JP2015150668A - 工作機械及びワークの加工方法 - Google Patents

工作機械及びワークの加工方法 Download PDF

Info

Publication number
JP2015150668A
JP2015150668A JP2014028295A JP2014028295A JP2015150668A JP 2015150668 A JP2015150668 A JP 2015150668A JP 2014028295 A JP2014028295 A JP 2014028295A JP 2014028295 A JP2014028295 A JP 2014028295A JP 2015150668 A JP2015150668 A JP 2015150668A
Authority
JP
Japan
Prior art keywords
workpiece
tool
sensor
outer shape
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014028295A
Other languages
English (en)
Inventor
将広 上北
Masahiro Kamikita
将広 上北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014028295A priority Critical patent/JP2015150668A/ja
Publication of JP2015150668A publication Critical patent/JP2015150668A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

【課題】加工中にワークに生じる撓みや熱による寸法変化を考慮しながらワークを加工可能な工作機械を提供する。【解決手段】工作機械1は、本体部10と、工具2を保持する工具保持部30と、工具保持部に保持された工具を本体部に対して相対移動させる移動手段40と、本体部に支持され、軸方向Zに延びるワークWを保持するワーク保持部20と、を備える。ワーク保持部に保持されたワークとの距離を計測する複数のセンサ50が本体部に設けられている。各センサは、ワークの軸方向に関して他のセンサとは異なるワーク上の位置との距離を計測する。工作機械は、各センサの計測結果に基づいてワークの外形を特定し、当該ワークの外形を特定した結果に基づいて移動手段を制御する制御部60をさらに備えている。各センサは、工具保持部に工具を保持した状態のままで、ワークとの距離を計測可能になっている。【選択図】図1

Description

本発明の実施形態は、工作機械及びワークの加工方法に関する。
大型構造物の寸法計測を工作機械上で行う方法として、長さ校正されたマイクロメータやパイテープ等の可搬型測定機器を用いた測定方法、あるいは、工作機械の座標値を基準としてダイヤルゲージや接触式プローブを用いた測定方法が従来の主流であった。前者の方法は、依然として広く用いられているものの、メートルオーダの対象物を測定する場合、人手による作業ばらつきがあり信頼性が充分ではなかった。一方、後者の方法によれば、工作機械の各直線軸(XYZ)方向の座標指示値を計測することができるが,大型機械の設置環境下では環境変動やスライドの経時変化などの要因で信頼性を確保することが難しかった。
さらに、近年ではさらなる高精度化のため, 工作機械の各直線軸(XYZ)方向の並進誤差だけでなく、3次元的な空間誤差を測定する測定方法も開発されている(例えば、特許文献1、非特許文献1、2参照)。とりわけ、独エタロン社製のLaser Tracerは、サブμmの測定精度を実現している. この技術によれば、各直線軸(XYZ)方向の並進誤差、回転誤差に加えて、重なり合った3軸の直角度の誤差も計測することができ、3次元的な空間誤差を精度良く計測することができる。
特開2012−104136号公報 特開2010−264563号公報 特開2012−2715号公報
Schwenke H,Franke M,Hannaford J(2005)Error Mapping of CMMs and Machine Tools by a Single Tracking Interferometer. Annals of the CIRP 54(1):475−478 Klaus Wendt, Matthias Franke,Frank Heartig,(2012)Measuring large 3D structures using four portable tracking laser interferometers, Measurement,45,2339−2345 Shiraishi, M.(1989). Scope of in−process measurement, monitoring and control techniques in machining processes−Part 2: In−process techniques for workpieces. Precision Engineering,11(1),27−37
とりわけ、ワークが軸方向にメートルオーダの長さをもつ場合、加工中のワークに撓みや熱による寸法変化も生じ得る。しかしながら、上述したダイヤルゲージや接触式プローブを用いた測定方法や、3次元的な空間誤差を測定する測定方法では、ワークを加工する前のある時点における3次元的な幾何寸法や空間誤差しか計測することができない。このため、加工中のワークに生じる撓みや熱による寸法変化を考慮しながらワークを加工していくことができなかった。
本発明が解決しようとする課題は、加工中にワークに生じる撓みや熱による寸法変化を考慮しながらワークを加工可能な工作機械及びワークの加工方法を提供することである。
本件発明者は、上記課題を解決すべく、接触式プローブを用いた工作機械に関する出願を既に行っている。本先願では、ワーク形状不確かさ、空間誤差不確かさ、プローブ測定不確かさ、絶対距離計不確かさ、等の要素を演算情報に含めることで、高い信頼性を確保している。本発明の実施の形態は、この先願の知見を生かして、ワークとの距離を計測する絶対距離センサを用いて、上記課題を有効に解決すべく創案されたものである。
実施の形態に係る工作機械は、本体部と、工具を保持する工具保持部と、前記工具保持部に保持された前記工具を前記本体部に対して相対移動させる移動手段と、前記本体部に支持され、軸方向に延びるワークを回転可能に保持するワーク保持部と、各々が前記ワーク保持部に保持された前記ワークとの距離を計測する複数のセンサであって、互いに前記ワークの軸方向に関して異なる前記ワーク上の位置との距離を計測する複数のセンサと、各センサの計測結果に基づいて前記ワークの外形を特定し、当該ワークの外形を特定した結果に基づいて前記移動手段を制御する制御部と、を備える。各センサは、前記工具保持部に前記工具を保持した状態のままで、前記ワークとの距離を計測可能になっている。
実施の形態に係るワークの加工方法は、各々が前記ワーク保持部に保持された前記ワークとの距離を計測する複数のセンサであって、互いに前記ワークの軸方向に関して異なる前記ワーク上の位置との距離を計測する複数のセンサを備える工作機械を用いる。実施の形態に係るワークの加工方法は、工具保持部に工具を保持した状態のままで、各センサの計測結果を読み込んで、前記ワークの外形を特定する工程と、前記ワークの外形を特定した結果に基づいて、前記工具の送り経路を決定する工程と、前記工具を前記送り経路に沿って移動させる工程と、前記工具を前記送り経路に沿って移動させた後に、前記工具保持部に前記工具を保持した状態のままで、各センサの計測結果を読み込んで、前記ワークの外形を再び特定する工程と、前記ワークの外形を再び特定した結果に基づいて、前記工具の次の送り経路を決定する工程と、を備える。
本発明の実施の形態による工作機械によれば、工具保持部に工具を保持した状態のままで、各センサが前記ワークとの距離を計測可能になっている。このため、送り経路に沿って工具を移動させた後に、次の送り経路に沿って工具を移動させる前の状態のワークを実測することができる。そして、各センサによりワークを実測した結果に基づいて、制御部が、次の送り経路に沿って工具を移動させる前の状態のワークの外形を特定し、このワークの外形を特定した結果に基づいて、工具の次の送り経路を決定することができる。すなわち、本実施の形態による工作機械によれば、送り経路に沿って工具を移動させる前の状態のワークの外形に基づいて工具の送り経路を決定することができるため、加工中にワークに撓みや熱による寸法変化が生じても、ワークの寸法変化を考慮しながらワークを高精度に加工していくことができる。
本発明の実施の形態によるワークの加工方法によれば、送り経路に沿って工具を移動させた後に、工具保持部に工具を保持した状態のままで、各センサの計測結果を読み込んで、前記ワークの外形を再び特定する。このような形態によれば、送り経路に沿って工具を移動させた後に、次の送り経路に沿って工具を移動させる前の状態のワークを実測することができる。これにより、次の送り経路に沿って移動させる前の状態のワークの外形を特定し、このワークの外形を特定した結果に基づいて、工具の次の送り経路を決定することができる。すなわち、本実施の形態によるワークの加工方法によれば、送り経路に沿って工具を移動させる前の状態のワークの外形に基づいて工具の送り経路を決定することができるため、加工中にワークに撓みや熱による寸法変化が生じても、ワークの寸法変化を考慮しながらワークを高精度に加工していくことができる。
一実施の形態による工作機械の構成の一例を示す概略斜視図。 図1に示す工作機械の概略正面図。 図1に示す工作機械において工具保持部に校正用ミラーを取り付けて、各センサを校正する工程を示す概略斜視図。 図3に示す工作機械の概略正面図。 保持体の他の形態を示す概略平面図。 図5に示す線VI−VIに沿った断面における保持体を示す概略断面図。
以下、図1乃至図4を参照して、一実施の形態による工作機械1について説明する。図1は、一実施の形態による工作機械1の構成の一例を示す概略斜視図である。図2は、図1に示す線II−IIに沿った断面における工作機械を示す概略断面図である。図1に示す工作機械1は、メートルオーダの大型のワークWを加工するためのものである。本実施の形態では、工作機械1は、回転する軸方向d1に延びるワークWを工具2で切削する旋盤からなる。なお、以下の説明では、水平面内を延びるワークWの軸方向をZとし、鉛直方向をYとし、軸方向Z及び鉛直方向Yに直交する横方向をXとして説明する。
図1及び図2に示すように、工作機械1は、建物の床面に設置される本体部10と、当該本体部10に支持され、ワークWを回転可能に保持するワーク保持部20と、を備えている。このうち、本体部10は、建物の床面に設置されるベッド11と、ベッド11から鉛直方向Y上方に向かって延びてワーク保持部20を支持する一対の支柱12と、を有している。ベッド11は、水平面に沿った平板状の形状を有している。一方、一対の支柱12は、軸方向Zに互いに対向して配置されている。一方の支柱12は、ベッド11に固定され、ワーク保持部20のチャック21を支持している。他方の支柱12は、ベッド11に対して軸方向Zに可動に設けられ、ワーク保持部20の押当部材22を支持している。
ワーク保持部20のチャック21は、ワークWの基端部を回転可能に保持している。一方、ワーク保持部20の押当部材22は、ワークWの先端部に押し当てられている。このチャック21と押当部材22とは、軸方向Zに延びる軸線に対して同軸に配置されている。ワークWの各端部を、対応するチャック21及び押当部材22によって支持することによって、ワークWの水平度を維持している。
本実施の形態では、図1及び図2に示すように、ワーク保持部20は、チャック21及び押当部材22に加えて、ワークWを鉛直方向Y下方から受ける一対の受け台23を有している。一対の受け台23は、軸方向Zに互いに離間して配置されている。各受け台23は、ベッド11から鉛直方向Y上方に延びてワークWを受けている。各受け台23は、ワークWの径に合わせて受け位置を調整することができるよう鉛直方向Yに伸縮自在になっている。一例として、受け台23として、油静圧式受け台を用いることができる。受け台23がワークWを受けることにより、ワークWの回転による振れを抑制することができる。
また、図1に示すように、工作機械1は、工具2を保持する工具保持部30と、工具保持部30に保持された工具2を本体部10に対して相対移動させる移動手段40と、を備えている。このうち、工具保持部30は、刃物台とも呼ばれ、工具2を所定の角度で保持する。一方、移動手段40は、ベッド11から鉛直方向Y上方に延びて工具保持部30を保持している。移動手段40は、工具保持部30を横方向Xに移動させるX方向移動機構(不図示)と、工具保持部30を軸方向Zに移動させるZ方向移動機構(不図示)と、を含んでいる。
ところで、このような軸方向Zにメートルオーダの長さをもつワークWを加工する場合、加工している間に、ワークWの軸方向Zに直交する径方向に、撓みや熱による寸法変化が生じ得る。そこで、本実施の形態による工作機械1は、加工中にワークWの径方向に生じる撓みや熱による寸法変化も考慮してワークWを加工すべく、各々がワーク保持部20に保持されたワークWとの距離を計測する複数のセンサ50と、各センサ50の計測結果に基づいて移動手段40を制御する制御部60と、を備えている。
先ず、センサ50について説明する。各センサ50は、ワークW上の計測対象となる位置との距離を計測するよう構成されている。ここでいうワークW上の計測対象となる位置とは、ワークWが静止している場合には点状の領域となり、ワークWが回転している場合にはワークWの周方向に延びる線状の領域となる。各センサ50は、ワークW上の計測対象となる位置との距離を計測することにより、当該計測対象となる位置におけるワークWの外形の大きさを取得することができる。
図1及び図2に示すように、複数のセンサ50は、軸方向Zに沿って並べて配置されている。このため、複数のセンサ50は、互いに軸方向Zに関して異なるワークW上の位置との距離を計測するようになっている。言い換えると、各センサ50は、軸方向Zに関して他のセンサ50とは異なるワークW上の位置との距離を計測するようになっている。上述のように、各センサ50は、計測対象となる位置におけるワークWの外形の大きさを取得することができる。したがって、複数のセンサ50が互いに軸方向Zに関して異なるワークW上の位置との距離を計測することにより、ワークWの軸方向における撓みや振れの分布に関する情報を取得することができる。
隣り合う2つのセンサ50の各間隔は、互いに等しくてもよいし、互いに異なっていてもよい。隣り合う2つのセンサ50の間隔は、仕様に応じて決定される。
各センサ50は、工具保持部30に工具2を保持した状態のままで、ワークWとの距離を計測可能になっている。とりわけ、各センサ50は、工具2を送り経路に沿って移動させた後にワークWから離間させた状態において、ワークWとの距離を計測可能になっている。
図示する例では、各センサ50は、ワークWに対して鉛直方向Y下方に配置され、当該ワークWと鉛直方向Yで向き合っている。具体的には、各センサ50の出光面51が、ワークWと鉛直方向Yで向き合っている。もっとも、各センサ50の配置は、図示する例に限定されない。各センサ50は、工具保持部30に工具2を保持した状態のままで、ワークWとの距離を計測可能になっている限り、ワークWに対して他の方向に配置してもよい。一例として、各センサ50は、ワークWに対して横方向Xに配置されていてもよい。
本実施の形態のセンサ50は、いわゆる非接触型の絶対距離計にて構成されている。非接触型の絶対距離計の一例として、光コム方式の距離計(株式会社光コム社製)が挙げられる。光コム方式の距離計とは、光コム干渉を利用したレーザ距離計のことを指す。光コム方式の距離計では、1000本以上の離散的な櫛状の光スペクトルを持ったレーザ光を使用し、計測対象物との間を往復した反射光と参照光とを干渉させて得られるビート信号を検出することにより、計測対象物との距離を測定する。光コム方式のレーザ距離計は、光コム干渉を利用するため、レーザ光の遮光があっても原点復帰をする必要がない、という特徴を有している。非接触型の絶対距離計の他の例として、マルチチャンネルファイバ距離計(Etalon Multiline,ドイツEtalon社製)やレーザートラッカー(Radian Laser Tracker,米国API社製)が挙げられる。これらの絶対距離計は、メートルオーダの計測対象物であっても、サブμm〜数μmオーダの絶対距離計測精度を実現することができる。
各センサ50は、本体部10に含まれる保持体13によって保持されている。本実施の形態の保持体13は、ベッド11に固定された軸方向Zに延びる棒状の部材にて構成されている。とりわけ図示する例では、保持体13は、一体に形成されている。保持体13が一体に形成されていることにより、保持体13を精度よく作製することができ、結果として、各センサ50を精度よく位置決めすることに寄与する。保持体13をなす材料としては、温度変化や経時変化の生じ難い材料を選定することができる。
このようなセンサ50を用いて、ワークWの外形を特定する方法の一例について図2を参照して説明する。図2に示すように、基準となるセンサ50refとワークWとの距離をLrefとし、当該基準となるセンサ50refの計測対象となる位置におけるワークWの径をφrefとする。このワークWの径φrefは、例えばマイクロメータまたはその他の長さトレーサブルな方法で計測される。任意のセンサ50iとワークWとの距離をLiとし、当該センサ50iの計測対象となる位置におけるワークWの径をφiとする。図2に示す幾何学的関係から、
Lref−Li=1/2×(φi−φref) … (1)
が成立する。式(1)を変形すると、以下の式(2)が得られる。
φi=φref+2×(Lref−Li) … (2)
したがって、式(2)を利用することによって、各センサ50の計測対象となる位置におけるワークWの外形の大きさを特定することができる。
次に、各センサ50の計測結果に基づいて移動手段40を制御する制御部60について説明する。制御部60は、各センサ50の計測結果に基づいてワークWの外形を特定し、当該ワークWの外形を特定した結果に基づいて移動手段40の移動経路を決定するようになっている。
本実施の形態の制御部60は、種々の情報を記憶する記憶手段61と、記憶部61に記憶された情報を読み込んで、移動手段40の移動経路を決定する演算手段62と、演算手段62の決定結果に基づいて移動手段40へ指令を送る指令手段63と、を含んでいる。このうち、記憶手段61には、各センサ50が計測したワークWとの距離に関する情報や、後述するようにして予め作製された空間補正データを記憶するようになっている。演算手段62は、記憶手段61に記憶された情報を読み込んで、ワークWの外形を特定するようになっている。さらに、演算手段62は、ワークWの外形を特定した結果に基づいて、工具2の送り経路を決定するようになっている。指令手段63は、演算手段62によって決定された送り経路に沿って工具2を移動させるよう、移動手段40に指令を送るようになっている。
このような記憶手段61、演算手段62及び指令手段63を含む制御部60の制御の一例について説明する。先ず、制御部60の記憶手段61が、工具保持部30に工具2を保持した状態のままで、各センサ50の計測結果を記憶するようになっている。続いて、演算手段62が記憶手段61に記憶された各センサ50の計測結果を読み込んで、ワークWの外形を特定し、ワークWの外形を特定した結果に基づいて、工具2の送り経路を決定する。続いて、指令手段63が、演算手段62によって決定された送り経路に沿って工具2を移動させるよう、移動手段40に指令を送る。次に、工具2を送り経路に沿って移動させた後に、記憶手段61が、工具保持部30に工具2を保持した状態のままで、各センサ50の計測結果をさらに記憶する。続いて、演算手段62が記憶手段61に記憶された各センサ50の計測結果を読み込んで、ワークWの外形を再び特定し、ワークWの外形を再び特定した結果に基づいて、工具2の次の送り経路を決定する。続いて、指令手段63が、演算手段62によって決定された次の送り経路に沿って工具2を移動させるよう、移動手段40に指令を送る。
ところで、各センサ50の計測精度を高めるためには、各センサ50を校正するのがよい。図3及び図4は、各センサ50を校正する方法について説明するための図である。図3及び図4に示すように、本実施の形態では、工具保持部30に、工具2の代わりに校正用ミラー3が装着可能になっている。この校正用ミラー3は、各センサ50を校正するべく、本体部10に対して高い軸芯位置に保持する。校正用ミラー3は、センサ50と対面する対向面3aを有しており、対向面3aは、センサ50の出光面51が平行となることが意図された平面と平行になっている。言い換えると、校正用ミラー3の対向面3aは、センサ50から出射されるレーザ光の進行方向が意図された方向に対して直交している。図示する例では、校正用ミラー3の対向面3aは、水平面と平行になっている。
各センサ50を校正する方法について説明すると、先ず、移動手段40によって、校正用ミラー3の対向面3aをセンサ50の出光面51と対面させながら軸方向Zに移動させる。このとき、センサ50の出光面51が校正用ミラー3の対向面3aに対して所定の角度以上に傾いていると、センサ50が意図された通りの計測を行うことができず、センサ50にエラーが表示される。したがって、センサ50にエラーが表示されないように、センサ50の出光面51の傾きを調整することにより、センサ50の出光面51の傾きを意図された角度に合わせることができる。次に、センサ50の出光面51の傾きを合わせた状態で、移動手段40によって、校正用ミラー3の対向面3aをセンサ50の出光面51と対面させながら軸方向Zに再び移動させる。これにより、各センサ50によって、校正用ミラー3との距離が計測される。各センサ50によって計測された校正用ミラー3との距離は、制御部60の記憶手段61に記憶される。続いて、制御部60の演算手段62が、各センサ50が計測した校正用ミラー3との距離の値と、意図された各センサと校正用ミラー3との距離の値と、を対比してこれらの差を求める。各センサ50についてのこれらの値の差は、当該センサ50がワークWとの距離を計測する際の計測誤差となる。そこで、各センサ50についてのこれらの値の差を、制御部60の記憶手段61に記憶する。そして、制御部60の演算手段62は、記憶手段61に記憶された各センサ50についての計測誤差を考慮して、ワークWの外形を特定する。このようにして、制御部60は、各センサ50が計測した校正用ミラー3との距離の値に基づいて、各センサ50の計測結果を補正するようになっている。
次に、以上のような構成からなる本実施の形態の作用について説明する。
先ず、例えばエタロン社製のレーザトレーサ(Raser Tracer)を使用して、工作機械1の空間補正データを作製する。そして、この空間補正データに基づいて工作機械1を校正する。具体的には、制御部60の記憶手段61に、空間補正データを記憶する。そして、制御部60の演算手段62が、記憶手段61に記憶された空間補正データに基づいて、移動手段40の移動量を補正するようになる。
次に、上述した校正用ミラー3を用いてセンサ50を校正する方法を利用して各センサ50を校正する。これにより、制御部60の記憶手段61に、各センサ50についての計測誤差の情報も記憶する。そして、制御部60の演算手段62は、記憶手段61に記憶された各センサ50についての計測誤差の情報を考慮して、後述するようにしてワークWの外形を特定していく。
次に、工具保持部30に校正用ミラー3の代わりに工具2を装着させる。続いて、工具保持部30に工具2を保持した状態のままで、制御部60は、各センサ50の計測結果を読み込んで、ワークWの外形を特定する。具体的には、各センサ50が計測したワークWとの距離の計測結果を、制御部60の記憶手段61に記憶する。続いて、制御部60の演算手段62が、図2に示すように、基準となるセンサ50refが計測したワークWとの距離Lrefと、予め計測した、基準となるセンサ50refの計測対象となる位置におけるワークWの径φrefと、を用いて、式(2)から、各センサ50iの計測対象となる位置におけるワークWの径φiを算出する。複数のセンサ50は、互いに軸方向Zに関して異なるワークW上の位置との距離を計測することから、各センサ50の計測対象となる位置におけるワークWの径φiを用いて、制御部60の演算手段62は、ワークの外形を特定する。このとき、上述したように、制御部60の演算手段62は、記憶手段61に記憶された各センサ50についての計測誤差を考慮して、ワークWの外形を特定する。
次に、制御部60の演算手段62は、ワークWの外形を特定した結果に基づいて、工具2の送り経路を決定する。このとき、制御部60の演算手段62は、記憶手段61に記憶された空間補正データも考慮して、工具2の送り経路を決定する。続いて、指令手段63が、演算手段62によって決定された送り経路に沿って工具2を移動させるよう、移動手段40に指令を送る。これにより、移動手段40によって工具2が送り経路に沿って移動させられる。
工具2を送り経路に沿って移動させた後に、工具保持部30に工具2を保持した状態のままで、各センサ50の計測結果を読み込んで、ワークWの外形を再び特定する。具体的には、工具2を送り経路に沿って移動させた後に各センサ50が計測したワークWとの距離の計測結果を、制御部60の記憶手段61に記憶する。続いて、制御部60の演算手段62が、各センサ50の計測結果に基づいて、各センサ50iの計測対象となる位置におけるワークWの径φiを再び算出する。複数のセンサ50は、互いに軸方向Zに関して異なるワークW上の位置との距離を計測することから、各センサ50の計測対象となる位置におけるワークWの径φiを用いて、制御部60の演算手段62は、ワークの外形を再び特定する。このとき、上述したように、制御部60の演算手段62は、記憶手段61に記憶された各センサ50についての計測誤差を考慮して、ワークWの外形を再び特定する。
次に、制御部60の演算手段62は、ワークWの外形を再び特定した結果に基づいて、工具2の次の送り経路を決定する。このとき、制御部60の演算手段62は、記憶手段61に記憶された空間補正データも考慮して、工具2の次の送り経路を決定する。続いて、指令手段63が、演算手段62によって決定された次の送り経路に沿って工具2を移動させるよう、移動手段40に指令を送る。これにより、移動手段40によって工具2が次の送り経路に沿って移動させられる。
以下同様にして、各センサ50の計測結果からワークWの外形を再び特定する工程と、ワークWの外形を再び特定した結果から工具2の次の送り経路を決定する工程と、を繰り返すことにより、ワークWが高精度に加工されていく。
以上のように、本実施の形態による工作機械1によれば、工具保持部30に工具2を保持した状態のままで、各センサ50がワークWとの距離を計測可能になっている。このため、送り経路に沿って工具2を移動させた後に、次の送り経路に沿って工具2を移動させる前の状態のワークWを実測することができる。そして、各センサ50によりワークWを実測した結果に基づいて、制御部60が、次の送り経路に沿って工具2を移動させる前の状態のワークWの外形を特定し、このワークWの外形を特定した結果に基づいて、工具2の次の送り経路を決定することができる。すなわち、本実施の形態による工作機械によれば、送り経路に沿って工具2を移動させる前の状態のワークWの外形に基づいて工具2の送り経路を決定することができるため、加工中にワークWに撓みや熱による寸法変化が生じても、ワークWの寸法変化を考慮しながらワークWを高精度に加工していくことができる。
また、工具保持部30に工具2を保持した状態のままで、各センサ50がワークWとの距離を計測可能になっているため、工具2を取外すことによる時間のロスや工具2を再び装着することによる精度の変化が生じることなく、ワークWを加工することができる。
また、本実施の形態による工作機械1によれば、制御部60は、工具保持部30に工具2を保持した状態のままで、各センサ50の計測結果を読み込んで、ワークWの外形を特定し、ワークWの外形を特定した結果に基づいて工具2の送り経路を決定し、工具2が送り経路に沿って移動するよう移動手段40を制御し、工具2が送り経路に沿って移動した後に、工具保持部30に工具2を保持した状態のままで、各センサ50の計測結果を読み込んで、ワークWの外形を再び特定し、ワークWの外形を再び特定した結果に基づいて、工具2の次の送り経路を決定し、工具2が次の送り経路に沿って移動するよう移動手段40を制御するようになっている。このような形態によれば、加工中にワークWに生じる撓みや熱による寸法変化を考慮しながら、送り経路に沿って工具2を自動で移動させていくことができる。
また、本実施の形態による工作機械1によれば、制御部60は、予め作製された空間補正データに基づいて移動手段40の移動量を補正するようになっている。このような形態によれば、工作機械1の各直線軸(XYZ)方向の並進誤差、回転誤差に加えて、重なり合った3軸の直角度の誤差を考慮して、ワークWをさらに高精度に加工することができる。
また、本実施の形態による工作機械1によれば、複数のセンサ50は、軸方向Zに沿って並べて配置されている。このような形態によれば、工具保持部30に工具2を保持した状態において、各センサ50が工具2に遮蔽され難い。したがって、複数のセンサ50を軸方向Zに沿って並べることで、工具保持部30に工具2を保持した状態のままでワークWとの距離を計測可能なセンサ50を、容易に実現することができる。加えて、本実施の形態による工作機械1によれば、工具保持部30に、工具2の代わりに校正用ミラー3が装着可能になっており、移動手段40によって、校正用ミラー3をセンサ50と対面させながら軸方向Zに移動させることにより、各センサ50は、校正用ミラー3との距離を予め計測するようになっており、制御部60は、各センサ50が計測した校正用ミラー3との距離の値に基づいて、各センサ50の計測結果を補正するようになっている。このような形態によれば、校正用ミラー3をセンサ50と対面させながら軸方向Zに移動させるだけで、各センサ50の傾きと、各センサ50が計測するワークWとの距離を校正することができる。すなわち、このような形態によれば、人手による作業ばらつきがないため高い信頼性を発揮し、多くの時間を掛けることなく各センサ50を校正することができる。
また、本実施の形態による工作機械1によれば、各センサ50は、ワークWの鉛直下方に配置されている。この場合、工具保持部30に工具2を保持した状態において、各センサ50が工具2に遮蔽され難い。したがって、各センサ50をワークWの鉛直下方に配置することで、工具保持部30に工具2を保持した状態のままでワークWとの距離を計測可能なセンサ50を、容易に実現することができる。
一方、本実施の形態によるワークWの加工方法によれば、送り経路に沿って工具2を移動させた後に、工具保持部30に工具2を保持した状態のままで、各センサ50の計測結果を読み込んで、ワークWの外形を再び特定する。このような形態によれば、送り経路に沿って工具2を移動させた後に、次の送り経路に沿って工具2を移動させる前の状態のワークWを実測することができる。これにより、次の送り経路に沿って移動させる前の状態のワークWの外形を特定し、このワークWの外形を特定した結果に基づいて、工具2の次の送り経路を決定することができる。すなわち、本実施の形態によるワークWの加工方法によれば、送り経路に沿って工具2を移動させる前の状態のワークWの外形に基づいて工具2の送り経路を決定することができるため、加工中にワークWに撓みや熱による寸法変化が生じても、ワークWの寸法変化を考慮しながらワークWを高精度に加工していくことができる。
また、本実施の形態によるワークWの加工方法によれば、ワークWの外形を特定する工程に先立って、工作機械1の空間補正データを作製し、前記空間補正データに基づいて工作機械1を校正する工程をさらに備えている。このような形態によれば、工作機械1の各直線軸(XYZ)方向の並進誤差、回転誤差に加えて、重なり合った3軸の直角度の誤差を考慮して、ワークWをさらに高精度に加工することができる。
また、本実施の形態によるワークWの加工方法によれば、複数のセンサ50は、軸方向Zに沿って並べて配置されており、ワークWの外形を特定する工程に先立って、工具保持部30に工具2の代わりに校正用ミラー3を装着させ、校正用ミラー3をセンサ50と対面させながら軸方向Zに移動させて、各センサ50によって、校正用ミラー3との距離を計測させ、各センサ50が計測した校正用ミラー3との距離の値に基づいて、各センサ50を校正する工程をさらに備えている。このような形態によれば、校正用ミラー3をセンサ50と対面させながら軸方向Zに移動させるだけで、各センサ50の傾きと、各センサ50が計測するワークWとの距離を校正することができる。すなわち、このような形態によれば、人手による作業ばらつきがないため高い信頼性を発揮し、多くの時間を要することなく各センサ50を校正することができる。
≪変形例≫
上述した実施の形態では、図1に示すように、本体部10の保持体13が、ベッド11に固定された軸方向Zに延びる棒状の部材にて構成されている例を示したが、このような例に限定されない。図5に、保持体13の他の例を示す。図5に示す例では、保持体13は、各センサ50を軸方向Zに沿って可動に支持している。具体的には、保持体13は、軸方向Zに延びるボールネジ14と、当該ボールネジ14に螺合され、対応するセンサ50を保持する可動部材15と、可動部材15を軸方向Zに沿って案内するレール部材16と、を含んでいる。可動部材15は、ボールネジ14によって駆動され、これにより、軸方向Zに移動可能になっている。レール部材16は、ベッド11に固定され、ボールネジ14を収容している。このような保持体13によれば、加工するワークWの軸方向Zにおける長さに合わせて、各センサ50の計測対象となるワークW上の位置を決定することができるため、ワークWの外形をより精度よく特定することができる。
上述した実施の形態では、図1及び図2に示すように、軸方向Zに沿って並べられた複数のセンサ50からなる1つのセンサ群が、ワークWに対して鉛直方向Y下方に配置されている例を示したが、センサ群の数は、このような例に限定されない。複数のセンサ群が配置されていてもよい。例えば、軸方向Zに沿って並べられた複数のセンサ50からなる第1センサ群が、ワークWに対して鉛直方向Y下方に配置され、軸方向Zに沿って並べられた複数のセンサ50からなる第2センサ群が、ワークWに対して横方向Xに配置されていてもよい。工作機械1が複数のセンサ群を備える場合、ワークWの外形をより高い信頼性にて特定することができる。
なお、実施の形態は例示であり、発明の範囲はそれに限定されない。
1 … 工作機械、 2… 工具、 3… 校正用ミラー、 3a…対向面、 10… 本体部10、 11… ベッド、 12… 支柱12、 13… 保持体、 14… レール部材14、 15…可動部材15、 20… ワーク保持部20、 21… チャック、 22… 押当部材、 23… 受け台、 30… 工具保持部、 40… 移動手段、 50… センサ、 51… 出光面、 60… 制御部、 61… 記憶手段、 62… 演算手段、 63… 指令手段、 X… 横方向、 Y… 鉛直方向、 Z… 軸方向、 W… ワーク

Claims (10)

  1. 本体部と、
    工具を保持する工具保持部と、
    前記工具保持部に保持された前記工具を前記本体部に対して相対移動させる移動手段と、
    前記本体部に支持され、軸方向に延びるワークを保持するワーク保持部と、
    各々が前記ワーク保持部に保持された前記ワークとの距離を計測する複数のセンサであって、互いに前記ワークの軸方向に関して異なる前記ワーク上の位置との距離を計測する複数のセンサと、
    各センサの計測結果に基づいて前記ワークの外形を特定し、当該ワークの外形を特定した結果に基づいて前記移動手段を制御する制御部と、を備え、
    各センサは、前記工具保持部に前記工具を保持した状態のままで、前記ワークとの距離を計測可能になっている、工作機械。
  2. 前記制御部は、
    前記工具保持部に前記工具を保持した状態のままで、各センサの計測結果を読み込んで、前記ワークの外形を特定し、
    前記ワークの外形を特定した結果に基づいて、工具の送り経路を決定し、
    前記工具が前記送り経路に沿って移動するよう前記移動手段を制御し、
    前記工具が前記送り経路に沿って移動した後に、前記工具保持部に前記工具を保持した状態のままで、各センサの計測結果を読み込んで、前記ワークの外形を再び特定し、
    前記ワークの外形を再び特定した結果に基づいて、前記工具の次の送り経路を決定し、
    前記工具が前記次の送り経路に沿って移動するよう前記移動手段を制御するようになっている、請求項1に記載の工作機械。
  3. 前記制御部は、予め作製された空間補正データに基づいて前記移動手段の移動量を補正するようになっている、
    ことを特徴とする請求項1または2に記載の工作機械。
  4. 前記複数のセンサは、前記ワークの軸方向に沿って並べて配置されている、請求項1乃至3のいずれか一項に記載の工作機械。
  5. 前記工具保持部に、前記工具の代わりに校正用ミラーが装着可能になっており、
    前記移動手段によって、前記校正用ミラーを前記センサと対面させながら前記ワークの軸方向に移動させることにより、各センサは、前記校正用ミラーとの距離を予め計測するようになっており、
    前記制御部は、各センサが計測した前記校正用ミラーとの距離の値に基づいて、各センサの計測結果を補正するようになっている、
    ことを特徴とする請求項4に記載の工作機械。
  6. 前記本体部は、各センサを保持する保持体を有し、
    前記保持体は、一体に成形されている、
    ことを特徴とする請求項4または5に記載の工作機械。
  7. 各センサは、前記ワークに対して鉛直下方に配置されている、
    ことを特徴とする請求項1乃至6のいずれか一項に記載の工作機械。
  8. 各々が前記ワーク保持部に保持された前記ワークとの距離を計測する複数のセンサであって、互いに前記ワークの軸方向に関して異なる前記ワーク上の位置との距離を計測する複数のセンサを備える工作機械を用いた、ワークの加工方法であって、
    工具保持部に工具を保持した状態のままで、各センサの計測結果を読み込んで、前記ワークの外形を特定する工程と、
    前記ワークの外形を特定した結果に基づいて、前記工具の送り経路を決定する工程と、
    前記工具を前記送り経路に沿って移動させる工程と、
    前記工具を前記送り経路に沿って移動させた後に、前記工具保持部に前記工具を保持した状態のままで、各センサの計測結果を読み込んで、前記ワークの外形を再び特定する工程と、
    前記ワークの外形を再び特定した結果に基づいて、前記工具の次の送り経路を決定する工程と、
    を備える、ワークの加工方法。
  9. 前記ワークの外形を特定する工程に先立って、前記工作機械の空間補正データを作製し、前記空間補正データに基づいて前記工作機械を校正する工程をさらに備える、請求項8に記載のワークの加工方法。
  10. 前記複数のセンサは、前記ワークの軸方向に沿って並べて配置されており、
    前記ワークの外形を特定する工程に先立って、前記工具保持部に、前記工具の代わりに校正用ミラーを装着させ、
    前記校正用ミラーを前記センサと対面させながら前記ワークの軸方向に移動させて、各センサによって、前記校正用ミラーとの距離を計測させ、
    各センサが計測した前記校正用ミラーとの距離の値に基づいて、各センサを校正する工程をさらに備える、請求項8または9に記載のワークの加工方法。
JP2014028295A 2014-02-18 2014-02-18 工作機械及びワークの加工方法 Pending JP2015150668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028295A JP2015150668A (ja) 2014-02-18 2014-02-18 工作機械及びワークの加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028295A JP2015150668A (ja) 2014-02-18 2014-02-18 工作機械及びワークの加工方法

Publications (1)

Publication Number Publication Date
JP2015150668A true JP2015150668A (ja) 2015-08-24

Family

ID=53893459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028295A Pending JP2015150668A (ja) 2014-02-18 2014-02-18 工作機械及びワークの加工方法

Country Status (1)

Country Link
JP (1) JP2015150668A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102095451B1 (ko) * 2019-01-10 2020-04-23 에프에프지디엠씨 주식회사 머시닝센터
CN111506015A (zh) * 2018-12-27 2020-08-07 施瓦本机床有限公司 用于确定机床表面形状的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506015A (zh) * 2018-12-27 2020-08-07 施瓦本机床有限公司 用于确定机床表面形状的方法
KR102095451B1 (ko) * 2019-01-10 2020-04-23 에프에프지디엠씨 주식회사 머시닝센터

Similar Documents

Publication Publication Date Title
US6973738B2 (en) Measuring method and device, machine tool having such device, and work processing method
TWI499757B (zh) Accumulated lead error measurement device and determination method of ball screw shaft
JP2009028819A (ja) 工作機械の位置検出誤差測定方法
JP5816475B2 (ja) 産業機械
JP2018116058A (ja) 少なくとも1つの長さ測定量を測定する測定装置及び方法
JP2006289608A (ja) 測定方法及び装置、並びにその装置を有した工作機械及びワークの加工方法
EP2397815B1 (en) Industrial machine
CN109959333A (zh) 空间精度校正方法和设备
JP5535031B2 (ja) レーザ光の光軸方向の測定方法、長さ測定システム、および位置決め精度の検査方法
US4714344A (en) Laser apparatus for monitoring geometric errors
JP2018030195A (ja) 工作機械の熱変位補正方法及び基準ゲージ
JP2015150668A (ja) 工作機械及びワークの加工方法
EP2607838B1 (en) Method for ultra-precision shape measuring comprising determining normal vectors
JP4931867B2 (ja) 可変端度器
JP2009281768A (ja) 測定装置
JP6738661B2 (ja) 産業機械
US10684127B2 (en) Zero positioning measuring device including improved probe units
JP6735735B2 (ja) ワークピースを検査するための座標測定方法および同装置であって、理想的な形態から実質的に逸脱していないことが判っている基準形状を使用して測定補正値を生成するステップを含む、ワークピースを検査するための座標測定方法および同装置
JP2011240457A (ja) 切削加工装置,切削加工方法
JP2008096114A (ja) 測定装置
JP6254397B2 (ja) 産業機械及びシフト量算出方法
JP6052953B2 (ja) 三次元測定機、てこ式プローブの位置情報および姿勢情報を取得する方法
EP2754992A1 (en) Optical profilometer
KR101386519B1 (ko) 칫솔 홀 깊이 측정장치
CN115451847A (zh) 棒料测量装置、方法及存储介质