JP2015141726A - 半導体記憶装置 - Google Patents
半導体記憶装置 Download PDFInfo
- Publication number
- JP2015141726A JP2015141726A JP2014013830A JP2014013830A JP2015141726A JP 2015141726 A JP2015141726 A JP 2015141726A JP 2014013830 A JP2014013830 A JP 2014013830A JP 2014013830 A JP2014013830 A JP 2014013830A JP 2015141726 A JP2015141726 A JP 2015141726A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- wiring
- insulating layer
- wirings
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 139
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 description 419
- 239000011229 interlayer Substances 0.000 description 76
- 238000004519 manufacturing process Methods 0.000 description 62
- 238000000034 method Methods 0.000 description 30
- 150000002500 ions Chemical class 0.000 description 25
- 101100285518 Drosophila melanogaster how gene Proteins 0.000 description 22
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 17
- 229920005591 polysilicon Polymers 0.000 description 17
- 230000006870 function Effects 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 229910052814 silicon oxide Inorganic materials 0.000 description 13
- 229910004298 SiO 2 Inorganic materials 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- -1 InO Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0026—Bit-line or column circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
- H10B63/34—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
- H10B63/84—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
- H10B63/845—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0007—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/30—Resistive cell, memory material aspects
- G11C2213/33—Material including silicon
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/30—Resistive cell, memory material aspects
- G11C2213/34—Material includes an oxide or a nitride
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/71—Three dimensional array
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/72—Array wherein the access device being a diode
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/78—Array wherein the memory cells of a group share an access device, all the memory cells of the group having a common electrode and the access device being not part of a word line or a bit line driver
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/79—Array wherein the access device being a transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/823—Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
Abstract
【課題】消費電力を低減する。【解決手段】半導体記憶装置は、複数の第1の配線と、複数の第2の配線と、複数のメモリセルと、第1及び第2の選択ゲートトランジスタと、制御回路とを備える。複数の第1の配線は、基板に対して垂直な第1方向に所定ピッチで配列され基板に対して平行な第2方向に延びるように形成される。複数の第2の配線は、第2方向に所定ピッチで配列され第1方向に延びるように形成され複数の第1の配線と交差する。複数のメモリセルは、複数の第1の配線及び複数の第2の配線の交差部に配置される。複数の第1及び第2の選択ゲートトランジスタは、第2の配線の下端又は上端にそれぞれ接続された第1又は第2のチャネル配線と第1又は第2のゲート配線とを有する。制御回路は、第1及び第2の選択ゲートトランジスタを独立して制御する。【選択図】図3
Description
本実施の形態は、半導体記憶装置に関する。
近年、抵抗値を可逆的に変化させる可変抵抗素子をメモリとして利用したReRAM(Resistive RAM)が提案されている。そして、このReRAMにおいて可変抵抗素子を基板に対して平行に延びるワード線の側壁と基板に対して垂直に延びるビット線の側壁との間に設ける構造により、メモリセルアレイの更なる高集積化が可能とされている。このような構造のメモリセルアレイにおいては、ビット線の下端に選択ゲートトランジスタが接続されており、各ビット線はこの選択ゲートトランジスタによって選択的にグローバルビット線に接続される。
実施の形態に係る半導体記憶装置は、消費電力を低減する。
一の実施の形態に係る半導体記憶装置は、複数の第1の配線と、複数の第2の配線と、複数のメモリセルと、第1の選択ゲートトランジスタと、第1のグローバルビット線と、第2の選択ゲートトランジスタと、第2のグローバルビット線と、制御回路とを備える。複数の第1の配線は、基板に対して垂直な第1方向に所定ピッチで配列され基板に対して平行な第2方向に延びるように形成される。複数の第2の配線は、第2方向に所定ピッチで配列され第1方向に延びるように形成され複数の第1の配線と交差する。複数のメモリセルは、複数の第1の配線及び複数の第2の配線の交差部に配置される。複数の第1の選択ゲートトランジスタは、第2の配線の下端にそれぞれ接続された第1のチャネル配線と第1のゲート配線とを有する。第1のグローバルビット線は、複数の第1のチャネル配線に接続される。複数の第2の選択ゲートトランジスタは、第2の配線の上端にそれぞれ接続された第2のチャネル配線と第2のゲート配線とを有する。第2のグローバルビット線は、複数の第2のチャネル配線に接続される。制御回路は、複数のメモリセルに電圧を印加する。また、この制御回路は、第1の選択ゲートトランジスタ及び第2の選択ゲートトランジスタを独立して制御する。
[第1の実施の形態]
[構成]
先ず、第1の実施の形態に係る半導体記憶装置の全体構成について説明する。図1は、第1の実施の形態に係る半導体記憶装置のブロック図の一例である。図1に示す通り、半導体記憶装置は、メモリセルアレイ11、行デコーダ12、列デコーダ13、上位ブロック14、電源15及び制御回路16を有する。
[構成]
先ず、第1の実施の形態に係る半導体記憶装置の全体構成について説明する。図1は、第1の実施の形態に係る半導体記憶装置のブロック図の一例である。図1に示す通り、半導体記憶装置は、メモリセルアレイ11、行デコーダ12、列デコーダ13、上位ブロック14、電源15及び制御回路16を有する。
メモリセルアレイ11は、互いに交差する複数のワード線WL、及びビット線BL、並びに、これらの各交差部に配置されたメモリセルMCを有する。行デコーダ12は、アクセス(データ消去/書き込み/読み出し)時にワード線WLを選択する。列デコーダ13は、アクセス時にビット線BLを選択し、アクセス動作を制御するドライバを含む。
上位ブロック14は、メモリセルアレイ11中のアクセス対象となるメモリセルMCを選択する。上位ブロック14は、行デコーダ12、列デコーダ13に対して、それぞれ行アドレス、列アドレスを与える。電源15は、データ消去/書き込み/読み出しの、それぞれの動作に対応した所定の電圧の組み合わせを生成し、行デコーダ12及び列デコーダ13に供給する。制御回路16は、外部からのコマンドに従い、上位ブロック14にアドレスを送付するなどの制御を行い、また、電源15の制御を行う。
次に、図2を参照して、第1の実施の形態に係るメモリセルアレイ11について詳しく説明する。図2は、メモリセルアレイ11の回路図の一例である。なお、図2において、X方向、Y方向及びZ方向は互いに直交し、X方向は紙面垂直方向である。また、図2に示す構造は、X方向に繰り返し設けられている。
メモリセルアレイ11は、図2に示す通り、上述したワード線WL(WL1〜WL4)、ビット線BL、及びメモリセルMC以外に、下部選択トランジスタSTrL、下部グローバルビット線GBLL、下部選択ゲート線SGL、上部選択トランジスタSTrU、上部グローバルビット線GBLU及び上部選択ゲート線SGUを有する。
ワード線WL1〜WL4は、図2に示す通り、所定ピッチをもってZ方向に配列され、X方向に延びる。ビット線BLは、X方向及びY方向にマトリクス状に配列され、Z方向に延びる。メモリセルMCは、これらワード線WLとビット線BLが交差する箇所に配置される。したがって、メモリセルMCは、X、Y、Z方向に3次元マトリクス状に配列される。
メモリセルMCは、図2に示す通り、可変抵抗素子VR及び整流素子DIを含む。整流素子DIは、電流方向をビット線BL側からワード線WL側に整流するダイオードやトランジスタ等の非線形素子である。メモリセルMCは、可変抵抗素子VRの抵抗値が印加電圧に基づき高抵抗状態と低抵抗状態との間で変化することにより、その抵抗値に基づいてデータを不揮発に記憶する。
可変抵抗素子VRは、ある一定以上の電圧をその両端に印加するセット動作によって高抵抗状態(リセット状態)から低抵抗状態(セット状態)に変化し、ある一定以上の電圧をその両端に印加するリセット動作によって低抵抗状態(セット状態)から高抵抗状態(リセット状態)に変化する。リセット動作は、例えばセット動作と逆方向に電圧を印加することによって行われる。また、可変抵抗素子VRは、製造直後においては容易に抵抗状態を変化させない状態にあり且つ高抵抗状態にある。そこで、可変抵抗素子VRの両端にセット動作及びリセット動作以上の高電圧を印加するフォーミング動作が実行される。このフォーミング動作により、可変抵抗素子VR内に局所的に電流が流れ易い領域(フィラメントパス)が形成され、可変抵抗素子VRは容易に抵抗状態を変化させることができ、記憶素子として動作可能な状態となる。
下部選択トランジスタSTrLは、図2に示す通り、ビット線BLの下端と下部グローバルビット線GBLLとの間に設けられる。下部グローバルビット線GBLLは、X方向に所定ピッチをもって並び、Y方向に延びる。1本の下部グローバルビット線GBLLは、Y方向に一列に配列された複数の下部選択トランジスタSTrLの下端に共通に接続されている。
また、Y方向に隣接して配列された2つの下部選択トランジスタSTrL間に配置されたゲート電極は、その2つの下部選択トランジスタSTrLに共通に接続することができる。下部選択ゲート線SGLは、Y方向に所定ピッチをもって並び、X方向に延びる。1本の下部選択ゲート線SGLは、X方向に一列に配列された複数の下部選択トランジスタSTrLのゲートに共通に接続されている。なお、Y方向に隣接して配列された2つの下部選択トランジスタSTrL間のゲート電極を分離して、2つの下部選択トランジスタSTrLをそれぞれ独立に動作させることもできる。
上部選択トランジスタSTrUは、図2に示す通り、ビット線BLの上端と上部グローバルビット線GBLUとの間に設けられる。上部グローバルビット線GBLUは、X方向に所定ピッチをもって並び、Y方向に延びる。1本の上部グローバルビット線GBLUは、Y方向に一列に配列された複数の上部選択トランジスタSTrUの上端に共通接続されている。
また、Y方向に隣接して配列された2つの上部選択トランジスタSTrU間に配置されたゲート電極は、その2つの上部選択トランジスタSTrUに共通接続することができる。上部選択ゲート線SGUは、Y方向に所定ピッチをもって並び、X方向に延びる。1本の上部選択ゲート線SGUは、X方向に一列に配列された複数の上部選択トランジスタSTrUのゲートに共通接続されている。なお、Y方向に隣接して配列された2つの上部選択トランジスタSTrU間のゲート電極を分離して、2つの上部選択トランジスタSTrUをそれぞれ独立に動作させることもできる。
次に、図3及び図4を参照して、第1の実施の形態に係るメモリセルアレイ11の積層構造について説明する。図3はメモリセルアレイ11の積層構造を示す斜視図の一例である。図4は図3のX方向から見た断面図の一例である。なお、図3において層間絶縁膜の図示は省略している。
メモリセルアレイ11は、図3に示す通り、基板20上に積層された下部選択トランジスタ層30、メモリ層40及び上部選択トランジスタ層50を有する。基板20上には、図4に示す通り、層間絶縁層21が形成されている。下部選択トランジスタ層30は下部選択トランジスタSTrLとして機能し、メモリ層40はメモリセルMCとして機能し、上部選択トランジスタ層50は上部選択トランジスタSTrUとして機能する。
下部選択トランジスタ層30は、図4に示す通り、導電層31、層間絶縁膜32、導電層33、及び層間絶縁膜34を有する。これら導電層31、層間絶縁膜32、導電層33、及び層間絶縁膜34は、図4に示す通り、基板20に対して垂直なZ方向に積層されている。導電層31は下部グローバルビット線GBLLとして機能し、導電層33は下部選択ゲート線SGL及び下部選択トランジスタSTrLのゲートとして機能する。
導電層31は、図3に示す通り、X方向に所定ピッチをもって並び、Y方向に延びるストライプ形状を有している。複数の導電層31の間には、図示しない層間絶縁膜が形成されている。層間絶縁膜32は、図4に示す通り、導電層31の上面を一部覆うように形成され、導電層31と下部選択ゲート線SGL(導電層33)との間を電気的に絶縁させる役割を有している。導電層33は、図3に示す通り、Y方向に所定ピッチをもって並び、X方向に延びるストライプ形状に形成されている。層間絶縁膜34は、図4に示す通り、導電層33の上面を覆うように堆積されている。導電層31、33は、例えば、ポリシリコンにより構成される。層間絶縁膜32、34は、例えば、酸化シリコン(SiO2)により構成される。
また、下部選択トランジスタ層30は、図4に示す通り、例えば柱状の半導体層35及びゲート絶縁層36を有する。半導体層35は下部選択トランジスタSTrLのボディ(チャネル)として機能し、ゲート絶縁層36は下部選択トランジスタSTrLのゲート絶縁膜として機能する。
半導体層35は、図3に示す通り、X及びY方向にマトリクス状に配置され、Z方向に延びる。また、半導体層35は、図4に示す通り、導電層31の上面に接し、ゲート絶縁層36を介して導電層33のY方向の側面に接する。そして、半導体層35は、図4に示す通り、下方から上方へ、積層されたN+型半導体層35a、P+型半導体層35b、及びN+型半導体層35cを有する。
N+型半導体層35aは、図4に示す通り、そのY方向の側面にてゲート絶縁層36を介して層間絶縁膜32に接する。P+型半導体層35bは、図4に示す通り、そのY方向の側面にてゲート絶縁層36を介して導電層33の側面に接する。N+型半導体層35cは、図4に示す通り、そのY方向の側面にてゲート絶縁層36を介して層間絶縁膜34に接する。N+型半導体層35a、35cはN+型の不純物を注入されたポリシリコンにより構成され、P+型半導体層35bはP+型の不純物を注入されたポリシリコンにより構成される。ゲート絶縁層36は例えば酸化シリコン(SiO2)により構成される。
メモリ層40は、図4に示す通り、Z方向に交互に積層された層間絶縁膜41a〜41d、導電層42a〜42d及び導電層42d上に積層された保護層45を有する。導電層42a〜42dは、それぞれワード線WL1〜WL4として機能する。層間絶縁膜41a〜41dは例えば酸化シリコン(SiO2)にて構成され、導電層42a〜42dは例えばポリシリコンにて構成される。
また、メモリ層40は、図4に示す通り、例えば柱状の導電層43、可変抵抗層44及び整流層46を有する。導電層43はビット線BLとして機能する。可変抵抗層44は可変抵抗素子VRとして機能する。整流層46は整流素子DIとして機能する。
導電層43は、図3に示す通り、X及びY方向にマトリクス状に配置され、その下端において半導体層35の上面に接すると共にZ方向に柱状に延びる。可変抵抗層44及び整流層46は、図4に示す通り、導電層43のY方向の側面と層間絶縁膜41a〜41dのY方向の側面との間に設けられる。また、可変抵抗層44及び整流層46は、図4に示す通り、導電層43のY方向の側面と導電層42a〜42dのY方向の側面との間に設けられる。
本実施の形態において、導電層43は例えばポリシリコンにより構成され、可変抵抗層44は例えば金属酸化物(例えば、HfOX、Al2OX、TiOX、NiOX、WOX、Ta2OX等)により構成される。しかしながら、例えば可変抵抗層44をシリコン酸化膜とイオン源金属の積層膜等から構成することも可能である。整流層46は例えば酸化シリコン(SiO2)により構成される。
上部選択トランジスタ層50は、図4に示す通り、層間絶縁膜52、導電層53、及び層間絶縁膜54を有する。これら層間絶縁膜52、導電層53、及び層間絶縁膜54は、図4に示す通り、Z方向に積層されている。導電層53は上部選択ゲート線SGU及び上部選択トランジスタSTrUのゲートとして機能する。
層間絶縁膜52は、図4に示す通り、保護層45の上面に形成され、保護層45と共に導電層42dと上部選択ゲート線SGU(導電層53)との間を電気的に絶縁させる。導電層53は、図3に示す通り、Y方向に所定ピッチをもって並び、X方向に延びるストライプ形状に形成されている。層間絶縁膜54は、図4に示す通り、導電層53の上面を一部覆うように堆積されている。導電層53は、例えば、ポリシリコンにより構成される。層間絶縁膜52、54は、例えば、酸化シリコン(SiO2)により構成される。
また、上部選択トランジスタ層50は、図4に示す通り、例えば柱状の半導体層55及びゲート絶縁層56を有する。半導体層55は上部選択トランジスタSTrUのボディ(チャネル)として機能し、ゲート絶縁層56は上部選択トランジスタSTrUのゲート絶縁膜として機能する。
半導体層55は、図3に示す通り、X及びY方向にマトリクス状に配置され、Z方向に延びる。また、半導体層55は、図4に示す通り、導電層43の上面に接し、ゲート絶縁層56を介して導電層53のY方向の側面に接する。そして、半導体層55は、図4に示す通り、下方から上方へ積層されたN+型半導体層55a、P+型半導体層55b及びN+型半導体層55cを有する。
N+型半導体層55aは、図4に示す通り、そのY方向の側面にてゲート絶縁層56を介して層間絶縁膜52に接する。P+型半導体層55bは、図4に示す通り、そのY方向の側面にてゲート絶縁層56を介して導電層53の側面に接する。N+型半導体層55cは、図4に示す通り、そのY方向の側面にてゲート絶縁層56を介して層間絶縁膜54に接する。N+型半導体層55a及び55cはN+型の不純物を注入されたポリシリコンにより構成され、P+型半導体層55bはP+型の不純物を注入されたポリシリコンにより構成される。ゲート絶縁層56は例えば酸化シリコン(SiO2)により構成される。
更に、上部選択トランジスタ層50は、図4に示す通り、導電層51を有する。導電層51は上部グローバルビット線GBLUとして機能する。導電層51は、図3に示す通り、基板20に対して平行なX方向に所定ピッチをもって並び、Y方向に延びるストライプ形状を有している。また、導電層51は、図3に示す通り、Y方向に隣接する複数の半導体層55の上面に接する。導電層51は、例えばポリシリコンにより構成される。複数の導電層51の間には、図示しない層間絶縁膜が形成されている。
[書き込み動作]
次に、第1の実施の形態に係る半導体記憶装置の書き込み動作について、比較例と対比しつつ説明する。図5は、比較例に係る半導体記憶装置のメモリセルアレイ110の書き込み動作を説明するための回路図である。メモリセルアレイ110は、本実施の形態に係る半導体記憶装置のメモリセルアレイ11とほぼ同様に構成されているが、上部選択トランジスタSTrU、上部グローバルビット線GBLU及び上部選択ゲート線SGUを有していない点において異なる。
次に、第1の実施の形態に係る半導体記憶装置の書き込み動作について、比較例と対比しつつ説明する。図5は、比較例に係る半導体記憶装置のメモリセルアレイ110の書き込み動作を説明するための回路図である。メモリセルアレイ110は、本実施の形態に係る半導体記憶装置のメモリセルアレイ11とほぼ同様に構成されているが、上部選択トランジスタSTrU、上部グローバルビット線GBLU及び上部選択ゲート線SGUを有していない点において異なる。
比較例に係る半導体記憶装置に書き込み動作を行う場合、図5に示す通り、下部グローバルビット線GBLLの電圧を、例えばセット電圧Vsに設定する。また、所定の下部選択トランジスタSTrLをON状態とし、それ以外の下部選択トランジスタSTrLをOFF状態とする。これにより、書き込み動作の対象である選択メモリセルMCtに接続されたビット線(選択ビット線)BLにセット電圧Vsが転送され、選択ビット線BL以外のビット線(非選択ビット線)BLはフローティング状態となる。更に、選択メモリセルMCtに接続されたワード線(選択ワード線)WL3の電圧を0V程度に、それ以外のワード線(非選択ワード線)WL1,WL2及びWL4の電圧を、Vs/2に設定する。これにより、選択メモリセルの陰極と陽極との間に電圧が印加され、書き込み動作が行われる。
ここで、本比較例に係る半導体記憶装置においては、書き込み動作中の選択ビット線BL以外のビット線(非選択ビット線)BLがフローティング状態となる。従って、非選択ワード線WLと非選択ビット線BLの間に電位差が生じ、リーク電流が生じる場合がある。
次に、図6Aを参照して、第1の実施の形態に係る半導体記憶装置の動作について説明する。図6Aは、第1の実施の形態に係る半導体記憶装置の書き込み動作を説明するための回路図である。
本実施の形態に係る半導体記憶装置に書き込み動作を行う場合、下部グローバルビット線GBLL、下部選択トランジスタSTrL及びワード線WL1〜WL4の電圧を、上記比較例と同様に制御する。更に、本実施の形態においては、上部グローバルビット線GBLUの電圧を、例えばVs/2に設定する。また、非選択ビット線BLに接続された上部選択トランジスタSTrUをON状態とし、非選択ビット線BLにVs/2を転送する。尚、選択ビット線BLに接続された上部選択トランジスタSTrUは、OFF状態とする。
本実施の形態に係る半導体記憶装置においては、非選択ビット線BL及び非選択ワード線WL1,WL2及びWL4に、共にVs/2が印加される。従って、これら配線間のリーク電流が生じず、書き込み動作に際しての消費電力を低減することが可能であり、かつ誤動作を抑制する事が可能である。
次に、図6Bを参照して、第1の実施の形態に係る半導体記憶装置の動作の他の態様について説明する。図6Bは、第1の実施の形態に係る半導体記憶装置の書き込み動作の他の態様を説明するための回路図である。
本実施の形態に係る半導体記憶装置においては、図6Bに示す通り、上部グローバルビット線GBLUの電圧をセット電圧Vsに設定し、選択ビット線BLに接続された上部選択トランジスタSTrUをON状態、非選択ビット線BLに接続された上部選択トランジスタSTrUをOFF状態としても良い。この場合には、下部グローバルビット線GBLLの電圧をVs/2に設定し、非選択ビット線BLに接続された下部選択トランジスタSTrLをON状態、下部選択ビット線STrLをOFF状態とする。
換言すれば、制御回路16は、選択ビット線BLに接続された、下部選択トランジスタSTrL及び上部選択トランジスタSTrUのうちの一方をON状態、他方をOFF状態にする。また、制御回路16は、図6Aに示す通り、選択ビット線BLに接続された下部選択トランジスタSTrLをON状態とする場合には、非選択ビット線BLに接続された下部選択トランジスタSTrLをOFF状態とし、非選択ビット線BLに接続された上部選択トランジスタSTrUをON状態とする。一方、制御回路16は、図6Bに示す通り、選択ビット線BLに接続された上部選択トランジスタSTrUをON状態とする場合には、非選択ビット線BLに接続された下部選択トランジスタSTrLをON状態とし、非選択ビット線BLに接続された上部選択トランジスタSTrUをOFF状態とする。
[製造方法]
次に、図7〜図26を参照して、本実施の形態に係る半導体記憶装置の製造方法について説明する。図7、図10〜図18及び図21〜図25はメモリセルアレイ11の製造方法を示す断面図の一例である。図8、図9、図19、図20及び図26は同製造方法を示す平面図の一例である。
次に、図7〜図26を参照して、本実施の形態に係る半導体記憶装置の製造方法について説明する。図7、図10〜図18及び図21〜図25はメモリセルアレイ11の製造方法を示す断面図の一例である。図8、図9、図19、図20及び図26は同製造方法を示す平面図の一例である。
図7に示す通り、基板20上に、層間絶縁層21を介して導電層31’及び半導体層35’(35a,35b及び35c)を積層する。
次に、図8に示す通り、導電層31’及び半導体層35’を貫通する、X方向に所定のピッチをもって配列されY方向に延びるトレンチを形成する。このトレンチにより、導電層31’は、Y方向にストライプ状に延びる導電層31となる。
次に、図9に示す通り、露出した層間絶縁層21の上面及び半導体層35’の側壁を、層間絶縁膜37によって埋め込む。
次に、図10に示す通り、半導体層35’を貫通する、Y方向に所定のピッチをもって配列されX方向に延びるトレンチを形成する。このトレンチにより、半導体層35’は、X方向及びY方向にマトリクス状に並ぶ半導体層35となる。
次に、図11に示す通り、トレンチの側面及び底面にゲート絶縁層36を形成する絶縁層36’を形成する。次に、図12に示す通り、トレンチの底面に形成された絶縁層36’を除去してゲート絶縁層36を形成する。
次に、図13に示す通り、トレンチを埋めるように、導電層31の上面に、層間絶縁膜32、導電層33及び層間絶縁膜34を順に積層する。次に、熱処理を行い、半導体層35のポリシリコンを結晶化させる。ここまでの工程により、下部選択トランジスタ層30が形成される。
次に、図14に示す通り、選択トランジスタ層30の上面に、酸化シリコン(SiO2)とポリシリコン(Si)を交互に積層させ、X方向及びY方向に板状に広がる層間絶縁層41a’〜41d’及び導電層42a’〜42d’を形成する。また、導電層42d’の上に保護層45’を形成する。
次に、図15に示す通り、層間絶縁層41a’〜41d’、導電層42a’〜42d’、及び保護層45’を貫通する、Y方向に所定ピッチをもって配列されX方向に延びるトレンチを形成する。このトレンチにより、層間絶縁層41a’〜41d’、導電層42a’〜42d’、及び保護層45’は、X方向にストライプ状に延びる層間絶縁層41a〜41d、導電層42a〜42d、及び保護層45となる。
次に、図16に示す通り、整流層46を形成する絶縁層46’及び可変抵抗層44を順にトレンチの側面及び底面に形成する。本実施の形態において、可変抵抗層44の膜厚は数nm程度である。可変抵抗層44は、例えば、金属酸化物をアトミックレイヤーデポジション(ALD)により堆積することにより形成される。
次に、図17に示す通り、トレンチの底面に形成された絶縁層46’及び可変抵抗層44を除去し、整流層46及び可変抵抗層44をトレンチの全側面に面状に形成する。次に、図18に示す通り、トレンチを埋めるように導電層43’を形成する。
続いて、図19に示す通り、半導体層43’に対しRIE(Reactive Ion Etching)を施して、半導体層43’を貫通するトレンチを形成する。トレンチは、リソグラフィ技術を用いることによりX方向に所定ピッチをもって配列することができる。このトレンチにより、半導体層43’は、X方向及びY方向にマトリクス状に並ぶ半導体層43となる。
次に、図20に示す通り、ALD法又はCVD法などの等方性の高い成膜方法により、トレンチ内に酸化シリコン(SiO2)を堆積させ、トレンチ内に層間絶縁層47を形成する。ここまでの工程により、メモリ層40が形成される。
次に、図21に示す通り、メモリ層40の上面に半導体層55’(55a,55b及び55c)を積層する。次に、図22に示す通り、半導体層55’を貫通する、Y方向に所定のピッチをもって配列されX方向に延びるトレンチを形成する。
次に、図23に示す通り、トレンチの側面及び底面にゲート絶縁層56を形成する絶縁層56’を形成する。次に、図24に示す通り、トレンチの底面に形成された絶縁層56’を除去してゲート絶縁層56を形成する。
次に、図25に示す通り、トレンチを埋めるように、メモリ層40の上面に、層間絶縁膜52’、導電層53’及び層間絶縁膜54’を順に積層する。次に、層間絶縁膜54’、ゲート絶縁層56’及び半導体層55’の上面に、X方向及びY方向に板状に広がる導電層51’を形成する。
次に、図26に示す通り、導電層51’及び半導体層55’を貫通する、X方向に所定のピッチをもって配列されY方向に延びるトレンチを形成する。このトレンチにより、導電層51’はY方向にストライプ状に延びる導電層51となる。また、半導体層55’は、X方向及びY方向にマトリクス状に並ぶ半導体層55となる。
次に、露出したメモリ層40の上面(絶縁層47)、導電層51’の側壁及び半導体層55’の側壁を、図示しない層間絶縁膜によって埋め込む。次に、熱処理を行い、半導体層55のポリシリコンを結晶化させる。以上のプロセスにより、本実施の形態に係るメモリセル11が製造される。
[第2の実施の形態]
[構成]
次に、第2の実施の形態に係る半導体記憶装置について説明する。図27は、第2の実施の形態に係る半導体記憶装置のメモリセルアレイ11−2の断面図の一例である。本実施の形態に係る半導体記憶装置は、第1の実施の形態に係る半導体記憶装置とほぼ同様に構成されているが、可変抵抗素子VRとしてシリコン酸化膜とイオン源金属の積層膜から構成されたイオンメモリを採用している点が第1の実施の形態と異なっている。また、上部選択トランジスタ層50−2の構成も第1の実施の形態と異なっている。
[構成]
次に、第2の実施の形態に係る半導体記憶装置について説明する。図27は、第2の実施の形態に係る半導体記憶装置のメモリセルアレイ11−2の断面図の一例である。本実施の形態に係る半導体記憶装置は、第1の実施の形態に係る半導体記憶装置とほぼ同様に構成されているが、可変抵抗素子VRとしてシリコン酸化膜とイオン源金属の積層膜から構成されたイオンメモリを採用している点が第1の実施の形態と異なっている。また、上部選択トランジスタ層50−2の構成も第1の実施の形態と異なっている。
本実施の形態に係るメモリ層40−2は、第1の実施の形態に係るメモリ層40とほぼ同様に構成されているが、金属酸化物からなる可変抵抗層44(図4)の代わりに銀(Ag)等の金属からなるイオン源層44−2a及び保持層44−2bを有する。イオン源層44−2aは、導電層43のY方向の側面に設けられる。また、保持層44−2bは、イオン源層44−2aと整流層46の間に設けられる。
本実施の形態に係る上部選択トランジスタ層50−2において、半導体層55−2は、下方から上方へ積層されたドレイン電極層55a−2、チャネル層55b−2及びソース電極層55c−2を有する。ドレイン電極層55a−2及びソース電極層55c−2は、Al,Ni,Cu,Mo,W,Ta,Ti等の金属材料や、それらの窒化物、またはそれらの合金により構成される。以下、これら金属材料、これらの窒化物及びこれらの合金を、「金属材料等」と呼ぶ。チャネル層55b−2は、InO,ZnO,GaO,InGaZnO,CuO,TiO等の酸化物半導体により構成される。
[製造方法]
次に、第2の実施の形態に係る半導体記憶装置の製造方法について説明する。第2の実施の形態に係る半導体記憶装置は、第1の実施の形態に係る半導体記憶装置とほぼ同様のプロセスによって製造されるが、以下のプロセスが異なる。
次に、第2の実施の形態に係る半導体記憶装置の製造方法について説明する。第2の実施の形態に係る半導体記憶装置は、第1の実施の形態に係る半導体記憶装置とほぼ同様のプロセスによって製造されるが、以下のプロセスが異なる。
先ず、第1の実施の形態において図16を用いて説明したプロセスに対応するプロセスにおいて、トレンチの側面及び底面に整流層46を形成する絶縁層46’、イオン源層44−2a及び保持層44−2bを形成する。次に、図17を用いて説明したプロセスに対応するプロセスにおいて、トレンチの底面に形成された絶縁層46’、イオン源層44−2a及び保持層44−2bを除去し、整流層46、イオン源層44−2a及び保持層44−2bをトレンチの全側面に面状に形成する。
また、第1の実施の形態において図21を用いて説明したプロセスに対応するプロセスにおいて、ドレイン電極55a−2を形成する金属材料等、チャネル層55b−2を形成する酸化物半導体及びソース電極55c−2を形成する金属材料等を順に積層する。また、このプロセスが行われた後に、ポリシリコンを結晶化させるための熱処理が行われない。
第1の実施の形態においては、半導体層55の材料としてポリシリコンを用いていたため、結晶化のための熱処理を行っていた。しかしながら、メモリとしてイオンメモリを採用する場合、この熱処理においてイオン源層44−2aの特性が変化してしまい、メモリとしての特性が損なわれてしまう可能性がある。
これに対し、本実施の形態に係る半導体記憶装置の製造方法においては、半導体層55−2が金属材料等及び酸化物半導体から形成される。従って、ポリシリコンを結晶化させるための熱処理が不要であり、好適な特性を有する半導体記憶装置を製造することが可能である。
[第3の実施の形態]
[構成]
次に、第3の実施の形態に係る半導体記憶装置について説明する。図28は、第3の実施の形態に係る半導体記憶装置のメモリセルアレイ11−3の断面図の一例である。本実施の形態に係る半導体記憶装置は、第2の実施の形態に係る半導体記憶装置とほぼ同様に構成されているが、メモリ層40−3及び上部選択トランジスタ層50−3の構成が、一部異なっている。
[構成]
次に、第3の実施の形態に係る半導体記憶装置について説明する。図28は、第3の実施の形態に係る半導体記憶装置のメモリセルアレイ11−3の断面図の一例である。本実施の形態に係る半導体記憶装置は、第2の実施の形態に係る半導体記憶装置とほぼ同様に構成されているが、メモリ層40−3及び上部選択トランジスタ層50−3の構成が、一部異なっている。
即ち、図28に示す通り、半導体層55−3及び導電層53の間にはゲート絶縁層(第2の絶縁層)56−3が介在し、導電層43(ビット線BL)及び導電層42a〜42d(WL1〜WL4)の間には整流層(第1の絶縁層)46が介在している。ここで、本実施の形態においては、これらゲート絶縁層56−3及び整流層46が一体に形成されており、且つほぼ同様の膜厚を有する。
また、本実施の形態に係る半導体層55−3は、導電層43の上面に形成されたチャネル層55b−3及びこのチャネル層55b−3上に積層されたソース電極層55c−3からなる。
尚、本実施の形態に係る上部選択トランジスタ層50−3は、その他の点においては第2の実施の形態に係る上部選択トランジスタ層50−2とほぼ同様に構成されている。また、メモリ層40−3は、第2の実施の形態に係るメモリ層40−2とほぼ同様に構成されているが、保護層45を有していない点において異なっている。
[製造方法]
次に、図29〜図36を参照して、第3の実施の形態に係る半導体記憶装置の製造方法について説明する。図29〜図35は、本実施の形態に係るメモリセルアレイ11−3の製造方法を示す断面図の一例である。図36は同製造方法を示す平面図の一例である。本実施の形態に係る半導体記憶装置は、図13に示す工程までは、第1の実施の形態に係る半導体記憶装置と同様に製造される。
次に、図29〜図36を参照して、第3の実施の形態に係る半導体記憶装置の製造方法について説明する。図29〜図35は、本実施の形態に係るメモリセルアレイ11−3の製造方法を示す断面図の一例である。図36は同製造方法を示す平面図の一例である。本実施の形態に係る半導体記憶装置は、図13に示す工程までは、第1の実施の形態に係る半導体記憶装置と同様に製造される。
図29に示す通り、選択トランジスタ層30の上面に、酸化シリコン(SiO2)とポリシリコン(Si)を交互に積層させ、X方向及びY方向に板状に広がる層間絶縁層41a’〜41d’、導電層42a’〜42d’、層間絶縁膜52−3’、導電層53’及び層間絶縁膜54’を順に積層する。
次に、図30に示す通り、層間絶縁層41a’〜41d’、導電層42a’〜42d’、層間絶縁膜52−3’、導電層53’及び層間絶縁膜54’を貫通するトレンチを形成する。トレンチは、Y方向に所定ピッチをもって配列され、X方向に延びるように形成される。このトレンチにより、層間絶縁層41a’〜41d’、導電層42a’〜42d’、層間絶縁膜52−3’、導電層53’及び層間絶縁膜54’は、X方向にストライプ状に延びる層間絶縁層41a〜41d、導電層42a〜42d、層間絶縁膜52−3、導電層53及び層間絶縁膜54となる。
次に、図31に示す通り、整流層46及びゲート絶縁層56−3となる絶縁層46’、保持層44−2b’及びイオン源層44−2a’を順にトレンチの側面及び底面に形成する。
次に図32に示す通り、トレンチの底面に形成された絶縁層46’、保持層44−2b’及びイオン源層44−2a’を除去し、整流層46、ゲート絶縁層56−3、保持層44−2b’及びイオン源層44−2a’をトレンチの全側面に面状に形成する。
次に、図33に示す通り、保持層44−2b’及びイオン源層44−2a’のうち、ゲート絶縁層56−3を介して導電層53に対向する部分を除去する。このプロセスは、例えばトレンチの底面からゲート絶縁層56−3を介して層間絶縁膜52−3に接する部分までに図示しない犠牲膜等を埋め込み、その後でエッチング等を行う事によって行われる。
次に、図34に示す通り、トレンチの底面からイオン源層44−2a’の上端部分までに導電層43’を形成する。
次に、図35に示す通り、トレンチの残りの部分を埋めるように、導電層43’、イオン源層44−2a’及び保持層44−2b’の上面に、チャネル層55b−3’及びソース電極層55c−3’を順に積層する。次に、層間絶縁膜54、ゲート絶縁層56−3及びソース電極層55c−3’の上面に、X方向及びY方向に板状に広がる導電層51’を形成する。
続いて、図36に示す通り、導電層51’、ソース電極層55c−3’、チャネル層55b−3’及び導電層43’に対し、第1の実施の形態と同様の方法によってRIEを施して、X方向に所定のピッチをもって配列され、Y方向に延びるトレンチを形成する。このトレンチにより、導電層51’はY方向にストライプ状に延びる導電層51となる。また、ソース電極55c−3’及びチャネル層55b−3’、並びに導電層43’は、それぞれX方向及びY方向にマトリクス状に並ぶ半導体層55−3及び導電層43となる。
次に、第1の実施の形態と同様の方法によってトレンチ内に酸化シリコン(SiO2)を堆積させ、トレンチ内に図示しない層間絶縁層を形成する。以上のプロセスにより、本実施の形態に係るメモリセル11−3が製造される。
本実施の形態においては、メモリ層40−3及び上部選択トランジスタ層50−3についてのRIE処理を一括で行っている。従って、第2の実施の形態に係る半導体記憶装置の製造方法と比較して、製造工程数を削減することが可能である。
[第4の実施の形態]
[構成]
次に、第4の実施の形態に係る半導体記憶装置について説明する。図37は、第4の実施の形態に係る半導体記憶装置のメモリセルアレイ11−4の断面図の一例である。本実施の形態に係る半導体記憶装置は、第3の実施の形態に係る半導体記憶装置とほぼ同様に構成されているが、下部選択トランジスタ層30−4の構成が、一部異なっている。
[構成]
次に、第4の実施の形態に係る半導体記憶装置について説明する。図37は、第4の実施の形態に係る半導体記憶装置のメモリセルアレイ11−4の断面図の一例である。本実施の形態に係る半導体記憶装置は、第3の実施の形態に係る半導体記憶装置とほぼ同様に構成されているが、下部選択トランジスタ層30−4の構成が、一部異なっている。
即ち、図37に示す通り、半導体層55−3及び導電層53の間にはゲート絶縁層(第2の絶縁層)56−3が介在し、導電層43(ビット線BL)及び導電層42a〜42d(WL1〜WL4)の間には整流層(第1の絶縁層)46が介在し、半導体層35−4及び導電層33の間にはゲート絶縁膜(第3の絶縁膜)36−4が介在している。ここで、本実施の形態においては、これらゲート絶縁層56−3、整流層46及びゲート絶縁膜36−4が一体に形成されており、且つこれらとほぼ同様の膜厚を有する。
また、本実施の形態に係る半導体層35−4は、導電層31の上面に形成されたN+型半導体層35a−4及びこのN+型半導体層35a−4上に積層されたP+型半導体層35b−4からなる。従って、本実施の形態においては層間絶縁層41aが導電層33の上面に直接形成されている。同様に、導電層43、イオン源層44−2a及び保持層44−2bは、P+型半導体層35b−4上に直接形成されている。
尚、本実施の形態に係る下部選択トランジスタ層30−4は、その他の点においては第3の実施の形態に係る下部選択トランジスタ層30−3とほぼ同様に構成されている。
[製造方法]
次に、図38〜51を参照して、本実施の形態に係る半導体記憶装置の製造方法について説明する。図38及び図41〜図50はメモリセルアレイ11−4の製造方法を示す断面図の一例である。また、図39、図40及び図51は同製造方法を示す平面図の一例である。
次に、図38〜51を参照して、本実施の形態に係る半導体記憶装置の製造方法について説明する。図38及び図41〜図50はメモリセルアレイ11−4の製造方法を示す断面図の一例である。また、図39、図40及び図51は同製造方法を示す平面図の一例である。
本実施の形態においては、図38に示す通り、基板20上に、層間絶縁層21を介して導電層31’を積層する。
次に、図39に示す通り、導電層31’を貫通する、X方向に所定のピッチをもって配列されY方向に延びるトレンチを形成する。このトレンチにより、導電層31’は、Y方向にストライプ状に延びる導電層31となる。
次に、図40に示す通り、露出した層間絶縁層21の上面及び導電層31の側壁を、層間絶縁膜37によって埋め込む。
次に、図41に示す通り、導電層31上に、酸化シリコン(SiO2)とポリシリコン(Si)を交互に積層させ、X方向及びY方向に板状に広がる絶縁層32’、導電層33’、層間絶縁層41a’〜41d’、導電層42a’〜42d’、層間絶縁膜52−3’、導電層53’及び層間絶縁膜54’を順に積層する。
次に、図42に示す通り、絶縁層32’、導電層33’、層間絶縁層41a’〜41d’、導電層42a’〜42d’、層間絶縁膜52−3’、導電層53’及び層間絶縁膜54’を貫通するトレンチを形成する。このトレンチは、Y方向に所定ピッチをもって配列され、X方向に延びるように形成される。このトレンチにより、絶縁層32’、導電層33’、層間絶縁層41a’〜41d’、導電層42a’〜42d’、層間絶縁膜52−3’、導電層53’及び層間絶縁膜54’が、Y方向にストライプ状に延びる絶縁層32、導電層33、層間絶縁層41a〜41d、導電層42a〜42d、層間絶縁膜52−3、導電層53及び層間絶縁膜54となる。
次に、図43に示す通り、ゲート絶縁層36−4、整流層46、及びゲート絶縁層56−3となる絶縁層46’を、トレンチの側面及び底面に形成する。
次に図44に示す通り、トレンチの底面に形成された絶縁層46’を除去し、ゲート絶縁層36−4、整流層46、及びゲート絶縁層56−3をトレンチの全側面に面状に形成する。次に、図45に示す通り、トレンチの下部を埋めるように半導体層35−4’を堆積する。
次に、図46に示す通り、保持層44−2b’及びイオン源層44−2a’を順にトレンチの側面及び底面に形成する。
次に図47に示す通り、トレンチの底面に形成された保持層44−2b’及びイオン源層44−2a’を除去し、保持層44−2b’及びイオン源層44−2a’をトレンチの全側面に面状に形成する。
次に、図48に示す通り、第3の実施の形態と同様の方法によって、保持層44−2b’及びイオン源層44−2a’のうち、ゲート絶縁層56−3を介して導電層53に対向する部分を除去する。
次に、図49に示す通り、トレンチの底面からイオン源層44−2a’の上端部分までに導電層43’を形成する。
次に、図50に示す通り、トレンチの残りの部分を埋めるように、保持層44−2b、イオン源層44−2a及び導電層43’上に、チャネル層55b−3’及びソース電極層55c−3’を順に積層する。次に、層間絶縁膜54、ゲート絶縁層56−3、及びソース電極層55c−3’上に、X方向及びY方向に板状に広がる導電層51’を形成する。
次に、図51に示す通り、半導体層35−4’、導電層43’、半導体層55−3’及び導電層51’を貫通する、X方向に所定のピッチをもって配列されY方向に延びるトレンチを形成する。このトレンチにより、半導体層35−4’、導電層43’、チャネル層55b−3’及びソース電極層55c−3’が、Z方向に柱状に延びる半導体層35−4、導電層43及び半導体層55−3となり、導電層51’が、Y方向にストライプ状に延びる導電層51となる。以上のプロセスにより、本実施の形態に係るメモリセル11−4が製造される。
本実施の形態においては、下部選択トランジスタ層30−4、メモリ層40−3及び上部選択トランジスタ層50−3についてのRIE処理を一括で行っている。従って、第3の実施の形態に係る半導体記憶装置の製造方法と比較して、更に製造工程数を削減することが可能である。
[その他]
以上、いくつかの実施の形態を説明したが、これらの実施の形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことが出来る。これら実施の形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以上、いくつかの実施の形態を説明したが、これらの実施の形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことが出来る。これら実施の形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
11、11−2、11−3、11−4…メモリセルアレイ、12…行デコーダ、13…列デコーダ、14…上位ブロック、15…電源、16…制御回路、20…基板、21…層間絶縁層、30、30−4…下部選択トランジスタ層、31…導電層、32…層間絶縁膜、33…導電層、34…層間絶縁膜、35…半導体層、35a、35a−4…N+型半導体層、35b、35b−4…P+型半導体層、35c…N+型半導体層、36…ゲート絶縁層、36−4…ゲート絶縁層(第3の絶縁層)、40、40−2、40−3…メモリ層、41a〜41d…層間絶縁膜、42a〜42d…導電層、43…導電層、44…可変抵抗層、44−2a…イオン源層、44−2b…保持層、45…保護層、46…整流層(第1の絶縁層)、50、50−2、50−3…上部選択トランジスタ層、51…導電層、52…層間絶縁膜、53…導電層、54…層間絶縁膜、55、55−3…半導体層、55a…N+型半導体層、55b…P+型半導体層、55c…N+型半導体層、55a−2…ドレイン電極層、55b−2、55b−3…チャネル層、55c−2、55c−3…ソース電極層、56…ゲート絶縁層、56−3…ゲート絶縁層(第2の絶縁層)、BL…ビット線、DI…整流素子、GBLL…下部グローバルビット線、GBLU…上部グローバルビット線、MC…メモリセル、MCt…選択メモリセル、SGL…下部選択ゲート線、SGU…上部選択ゲート線、STrL…下部選択トランジスタ、STrU…上部選択トランジスタ、VR…可変抵抗素子、Vs…セット電圧、WL(WL1〜WL4)…ワード線。
Claims (8)
- 基板に対して垂直な第1方向に所定ピッチで配列され前記基板に対して平行な第2方向に延びるように形成された複数の第1の配線と、
前記第2方向に所定ピッチで配列され前記第1方向に延びるように形成され前記複数の第1の配線と交差する複数の第2の配線と、
前記複数の第1の配線及び前記複数の第2の配線の交差部に配置された複数のメモリセルと、
前記第2の配線の下端にそれぞれ接続された第1のチャネル配線と第1のゲート配線とを有する複数の第1の選択ゲートトランジスタと、
複数の前記第1のチャネル配線に接続された第1のグローバルビット線と、
前記第2の配線の上端にそれぞれ接続された第2のチャネル配線と第2のゲート配線とを有する複数の第2の選択ゲートトランジスタと、
複数の前記第2のチャネル配線に接続された第2のグローバルビット線と、
前記複数のメモリセルに電圧を印加する制御回路と
を備え、
前記制御回路は、前記第1の選択ゲートトランジスタ及び前記第2の選択ゲートトランジスタを独立して制御する
ことを特徴とする半導体記憶装置。 - 前記第2のチャネル配線は、酸化物半導体から形成されている
ことを特徴とする請求項1記載の半導体記憶装置。 - 前記複数の第1の配線及び前記複数の第2の配線の間に介在する第1の絶縁層と、
前記第2のチャネル配線及び前記第2のゲート配線の間に介在する第2の絶縁層と
を更に備え、
前記第1の絶縁層及び前記第2の絶縁層は、一体に形成されている
ことを特徴とする請求項1又は2記載の半導体記憶装置。 - 前記複数の第1の配線及び前記複数の第2の配線の間に介在する第1の絶縁層と、
前記第2のチャネル配線及び前記第2のゲート配線の間に介在する第2の絶縁層と、
前記第1のチャネル配線及び前記第1のゲート配線の間に介在する第3の絶縁層と
を更に備え、
前記第1の絶縁層、前記第2の絶縁層及び前記第3の絶縁層は、一体に形成されている
ことを特徴とする請求項1又は2記載の半導体記憶装置。 - 前記制御回路は、
所定の前記第2の配線に接続された、前記第1の選択ゲートトランジスタ及び前記第2の選択ゲートトランジスタのうちの一方をON状態、他方をOFF状態とし、
前記所定の第2の配線に接続された前記第1の選択ゲートトランジスタをON状態とする場合には、前記所定の第2の配線以外の前記第2の配線に接続された前記第1の選択ゲートトランジスタをOFF状態とし、且つ前記所定の第2の配線以外の前記第2の配線に接続された前記第2の選択ゲートトランジスタをON状態とし、
前記所定の第2の配線に接続された前記第2の選択ゲートトランジスタをON状態とする場合には、前記所定の第2の配線以外の前記第2の配線に接続された前記第1の選択ゲートトランジスタをON状態とし、且つ前記所定の第2の配線以外の前記第2の配線に接続された前記第2の選択ゲートトランジスタをOFF状態とする
ことを特徴とする請求項1〜4のいずれか1項記載の半導体記憶装置。 - 基板に対して垂直な第1方向に所定ピッチで配列され前記基板に対して平行な第2方向に延びるように形成された複数の第1の配線と、
前記第2方向に所定ピッチで配列され前記第1方向に延びるように形成され前記複数の第1の配線と交差する複数の第2の配線と、
前記複数の第1の配線及び前記複数の第2の配線の交差部に配置された複数のメモリセルと、
前記第2の配線の下端にそれぞれ接続された第1のチャネル配線と第1のゲート配線とを有する複数の第1の選択ゲートトランジスタと、
複数の前記第1のチャネル配線に接続された第1のグローバルビット線と、
前記第2の配線の上端にそれぞれ接続された第2のチャネル配線と第2のゲート配線とを有する複数の第2の選択ゲートトランジスタと、
複数の前記第2のチャネル配線に接続された第2のグローバルビット線と
を備え、
前記第2のチャネル配線は、酸化物半導体から形成されている
ことを特徴とする半導体記憶装置。 - 前記複数の第1の配線及び前記複数の第2の配線の間に介在する第1の絶縁層と、
前記第2のチャネル配線及び前記第2のゲート配線の間に介在する第2の絶縁層と
を更に備え、
前記第1の絶縁層及び前記第2の絶縁層は、一体に形成されている
ことを特徴とする請求項6記載の半導体記憶装置。 - 前記複数の第1の配線及び前記複数の第2の配線の間に介在する第1の絶縁層と、
前記第2のチャネル配線及び前記第2のゲート配線の間に介在する第2の絶縁層と、
前記第1のチャネル配線及び前記第1のゲート配線の間に介在する第3の絶縁層と
を更に備え、
前記第1の絶縁層、前記第2の絶縁層及び前記第3の絶縁層は、一体に形成されている
ことを特徴とする請求項6記載の半導体記憶装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014013830A JP2015141726A (ja) | 2014-01-28 | 2014-01-28 | 半導体記憶装置 |
US14/491,402 US9275729B2 (en) | 2014-01-28 | 2014-09-19 | Semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014013830A JP2015141726A (ja) | 2014-01-28 | 2014-01-28 | 半導体記憶装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015141726A true JP2015141726A (ja) | 2015-08-03 |
Family
ID=53679638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014013830A Pending JP2015141726A (ja) | 2014-01-28 | 2014-01-28 | 半導体記憶装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9275729B2 (ja) |
JP (1) | JP2015141726A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9997570B2 (en) | 2016-03-17 | 2018-06-12 | Toshiba Memory Corporation | Resistive memory with varying dopant concentration in select transistor channel |
US10050087B1 (en) | 2017-03-16 | 2018-08-14 | Toshiba Memory Corporation | Semiconductor memory device |
US10312289B1 (en) | 2018-03-19 | 2019-06-04 | Toshiba Memory Corporation | Semiconductor memory device |
US10762956B2 (en) | 2017-09-22 | 2020-09-01 | Toshiba Memory Corporation | Semiconductor memory device |
KR20210134482A (ko) * | 2020-04-30 | 2021-11-10 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 메모리 선택기로서의 스페이서 정의된 백 엔드 트랜지스터 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019057554A (ja) | 2017-09-20 | 2019-04-11 | 東芝メモリ株式会社 | 記憶装置 |
EP3621126B1 (en) | 2018-09-05 | 2021-06-16 | IMEC vzw | Manufacturing of an integrated electronic circuit which includes a component based on metal ion migration and reduction |
JP2020155579A (ja) | 2019-03-20 | 2020-09-24 | キオクシア株式会社 | 半導体記憶装置 |
KR20210117556A (ko) * | 2020-03-19 | 2021-09-29 | 에스케이하이닉스 주식회사 | 저항 변화 요소를 구비하는 3차원 구조의 비휘발성 메모리 장치 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5091491B2 (ja) | 2007-01-23 | 2012-12-05 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US7746680B2 (en) | 2007-12-27 | 2010-06-29 | Sandisk 3D, Llc | Three dimensional hexagonal matrix memory array |
JP2011066109A (ja) | 2009-09-16 | 2011-03-31 | Unisantis Electronics Japan Ltd | 半導体記憶装置 |
JP5712436B2 (ja) | 2009-10-06 | 2015-05-07 | 国立大学法人東北大学 | 半導体装置 |
WO2011052396A1 (en) | 2009-10-29 | 2011-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
WO2011152061A1 (ja) * | 2010-06-03 | 2011-12-08 | パナソニック株式会社 | クロスポイント型抵抗変化不揮発性記憶装置 |
US8824183B2 (en) * | 2010-12-14 | 2014-09-02 | Sandisk 3D Llc | Non-volatile memory having 3D array of read/write elements with vertical bit lines and select devices and methods thereof |
US9419217B2 (en) * | 2011-08-15 | 2016-08-16 | Unity Semiconductor Corporation | Vertical cross-point memory arrays |
US9171584B2 (en) * | 2012-05-15 | 2015-10-27 | Sandisk 3D Llc | Three dimensional non-volatile storage with interleaved vertical select devices above and below vertical bit lines |
US9190454B2 (en) * | 2013-03-19 | 2015-11-17 | Kabushiki Kaisha Toshiba | Memory device |
US9105468B2 (en) * | 2013-09-06 | 2015-08-11 | Sandisk 3D Llc | Vertical bit line wide band gap TFT decoder |
-
2014
- 2014-01-28 JP JP2014013830A patent/JP2015141726A/ja active Pending
- 2014-09-19 US US14/491,402 patent/US9275729B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9997570B2 (en) | 2016-03-17 | 2018-06-12 | Toshiba Memory Corporation | Resistive memory with varying dopant concentration in select transistor channel |
US10050087B1 (en) | 2017-03-16 | 2018-08-14 | Toshiba Memory Corporation | Semiconductor memory device |
US10762956B2 (en) | 2017-09-22 | 2020-09-01 | Toshiba Memory Corporation | Semiconductor memory device |
US10312289B1 (en) | 2018-03-19 | 2019-06-04 | Toshiba Memory Corporation | Semiconductor memory device |
KR20210134482A (ko) * | 2020-04-30 | 2021-11-10 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 메모리 선택기로서의 스페이서 정의된 백 엔드 트랜지스터 |
KR102481748B1 (ko) * | 2020-04-30 | 2022-12-26 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | 메모리 선택기로서의 스페이서 정의된 백 엔드 트랜지스터 |
Also Published As
Publication number | Publication date |
---|---|
US20150213887A1 (en) | 2015-07-30 |
US9275729B2 (en) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015141726A (ja) | 半導体記憶装置 | |
US9018613B2 (en) | Semiconductor memory device with a memory cell block including a block film | |
KR102106726B1 (ko) | 3차원 메모리 장치 및 사용 방법 | |
US8169819B2 (en) | Semiconductor storage device | |
JP6414851B2 (ja) | 半導体記憶装置 | |
US9825100B2 (en) | Nonvolatile semiconductor memory device | |
TWI595484B (zh) | 非揮發性記憶體裝置 | |
US9231029B2 (en) | Semiconductor memory device and method for manufacturing same | |
JP2014049745A (ja) | 半導体記憶装置、及びその製造方法 | |
JP2015170852A (ja) | 不揮発性記憶装置 | |
JP2009267219A (ja) | 半導体記憶装置およびその製造方法 | |
JP2009283498A (ja) | 不揮発性記憶装置及びその製造方法 | |
US20170236872A1 (en) | Semiconductor memory device | |
JP2014103373A (ja) | 半導体記憶装置及びその製造方法 | |
JP2017168698A (ja) | 半導体記憶装置 | |
US9379165B2 (en) | Semiconductor memory device | |
JP2016171221A (ja) | 半導体記憶装置及び半導体装置の製造方法 | |
JP2016072534A (ja) | 記憶装置 | |
US9368555B2 (en) | Semiconductor memory device | |
KR20140120993A (ko) | 다층 상변화 물질을 이용하는 3차원 메모리 | |
TWI644422B (zh) | 半導體記憶裝置 | |
JP2016076561A (ja) | 記憶装置 | |
US8772746B2 (en) | Semiconductor memory device | |
JP6045983B2 (ja) | 半導体記憶装置 | |
US9368553B2 (en) | Memory device |