342A/ja
Publication of JP2015156342A publication Critical patent/JP2015156342A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

【課題】本発明の課題は、加熱経時における特性劣化が抑制された優れた電池用セパレータを提供することである。【解決手段】セラミック微粒子を含有してなる多孔質セラミック層と支持体を複合した電池用セパレータにおいて、セラミック微粒子がθ−アルミナであることを特徴とする電池用セパレータ。【選択図】なし

Description

本発明は、電池用セパレータに関するものである。
従来、リチウム二次電池に使用されている電池用セパレータ(以下、「セパレータ」と略記する場合がある)としては、貫通した微細孔を有するポリオレフィンの多孔フィルムが用いられてきた。これらのセパレータは、電池が異常を起こして発熱した場合に、貫通した微細孔が溶融して閉塞し、電池の内部抵抗を高めることで、発熱を抑制し、電極剤であるコバルト酸リチウムの熱暴走による電池の爆発を抑制する仕組みを担ってきた。
しかし、ハイブリッド自動車用電池や無停電電源など、大電流による充放電が必要な用途では、電極剤組成の研究によって、熱暴走爆発の抑制が可能となったことや、逆に、急激な電池内温度の上昇によるセパレータの熱収縮によって、電極が接触することを避けるために、耐熱性が高く、かつ内部抵抗の低いセパレータへの要望が高まっている。
この要望に、特許文献1には、不織布などの孔の開いた支持体とセラミック微粒子を含有してなる多孔質セラミック層を複合させて、耐熱性を付与して、電池が熱暴走を起こした場合でも、セパレータの熱収縮が引き起こされずに、電極接触を抑制することができる方法が提案されている。この方法は、多孔質セラミック層がセパレータの表面及び内部に浸透することが可能で、高い電解液の保持性や耐熱性を付与することが可能であり、優れた方法である。
一方、特許文献2及び3には、多孔フィルムの片面にセラミック微粒子を含有してなる多孔質セラミック層を設けて、耐熱性を付与する方法が提案されている。特に、特許文献2では、多孔質セラミック層中のセラミック微粒子として、アルミナ、ジルコニア、シリカ、チタニア、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウムなどの酸化チタン及びその複合酸化物が有効であると記載されている。
特に高い絶縁性を有するシリカや特異な凝集構造をつくるアルミナなどは非常に有望な材料であるが(例えば、特許文献4参照)、このような材料を用いた電池では、加熱経時などで、特性の劣化が観察されるなど、問題を残していた。
特許第4594098号公報 特表2008−503049号公報 特許第4499851号公報 国際公開第2008/114727号パンフレット
本発明の課題は、加熱経時における特性劣化が抑制された電池用セパレータを提供することである。
本発明者は、鋭意検討をした結果、下記に示す本発明により上記課題を解決できることを見出した。
[1]セラミック微粒子を含有してなる多孔質セラミック層と支持体を複合した電池用セパレータにおいて、セラミック微粒子がθ−アルミナであることを特徴とする電池用セパレータ。
本発明では、加熱経時における特性劣化が抑制された電池用セパレータを得ることができる。
本発明の電池用セパレータは、セラミック微粒子を含有してなる多孔質セラミック層と不織布である支持体を複合した電池用セパレータにおいて、セラミック微粒子がθ−アルミナであることを特徴とする。
アルミナは化学式ではAlであるが、焼結温度によって、γ型、δ型、θ型、α型など各種結晶形が知られている。α−アルミナは1300℃以上で焼結した際に現れる、コランダム構造を有する安定型の結晶形である。一方、γ−アルミナは水酸化酸化アルミニウム(ベーマイト)を400℃程度で焼結して得られる結晶形で、正確には欠陥スピネル構造を持つ酸化アルミニウムであって、スポンジのように結晶内部にも多孔性を有しており、比表面積が高い。
γ−アルミナは、その細孔に水を吸着し、120〜130℃程度の加熱程度では容易に水が脱離せず、この材料を用いて多孔質セラミック層を形成すると、電池内に水を持ち込むことになり、電池の特性を悪化させる。電池内で使用される支持電解質(代表例:六フッ化リン酸リチウム(LiPF))は、水と反応すると、フッ化水素とリン酸エステル体を発生し、フッ化水素は集電体や正極剤の粒子表面を劣化させ、リン酸エステル体は負極剤の粒子表面を劣化させて、電池特性を悪化させるほか、ガスの発生要因ともなる。
一方、α−アルミナでは、水の持ち込みは抑制されるものの、粒子表面が均一化しており、多孔質セラミック層を形成した際に、細密充填構造を形成するので、層内の内部空隙が低下する傾向にあり、一般的にはセパレータ部分に起因する内部抵抗が増大してしまう。
この問題を解決するために、各種アルミナを検討した結果、表面にのみ多孔性を有して、かつ、表面異方性を残しているθ−アルミナは、セパレータ用として最適であることが判明した。セパレータに用いられるθ−アルミナは、水酸化アルミニウムやアンモニアアルミニウム炭酸塩を原料として、水熱合成され、900℃から1200℃で焼結した後に用いられる。粒子径は好ましくは0.1μm以上5.0μm以下であり、さらに好ましくは0.2μm以上1.0μm以下である。粒子径は、セラミック微粒子を水で充分に希釈し、これをレーザー散乱タイプの粒度測定機(マイクロトラック社製、商品名:3300EX2)によって測定し、得られた中心粒子径(D50、体積平均)である。
本発明において、多孔質セラミック層は水溶性セルロース誘導体を含有することができる。セラミック微粒子は、水中で分散されて多孔質セラミック層を形成する塗液となる。この際に水溶性セルロース誘導体が含有されていると、水溶性セルロース誘導体が水中で分散性助剤となるほか、塗液を増粘させて、支持体上への塗液のセット性を向上させることができる。分散時に分散剤として、ノニオン性、アニオン性、カチオン性などの各種界面活性剤や、セラミック微粒子への荷電付与のための塩類などを併用することもできる。
本発明における水溶性セルロース誘導体とは、グリコシド結合によって直鎖に結合したβ−グルコース分子の水酸基の一部を変性し、水溶化が可能として合成されたセルロース誘導体であって、水酸基の一部が、カルボキシメトキシ基、メトキシ基、ヒドロキシエトキシ基、ヒドロキシプロキシ基に変性されている化合物を示す。カルボキシメトキシ基で置換された誘導体はカルボキシメチルセルロース(CMC)と呼ばれ、ナトリウム塩やアンモニウム塩等にして水溶性化できる。メトキシ基のみを含有するメチルセルロースは、低温水にのみ溶解し、温度が上昇すると、水溶液をゲル化する熱ゲル性を有する。また、起泡性・発泡性に優れており、ノニオン性の高分子界面活性剤的な挙動が得られる。一般的にメトキシ基に、ヒドロキシエトキシ基やヒドロキシプロポキシ基を組み合わせることによって、溶解性や熱ゲル性をコントロールすることができる。そのほかに、水溶性カチオン化セルロースも用いることができる。しかし、酢酸セルロース、エチルセルロースなどのセルロース誘導体は、水には溶解しない非水溶性セルロース誘導体であるので、用いることができない。水溶性セルロース誘導体は、セラミック微粒子と併用されて多孔質セラミック層を形成し、内部抵抗を低減化させることができる。水溶性セルロース誘導体の含有量は、多すぎると乾燥工程で空隙の周囲で成膜化して、独立した空隙を形成してしまうので、多孔質セラミック層の5質量%以下が好ましく、より好ましくは3質量%以下である。
セラミック微粒子間の接着性や、支持体とセラミック微粒子との接着性を改善させるために、各種高分子結着剤を併用することができる。特に接着が難しいポリエステルやポリプロピレンが支持体に用いられている場合は、高分子結着剤としてラテックス系の高分子結着剤を使用することが好ましい。高分子結着剤としては、ポリオレフィン系、スチレン−ブタジエン系、アクリル系などを用いることができる。高分子結着剤の含有量は、多孔質セラミック層の0.5〜20質量%が好ましく、より好ましくは1〜8質量%である。
本発明では、電池用セパレータとしての強度を向上させるために、多孔質セラミック層が支持体と複合される。支持体としては、多孔フィルム、織布、不織布、編物等が挙げられる。支持体の材質としては、ポリエステル、ポリオレフィン、ポリアミド、アラミド、セルロース等を挙げることができる。支持体としては、ポリエステル、ポリオレフィン、ポリアミド、アラミド、セルロース等の繊維を用いた不織布であって、特に耐熱性に優れ、微細繊維の入手が容易な、ポリエステルやポリオレフィンの繊維を用いた不織布を用いるのが好ましい。不織布は、湿式法、乾式法、静電紡糸法等の各種方法で製造することができる。支持体としては、厚み10〜25μmであることが好ましく、空隙率は30〜80%であることが好ましい。より好ましくは、厚み12〜18μmであり、空隙率40〜70%である。
多孔質セラミック層は、支持体に、セラミック微粒子を含有する塗液を塗布または流延し、場合によってはゲル化させた後、乾燥させて得ることができる。塗布または流延の方法としては、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーター等を用いた方法を使用することができる。多孔質セラミック層の塗工量は、乾燥質量で0.5〜50g/mであることが好ましく、より好ましくは1〜30g/mである。乾燥後、別に熱カレンダー処理を施して、得られた電池用セパレータの厚みを調整することも可能である。支持体を有する電池用セパレータの好ましい厚みは、10〜30μmであり、より好ましくは12〜25μmである。
得られた電池用セパレータは、裁断されてリチウム二次電池用の電極材料間に挟み込まれて、電解液を注入し、電池を封止して、リチウム二次電池となる。正極を構成する材料は主に、活物質とカーボンブラック等の導電剤、ポリフッ化ビニリデンやスチレン−ブタジエンゴム等のバインダーであって、活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケルマンガンコバルト酸リチウム(NMC)やアルミニウムマンガン酸リチウム(AMO)などのリチウムマンガン複合酸化物、鉄リン酸リチウムなどが用いられる。これらは混合されて、集電体であるアルミニウム箔上に塗布されて正極となる。
負極を構成する材料は主に、活物質と導電剤、バインダーであって、活物質としては、黒鉛、非晶質炭素材料、ケイ素、リチウム、リチウム合金などが用いられる。これらは混合されて、集電体である銅箔上に塗布されて負極となる。リチウム二次電池は、正極、負極間にセパレータを挟み込み、ここに電解液を含浸させて、イオン伝導性を持たせて導通させる。リチウム二次電池では非水系電解液が用いられるが、一般的に、これは溶媒と支持電解質で構成させる。溶媒として用いられるのは、例えばエチレンカーボネイト(EC)、プロピレンカーボネイト(PC)、ジエチルカーボネイト(DEC)、ジメチルカーボネイト(DMC)、エチルメチルカーボネイト(EMC)及び添加剤的な働きを有するビニレンカーボネイト、ビニルエチレンカーボネイト等のカーボネイト系である。ジメトキシメタン、ジメトキシエタン(DME)を用いることもできる。支持電解質としては、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム(LiBF)のほかに、LiN(SOCFなどの有機リチウム塩なども用いられる。イオン液体も利用できる。また、ポリエチレングリコールやその誘導体、ポリメタクリル酸誘導体、ポリシロキサンやその誘導体、ポリフッ化ビニリデンなどのゲル状ポリマーにリチウム塩を溶解させたゲル状の電解質を使用することもできる。
外装体としては、アルミニウムやステンレススチール等の金属円筒缶や角形缶、アルミニウム箔をポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等でラミ加工したラミネートフィルムを用いたシート型の外装体が利用できる。また、積層化してスタッキングして用いることや、円柱状に回旋して用いることもできる。
次に、本発明を実施例によってさらに詳細に説明するが、本発明はこれらに何ら限定されるものではない。
(実施例1)
θ−アルミナ(大明化学工業製、商品名:タイミクロン TM−100) 40質量部
ラウリン酸ナトリウム 0.02質量部
特殊カルボン酸型高分子活性剤(三洋化成工業製、商品名:SNディスパーサント5023) 0.5質量部
蒸留水 100質量部
をビーズミルで分散して分散液を作製した。
得られた分散液100質量部に、濃度0.6質量%カルボキシメチルセルロースナトリウム水溶液(日本製紙製、商品名:MAC500LC)100質量部とアクリル樹脂(JSR製、商品名:TRD−202A、濃度40.2質量%)を4.0質量部添加して、塗液を作製した。
次に、延伸レギュラーポリエチレンテレフタレート(PET)繊維(0.1dtex、長さ3mm)75質量部、未延伸PET繊維(0.2dtex、長さ4mm)25質量部の構成で、湿式法により目付量8.0g/mのウェッブを作製した。この時の乾燥温度は130℃であった。次に、220℃で熱カレンダー処理をウェッブに施し、厚み15μmの不織布である支持体を作製した。得られた塗液を支持体に含浸させて、100℃で乾燥させて、厚み20μmのセパレータ(1)を作製した。
(比較例1)
実施例1におけるθ−アルミナの代わりに、γ−アルミナ(大明化学工業製、商品名:TM−300)とした以外は、同様にして厚み20μmの比較セパレータ(1)を作製した。
(比較例2)
実施例1におけるθ−アルミナの代わりに、α−アルミナ(大明化学工業製、商品名:TM−DA)とした以外は、同様にして厚み20μmの比較セパレータ(2)を作製した。
[電池特性の評価]
アルミニウム箔上に、マンガン酸リチウム、アセチレンブラック、ポリフッ化ビニリデンを100/5/3の質量比で200g/m塗工し、溶剤を乾燥して、さらにプレスをかけて正極を作製した。一方、銅箔上に、球状人造黒鉛、アセチレンブラック、ポリフッ化ビニリデンを85/15/5の質量比で100g/m塗工し、乾燥後プレスをかけて負極を作製した。
得られた両電極間にセパレータを挟み込み、95℃、0.01MPa以下の減圧下で12時間加熱した後、宇部興産製のリチウム二次電池用電解液(商品名:ピュアライト、溶媒:EC/DEC/DME=1/1/1(体積比)、支持電解質:六フッ化リン酸リチウム1mol/l)を滴下し、減圧下でアルミニウム箔ラミネートフィルム中に封止して、リチウム二次電池を作製した。次に、作製したリチウム二次電池を0.2Cで4.2Vまで充電し、その後0.2Cで放電を行った。この時、最初に0.2Cの条件で行った放電容量の充電容量に対する比率を測定した。また、0.2C(300分の放電時間)の条件での放電開始から30分後の電圧時を電圧降下値として内部抵抗を測定した。結果を表1に与えた。次に、電池を90℃で24時間加熱放置した後、形状を観察し、0.2Cの条件で充放電を行い、放電容量と充電容量の比率を測定した。
Figure 2015156342
実施例1と比較例1及び2との比較から、内部抵抗に優れ、かつ加熱経時に優れたセパレータは、θ−アルミナを使用した実施例1のセパレータであった。
本発明の電池用セパレータは、リチウム二次電池用セパレータのほか、キャパシター用セパレータとして利用できる。

Claims (1)

  1. セラミック微粒子を含有してなる多孔質セラミック層と支持体を複合した電池用セパレータにおいて、セラミック微粒子がθ−アルミナであることを特徴とする電池用セパレータ。
JP2014031467A 2014-02-21 2014-02-21 電池用セパレータ Pending JP2015156342A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031467A JP2015156342A (ja) 2014-02-21 2014-02-21 電池用セパレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031467A JP2015156342A (ja) 2014-02-21 2014-02-21 電池用セパレータ

Publications (1)

Publication Number Publication Date
JP2015156342A true JP2015156342A (ja) 2015-08-27

Family

ID=54775541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031467A Pending JP2015156342A (ja) 2014-02-21 2014-02-21 電池用セパレータ

Country Status (1)

Country Link
JP (1) JP2015156342A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021143A1 (ja) * 2016-07-25 2018-02-01 東レ株式会社 電池用セパレータ
CN109075297A (zh) * 2016-03-29 2018-12-21 赛尔格有限责任公司 改进的用于微孔膜的沉积或层、改进的膜、改进的锂电池隔板、改进的电池、改进的高压锂电池以及相关的方法
JP2020070413A (ja) * 2018-11-02 2020-05-07 昭和電工株式会社 水系樹脂組成物及び表面処理方法
KR20200114959A (ko) 2019-03-26 2020-10-07 주식회사 위플러스컴퍼니 세퍼레이터, 세퍼레이터의 제조 방법 및 리튬 이온 전지

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075297A (zh) * 2016-03-29 2018-12-21 赛尔格有限责任公司 改进的用于微孔膜的沉积或层、改进的膜、改进的锂电池隔板、改进的电池、改进的高压锂电池以及相关的方法
CN109075297B (zh) * 2016-03-29 2022-09-16 赛尔格有限责任公司 微孔膜或基底、电池隔板、电池及相关方法
WO2018021143A1 (ja) * 2016-07-25 2018-02-01 東レ株式会社 電池用セパレータ
JPWO2018021143A1 (ja) * 2016-07-25 2019-05-16 東レ株式会社 電池用セパレータ
TWI716616B (zh) * 2016-07-25 2021-01-21 日商東麗股份有限公司 電池用隔離材
JP2020070413A (ja) * 2018-11-02 2020-05-07 昭和電工株式会社 水系樹脂組成物及び表面処理方法
JP7279340B2 (ja) 2018-11-02 2023-05-23 株式会社レゾナック 水系樹脂組成物及び表面処理方法
KR20200114959A (ko) 2019-03-26 2020-10-07 주식회사 위플러스컴퍼니 세퍼레이터, 세퍼레이터의 제조 방법 및 리튬 이온 전지

Similar Documents

Publication Publication Date Title
JP5753657B2 (ja) 絶縁層形成用スラリー、電気化学素子用セパレータの製造方法、及び電気化学素子
JP6185984B2 (ja) 集電体、電極構造体、非水電解質電池又は蓄電部品
JP6094805B2 (ja) 二次電池
WO2015115513A1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2014175232A (ja) 電池用セパレータ
JP2016062689A (ja) 電池用セパレータ
JP2016012548A (ja) 電池用セパレータ
JP2015156342A (ja) 電池用セパレータ
JP2015115132A (ja) 電池用セパレータ
JP2015053180A (ja) 電池用セパレータ
JP2015156341A (ja) 電池用セパレータ
JP2015056263A (ja) 電池用セパレータ
JP2009135540A (ja) 非水系リチウム型蓄電素子および製造方法
JP2013218926A (ja) セパレータ及びそれを用いたリチウムイオン二次電池
JP2014241231A (ja) 電池用セパレータ
JP2015159053A (ja) 電池用セパレータ
JP6266454B2 (ja) 電池用セパレータの製造方法
JP2015005420A (ja) 電池用セパレータ
JP2015170441A (ja) 電池用セパレータ
JP2014160580A (ja) 電池用セパレータ
JP2016062723A (ja) 電池用セパレータ
WO2020003805A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2015041578A (ja) 電池用セパレータ
JP2015050090A (ja) 電池用セパレータ
JP2015133280A (ja) 電池用セパレータ