JP2015143806A - 帯電装置及び画像形成装置 - Google Patents

帯電装置及び画像形成装置 Download PDF

Info

Publication number
JP2015143806A
JP2015143806A JP2014025531A JP2014025531A JP2015143806A JP 2015143806 A JP2015143806 A JP 2015143806A JP 2014025531 A JP2014025531 A JP 2014025531A JP 2014025531 A JP2014025531 A JP 2014025531A JP 2015143806 A JP2015143806 A JP 2015143806A
Authority
JP
Japan
Prior art keywords
charging
grid
potential
latent image
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014025531A
Other languages
English (en)
Other versions
JP6315311B2 (ja
JP2015143806A5 (ja
Inventor
佐藤 淳
Atsushi Sato
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014025531A priority Critical patent/JP6315311B2/ja
Publication of JP2015143806A publication Critical patent/JP2015143806A/ja
Publication of JP2015143806A5 publication Critical patent/JP2015143806A5/ja
Application granted granted Critical
Publication of JP6315311B2 publication Critical patent/JP6315311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0266Arrangements for controlling the amount of charge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5033Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor
    • G03G15/5037Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor the characteristics being an electrical parameter, e.g. voltage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/02Arrangements for laying down a uniform charge
    • G03G2215/026Arrangements for laying down a uniform charge by coronas
    • G03G2215/027Arrangements for laying down a uniform charge by coronas using wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】余計なオゾン発生やエネルギー消費を回避しつつ、感光体1を所望の帯電電位に帯電させ、且つ環境にかかわらず安定した画像濃度を得ることができる画像形成装置を提供する。
【解決手段】帯電装置19によって帯電せしめられた感光体1の表面電位を検知する図示しない表面電位検知センサーを設け、これによる表面電位の検知結果と、グリッド電源17によるグリッドバイアス出力の定電圧制御における出力設定値であるグリッド設定値との差分に基づいて、コロナ電源17による帯電バイアスの定電流制御における出力設定値である帯電電流設定値を決定する帯電電流決定処理を所定のタイミングで実施するように、メイン制御部100を構成した。
【選択図】図3

Description

本発明は、グリッドバイアスが印加されるグリッド電極を介して、帯電バイアスが印加される放電電極と潜像担持体との間で放電を発生させることで、潜像担持体の表面を帯電させる帯電装置に関するものである。また、かかる帯電装置によって被帯電体たる潜像担持体を帯電させる複写機、ファクシミリ、プリンタ等の画像形成装置に関するものである。
従来、この種の画像形成装置として、特許文献1に記載のものが知られている。この画像形成装置は、帯電装置によって潜像担持体たる感光体の表面を一様に帯電させた後、走査光学系によって帯電後の感光体の表面に静電潜像を光書き込みする。そして、その静電潜像をトナーによって現像して得たトナー像を感光体から記録シートに転写する。帯電装置は、放電電極たるコロナ電極や、コロナ電極と感光体との間に配設されるグリッド電極などを有している。更には、コロナ電極に印加するための帯電バイアスを出力する帯電電源たるコロナ電源や、網目状のグリッド電極に印加するためのグリッドバイスを定電圧制御で出力するグリッド電源なども有している。そして、グリッド電極を介してコロナ電極と感光体との間で放電を発生させることで、感光体の表面を一様に帯電させる。この帯電処理により、感光体の表面を長期間に渡って所望の電位に帯電させるために、制御部は、次のようにしてグリッドバイアスの定電圧制御における出力設定値を決定する決定処理を電源ON後の初期動作時に実行する。即ち、コロナ電極から感光体に流れ込む電流の量を検知し、その結果に基づいて、感光体を所定の電位に帯電させ得るグリッドバイアスの定電圧制御における出力設定値を特定する。そして、以降の帯電でこの特定した出力設定値を用いる。
このようにしてグリッドバイアスの定電圧制御における出力設定値を決定するのは次に説明する理由による。即ち、感光体は、使用に伴って表面層を経時的に摩耗させていき、それに伴って帯電性を悪化させていく。このため、グリッドバイアスの定電圧制御における出力設定値を単に一定にしているだけの構成では、感光体の表面層の摩耗に伴って感光体の帯電電位を経時的に低下させていき、画像に影響を及ぼしてしまう。これに対し、特許文献1に記載の画像形成装置のように、前述した決定処理を電源ON時に実施する構成では、感光体の表面層の摩耗がある程度進行しても、感光体を所望の帯電電位で帯電させることができる。
一方、特許文献2において、次のような画像形成装置が提案されている。即ち、この画像形成装置は、特許文献1に記載の画像形成装置と同様に、グリッドバイアスをグリッド電源から定電圧制御で出力するとともに、コロナ電極に印加する帯電バイアスをコロナ電源から定電流制御で出力する。但し、特許文献1に記載の画像形成装置とは異なり、グリッドバイアスの定電圧制御における出力設定値については、長期間に渡って一定に維持する。その代わりに、帯電バイアスについては、感光体の累積回転数などといった感光体の表面層の厚みと比例関係にある物理量の測定結果が大きくなるほど、定電流制御における出力設定値を大きくしていく。
かかる構成によれば、特許文献1に記載の画像形成装置とは異なり、コロナ放電の際における余計なオゾン発生やエネルギー消費を回避しつつ、感光体を安定して所望の帯電電位に帯電させることができると考えられる。具体的には、感光体の表面層の摩耗がかなり進行してくると、コロナ電極に対して比較的多くの電流を供給しないと、グリッドバイアスの定電圧制御における出力設定値を制御しても、帯電電位を目標の値まで増加させることができなくなる。特許文献1に記載の画像形成装置では、感光体の表面層が寿命近くまで摩耗した状態でも感光体を目標の帯電電位まで帯電させるために、帯電バイアスの定電流制御における出力設定値を予め比較的大きな値に設定しておく必要がある。ところが、このような設定では、感光体の表面層が殆ど摩耗しておらず感光体が十分な帯電性を発揮する状態において、必要以上の帯電電流を感光体に流して、余計なオゾン発生やエネルギー消費を引き起こしてしまう。これに対し、特許文献2に記載の画像形成装置では、帯電バイアスの定電流制御における出力設定値を感光体の表面層の摩耗度合いに応じた適切な値に設定することが可能である。これにより、感光体の表面層の摩耗がそれほど進行していないときに、必要以上の帯電電流を流さないことで、余計なオゾン発生やエネルギー消費を回避しつつ、感光体を所望の帯電電位に帯電させることができるのである。
しかしながら、特許文献2に記載の画像形成装置では、低温低湿の環境下において画像濃度不足を発生させ易いという問題があった。具体的には、環境が低温低湿化すると、感光体の感光層の電気抵抗が上昇して、感光体に対する光書き込みによって得られる静電潜像の電位を常温常湿の環境下に比べて高くする。これにより、現像ローラなどの現像剤担持体と静電潜像の電位との差である現像ポテンシャルを低下させて画像濃度不足を引き起こしてしまうのである。
本発明は、以上の背景に鑑みてなされたものであり、その目的とするところは、次のよな帯電装置や画像形成装置を提供することである。即ち、余計なオゾン発生やエネルギー消費を回避しつつ、静電担持体を所望の帯電電位に帯電させ、且つ環境にかかわらず安定した画像濃度を得ることができる帯電装置等である。
上記目的を達成するために、本発明は、放電を発生させるための放電電極と、前記放電電極と画像形成装置の潜像担持体との間に配設されるグリッド電極と、前記潜像担持体を帯電させるために前記放電電極に印加される帯電バイアスを定電流制御で出力する帯電電源と、前記グリッド電極に印加するためのグリッドバイアスを定電圧制御で出力するグリッド電源と、前記グリッドバイアスの定電圧制御における出力設定値であるグリッド設定値を決定するグリッド決定処理を所定のタイミングで実施する制御手段とを有し、前記放電電極と前記潜像担持体との間で放電を発生させて前記潜像担持体の表面を帯電させる帯電装置において、前記放電によって帯電せしめられた前記潜像担持体の表面電位を検知する表面電位検知手段を設け、前記表面電位検知手段による検知結果と前記グリッド設定値との差分に基づいて、前記帯電バイアスの定電流制御における出力設定値である帯電電流設定値を決定する帯電電流決定処理を所定のタイミングで実施するように、前記制御手段を構成したことを特徴とするものである。
本発明によれば、余計なオゾン発生やエネルギー消費を回避しつつ、静電担持体を所望の帯電電位に帯電させ、且つ環境にかかわらず安定した画像濃度を得ることができるという優れた効果がある。
実施形態に係るプリンタを示す概略構成図。 同プリンタにおける電気回路の一部を示すブロック図。 同プリンタの帯電装置を感光体などとともに示す構成図。 帯電電流設定値ACSを−800[μA]に設定した状態でグリッド決定処理を実施する構成における帯電電位Vやグリッド設定値VGSの経時変化の一例を示すグラフ。 帯電電流設定値ACSを−1200[μA]に設定した状態でグリッド決定処理を実施する構成における帯電電位Vやグリッド設定値VGSの経時変化の一例を示すグラフ。 あるタイミング(累積プリント枚数)における環境と各種電位との関係を示すグラフ。 同プリンタのメイン制御部によって定期的に実施される定期ルーチン処理の処理フローを示すフローチャート。 同プリンタの操作表示部を示す拡大平面図。 同プリンタにおける帯電電位Vやグリッド設定値VGSの経時変化の一例を示すグラフ。 実施例に係るプリンタのメイン制御部によって定期的に実施される定期ルーチン処理の処理フローを示すフローチャート。
以下、本発明を適用した画像形成装置として、電子写真方式によって画像を形成するプリンタの一実施形態について説明する。なお、以下に説明する実施形態に係るプリンタは、あくまでも本発明を適用した画像形成装置の一例であり、本発明の実施態様は実施形態に係るプリンタの対応に限定されるものではない。
図1は、実施形態に係るプリンタを示す概略構成図である。実施形態に係るプリンタは、ドラム状の感光体1、帯電装置のチャージャー部2、表面電位センサー3、現像装置4、転写装置、除電クリーニング装置6、レジストローラ対21、光書込装置8などを備えている。また、給紙カセット20、搬送ベルトユニット24、定着装置31、排紙路32、排紙ローラ対33、排紙トレイ34なども備えている。なお、前述の転写装置は、転写ローラ27や搬送ベルトユニット24などから構成されるものである。
ドラム状の感光体1は、ドラム基体の表面上に有機感光層を有するものであり、図示しない駆動手段によって図中時計回り方向に回転駆動される。この感光体1の周囲には、帯電装置のチャージャー部2、表面電位センサー3、現像装置4、転写ローラ27、除電クリーニング装置6などが配設されている。
帯電装置のチャージャー部2は、感光体1と所定の間隙を介して対向するように配設されており、回転駆動される感光体1の表面を一様に帯電させる。本プリンタでは、チャージャー部2として、スコロトロン方式で感光体1を帯電させるものを用いている。
帯電装置のチャージャー部2によって一様帯電せしめられた感光体1の表面に対しては、光書込装置8から発せられる書込光Lによって光走査がなされる。感光体1の全域のうち、光走査によって書込光Lが照射された領域は、電位を減衰させて静電潜像を担持する。
周知の技術によって感光体1の表面電位を検知する表面電位検知手段としての表面電位センサー3は、感光体1の周面における全域のうち、チャージャー部2との対向位置と光走査位置とを順次通過した後の領域の表面電位を検知する。光書込装置8による光走査を行わない状態で感光体1の表面をチャージャー部2によって帯電させることで、感光体1の地肌部の帯電電位Vを表面電位センサー3に検知させることができる。また、チャージャー部2による帯電処理と、光書込装置8によるベタ潜像の書き込み処理とを実施することで、感光体1における潜像電位Vを表面電位センサー3に検知させることができる。表面電位センサー3による電位の検知結果は、図示しない制御部に出力される。
回転駆動に伴って表面電位センサー3との対向位置を通過した感光体1表面は、現像装置4との対向位置に進入する。現像装置4は、周知の一成分現像装置あるいは二成分現像装置からなり、自らと感光体1との対向領域において、感光体1の静電潜像に対してトナーを付着させることで、静電潜像を現像してトナー像を得る。このようにして現像されたトナー像は、感光体1の回転駆動に伴って、感光体1と、後述する搬送ベルト25との当接によって形成される転写ニップに進入する。
感光体1の下方には、無端状の搬送ベルト25、従動ローラ26、転写ローラ27、駆動ローラ28などを有する搬送ベルトユニット24が配設されている。搬送ベルトユニット24は、従動ローラ26と駆動ローラ28とによって張架している搬送ベルト25を、駆動ローラ28の回転駆動によって図中反時計回り方向に無端移動させる。ゴムベルトからなる搬送ベルト25のループ内には、図示しない転写バイアス電源によって転写バイアスを印加される転写ローラ27が配設されている。搬送ベルトユニット24は、搬送ベルト25の周方向における全域のうち、従動ローラ26と転写ローラ27との間の展張箇所を感光体1に当接させて転写ニップを形成している。
プリンタ本体には、給紙カセット20が装着されている。この給紙カセット20は、記録紙などの記録シートPを複数枚重ねたシート束の状態で収容している。給紙カセット20に収容されているシート束における一番上の記録シートPには、給紙ローラ20aが当接している。給紙ローラ20aは、所定のタイミングで回転駆動することで、記録シートPを給紙カセット20内から給紙路に向けて送り出す。
給紙路の末端付近には、一対のレジストローラを互いに当接させながら回転させるレジストローラ対21が配設されている。レジストローラ対21は、記録シートPが自らのレジストニップに突き当たると、レジストローラの回転を一時的に停止させる。そして、記録シートPを転写部で感光体1上のトナー像に重ね合わせるタイミングでレジストローラの回転駆動を再開して、記録シートPを転写ニップに向けて送り出す。
レジストローラ対21から送り出された記録シートPは、ニップ前上ガイド板22とニップ前下ガイド板23との間に進入して転写ニップに向けて案内されながら、転写ニップ内に送り込まれる。転写ニップ内では、転写ニップに送り込まれてきた記録シートPと感光体1の静電潜像との間に、トナーを感光体1側から記録シートP側に静電移動させる転写電界が形成される。転写ニップに送り込まれてきた記録シートPの表面には、転写電界の作用により、感光体1上のトナー像が転写される。
転写ニップを通り過ぎた記録シートPは、ニップ出口ガイド板29、定着前ガイド板30の上を順次通過した後、定着装置31内に進入する。定着装置31は、ハロゲンヒーター等の発熱源を内包する定着ローラ31aと、これに押圧される加圧ローラ31bとの当接によって定着ニップを形成している。定着装置31に送り込まれた記録シートPは、定着ニップ内で加熱及び加圧されることで、表面上のトナー像が定着せしめられる。
転写ニップを通り過ぎた感光体1表面は、除電クリーニング装置6との対向位置に進入する。除電クリーニング装置6は、図示しない除電ランプや、図示しないクリーニング部材を具備している。そして、感光体1の表面に付着している転写残トナーをクリーニングブレードや回転駆動するクリーニングブラシローラによって感光体1の表面から掻き取る。そして、感光体1の表面に対して除電ランプによる除電光を照射することで、感光体1の表面を除電する。除電された感光体1の表面は、帯電装置2によって再び一様帯電せしめられて次の潜像形成に備える。
定着装置31を通過した記録シートPは、排紙路32と、排紙ローラ対33の排紙ニップとを経由して機外へと排出される。そして、機外に設けられた排紙トレイ34上にスタックされる。
図2は、実施形態に係るプリンタにおける電気回路の一部を示すブロック図である。同図において、メイン制御部100は、プリンタ内の各機器の駆動制御を司るものであり、CPU(Central Processing Unit)、データ記憶手段たるRAM(Random Access Memory)、データ記憶手段たるROM(Read Only Memory)などを有している。そして、ROMに記憶しているプログラムに基づいて、各種の機器の駆動を制御したり、所定の演算処理を実行したりする。
メイン制御部100には、表面電位センサー3、プロセスモータ10、現像バイアス電源11、転写バイアス電源12、レジストクラッチ13などが接続されている。また、操作表示部15、帯電電源たるコロナ電源16、グリッド電源17、光書込制御部18、画像情報受信部19なども接続されている。
画像情報受信部19は、ユーザーによって操作される図示しないパーソナルコンピューターやスキャナから送られてくる画像情報を受信して、メイン制御部100や光書込制御部18に送るものである。光書込制御部18は、画像情報受信部19から送られてくる画像情報に基づいて光書込装置8の駆動を制御することで、感光体1の表面を光走査する。感光体1に対して書込光Lによる光走査を行う光書込装置8としては、周知のレーザー書込光学系や、LEDアレイなどを例示することができる。
プロセスモータ10は、感光体1、現像装置(4)、各種ローラなどの駆動源になっているモータである。プロセスモータ10の回転駆動力は、レジストクラッチ13を介して図示しないレジストローラ対(7)に伝えられる。メイン制御部100が任意のタイミングでレジストクラッチ13をオンにすることにより、プロセスモータ10の回転駆動力をレジストローラ対(7)に繋ぐ。
現像装置(4)は、図示しない現像ローラの表面に担持したトナーを、感光体1の静電潜像に付着させるものである。感光体1の表面における全域のうち、静電潜像だけにトナーを選択的に付着させるために、現像ローラには、トナーと同極性であり、その絶対値が潜像電位Vの絶対値よりも大きく且つ感光体1の地肌部の帯電電位Vよりも小さい現像バイアスが印加される。例えば、感光体地肌部電位=−800[V]、静電潜像電位=−130[V]という条件にて、−550[V]の現像バイアスが現像ローラに印加される。現像バイアス電源11は、かかる現像バイアスを出力するものである。メイン制御部100は、現像バイアス電源11に対して出力命令信号を送ることで、任意のタイミングで現像バイアス電源11から現像バイアスを出力させる。
また、メイン制御部100は、任意のタイミングで転写バイアス電源12に対して出力命令信号を送ることで、転写バイアス電源12から転写バイアスを出力させる。転写バイアスは、転写ローラ27や搬送ベルトユニット等から構成される転写装置と、感光体1とが対向する転写部にて、記録シートPと感光体1の静電潜像との間に転写電界を形成するための電圧である。
操作表示部15は、図示しないタッチパネルやテンキーなどを具備しており、タッチパネルに画像を表示したり、タッチパネルやテンキーなどによって入力された情報をメイン制御部100に送ったりするものである。
表面電位センサー3によって感光体1の表面電位を検知した結果は、デジタル信号としてメイン制御部100に送られる。
図3は、本プリンタの帯電装置19を感光体1などとともに示す構成図である。帯電装置19は、チャージャー部2、コロナ電源16、グリッド電源17等から構成される。また、チャージャー部2は、放電電極たるコロナワイヤー2a、網目状のグリッド電極2b、ケース2cなどを具備している。ケース2c内で張架されているコロナワイヤー2aは、自らと感光体1との間に放電を発生させるためのものである。網目状のグリッド電極2bは、ケース2cの下面に形成された開口に張られており、コロナワイヤー2aと感光体1との間に位置している。
コロナ電源16やグリッド電源17は、直流バイアスを出力する駆動用電源37に接続されている。コロナ電源16は、駆動用電源37から出力される直流バイアスをそれとは電流値の異なる直流バイアスに変換して帯電バイアスVとして定電流制御で出力する。コロナ電源16における定電流制御の出力設定値である帯電電流設定値ACSは、メイン制御部100からの制御信号によって任意の値に設定される。コロナ電源16から定電流制御で出力された帯電バイアスは、コロナワイヤー2aに印加される。
グリッド電源17は、駆動用電源37から出力される直流バイアスをそれとは電圧値の異なる直流バイアスに変換してグリッドバイアスVとして定電圧制御で出力する。グリッド電源17における定電圧制御の出力設定値であるグリッド設定値VGSは、メイン制御部100からの制御信号によって任意の値に設定される。グリッド電源17から定電圧制御で出力されたグリッドバイアスVは、グリッド電極2bに印加される。
グリッド電極2bにグリッドバイアスVが印加された状態で、コロナワイヤー2aに帯電バイアスVが印加されると、コロナワイヤー2aと感光体1との間でコロナ放電が発生して感光体1の表面を負極性に帯電させる。この帯電電位Vは、グリッド電極2bに印加されるグリッドバイアスVに近い値になる。感光体1は抵抗38を介してアースに接続されている。
感光体1の表面層1aは、クリーニングブレードなどとの摺擦に伴って経時的に摩耗していくため、厚みが徐々に低下していく。感光体1の静電容量Cは、「C=ευ×ε×S/d」という式で表される。なお、ευは真空の誘導率である。また、εは感光体の誘電率である。また、dは表面層1aの厚みである。また、Sは感光体1の周面の面積である。
帯電した状態の感光体1の電荷量Qは、「Q=C×V=i×t」という式で表される。なお、Vは感光体1の地肌部の帯電電位である。また、iはチャージャー部2から感光体1に流れる電流である。また、tは、帯電時間であり、これは感光体1表面がチャージャー部b2との対向位置を通過する際の通過時間と同じ値である。前述の式から、「V=i×t/C=(i×t×d)/(ευ×ε×S)」という式が導き出される。この式において、真空の誘電率ευ、感光体1の誘電率ε、面積S、帯電時間tはそれぞれ一定であるから、係数をk(定数)と定義すれば、「V=k×i×d」という式が成立する。この式からわかるように、帯電電位Vは、電流iと厚みdに比例する。よって、帯電バイアスVの定電流制御における帯電電流設定値ACSやグリッドバイアスVの定電圧制御におけるグリッド設定値VGSを一定にした条件では、表面層1aの厚みdが低下すると、それに応じて帯電電位Vが低くなってしまう。
そこで、特許文献1に記載の画像形成装置においては、次のような処理を実施することで、厚みdの低下に起因する帯電電位Vの低下を抑えるようになっている。即ち、この画像形成装置は、チャージャー部から感光体に流れる電流を検知する電流計を有している。電流計については、例えば図3における抵抗38の位置に配設すればよい。電流計によって検知される電流が減少した場合、それは帯電電位Vが低下していることを意味する。そこで、電流の減少を検知した場合には、その減少量に応じて、グリッド設定値VGSを大きくすることで、グリッドバイアスVをより大きくする。帯電電位Vは、グリッド電極に印加されるグリッドバイアスVに近い値になることから、グリッド設定値VGSをより大きくすることで、厚みdの減少に起因する帯電電位Vの低下を抑えることができる。以下、必要に応じてグリッド設定値VGSを決定する処理を、グリッド決定処理という。
図4は、帯電電流設定値ACSを−800[μA]に設定した状態でグリッド決定処理を実施する構成における帯電電位Vやグリッド設定値VGSの経時変化の一例を示すグラフである。このグラフの横軸は、プリント枚数の累積値を示している。プリント枚数が増加するにつれて、感光体の表面層は摩耗していくので、厚みdは低下していく。そして、グリッド決定処理を実施しない場合には、プリント枚数が増加するにつれて帯電電位Vが低下していくことになるが、グリッド決定処理を実施すれば、図示のように帯電電位Vの低下を抑えることができる。厚みdの低下に伴う帯電性能の低下を、グリッドバイアスの増加で補うことができるからである。しかしながら、グリッド決定処理を実施していても、図示のように、プリント枚数が7万枚を超えると、帯電電位Vが徐々に低下してしまう。この例では、10万枚のプリントを行った時点で、感光体を寿命として交換することを前提にしている。このため、10万枚のプリントまでは、帯電電位Vを目標の−800[V]に維持したい。しかし、プリント枚数が7万枚を超えると、グリッド設定値VGSを上限の−1400[V]まで増加させても、目標の帯電電位Vが得られなくなる。
図5は、帯電電流設定値ACSを−1200[μA]に設定した状態でグリッド決定処理を実施する構成における帯電電位Vやグリッド設定値VGSの経時変化の一例を示すグラフである。帯電電流設定値ACSを−1200[μA]まで増加させた場合には、図示のように、寿命の10万枚のプリントまで、帯電電位Vを目標の−800[V]に維持することができる。よって、従来の画像形成装置においては、寿命到達時の感光体でも目標の帯電電位Vが得られるように、帯電電流設定値ACSを比較的大きな値に設定していた。
しかしながら、このような設定では、例えば7万枚のプリントまでは−800[μA]の帯電電流でも目標の帯電電位Vが得られるにもかかわらず、−1200[μA]の帯電電流を流すことから、コロナ放電に伴うオゾンの発生量を無駄に多くしてしまう。オゾン臭に対する不快感や、健康上の問題を防止するために、オゾンを除去するフィルタや排気ファンが必要になって装置をコスト高にしたり、無駄なエネルギー消費によってランニングコストを増加させたりする。
そこで、特許文献2に記載の画像形成装置では、感光体の累積回転数などといった感光体の劣化度合いと相関関係にある物理量が増加するのに伴って、帯電電流設定値ACSを大きくすることで、無駄なエネルギー消費やオゾンの発生を抑えるようになっている。
しかしながら、かかる構成では、サービスマンが感光体を交換する毎に、メイン制御部に記憶されている物理量(例えば感光体の累積回転数)をゼロにリセットしなければならない。交換毎にリセットする作業を強いられることから、メンテナンス性が非常に悪くなってしまう。更には、サービスマンがリセットする作業を忘れた場合には、帯電バイアスを正常に制御することができなくなる。
感光体の表面層の厚みを検知するセンサーを設け、その検知結果に基づいて帯電電流設定値ACSを調整する構成を採用すれば、前述のような不具合の発生を回避することが可能である。しかし、表面層の厚みを接触式で検知するセンサーでは、接触による傷や摩耗の発生が避けられないことから、高速で回転する感光体の表面層の厚みを長期間に渡って安定して検知することができない。このため、センサーについては、高価な非接触式のものを設ける必要があり、実機への搭載は現実的には困難である。
また、特許文献2に記載の画像形成装置では、低温低湿の環境下において画像濃度不足や地汚れを発生させ易いという問題もある。
図6は、あるタイミング(累積プリント枚数)における環境と各種電位との関係を示すグラフである。同図に示される例では、そのタイミングにおいて、環境が常温常湿としてのMM(23℃、50%RH)であり、帯電電流設定値ACSが−800[μA]に設定されている場合に、目標の−800[V]の帯電電位Vが得られている。このとき、現像ローラに印加される現像バイアスVと、感光体の潜像電位Vとの電位差である現像ポテンシャルは、適切な値になっていることから、静電潜像が適切な濃度に現像される。また、現像バイアスVと、帯電電位Vとの電位差である地肌ポテンシャルも適切な値になっていることから、地汚れの発生が適切に抑えられる。地汚れは、感光体の地肌部にトナーを付着させてしまう現象である。
電子写真方式の画像形成装置に用いられる感光体は、一般的には、導電性支持体上に直接または中間層を介して電荷発生層を形成し、その上に電荷輸送層を設けたいわゆる機能分離型積層感光体である。機械的もしくは化学的耐久性向上のため必要に応じて感光体最表面に表面保護層を形成する。このような感光体において、帯電後に光書き込みされると、光は電荷輸送層を透過し、電荷発生層中の電荷発生材料に吸収される。電荷発生材料はこの光を吸収して電荷担体を発生する。発生した電荷担体は電荷輸送層に注入され帯電によって形成された電界に沿って電荷輸送層を移動して感光体の表面電荷を中和する。これにより、感光体の表面に静電潜像が形成される。低温低湿の環境下には、常温常湿に比べて、感光体の潜像電位Vが上昇する。その原因としては、絶対湿度の影響により、感光層の抵抗が高くなり、感光層の中での電荷移動、電荷担体の発生、感光体露光部においての表面での電荷注入による中和が通常環境時に比べて行われ難くなる、などが考えられる。
同図における点線のグラフで示されるように、環境にかかわらず、現像バイアスVの出力電圧値を一定に制御したとする。すると、環境がLL(10℃、15%RH)であり、帯電電流設定値ACSが−800[μA]に設定されている場合には、MMの場合に比べて、潜像電位Vが上昇する結果、現像ポテンシャルが低下する。これにより、画像濃度不足が発生してしまうのである。
一方、従来より、環境にかかわらず安定した画像濃度が得られるように、次のような処理を定期的に行う構成が画像形成装置において一般的に採用されている。即ち、画像濃度検知用のパターン画像を形成し、そのトナー付着量(画像濃度)を検知した結果に基づいて、現像バイアスVを調整して、現像ポテンシャルを適切に維持する処理である。この処理を行う場合には、図中実線の現像バイアスVのグラフ(帯電電流=−800μA)で示されるように、LLの環境下で潜像電位Vの上昇に伴って、現像バイアスVをMMの場合よりも大きくする。これにより、現像ポテンシャルを適切に維持することが可能である。しかしながら、現像バイアスVを大きくする結果、地肌ポテンシャルを小さくしてしまうことから、地汚れを発生させ易くなってしまう。
よって、LLの環境下では、感光体を−800[V]よりも大きな帯電電位Vで帯電させる必要がある。より詳しくは、低温低湿化による潜像電位Vの上昇分と同じ分だけ、帯電電位Vを−800[V]よりも大きく(マイナス側に)する必要がある。そして、そのためには、図示のように、帯電電流設定値ACSをMMの場合(図示の例では−800μA)よりも大きく(図示の例では−1200μA)しなければならない。しかし、特許文献2に記載の画像形成装置のように、感光体の表面層の摩耗量と相関のある物理量に基づいて帯電電流設定値ACSを調整するものでは、帯電電流設定値ACSを環境に応じて適切に設定することができない。そして、MMの環境に合わせて帯電電流設定値ACSを設計すると、前述のようにLLの環境下では、画像濃度不足や地汚れを発生させてしまう。また、LLの環境に合わせて帯電電流設定値ACSを設計すると、MMの環境下では、帯電電位Vを大きくし過ぎる結果、現像ポテンシャルを大きくし過ぎてキャリア付着を引き起こしてしまう。
適切な帯電電位Vが得られなくなった場合に、エラー表示を行って装置を強制停止させることで、地汚れ、画像濃度不足、キャリア付着などを回避することはできるが、装置を使用することができないので、ユーザーに大きな不便感を与えてしまう。
次に、実施形態に係るプリンタの特徴的な構成について説明する。
感光体1の表面層1aの厚みdが低下していくと、それに伴って感光体1の帯電性能が低下して、帯電電位Vが目標値よりも低下する。このとき、厚みdの低下がそれほど進行していなければ、帯電電流設定値ACSを比較的大きくすることなく、グリッド設定値VGSを大きくだけで、帯電電位Vを目標値まで増加させることができる。また、帯電電位Vの低下の原因が環境の低温低湿化である場合であっても、厚みdの低下がそれほど進行していなければ、帯電電流設定値ACSを大きくすることなく、グリッド設定値VGSを大きくするだけで、帯電電位Vを目標値まで増加させることができる。グリッド設定値VGSを大きくする量については、帯電電位Vの目標値と実測値との差分に応じた量に設定すればよい。
そこで、上述したメイン制御部100は、グリッド決定処理にて、帯電電位Vの目標値と、表面電位センサー3による検知結果との差分に基づいて、グリッド設定値VGSを決定する処理を実施するようになっている。
一方、厚みdの低下がかなり進行し、その低下や環境の低温低湿化によって目標の帯電電位Vが得られなくなった場合には、グリッド設定値VGSを大きくしただけでは、目標の帯電電位Vを得ることができない。グリッド設定値VGSをより大きな値に決定したにもかかわらず、帯電電位Vが目標を大きく下回る場合には、厚みdの低下がかなり進行していることに起因して、帯電電流設定値ACSの増加が必要になっているのである。
そこで、上述したメイン制御部100は、グリッド決定処理の他に、帯電電位Vの実測値(検知結果)と、グリッド設定値VGSとの差分に基づいて、帯電電流設定値ACSを決定する帯電電流決定処理を実施するようになっている。
図7は、メイン制御部100によって定期的に実施される定期ルーチン処理の処理フローを示すフローチャートである。この定期ルーチン処理は、所定時間経過毎や所定枚数プリント毎などの定期的なタイミングで実施される。そのタイミングが到来した際に、複数の記録シートに対して画像を連続的に出力する連続プリントジョブを実施中である場合には、連続プリントジョブが一時中断されて、定期ルーチン処理が実施される。
メイン制御部100は、定期ルーチン処理を開始すると、まず、メインモータの駆動を開始した後(ステップ1:以下、ステップをSと記す)、所定時間待機する(S2)。そして、感光体1を回転駆動させた状態で、チャージャー部2のグリッド電極2bにグリッド電圧Vを印加しながら、コロナワイヤー2aに帯電バイアスVを印加して感光体1の表面を一様に帯電させる(S3)。このとき、グリッドバイアスVの定電圧制御値であるグリッド設定値VGSや、帯電バイアスVの定電流制御値である帯電電流設定値ACSについては、それぞれ、前回の定期ルーチン処理で決定した値を採用する。
感光体1の帯電処理を開始した後、帯電した感光体1表面が表面電位センサー3との対向位置を進入するタイミングが到来すると、メイン制御部100は、表面電位センサー3による帯電電位Vの検知結果を取得する(S4)。本プリンタにおいて、帯電電位Vの目標値である帯電目標値VDtargetは、基本的には−800[V]であるが、環境変動などによっては、−800[V]よりも大きくなったり、小さくなったりする場合もある。メイン制御部100は、とりあえず、帯電目標値VDtargetを−800[V]にした条件を想定して、帯電電位Vの取得結果について、−790〜−810[V]の範囲内にあるか否かを判定する(S5)。帯電電位Vが−790〜−810[V]の範囲内にない場合には、帯電電位Vの過多や不足による種々の不具合を引き起こすおそれがある。そこで、メイン制御部100は、帯電電位Vが前述の範囲内にない場合には(S5でN)、S5にて範囲内にないと判定した回数(定期ルーチン処理開始時からの回数)であるNG回数について1回であるか否かを判定する(S6)。そして、1回である場合には(S6でY)、グリッド設定値VGSを「−(V+800)[V]」の解を加算によって更新した後に(S7)、制御フローをS4にループさせて、更新後のグリッド設定値VGSの条件で帯電電位Vを検知し直す。感光体1における表面層1aの厚みdの低下がそれほど進行していなければ、このとき、帯電電位Vは−790〜−810[V]の範囲内に入ることになるが、厚みdの低下がかなり進行している場合には、範囲内に入らないこともある。そして、後者の場合であっても、帯電電流設定値ACSをより大きくすることで、帯電電位Vを前述の範囲内に入れることが可能になることもある。更には、環境の低温低湿化によって潜像電位Vが目標の−130[V]よりも上昇している場合には、帯電電位Vを−810[V]よりも大きくしなければならないこともある。そこで、メイン制御部100は、NG回数が1回でない場合には(S6でN)、グリッド設定値VGSを再び補正することなく、処理フローをS8以降に進める。帯電電位Vが前述の範囲内に入った場合にも、処理フローをS8以降に進める。
S8以降のフローでは、まず、感光体1に対する光書き込みによって感光体1の表面にベタ潜像を形成する(S8)。このベタ潜像については、表面電位センサー3の検知対象領域よりも大きな面積で、感光体1の表面の全域のうち、表面電位センサー3との対向位置を通過する領域に形成する。そして、ベタ潜像が表面電位センサー3との対向位置に進入したタイミングで、表面電位センサー3による検知結果を取得して、取得結果を潜像電位Vとする(S9)。次いで、電位補正値αを、「α=V+130[V]」という数式によって求める(S10)。この電位補正値αは、潜像電位Vの目標値に対する実際の潜像電位Vのずれ量の分だけ、帯電目標値VDtargetや現像バイアス目標値VBtargetを補正するためのものである。その補正により、環境変動に起因して潜像電位Vが−130[V]からずれたとしても、地肌ポテンシャルや現像ポテンシャルを何れも目標値にすることが可能になる。そこで、メイン制御部100は、現像バイアスVの定電圧制御における出力設定値である現像バイアス設定値VBtargetを「VBtarget=−550+α」という数式の解と同じ値に補正する。また、帯電目標値VDtargetを「VDtarget=−800+α」という数式の解と同じ値に補正する(S11)。
その後、メイン制御部100は、現状のグリッド設定値VGS及び帯電電流設定値ACSの条件で、帯電目標値VDtargetが得られるか否かを確認する。具体的には、まず、現状のグリッド設定値VGS及び帯電電流設定値ACSの条件で感光体1を帯電させる。次に、その帯電箇所が表面電位センサー3との対向位置に進入するタイミングで表面電位センサー3による検知結果を取得して帯電電位Vとする(S12)。そして、帯電電位Vについて、帯電目標値VDtarget−10〜帯電目標値VDtarget+10[V]の範囲内にあるか否かを判定する(S13)。次いで、範囲内にない場合には(S13でN)、前述の範囲内にないと判定した回数であるNG回数について5回であるか否かを判定する(S14)。そして、5回でない場合には(S14でN)、「−(V+800−α)[V]の加算によってグリッド設定値VGSを補正した後(S15)、補正後のグリッド設定値VGSの条件で感光体1を帯電させてから、制御フローをS12にループさせる。これにより、帯電電位Vの検知や必要に応じたグリッド設定値VGSの補正が再び行われる。
グリッド設定値VGSを繰り返し補正しているにもかかわらず、帯電電位Vを帯電目標値VDtarget−10から帯電目標値VDtarget+10[V]までの範囲内にすることができなかったとする。この場合には、グリッド設定値VGSの補正だけでは、帯電目標値VDtargetを実現できなかったことになる。本プリンタにおいては、プリント枚数が10万枚に達した時点を感光体1の寿命到達の目安としている。そして、仮に、帯電電流設定値ACSを初期値の−800[μA]のまま感光体1の寿命到達まで変更しない場合には、図4に示される例と同様の電位経時変動をきたすとする。すると、図示のように、プリント枚数が7万枚に達したあたりから、グリッド設定値VGSが急激に上昇し始め、それに伴ってグリッド設定値VGSと帯電電位Vとの差分が大きくなっていくことになる。プリント枚数が8万枚あたりに達すると、その差分は200[V]以上になる。この時点で、感光体1はまだ寿命には到達していないが、グリッド設定値VGSを−1000[V]程度まで上昇させないと帯電目標値Vが得られなくなる。但し、その値は、上限値(−1400V)よりは低いので、まだグリッド設定値VGSを変更するだけで、帯電目標値Vを実現することが可能である。
このように、感光体寿命到来タイミングに近づくにつれて、グリッド設定値VGSの調整だけでは感光体を目標の帯電電位Vで帯電させることができなくなり、差分(|VGS|−|V|)としての帯電電流切替判断値が増加していく。このため、予めの実験により、帯電電流切替判断値(|V|−|V|)の閾値を予め調べておき、帯電電流切替判断値がその閾値に達した時点で、帯電電流設定値ACSを増加させれば、寿命の近くでも目標の帯電電位Vを得ることが可能になる。
そこで、メイン制御部100は、前記NG回数が4回に増加するまでは、必要に応じてグリッド設定値VGSの補正を繰り返すことで、帯電電位Vを帯電目標値VDtargetに近づける。しかし、前記NG回数が5回まで増加すると(S14でY)、グリッド設定値VGSの変更だけでは対処できないので、それ以上のグリッド設定値VGSの補正を実施することなく、処理フローをS16以降に進める。また、帯電電位Vを前述の範囲内にすることができた場合にも(S13でY)、処理フローをS16以降に進める。
次に、メイン制御部100は、「|VGS|−|V|」の解である帯電電流切替判断値を算出する。例えば、グリッド設定値VGSが−1100[V]、帯電電位Vが−850[V]であった場合、帯電電流切替判断値を|1100|−|850|=250と算出する。厚みdの低下が寿命を超えて進行すると、グリッド設定値VGSを上限付近まで増加させているにもかかわらず、帯電電位Vが帯電目標値VDtargetを大きく下回って、帯電電流切替判断値(|VGS|−|V|)が非常に大きな値になる。そこで、メイン制御部100は、算出した帯電電流切替判断値について300以上であるか否かを判定する(S16)。そして、300以上である場合には(S16でY)、感光体1について寿命に達しているとみなして、ユーザーに対して寿命に達した旨を通知した後(S28)、エラー処理を行って装置を強制停止させてから(S29)、一連の処理フローを終了する。ユーザーへの通知については、例えば図8に示されるように、操作表示部15のディスプレイ15aに、「感光体の交換時期です」などといった寿命の到来を示す文字を表示させればよい。
帯電電流切替判断値が300以上でない場合(S16でN)、メイン制御部100は、帯電電流切替判断値に応じて帯電電流設定値ACSを決定する(S17)。具体的には、S17よりも前の工程において、必要に応じてグリッド設定値VGSを繰り返し補正していることから、感光体1における表面層1aの厚みdの低下がそれほど進行していなければ、帯電電位Vは帯電目標値VDtargetと同等の値になる。これに対し、厚みdの低下が進行していると、帯電電位Vが帯電目標値VDtargetよりも小さな値になって、グリッド設定値VGSと帯電電位Vとの差分である帯電電流切替判断値がかなり大きな値になる。この場合、厚みdの低下が寿命まで進行していなければ、帯電電流設定値ACSをより大きくすることで、帯電電位Vを帯電目標値VDtargetまで増加させることが可能である。そこで、メイン制御部100は、帯電電流設定値ACSを、次の表1に示されるデータテーブルに応じた値に決定する(S17)。
Figure 2015143806
表1に示されるように、帯電電流切替判断値が200未満である場合には、帯電電流設定値ACSが−800[μA]にセットされる。この場合、グリッド設定値VGSの補正だけで帯電目標値VDtargetを実現できたことになる。これに対し、帯電電流切替判断値が200以上である場合には帯電電流設定値ACSが−1200[μA]に決定される。この場合、グリッド設定値VGSの補正だけでは帯電目標値VDtargetを実現することができなかったことになる。なお、同図では図示を省略しているが、帯電電流設定値ACSを決定する帯電電流決定処理(S17)の実施により、帯電電流設定値ACSとしてそれまでの値とは異なった値を決定した場合には、グリッド設定値VGSを初期値の−900[V]に戻す。
S17の工程で決定された帯電電流設定値ACSの値が前回までの値と同じであったとする。即ち、帯電電流設定値ACSがS17の工程で変更されなかったとする。この場合、グリッド設定値VGSは上記S7や上記S15の工程によって既にその帯電電流設定値ACSに適した値に調整されている。これに対し、S17の工程で帯電電流設定値ACSが前回の値から変更された場合には、現状のグリッド設定値VGSは変更後の帯電電流設定値ACSに適した値になっているとは限らない。
そこで、メイン制御部100は、S17の工程を実施した後に、帯電電流設定値ACSについて、前回の値と同じであるか否かを判定する(S18)。そして、同じでない場合には(S18でN)、S19〜S22の工程を実施して、グリッド設定値VGSを調整する。具体的には、現状のグリッド設定値VGS及び帯電電流設定値ACSの条件で感光体1を帯電させる。そして、その帯電箇所が表面電位センサー3との対向位置に進入するタイミングで表面電位センサー3による検知結果を取得して帯電電位Vとする(S19)。次いで、帯電電位Vについて、帯電目標値VDtarget−10から帯電目標値VDtarget+10[V]までの範囲内にあるか否かを判定する(S20)。そして、範囲内にない場合には(S20でN)、次に、NG回数(帯電電流設定値ACS決定後の累積NG回数)について、5回であるか否かを判定する(S21)。このとき、5回でない場合には(S21でN)、グリッド設定値VGSを「−V+800−α)[V]の加算によって補正する(S22)。その後、処理フローをS19にループさせて、補正後のグリッド設定値VGSの条件で感光体1を再び帯電させたり、必要に応じてグリッド設定値VGSを更に補正したりする。これに対し、NG回数が5回である場合には(S21でY)、エラー処理を実施して装置を強制停止させた後(S28)、一連の処理フローを終了させる。
なお、帯電電流設定値ACSを引き上げたときに、厚みdの低下の進行度合いが寿命までにまだ余裕がある場合には、初期値のグリッド設定値VGSでも帯電電位Vを帯電目標値VDtargetにすることができる。その後、厚みdの進行が更に進んでいくと、帯電電位Vが徐々に低下していくが、グリッド設定値VGSを増加させれば、帯電電位Vを帯電目標値VDtargetまで増加できることもある。
S20の工程において、帯電電位Vについて前述の範囲内であると判断した場合には(S20でY)、次に、帯電後の感光体1に対して光書き込みを行って中間調潜像を形成する(S23)。この中間調潜像は、ディザ法などによって面積階調された静電潜像であり、前述したベタ潜像と同程度の面積で、ベタ潜像と同じ感光体表面領域に形成される。メイン制御部100は、中間調潜像が表面電位センサー3との対向位置に進入するタイミングで表面電位センサー3による検知結果を取得して中間調電位Vとする(S24)。そして、中間調電位Vについて、「−300+α+20[V]」から「−300+α−20[V]」までの範囲内にあるか否かを判定し(S25)、範囲内にある場合には(S25でY)、一連の処理フローを終了させる。これに対し、範囲内にない場合には(S25でN)、光書込装置8による1ドットあたりの書込光量について、上限又は下限に設定されているか否かを判定する(S26)。そして、上限又は下限に設定されている場合には(S25でY)、一連の処理フローを終了させる。これに対し、上限、下限の何れにも設定されていない場合には(S26でN)、書込光量を3ステップの減少(範囲よりも高い場合)、あるいは増加(範囲よりも低い場合)によって補正する(S27)。その後、処理フローをS23にループさせて、中間調潜像の形成や、必要に応じた書込光量の補正を実施する。このようにして、書込光量を補正することによって、中間調電位Vを環境変動に伴う潜像電位Vの変動量に応じた値にして、中間調画像の再現性を良好に維持することができる。
なお、中間調電位Vを所定回数だけ補正しても前述の範囲に入れることができなかった場合には、エラー処理を実施して装置を強制停止させるようにしてもよい。また、環境の低温低湿化に起因して帯電電流設定値AGSが−800[μA]から−1200[μA]に引き上げられた後、温度や湿度が上昇すると、それに応じて潜像電位Vが低下する。これにより、S10において電位補正値αがより低い値として求められる。よって、S11において、帯電目標値VDtargetがより低い値として求められ、S16において帯電電流設定値AGSが−1200[μA]から−800[μA]に戻されることもある。
以上の定期ルーチン処理において、S17の工程は、表面電位センサー3による帯電電位Vの検知結果と、グリッド設定値VGSとの差分に基づいて、帯電電流設定値ACSを決定する帯電電流決定処理に該当する。そして、この帯電電流決定処理により、帯電電流を厚みdの低下の進行度合い及び環境に応じた値にすることで、余計なオゾン発生やエネルギー消費を回避しつつ、感光体1を帯電目標値VDtargetとほぼ同じ値に帯電させることができる。よって、オゾンを除去するフィルタや排気ファンの付設を不要にして装置の大型化やコストアップを回避することができる。しかも、環境にかかわらず、安定した画像濃度を得ることができる。更には、現像バイアスVを環境に応じた値に補正しているにもかかわらず、地肌ポテンシャルを適切な値に維持して地汚れの発生を抑えることができる。また、特許文献2に記載の画像形成装置とは異なり、厚みdと相関関係にある物理量に基づいて帯電電流設定値ACSを決定する処理を実施しないので、サービスマンに対して感光体交換時に物理量の情報のリセット操作を強いることがない。
図9は、本プリンタにおける帯電電位Vやグリッド設定値VGSの経時変化の一例を示すグラフである。図示のように、初期状態から7万枚のプリントまでは、プリント枚数が増加していくにつれて、グリッド設定値VGSが徐々に大きくなっていく。そして、プリント枚数が7万枚を超えると、グリッド設定値VGSの上昇率が急激に高くなっていき、プリント枚数が8万枚を超えると、帯電電流切替判断値(|V|−|V|)が200を超える。これにより、帯電電流設定値ACSが−800[μA]から−1200[μA]に切り替えられると同時に、グリッド設定値VGSが初期値の−900[V]に戻される。このようにグリッド設定値VGSが初期値になっても、帯電電流設定値ACSが増加していることから、図示のように、帯電電位Vは目標の−800[V]に維持される。その後、プリント枚数が更に増加していくと、それに伴う厚みdの低下によって感光体の帯電性能が低下していくことから、グリッド設定値VGSが徐々に大きな値に変更される。この変更により、感光体が寿命に到達するまでは(10万枚)、帯電電位Vを目標の−800[V]に維持することができる。感光体が寿命到達ライン(10万枚)を超えて使用されると、やがて、帯電電流切替判断値(|VGS|−|V|が300以上になって、感光体の寿命到達がユーザーに通知される。
なお、帯電電流切替判断値については、表1に示した2段階の値ではなく、例えば表2に示すように、3段階以上の値にしてそれぞれの段階に対して相応の帯電電流設定値ACSを対応させてもよい。
Figure 2015143806
次に、実施形態に係るプリンタに、より特徴的な構成を付加した実施例のプリンタについて説明する。
図10は、実施例に係るプリンタのメイン制御部100によって定期的に実施される定期ルーチン処理の処理フローを示すフローチャートである。メイン制御部100は、定期ルーチン処理を開始すると、まず、メインモータの駆動を開始した後(S101と記す)、所定時間待機する(S102)。そして、帯電電流切替判断値(|VGS|−|V|)に基づいて、帯電電流設定値ACSを、上記表1あるいは上記表2に示されるデータテーブルに応じた値に決定する(S103)。つまり、帯電電流決定処理を実施する。このとき、グリッド設定値VGSや帯電電位Vついては、前回の定期ルーチン処理における最後の工程(S125)で記憶した値を用いる。その後、S104以降の工程に進む。
なお、S104〜S117の工程については、実施形態に係るプリンタにおけるS3〜
S16の工程と同様であるので、説明を省略する。また、S118〜S122の工程については、実施形態に係るプリンタにおけるS23〜S27の工程と同様であるので、説明を省略する。
メイン制御部100は、定期ルーチン処理を終了する直前に、現状のグリッド設定値VGSと帯電電位Vとを、不揮発メモリーに記憶する(S125)。そして、記憶したデータを、次回の定期ルーチン処理におけるS103やS104の際に用いる。
以上の定期ルーチン処理において、実施形態に係るプリンタにおける定期ルーチン処理と大きく異なっている点は、帯電電流決定処理(S103)をグリッド決定処理(S108、S116)よりも先行して実施している点である。これにより、グリッド決定処理の実施回数を減らすことができている。
この点について、より詳しく説明する。帯電電流決定処理の実施によって帯電電流設定値ACSがそれまでの値から変更された場合には、既に述べたように、グリッド設定値VGSが初期値の−900[V]に戻される。但し、この値が変更後の帯電電流設定値ACSに適しているとは限らない、厚みdの低下の進行度合いや、環境などにより、適した値が異なってくるからである。このため、帯電電流決定処理の実施によって帯電電流設定値ACSがそれまでの値から変更した場合には、グリッド決定処理を実施して、グリッド設定値VGSを変更後の帯電電流設定値ACSに適したものにする必要がある。
実施形態に係るプリンタに着目すると、このプリンタでは、図7のフローチャートに示されるように、定期ルーチン処理の中にグリッド決定処理を3工程設けている。1工程目は、S7である。このS7のグリッド決定処理を実施する目的は、ベタ潜像の形成を開始する前に、帯電電位Vが帯電目標値VDtargetから大きくずれていた場合に、帯電電位Vをある程度まで帯電目標値VDtargetに近づけておくことである。
2工程目のグリッド決定処理は、S15である。このS15のグリッド決定処理を実施する目的は、S7の後に実施されるS11にて帯電目標値VDtargetが帯電電位VLに見合った新たな値に変更された場合に、帯電電位VDを、潜像電位VLを新たな帯電目標値VDtargetに近づけておくことである。
3工程目のグリッド決定処理は、S22である。このS22のグリッド決定処理を実施する目的は、S17の工程で帯電電流設定値ACSがそれまでの値から変更された場合に、グリッド設定値VGSを変更後の帯電電流設定値に適した値にすることである。
何れのグリッド決定処理においても、その実施前に、感光体1を帯電させて帯電電位Vを検知しておく工程が必要になり、それぞれのグリッド決定処理を実施するためには比較的長時間を要してしまう。
一方、実施例に係るプリンタにおいては、図10のフローチャートに示されるように、定期ルーチン処理の中にグリッド決定処理を2工程しか設けていない。1工程目のグリッド決定処理は、S108である。また、2工程目のグリッド決定処理はS116である。そして、S108のグリッド決定処理を実施する理由は、実施形態においてS7のグリッド決定処理を実施する理由と同じである。これに対し、S116のグリッド決定処理を実施する理由は、実施形態において、S15のグリッド決定処理を実施するのと同じ理由と、S22のグリッド決定処理を実施するのと同じ理由との両方を兼ねている。このため、グリッド決定処理の工程数を1工程減らすことができているのである。これにより、定期ルーチン処理の実施時間を短縮して、装置のダウンタイムを低減することができる。
以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
[態様A]
態様Aは、放電を発生させるための放電電極(例えばコロナワイヤー2a)と、前記放電電極と画像形成装置の潜像担持体(例えば感光体1)との間に配設されるグリッド電極(例えばグリッド電極2b)と、前記潜像担持体を帯電させるために前記放電電極に印加される帯電バイアスを定電流制御で出力する帯電電源(例えばコロナ電源16)と、前記グリッド電極に印加するためのグリッドバイアスを定電圧制御で出力するグリッド電源(例えばグリッド電源17)と、前記グリッドバイアスの定電圧制御における出力設定値であるグリッド設定値を決定するグリッド決定処理を所定のタイミングが到来する毎に実施する制御手段(例えばメイン制御部100)とを有し、前記放電電極と前記潜像担持体との間で放電を発生させて前記潜像担持体の表面を帯電させる帯電装置(例えば帯電装置19)において、前記放電によって帯電せしめられた前記潜像担持体の表面電位を検知する表面電位検知手段(例えば表面電位センサー3)を設け、前記表面電位検知手段による検知結果と前記グリッド設定値との差分に基づいて、前記帯電バイアスの定電流制御における出力設定値である帯電電流設定値を決定する帯電電流決定処理を所定のタイミングが到来する毎に実施するように、前記制御手段を構成したことを特徴とするものである。
かかる構成において、潜像担持体の表面の摩耗がそれほど進行しておらず、且つ環境が低温低湿化していないときには、潜像担持体が良好に帯電し、その帯電電位がグリッド設定値に近い値になる。これに対し、潜像担持体の表面の摩耗が進行したり、環境が低温低湿化したりすると、グリッド設定値を調整しても潜像担持体を所望の電位に帯電させることができなくなってくる。そして、表面電位検知手段による帯電電位の検知結果と、グリッド設定値との差分が比較的大きくなる。制御手段は、その差分の大きさに基づいて帯電電流設定値を決定する。具体的には、潜像担持体の表面の摩耗がそれほど進行していおらず且つ環境が低温低湿化していないときには、前記差分が比較的小さな値になる。制御手段は、前記差分がこのように比較的小さな値になっているときには、帯電電流設定値として比較的小さな値を決定する。これにより、余計なオゾン発生やエネルギー消費を回避しつつ、潜像担持体を所望の電位に帯電させて所望の画像濃度を得る。一方、既に述べたように、潜像担持体の表面の摩耗が進行したり、環境が低温低湿化したりすると、前記差分が比較的大きな値になる。制御手段は、前記差分がこのように比較的大きな値になっているときには、帯電電流設定値として比較的大きな値を決定する。これにより、摩耗が進行したり、環境が低温低湿化したりしたときにおいても、潜像担持体を所望の電位に帯電させて所望の画像濃度を得る。よって、余計なオゾン発生やエネルギー消費を回避しつつ、静電担持体を所望の帯電電位に帯電させ、且つ環境にかかわらず安定した画像濃度を得ることができる。
[態様B]
態様Bは、態様Aにおいて、前記グリッド決定処理にて、前記潜像担持体の目標帯電電位と、前記検知結果との差分に基づいて、前記グリッド設定値を決定する処理を実施するように、前記制御手段を構成したことを特徴とするものである。
かかる構成では、特許文献1の画像形成装置とは異なり、帯電装置から潜像担持体に流れる電流を検知する電流検知手段を設けなくても、表面電位検知手段による検知結果を目標帯電電位との差分に基づいて、グリッド設定値の適正値を把握することができる。
[態様C]
態様Cは、態様A又はBにおいて、前記帯電電流決定処理を実施した後、ユーザーの命令に基づく画像形成処理を実施する前に、前記目標帯電電位と前記検知結果との差分に基づいて前記グリッド決定処理の実施の必要性を判断し、必要である場合には、前記グリッド決定処理を実施した後に、前記画像形成処理を実施する処理を行うように、前記制御手段を構成したことを特徴とするものである。
かかる構成では、帯電電流決定処理の実施によって帯電電流設定値をそれまでの値から変更した場合に、グリッド設定値を変更後の帯電電流設定値に適した値に変更してから画像形成処理を実施する。これにより、変更後の帯電電流設定値に適さない値のグリッド設定値のままで画像形成処理を実施することによる画質の劣化を回避することができる。
[態様D]
態様Dは、態様Cにおいて、前記画像形成処理を実施するのに先立って、前記グリッド決定処理を実施する前に前記帯電電流決定処理を実施する処理を行うように、前記制御手段を構成したことを特徴とするものである。
かかる構成では、実施例に係るプリンタのように、帯電電流決定処理をグリッド決定処理の後に実施する構成に比べてグリッド決定処理の実施回数を低減して装置のダウンタイムを減らすことができる。
[態様E]
態様Eは、態様A〜Dの何れかにおいて、前記帯電電流決定処理を実施した後における前記表面電位検知手段による検知結果と前記グリッド設定値との差分に基づいて、前記潜像担持体について寿命に達したか否かを判定する寿命判定処理を実施するように、前記制御手段を構成したことを特徴とするものである。
かかる構成では、表面電位検知手段による検知結果とグリッド設定値との差分に基づいて、潜像担持体の寿命到来タイミングを精度良く把握することができる。
[態様F]
態様Fは、潜像担持体と、前記潜像担持体を帯電せしめる帯電手段と、帯電後の前記潜像担持体に潜像を書き込む潜像書込手段(例えば光書込装置8)と、前記潜像を現像する現像手段(例えば現像装置4)とを備える画像形成装置において、前記帯電手段として、態様A〜Eの何れかの帯電装置を用いたことを特徴とするものである。
1:感光体(潜像担持体)
2:チャージャー部
2a:コロナワイヤー(放電電極)
2b:グリッド電極
3:表面電位センサー(表面電位検知手段)
4:現像装置(現像手段)
8:光書込装置(潜像書込手段)
16:コロナ電源(帯電電源)
17:グリッド電源
19:帯電装置
100:メイン制御部(制御手段)
特開平4−163565号公報 特開2010−181737号公報

Claims (6)

  1. 放電を発生させるための放電電極と、前記放電電極と画像形成装置の潜像担持体との間に配設されるグリッド電極と、前記潜像担持体を帯電させるために前記放電電極に印加される帯電バイアスを定電流制御で出力する帯電電源と、前記グリッド電極に印加するためのグリッドバイアスを定電圧制御で出力するグリッド電源と、前記グリッドバイアスの定電圧制御における出力設定値であるグリッド設定値を決定するグリッド決定処理を所定のタイミングで実施する制御手段とを有し、前記放電電極と前記潜像担持体との間で放電を発生させて前記潜像担持体の表面を帯電させる帯電装置において、
    前記放電によって帯電せしめられた前記潜像担持体の表面電位を検知する表面電位検知手段を設け、
    前記表面電位検知手段による検知結果と前記グリッド設定値との差分に基づいて、前記帯電バイアスの定電流制御における出力設定値である帯電電流設定値を決定する帯電電流決定処理を所定のタイミングで実施するように、前記制御手段を構成したことを特徴とする帯電装置。
  2. 請求項1の帯電装置において、
    前記グリッド決定処理にて、前記潜像担持体の目標帯電電位と、前記検知結果との差分に基づいて、前記グリッド設定値を決定する処理を実施するように、前記制御手段を構成したことを特徴とする帯電装置。
  3. 請求項1又は2の帯電装置において、
    前記帯電電流決定処理を実施した後、ユーザーの命令に基づく画像形成処理を実施する前に、前記目標帯電電位と前記検知結果との差分に基づいて前記グリッド決定処理の実施の必要性を判断し、必要である場合には、前記グリッド決定処理を実施した後に、前記画像形成処理を実施する処理を行うように、前記制御手段を構成したことを特徴とする帯電装置。
  4. 請求項3の帯電装置において、
    前記画像形成処理を実施するのに先立って、前記グリッド決定処理を実施する前に前記帯電電流決定処理を実施する処理を行うように、前記制御手段を構成したことを特徴とする帯電装置。
  5. 請求項1乃至4の何れかの帯電装置において、
    前記帯電電流決定処理を実施した後における前記表面電位検知手段による検知結果と前記グリッド設定値との差分に基づいて、前記潜像担持体について寿命に達したか否かを判定する寿命判定処理を実施するように、前記制御手段を構成したことを特徴とする帯電装置。
  6. 潜像担持体と、前記潜像担持体を帯電せしめる帯電手段と、帯電後の前記潜像担持体に潜像を書き込む潜像書込手段と、前記潜像を現像する現像手段とを備える画像形成装置において、
    前記帯電手段として、請求項1乃至5の何れかの帯電装置を用いたことを特徴とする画像形成装置。
JP2014025531A 2013-12-25 2014-02-13 帯電装置及び画像形成装置 Active JP6315311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025531A JP6315311B2 (ja) 2013-12-25 2014-02-13 帯電装置及び画像形成装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013267713 2013-12-25
JP2013267713 2013-12-25
JP2014025531A JP6315311B2 (ja) 2013-12-25 2014-02-13 帯電装置及び画像形成装置

Publications (3)

Publication Number Publication Date
JP2015143806A true JP2015143806A (ja) 2015-08-06
JP2015143806A5 JP2015143806A5 (ja) 2017-01-12
JP6315311B2 JP6315311B2 (ja) 2018-04-25

Family

ID=52011098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025531A Active JP6315311B2 (ja) 2013-12-25 2014-02-13 帯電装置及び画像形成装置

Country Status (3)

Country Link
US (1) US9176416B2 (ja)
EP (1) EP2891927B1 (ja)
JP (1) JP6315311B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126193A (ja) * 2015-01-05 2016-07-11 株式会社リコー 画像形成装置、画像形成装置用のプロセスカートリッジ
JP6620732B2 (ja) * 2016-12-09 2019-12-18 京セラドキュメントソリューションズ株式会社 帯電装置及びこれを備えた画像形成装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259980A (ja) * 1985-09-10 1987-03-16 Canon Inc 画像形成装置
JPH04186259A (ja) * 1990-11-20 1992-07-03 Minolta Camera Co Ltd 画像記録装置
JPH05323841A (ja) * 1992-05-19 1993-12-07 Minolta Camera Co Ltd 感光体の寿命判定方法
JP2005189355A (ja) * 2003-12-24 2005-07-14 Canon Inc 画像形成装置
JP2006171704A (ja) * 2004-12-13 2006-06-29 Toshiba Corp 画像形成装置とその制御方法および一体型プロセスカートリッジの制御装置
JP2010160291A (ja) * 2009-01-07 2010-07-22 Sharp Corp 画像形成装置、制御方法、制御プログラム、記録媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163565A (ja) 1990-10-29 1992-06-09 Ricoh Co Ltd 画像形成装置の帯電制御装置
JP4702462B2 (ja) * 2008-09-29 2011-06-15 ブラザー工業株式会社 画像形成装置の電源制御装置及びその方法
JP5376931B2 (ja) * 2008-12-24 2013-12-25 キヤノン株式会社 画像形成装置
JP2010181737A (ja) 2009-02-06 2010-08-19 Fuji Xerox Co Ltd 帯電装置及び画像形成装置
JP5206811B2 (ja) * 2011-01-31 2013-06-12 ブラザー工業株式会社 画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259980A (ja) * 1985-09-10 1987-03-16 Canon Inc 画像形成装置
JPH04186259A (ja) * 1990-11-20 1992-07-03 Minolta Camera Co Ltd 画像記録装置
JPH05323841A (ja) * 1992-05-19 1993-12-07 Minolta Camera Co Ltd 感光体の寿命判定方法
JP2005189355A (ja) * 2003-12-24 2005-07-14 Canon Inc 画像形成装置
JP2006171704A (ja) * 2004-12-13 2006-06-29 Toshiba Corp 画像形成装置とその制御方法および一体型プロセスカートリッジの制御装置
JP2010160291A (ja) * 2009-01-07 2010-07-22 Sharp Corp 画像形成装置、制御方法、制御プログラム、記録媒体

Also Published As

Publication number Publication date
JP6315311B2 (ja) 2018-04-25
US9176416B2 (en) 2015-11-03
US20150177637A1 (en) 2015-06-25
EP2891927A3 (en) 2016-01-20
EP2891927B1 (en) 2019-07-24
EP2891927A2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
KR100197473B1 (ko) 화상형성장치
JP2009186815A (ja) 画像形成装置及び画像形成方法
JP2015222407A (ja) 画像形成装置
JP2013171093A (ja) 画像形成装置
US9726999B2 (en) Image forming apparatus
JP4946081B2 (ja) 画像形成装置
US8787783B2 (en) Image forming apparatus having voltage control
JP2019015895A (ja) 画像形成装置
JP2006251511A (ja) 画像形成装置
JP6315311B2 (ja) 帯電装置及び画像形成装置
US9915889B2 (en) Image forming apparatus
JP4995123B2 (ja) 画像形成装置
JP2018040916A (ja) 画像形成装置
JP2009192568A (ja) 画像形成装置及び画像形成処理制御プログラム
JP2018116223A (ja) 画像形成装置
JP2007304184A (ja) 画像形成装置および画像形成装置の帯電電圧更新方法
JP7242376B2 (ja) 画像形成装置
JP6627797B2 (ja) 画像形成装置
JP7350537B2 (ja) 画像形成装置
JP2017142448A (ja) 画像形成装置
JP2006276703A (ja) 画像濃度制御方法および画像形成装置
JP5317497B2 (ja) 画像形成装置
JP2005258190A (ja) 画像形成装置
US20190129333A1 (en) Image forming apparatus
JP2021184036A (ja) クリーニング装置、画像形成装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180315

R151 Written notification of patent or utility model registration

Ref document number: 6315311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151