JP2015146225A - 固体酸化物形燃料電池システム - Google Patents

固体酸化物形燃料電池システム Download PDF

Info

Publication number
JP2015146225A
JP2015146225A JP2012114376A JP2012114376A JP2015146225A JP 2015146225 A JP2015146225 A JP 2015146225A JP 2012114376 A JP2012114376 A JP 2012114376A JP 2012114376 A JP2012114376 A JP 2012114376A JP 2015146225 A JP2015146225 A JP 2015146225A
Authority
JP
Japan
Prior art keywords
gas
anode
fuel cell
solid oxide
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012114376A
Other languages
English (en)
Inventor
剛広 丸山
Takehiro Maruyama
剛広 丸山
小林 晋
Susumu Kobayashi
晋 小林
鵜飼 邦弘
Kunihiro Ukai
邦弘 鵜飼
ヒョンジョン 南
Hyun-Jeong Nam
ヒョンジョン 南
藥丸 雄一
Yuichi Kusumaru
雄一 藥丸
美妃 堂腰
Miki Dogoshi
美妃 堂腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012114376A priority Critical patent/JP2015146225A/ja
Priority to PCT/JP2013/002745 priority patent/WO2013171980A1/ja
Publication of JP2015146225A publication Critical patent/JP2015146225A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04949Electric variables other electric variables, e.g. resistance or impedance
    • H01M8/04951Electric variables other electric variables, e.g. resistance or impedance of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】従来に比べて水添脱硫性能の低下が抑制された固体酸化物形燃料電池システムを提供する。
【解決手段】本発明の固体酸化物形燃料電池システムは、固体酸化物形燃料電池3と、燃料ガスから硫黄成分を除去する水添脱硫器1と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器2と、前記改質器に改質用の水を供給する改質水供給経路51と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器4と、前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路40と、を有する。
【選択図】図1

Description

本発明は水素を含む原燃料ガス(原料ガス)の硫黄含有成分を除去する水添脱硫装置を備えた固体酸化物形燃料電池システムに関するものである。
原燃料ガスとして炭化水素を用いる燃料電池システムでは、この原燃料ガスを改質するために、例えば水蒸気を用いた水蒸気改質が利用されている。この水蒸気改質を促進するために水蒸気改質触媒が用いられているが、原燃料ガス中には付臭剤または硫黄化合物が含まれており、これらによってこの水蒸気改質触媒が劣化させられるおそれがある。そこで、水蒸気改質触媒の劣化を防止するために、原燃料ガス中に含まれる付臭剤または硫黄化合物を低減させる脱硫装置が利用される。
このような脱硫装置としては、例えば、硫黄化合物を触媒(Ni−Mo系、Co−Mo系)上で水素と反応させて硫化水素に変換し、この硫化水素を酸化亜鉛に取り込んで除去する、いわゆる水添脱硫法により脱硫を行なう水添脱硫装置が挙げられる。
水添脱硫装置は、水添脱硫法により脱硫を行なう際に水素が必要となるが、原燃料ガス中には通常、水素が含まれていない。このため、水素をどこからか水添脱流装置に供給する仕組みが必要となる。
例えば、特許文献1では、図7に示すように、脱硫器104で脱硫した原燃料ガスの一部を、炭化水素改質触媒を設置した分岐戻し流路142を介してこの脱硫器104の上流側に戻す固体酸化形燃料電池システムが開示されている。図7は、従来技術に係る燃料電池の構成を示す図である。
図7に示すように、特許文献1の固体酸化形燃料電池システムでは、混合器120で混合された水と原燃料ガスは、一部が分岐戻し流路142に導入される。そして、分岐戻し流路142の二重管144内の炭化水素改質触媒によって、炭化水素を改質して得た水素含有ガスを、昇圧器117の上流に戻す。これにより、脱硫器104に水素を供給し、原燃料ガスの水添脱硫を行う。
特開2006−54171号公報 特許第4036607号公報 特開2006−104003号公報 特許第2993507号公報 特開2001−200278号公報
改質器で改質した水素含有ガスや、水素を含有するアノードオフガスを、水添脱硫器にリサイクルさせ供給して、水添脱硫を行う場合、上記リサイクルガスに含まれる水(水蒸気)がリサイクル配管内で凝縮してしまい、所望量のリサイクルガスを供給できなくなることがあった。
また、上記リサイクルガスに含まれる水(水蒸気)によって、水添脱硫機能が低下してしまうという課題もあった。
本発明のある態様(aspect)の固体酸化物形燃料電池システムは、固体酸化物形燃料電池と、燃料ガスから硫黄成分を除去する水添脱硫器と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、前記改質器に改質用の水を供給する改質水供給経路と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路と、を有する。
本発明は上述の課題を解決するためになされたものであり、外気温度が高い場所(例えば、40℃)においても水添脱硫性能の低下を抑えた固体酸化物形燃料電池システムを提供することを目的としている。
図1は、実施の形態1の固体酸化物形燃料電池システムの一例を示すブロック図である。 図2は、実施の形態2の固体酸化物形燃料電池システムの一例を示すブロック図である。 図3は、実施の形態2の固体酸化物形燃料電池システムの変形例を示すブロック図である。 図4は、実施の形態3の固体酸化物形燃料電池システムの一例を示すブロック図である。 図5は、実施の形態4の固体酸化物形燃料電池システムの一例を示すブロック図である。 図6は、実施の形態5の固体酸化物形燃料電池システムの一例を示すブロック図である。 図7は、実施の形態5の固体酸化物形燃料電池システムの変形例を示すブロック図である。 図8は、実施の形態6の固体酸化物形燃料電池システムの一例を示すブロック図である。
改質器で改質した水素含有ガスや、水素を含有するアノードオフガスを、水添脱硫器にリサイクルさせ供給して、水添脱硫を行う場合、上記リサイクルガスに含まれる水(水蒸気)がリサイクル配管内で凝縮してしまい、所望量のリサイクルガスを供給できなくなることがあった。
また、上記リサイクルガスに含まれる水(水蒸気)によって、水添脱硫機能が低下してしまうという課題もあった。
例えば、上記リサイクルガスに含まれる水(水蒸気)が吸着することによって、触媒(Ni−Mo系、Co−Mo系)の活性サイトが失われ、水素化反応が起きないため、硫化水素に変換されずにスリップしてしまう硫黄化合物の量が増加する。
特にジメチルスルフィドなどの吸着性の低い有機硫黄化合物の場合には、触媒状態のへの影響が大きく、大量に存在する水(水蒸気)によって吸着容量が低下し、スリップした硫黄によって、下流にある改質器や固体酸化物形燃料電池が劣化してしまう。
また、硫化水素に変換された硫黄化合物についても、硫化水素を酸化亜鉛に取り込んで除去する反応は、ZnO+H2S ⇔ ZnS+H2Oで示される平衡反応である。そのため、リサイクルガスに含まれる水(水蒸気)が多い場合には、上記の反応を起こすことなく素通りし、下流にある改質器や固体酸化物形燃料電池を劣化させてしまう。
上記課題を解決するために、従来は、リサイクルガスを改質水などで冷却することによって、上記リサイクルガスに含まれる水蒸気量(露点)を低減している。
しかしながら、外気温度が、たとえば、40℃と高い場所においては、改質水や空冷ラジエタに繋がれた冷却用循環水も高温となる。その結果、リサイクル配管内で水が凝縮してしまったり、リサイクルガスを所望温度まで冷却することができずに、水添脱硫機能が低下してしまうという課題が生じる。
よって、第1の態様の固体酸化物形燃料電池システムは、固体酸化物形燃料電池と、燃料ガスから硫黄成分を除去する水添脱硫器と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、前記改質器に改質用の水を供給する改質水供給経路と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路と、を有する。
第2の態様の固体酸化物形燃料電池システムは、固体酸化物形燃料電池と、燃料ガスから硫黄成分を除去する水添脱硫器と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、前記改質器に改質用の水を供給する改質水供給経路と、前記改質器に改質用の空気を供給する改質空気供給経路と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路と、を有する。
第3の態様の固体酸化物形燃料電池システムは、固体酸化物形燃料電池と、燃料ガスから硫黄成分を除去する水添脱硫器と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、前記改質器に改質用の空気を供給する改質空気供給経路と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路と、を有する。
第4の態様の固体酸化物形燃料電池システムは、固体酸化物形燃料電池と、燃料ガスから硫黄成分を除去する水添脱硫器と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、前記改質器に改質用の水を供給する改質水供給経路と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、前記改質器で生成された改質ガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却された改質ガスを前記水添脱硫器に供給する改質ガスリサイクル供給経路と、を有する。
第5の態様の固体酸化物形燃料電池システムは、固体酸化物形燃料電池と、燃料ガスから硫黄成分を除去する水添脱硫器と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、前記改質器に改質用の水を供給する改質水供給経路と、前記改質器に改質用の空気を供給する改質空気供給経路と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、前記改質器で熱交換された改質ガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却された改質ガスを前記水添脱硫器に供給する改質ガスリサイクル供給経路と、を有する。
第6の態様の固体酸化物形燃料電池システムは、固体酸化物形燃料電池と、燃料ガスから硫黄成分を除去する水添脱硫器と、前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、前記改質器に改質用の空気を供給する改質空気供給経路と、前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、前記改質器で熱交換された改質ガスの少なくとも一部を冷却する冷却器と、前記冷却器で冷却された改質ガスを前記水添脱硫器に供給する改質ガスリサイクル供給経路と、を有する。
第7の態様の固体酸化物形燃料電池システムは、第1−6のいずれかの態様において、前
記燃料電池からのカソードオフガスと、前記冷却器で冷却された前記アノードオフガスとを燃焼させる燃焼器を有する。
第8の態様の固体酸化物形燃料電池システムは、第1−7のいずれかの態様において、前記冷却器は、前記アノードオフガスまたは前記改質ガスを冷却する吸収式冷凍サイクルの蒸発器を備え、前記吸収式冷凍サイクルの再生器が、前記カソードオフガスまたは前記燃焼器の燃焼排ガスの熱を用いて駆動される。
以下、各実施の形態1−6の具体例について図面を参照しながら説明する。
なお、以下では、全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する場合がある。
(実施の形態1)
(構成)
図1は、実施の形態1のSOFCシステムの一例を示すブロック図である。
図1に示すように、本燃料電池システムは、アノード燃料供給経路10と、アノードオフガス経路11と、カソード空気供給経路20と、カソードオフガス経路21と、アノードオフガスリサイクル経路40と、凝縮水経路50と、改質水供給経路51と、水添脱硫器1と、改質器2と、固体酸化物形燃料電池3と、アノードオフガス放熱器4と、空気熱交換器5と、吸収式冷凍機の再生部6と、吸収式冷凍機の気化部7と、水タンク8と、を備えている。
アノード側の流体経路は、水添脱硫器1および改質器2が設けられたアノード燃料供給経路10と、アノードオフガス放熱器4が設けられたアノードオフガス経路11、吸収式冷凍機7の気化部および水添脱硫器1にアノードオフガスをリサイクルして供給するアノードオフガスリサイクル経路40、および、アノードオフガス放熱器4で凝縮した凝縮水を水タンクへ供給する、からなる。
カソード側の流体経路は、固体酸化物形燃料電池3のカソードに空気を供給するカソード空気供給経路20、および、固体酸化物形燃料電池3のカソードオフガスを排出するためのカソードオフガス経路21、からなる。
これらのアノード側およびカソード側の流体経路は、たとえば、当該経路に設けられる機器とこれらの機器を接続する配管、ホース等で構成される。
水添脱硫器1は、水添脱硫の脱流方式により原燃料ガスに含まれる硫黄成分を除去するためのものである。
ここで、原燃料ガスとして、自動車用LPGガスを供給する場合を考える。
なお、原燃料ガスは自動車用LPGガスに限られたものではなく、プロパンガス、ブタンガス、都市ガスなどの他の炭化水素含有ガスであっても良い。
自動車用LPGガスの国際規格(IS14861-2000)を参照すると、LPGの揮発性硫黄成分の濃度は、規格上150PPMが許容され、典型的には25PPM程度である。これは、例えば、日本の都市ガス中の付臭剤濃度(5PPM)の数倍であり、かつ、LPGは、石油由来の雑多な硫黄化合物を含む。そして、このことは、常温吸着型の脱硫器を用いる場合、複数種の吸着剤が必要であること、および、吸着剤の頻繁な交換が必要となることを意味する。
よって、LPGの脱硫には、LPG中の様々な硫黄成分をまとめて、水添反応(還元反応)を用いて硫化水素に転化し、その後、硫化水素を一括して除去する水添脱硫方式が、常温脱硫方式に比べて適している。
脱硫器2において充填する脱硫剤としては、例えば、銅および亜鉛を含む脱硫剤が挙げられる(例えば、特許文献4)。なお、脱硫剤は、水添脱硫を行うことができればこの脱硫剤に限定されるものではなく、Ni−Mo系又はCo−Mo系触媒と酸化亜鉛との組み合わせであってもよい。Ni−Mo系又はCo−Mo系触媒と酸化亜鉛とを組み合わせた脱硫剤の場合、水添脱硫器1は350〜400℃の温度範囲にて、原燃料ガス中の有機硫黄を水添分解する。そして、水添脱硫器1は、生成したH2Sを、350〜400℃の温度
範囲にてZnOに吸着させて除去する。
例えば、原燃料ガスに付臭剤として硫黄化合物であるジメチルスルフィド(dimethyl sulfide, C2H6S,DMS)が含有されている場合、このDMSは、水添脱硫器1において、以下の反応式(式(1)、(2))によるZnSの形、または物理吸着の形等で脱硫剤に除去される。
C2H6S+2H2→2CH4+H2S ・・・(1)
H2S+ZnO→H2O+ZnS ・・・(2)
なお、脱硫できる付臭剤は、上述したDMSに限定されるものではなく、TBM(C4H10S)またはTHT(C4H8S)等の他の硫黄化合物であってもよい。
銅および亜鉛を含む脱硫剤を用いる場合は、水添脱硫器1は、10〜400℃程度 、好ましくは200〜300℃ 程度の温度範囲で脱硫を行なう。この場合、脱硫後の原燃料ガスに含まれる硫黄含有量は、1vol ppb(parts per billion)以下、通常は0.1vol ppb以下となる。
このように、水添脱硫器1に、Ni−Mo系またはCo−Mo系触媒または銅または亜鉛のいずれかを含む脱硫剤が充填されている場合、単位体積あたりの硫黄成分除去量が大きくなる。このため、所望の硫黄濃度まで硫黄を除去するための脱硫剤の必要量を少なくすることができる。
改質器2は、原燃料ガス中の炭化水素と、改質水供給経路51へ供給される水(水蒸気)と、を水素を含有する燃料ガスに改質する水蒸気改質器である。
改質器2に充填する改質触媒としては、アルミナ担体にニッケルや白金を含浸したものを用いる。なお、充填する改質触媒は上述したものに限定されるものではなく、水蒸気改質を行うことができる改質触媒であればよい。
改質器2に供給された原燃料ガスと改質水とを混合させた混合ガスは、400〜900℃の温度範囲において、水蒸気改質反応を行い、水素を含有する燃料ガスを生成する。そして、生成したガスを燃料ガスとして、アノードガス供給経路10を通じて、固体酸化物形燃料電池3のアノードへ供給する。
固体酸化物形燃料電池3は、アノード燃料供給経路10から供給される燃料ガスと、
カソードガス供給経路20から供給される空気(発電用空気)との反応により発電を行うものである。
すなわち、固体酸化物形燃料電池3は、改質器2により改質された原燃料ガスが供給されるアノード、および発電用空気が供給されるカソードを有し、該アノードと該カソードとの間で発電反応を行って発電する燃料電池単セルを複数枚、直列接続したものである。
固体酸化物形燃料電池3を構成する燃料電池単セルとして、イットリアをドープしたジルコニア(YSZ)が用いられる。なお、燃料電池単セルは、発電反応を行うことができれば上記したセルに限定されるものではなく、例えば、イットリビウムやスカンジウムをドープしたジルコニア、あるいはランタンガレート系の固体電解質からなる燃料電池単セルを用いても良い。燃料電池単セルがYSZの場合、厚みにもよるが、約600〜1000℃の温度範囲にて、発電反応が行われる。
固体酸化物形燃料電池3から排出されるアノードオフガスおよびカソードオフガスは、それぞれアノードオフガス経路11およびカソードオフガス経路21へと供給される。
なお、固体酸化物形燃料電池3で発電した電気は、不図示の終電端子部材を介して外部経路へと供給される。
アノードオフガス放熱器4は、アノードオフガスを冷却できる機器であればいなかる構成でも構わない。大気との熱交換方法は、アノードオフガス放熱器4で大気と直接空冷する
方式でも良いし、アノードオフガス放熱器4で循環不凍液等の冷媒と熱交換を行い、該循環不凍液等を不図示のラジエタにて大気と空冷熱交換を行う方式であっても良い。
空気熱交換器5は、カソード空気供給経路20とカソードオフガス経路21とに共通に設けられる。空気熱交換器5は、カソードオフガス経路21を流れるカソードオフガスにより固体酸化物形燃料電池3のカソードへ供給される空気を加熱する。
本実施形態の燃料電池システムは、アノードオフガス放熱器4で熱交換されたアノードオフガスの少なくとも一部を冷却する冷却器を有する。冷却器は、アノードオフガスを所定の温度に冷却することができるものであれば特に限定されないが、吸収式冷凍機が好適に用いられる。
吸収式冷凍機は、再生部6、精留部、凝縮部、気化部7および吸収部を備える。(再生部6と気化部7以外は不図示)
吸収式冷凍機は、たとえば、アンモニア水溶液を作動流体として用いる。この吸収式冷凍機の再生部6において、アンモニア水溶液は、空気熱交換器5を通過したカソードオフガスの熱を奪って気化する。気化したアンモニア水溶液は精留部で分留される。沸点の高い水は、精留部から吸収部に還流する。一方、沸点の低いアンモニアの蒸気は精留部から凝縮部に供給される。凝縮部ではアンモニアの蒸気が、空気などにより冷却されて液化する。液化したアンモニアは気化部7に供給される。気化部7においてアンモニアは、減圧され気化する。
この際、アンモニアは、アノードオフガスリサイクル経路から供給されるアノードオフガスの熱を奪い、気化する。そして、気化したアンモニアは、吸収部へ供給される。このアンモニアの濃度が高いため、アンモニアは、吸収部において水を吸収する。このサイクルを連続的に行うことによって、吸収式冷凍機は、気化部7においてアノードオフガスを冷却し、該アノードオフガス中の水蒸気を凝縮し、露点を低下させる。冷却されたアノードオフガスは、アノード燃料供給経路10へ供給され、原燃料ガスと混合されて水添脱硫器1へ供給される。
但し、このような吸収式冷凍サイクルの構成自体は周知なので、ここでは、詳細な図示および説明は省略する。
水タンク8は、アノードオフガス経路11および/またはリサイクルガスライン経路40でアノードオフガス中の水蒸気が凝縮して生成した凝縮水を貯めるタンクである。
(動作)
まず、供給された原燃料ガスは、アノードオフガスリサイクル経路40から流入する、水素ガスを含むアノードオフガスと混合され、水添脱硫器1に導入される。
水添脱硫器1によって脱硫された原燃料ガスは、アノード燃料供給経路10を通り、改質器2に供給されて、水素を含有する燃料ガスに改質される。
固体酸化物形燃料電池3に供給された燃料ガスと空気との酸化還元反応により発電が行われ、アノードオフガス、カソードオフガスが生成する。
固体酸化物形燃料電池3からアノードオフガス経路11へ供給されたアノードオフガスは、アノードオフガス放熱器4において、大気と熱交換を行い、大気温度程度まで冷却される。例えば、大気温度が40℃の場合には、空冷ラジエタにてアノードオフガス温度を50℃まで冷却される。
その際、アノードオフガスに含まれる水蒸気が凝縮され、凝縮水経路50へ供給される。凝縮水経路50へ供給された水は、水タンク8および改質水供給経路51を通って、改質器2へと供給される。
ここで、アノードオフガス放熱器4を出たアノードオフガスの組成を表1に示すS/C=2.0、Uf=75%の条件で運転した場合である。
Figure 2015146225
アノードオフガス放熱器4にて、アノードオフガスは50℃程度まで冷却されているため、固体酸化物形燃料電池3のアノードから排出された段階よりも、水蒸気濃度(露点)は低くなっている。
しかしながら、まだ水蒸気濃度が24%と高いため、このまま水添脱硫器1へリサイクル供給した場合には、前述のように、上記リサイクルガスに含まれる水(水蒸気)がリサイクル配管内で凝縮してしまって所望量のリサイクルガスを供給できなかったり、上記リサイクルガスに含まれる水(水蒸気)によって、水添脱硫機能が低下することがある。
アノードオフガス放熱器4を出たアノードオフガスの一部は、アノードオフガスリサイクル経路40を通り、吸収式冷凍機の気化部7へ供給される。なお、残りのアノードオフガスは大気へと放出される。
ここで、吸収式冷凍機の気化部7へ供給されるアノードオフガスの流量は、水添脱硫器1にて行なう水添脱硫に必要な水素流量によって設定する。
一般的には、水添脱硫器1において、アノードオフガスに含まれる水素流量が原燃料ガス流量の1%程度あれば充分である。しかしながら、例えば、特許文献5に開示されているように、分散性を考慮して、より多くの水素を添加しながら(例えば、5%〜10%)、原燃料ガスを脱硫するように設定する方が好適である。
なお、吸収式冷凍機の気化部7へ供給されるアノードオフガスの搬送方法としては、アノードオフガスリサイクル経路に設置したブロワを用いても良いし、アノード燃料供給経路にエジェクタを設置して行う構成としても良い。
吸収式冷凍機の気化部7は、水添脱硫器2で水添脱硫を行うために必要な水素流量を含有するアノードオフガス流量だけを冷却するため、アノードオフガス全流量を冷却する場合と比較して、冷却能力が小さくて良いため、小型化、低コスト化につながる。
また、冷却器でのアノードオフガスの流通によって発生する圧力損失が小さくなるため、固体酸化物燃料電池スタックにおいてアノード流路からガスがリークするリスクが小さくなる。
本実施の形態の固体酸化物形燃料電池システムは、吸収式冷凍機を備える。
吸収式冷凍機は、再生部6、精留部、凝縮部、気化部7および吸収部を備える。(再生部6と気化部7以外は不図示)
吸収式冷凍機は、気化部7においてアノードオフガスを冷却し、該アノードオフガス中の水蒸気を凝縮し、露点を低下させる。冷却されたアノードオフガスは、アノード燃料供給経路10へ供給され、原燃料ガスと混合されて水添脱硫器1へ供給される。
ここで、外気温度が、たとえば、40℃と高い場所においても、吸収式冷凍機の気化部7は外気温度以下までアノードオフガスを冷却することができるため、水添脱硫器1へ供給するアノードオフガスの露点は40℃以下とすることができる。
例えば、吸収式冷凍機の気化部7によって、アノードオフガスを20℃まで冷却した場合、吸収式冷凍機の気化部7を出たアノードオフガスの組成は表2のように含まれる水蒸気割合が小さくなるため、水添脱硫器1において、前述したような水蒸気による水添脱硫性能の低下が小さくなる(S/C=2.0、Uf=75%)。
Figure 2015146225
一方、凝縮した水は凝縮水経路50へ供給され、水タンク8および改質水供給経路51を
通って、改質器2へと供給される。なお、水タンク8から改質器2への水の供給方法としては、水ポンプを用いる(不図示)。
一方、固体酸化物形燃料電池3のカソードから排出されたカソードオフガスは、カソードオフガス経路21へ供給される。
カソードオフガス経路21へ供給されたカソードオフガスは、空気熱交換器5において、カソードに供給される空気と熱交換を行ったのちに、吸収式冷凍機の再生部6へ供給され、吸収式冷凍機の駆動熱源として加熱を行ったのち、システム外へと排出される。
なお、固体酸化物形燃料電池3から排出されたカソードオフガスと、アノードオフガス放熱器から排出されたアノードオフガスと、を図示しないが、カソードオフガス経路21内の固体酸化物形燃料電池3と空気熱交換器5の間に設置した燃焼器で燃焼する構成としてもよい。
上述の構成とすれば、空気熱交換器5および吸収式冷凍機の再生部6へ供給するカソードオフガス温度が上昇し、空気熱交換機5の小型化、および吸収式冷凍機の冷却効率の向上を得ることができる。
本実施形態の固体酸化物形燃料電池システムにより、外気温度が、たとえば、40℃と高い場所においても、リサイクルラインの凝縮を防止し、水添脱硫性能の低下を小さくすることが可能となる。
(実施の形態2)
図2を用いて、実施の形態2について説明する。なお、実施の形態1と同じ構成、動作の部分については、説明を省略する。
(構成)
図2に示すように、本実施形態の固体酸化物形燃料電池システムは、改質空気供給経路30を備える点が、実施の形態1と異なる。
改質器2では、原燃料ガス中の炭化水素と、改質水供給経路51へ供給される水(水蒸気)と、改質空気供給経路30へ供給される空気中の酸素と、を水素を含有する燃料ガスに改質する酸化的水蒸気改質反応(OSR: Oxidative Steam Reforming)が行われる。
改質器2に充填する改質触媒としては、アルミナ担体に白金を含浸したものを用いる。なお、充填する改質触媒は上述したものに限定されるものではなく、OSRを行うことができる改質触媒であればよい。
(動作)
改質器2では、OSRが行われる。OSRでは、原燃料ガス流量と、改質水流量と、改質空気流量の比率によって、改質反応熱が変化する。
改質反応が吸熱反応となり、改質器2の温度を所望の反応温度に保持するために、改質器2を加熱する必要がある場合は、図2のように、アノードオフガスとの熱交換によって改質器2を加熱する構成となる。
一方、改質反応が発熱または熱的に中立で、改質器2の温度を所望の反応温度に保持するために、改質器2を加熱する必要が無い場合は、図3のように改質器2がアノードオフガスと熱交換しない構成となる。
改質器2に供給された原燃料ガスと改質水と改質空気を混合させた混合ガスは、400〜900℃の温度範囲において、OSRを行い、水素を含有する燃料ガスを生成する。そして、生成したガスを燃料ガスとして、アノードガス供給経路10を通じて、固体酸化物形燃料電池3のアノードへ供給する。
実施の形態1のシステムと同様に、アノードオフガス放熱器4を出たアノードオフガスの一部を、アノードオフガスリサイクル経路40へ供給し、吸収式冷凍機の気化部7で外気温度以下へ冷却して、水を凝縮除去したのちに、水添脱硫器1へ供給する。
本構成により、外気温度が、たとえば、40℃と高い場所においても、水添脱硫性能の低下が小さくすることが可能となる。
(実施の形態3)
図4を用いて、実施の形態3について説明する。なお、実施の形態2と同じ構成、動作の部分については、説明を省略する。
(構成)
図4に示すように、本実施形態の固体酸化物形燃料電池システムは、実施の形態2の固体酸化物燃料電池システムの構成から、改質水供給経路51と、水タンク8を除いた点が異なる。
(動作)
改質器2では、原燃料ガス中の炭化水素と、改質空気供給経路30へ供給される空気中の酸素と、を水素を含有する燃料ガスに改質する部分酸化反応(CPOX: Catalytic Partial OXidation)が行われる。
改質器2に充填する改質触媒としては、アルミナ担体に白金を含浸したものを用いる。なお、充填する改質触媒は上述したものに限定されるものではなく、部分酸化改質を行うことができる改質触媒であればよい。
改質器2に供給された原燃料ガスと改質空気を混合させた混合ガスは、700〜900℃の温度範囲において、部分酸化改質反応を行い、水素を含有する燃料ガスを生成する。そして、生成したガスを燃料ガスを、アノードガス供給経路10を通じて、固体酸化物形燃料電池3のアノードへ供給する。
実施形態1と同様に、アノードオフガス放熱器4を出たアノードオフガスの一部を、アノードオフガスリサイクル経路40へ供給し、吸収式冷凍機の気化部7で外気温度以下へ冷却して、水を凝縮除去したのちに、水添脱硫器1へ供給する。
本構成により、外気温度が、たとえば、40℃と高い場所においても、水添脱硫性能の低下が小さくすることが可能となる。
(実施の形態4)
図5を用いて、実施の形態4について説明する。なお、実施の形態1と同じ構成、動作の部分については、説明を省略する。
(構成)
アノードオフガスリサイクル経路50に代えて、改質ガスリサイクル経路60および改質ガスリサイクル凝縮水経路61を備える点が実施の形態1と異なる。
改質器2から出た改質ガスの一部を改質ガスリサイクル経路60へ供給し、吸収式冷凍機の気化部7で冷却して水を凝縮除去してから、水添脱硫器1へ供給。
(動作)
表3に改質器2から出る改質ガスの組成を示す(S/C=2.0)。
Figure 2015146225
表4に吸収式冷凍機の気化部7を出た改質ガスの組成を示す。
Figure 2015146225
改質器2を出た改質ガスの一部を、改質ガスリサイクル経路60へ供給し、吸収式冷凍機の気化部7で外気温度以下へ冷却して、水を凝縮除去したのちに、水添脱硫器1へ供給する。
なお、吸収式冷凍機の気化部7へ流入する前に、不図示の改質ガス放熱器を設置して、大気との熱交換によって、改質ガスリサイクル経路60を流れる改質ガスを大気温度程度まで冷却する構成としても良い。
なお、吸収式冷凍機の気化部7へ流入する前に、不図示のWater Gas Shift改質器を設置して、改質ガス中に残存するCOとH2OをWater Gas Shift反応によって、CO2とH2に変換す
る構成としても良い。
上述の構成とすることにより、吸収式冷凍機によって改質ガスの露点を下げるために必要な冷却量を低減することができるため、吸収式冷凍機が小型で済む。
本構成により、外気温度が、たとえば、40℃と高い場所においても、水添脱硫性能の低下を小さくすることが可能となる。
(実施の形態5)
図6を用いて、実施の形態5について説明する。なお、実施の形態2と同じ構成、動作の部分については、説明を省略する。
(構成)
アノードオフガスリサイクル経路50に代えて、改質ガスリサイクル経路60および改質ガスリサイクル凝縮水経路61を備える点が実施の形態2と異なる。
改質器2から出た改質ガスの一部を改質ガスリサイクル経路60へ供給し、吸収式冷凍機の気化部7で冷却して水を凝縮除去してから、水添脱硫器1へ供給。
(動作)
改質器2を出た改質ガスの一部を、改質ガスリサイクル経路60へ供給し、吸収式冷凍機の気化部7で外気温度以下へ冷却して、水を凝縮除去したのちに、水添脱硫器1へ供給する。
なお、吸収式冷凍機の気化部7へ流入する前に、不図示の改質ガス放熱器を設置して、大気との熱交換によって、改質ガスリサイクル経路60を流れる改質ガスを大気温度程度まで冷却する構成としても良い。
上述の構成とすることにより、吸収式冷凍機によって改質ガスの露点を下げるために必要な冷却量を低減することができるため、吸収式冷凍機が小型で済む。
本構成により、外気温度が、たとえば、40℃と高い場所においても、水添脱硫性能の低下が小さくすることが可能となる。
(変形例)
改質反応が発熱または熱的に中立で、改質器2の温度を所望の反応温度に保持するために、改質器2を加熱する必要が無い場合は、図7のように改質器2がアノードオフガスと熱交換しない構成となる。
(実施の形態6)
図8を用いて、実施の形態6について説明する。なお、実施の形態3と同じ構成、動作の部分については、説明を省略する。
(構成)
アノードオフガスリサイクル経路50に代えて、改質ガスリサイクル経路60および改質ガスリサイクル凝縮水経路61を備える点が実施の形態3と異なる。
改質器2から出た改質ガスの一部を改質ガスリサイクル経路60へ供給し、吸収式冷凍機の気化部7で冷却して水を凝縮除去してから、水添脱硫器1へ供給する。
(動作)
改質器2を出た改質ガスの一部を、改質ガスリサイクル経路60へ供給し、吸収式冷凍機の気化部7で外気温度以下へ冷却して、水を凝縮除去したのちに、水添脱硫器1へ供給する。
なお、吸収式冷凍機の気化部7へ流入する前に、不図示の改質ガス放熱器を設置して、大気との熱交換によって、改質ガスリサイクル経路60を流れる改質ガスを大気温度程度まで冷却する構成としても良い。
上述の構成とすることにより、吸収式冷凍機によって改質ガスの露点を下げるために必要な冷却量を低減することができるため、吸収式冷凍機が小型で済む。
なお、本実施の形態6においては、アノードオフガスから水を回収して、改質器2へ供給する必要がないため、アノードオフガス放熱器4を設置しなくても良い。
本構成により、外気温度が、たとえば、40℃と高い場所においても、水添脱硫性能の低下が小さくすることが可能となる。
本発明の固体酸化物形燃料電池システムは、水添脱硫性能の低下が抑制された固体酸化物形燃料電池システム等として有用である。
1 水添脱硫器
2 改質器
3 固体酸化物形燃料電池
5 空気熱交換器
6 吸収式冷凍機の再生部
7 吸収式冷凍機の気化部
8 水タンク
10 アノード燃料供給経路
11 アノードオフガス経路
20 カソード空気供給経路
21 カソードオフガス経路
30 改質空気供給経路
40 アノードオフガスリサイクル経路
50 凝縮水経路
51 改質水供給経路
60 改質ガスリサイクル経路
61 改質ガスリサイクル凝縮水経路

Claims (8)

  1. 固体酸化物形燃料電池と、
    燃料ガスから硫黄成分を除去する水添脱硫器と、
    前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、
    前記改質器に改質用の水を供給する改質水供給経路と、
    前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、
    前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、
    前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路と、
    を有する固体酸化物形燃料電池システム。
  2. 固体酸化物形燃料電池と、
    燃料ガスから硫黄成分を除去する水添脱硫器と、
    前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、
    前記改質器に改質用の水を供給する改質水供給経路と、
    前記改質器に改質用の空気を供給する改質空気供給経路と、
    前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、
    前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、
    前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路と、
    を有する固体酸化物形燃料電池システム。
  3. 固体酸化物形燃料電池と、
    燃料ガスから硫黄成分を除去する水添脱硫器と、
    前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、
    前記改質器に改質用の空気を供給する改質空気供給経路と、
    前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、
    前記アノードオフガス放熱器で熱交換された前記アノードオフガスの少なくとも一部を冷却する冷却器と、
    前記冷却器で冷却されたアノードオフガスを前記水添脱硫器に供給するアノードオフガスリサイクル供給経路と、
    を有する固体酸化物形燃料電池システム。
  4. 固体酸化物形燃料電池と、
    燃料ガスから硫黄成分を除去する水添脱硫器と、
    前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、
    前記改質器に改質用の水を供給する改質水供給経路と、
    前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、
    前記改質器で生成された改質ガスの少なくとも一部を冷却する冷却器と、
    前記冷却器で冷却された改質ガスを前記水添脱硫器に供給する改質ガスリサイクル供給経路と、
    を有する固体酸化物形燃料電池システム。
  5. 固体酸化物形燃料電池と、
    燃料ガスから硫黄成分を除去する水添脱硫器と、
    前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、
    前記改質器に改質用の水を供給する改質水供給経路と、
    前記改質器に改質用の空気を供給する改質空気供給経路と、
    前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、
    前記改質器で生成された改質ガスの少なくとも一部を冷却する冷却器と、
    前記冷却器で冷却された改質ガスを前記水添脱硫器に供給する改質ガスリサイクル供給経路と、
    を有する固体酸化物形燃料電池システム。
  6. 固体酸化物形燃料電池と、
    燃料ガスから硫黄成分を除去する水添脱硫器と、
    前記水添脱硫器で脱硫された燃料ガスを改質して改質ガスを生成する改質器と、
    前記改質器に改質用の空気を供給する改質空気供給経路と、
    前記固体酸化物形燃料電池からのアノードオフガスの熱を放熱するアノードオフガス放熱器と、
    前記改質器で生成された改質ガスの少なくとも一部を冷却する冷却器と、
    前記冷却器で冷却された改質ガスを前記水添脱硫器に供給する改質ガスリサイクル供給経路と、
    を有する固体酸化物形燃料電池システム。
  7. 前記燃料電池からのカソードオフガスと、前記冷却器で冷却された前記アノードオフガスとを燃焼させる燃焼器を有する請求項1から6のいずれかに記載の固体酸化物形燃料電池システム。
  8. 前記冷却器は、前記アノードオフガスまたは前記改質ガスを冷却する吸収式冷凍サイクルの蒸発器を備え、
    前記吸収式冷凍サイクルの再生器が、前記カソードオフガスまたは前記燃焼器の燃焼排ガスの熱を用いて駆動される、請求項1から7のいずれかに記載の固体酸化物形燃料電池システム。

JP2012114376A 2012-05-18 2012-05-18 固体酸化物形燃料電池システム Pending JP2015146225A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012114376A JP2015146225A (ja) 2012-05-18 2012-05-18 固体酸化物形燃料電池システム
PCT/JP2013/002745 WO2013171980A1 (ja) 2012-05-18 2013-04-23 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114376A JP2015146225A (ja) 2012-05-18 2012-05-18 固体酸化物形燃料電池システム

Publications (1)

Publication Number Publication Date
JP2015146225A true JP2015146225A (ja) 2015-08-13

Family

ID=49583412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114376A Pending JP2015146225A (ja) 2012-05-18 2012-05-18 固体酸化物形燃料電池システム

Country Status (2)

Country Link
JP (1) JP2015146225A (ja)
WO (1) WO2013171980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186111A (ja) * 2018-04-13 2019-10-24 東京瓦斯株式会社 燃料電池システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461341B2 (en) 2013-12-19 2019-10-29 Panasonic Corporation Fuel cell system
US9812723B2 (en) 2015-02-25 2017-11-07 Fuelcell Energy, Inc. Power producing gas separation system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493257B2 (ja) * 2001-03-26 2010-06-30 大阪瓦斯株式会社 燃料改質システム
JP4292362B2 (ja) * 2001-03-28 2009-07-08 大阪瓦斯株式会社 固体高分子型燃料電池発電システム及び固体高分子型燃料電池発電方法
JP2007040593A (ja) * 2005-08-02 2007-02-15 Kansai Electric Power Co Inc:The ハイブリッドシステム
JP2011141967A (ja) * 2010-01-05 2011-07-21 Chugoku Electric Power Co Inc:The 発電システム
JP2011210634A (ja) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186111A (ja) * 2018-04-13 2019-10-24 東京瓦斯株式会社 燃料電池システム

Also Published As

Publication number Publication date
WO2013171980A1 (ja) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5870320B2 (ja) 燃料電池システム
JP6488416B2 (ja) 燃料電池システム
JP5209153B1 (ja) コージェネレーションシステム
WO2012091096A1 (ja) 燃料電池システム
US9527055B2 (en) Hydrogen generator and fuel cell system
JP2015146225A (ja) 固体酸化物形燃料電池システム
JP2013239404A (ja) 固体酸化物形燃料電池システム
JP4036607B2 (ja) 燃料ガス改質装置及び燃料電池システム
JP2013101822A (ja) 燃料電池システム
US20190185767A1 (en) Fuel Processing System and Method for Sulfur Bearing Fuels
JP4653138B2 (ja) 燃料電池システム
JP2012104321A (ja) 燃料電池発電システム
EP3073559B1 (en) Fuel-cell system
JP2014107220A (ja) 固体酸化物形燃料電池システム
WO2014083794A1 (ja) 燃料電池システム
JP2014107186A (ja) 固体酸化物形燃料電池システム
JP5544453B1 (ja) 水素生成装置及び燃料電池システム
JP2018113260A (ja) 燃料電池システム
JP2012138265A (ja) 燃料電池システム及び脱硫装置
JP2014070013A (ja) 水素生成装置及び燃料電池システム
JP2014086337A (ja) 固体酸化物形燃料電池システム
JP2020196641A (ja) 燃料改質器および燃料改質方法
JP2005330139A (ja) 水素生成装置および燃料電池発電システム
JP2016009593A (ja) 燃料電池発電装置
JP2008171782A (ja) 燃料電池用灯油の供給方法、燃料電池システムを利用した発電方法、および、発電システム