JP2015088205A - 光ディスク装置、及び、そのフォーカス制御方法 - Google Patents
光ディスク装置、及び、そのフォーカス制御方法 Download PDFInfo
- Publication number
- JP2015088205A JP2015088205A JP2013226646A JP2013226646A JP2015088205A JP 2015088205 A JP2015088205 A JP 2015088205A JP 2013226646 A JP2013226646 A JP 2013226646A JP 2013226646 A JP2013226646 A JP 2013226646A JP 2015088205 A JP2015088205 A JP 2015088205A
- Authority
- JP
- Japan
- Prior art keywords
- focus
- optical disc
- objective lens
- focus control
- optical disk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0945—Methods for initialising servos, start-up sequences
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/085—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
- G11B7/08505—Methods for track change, selection or preliminary positioning by moving the head
- G11B7/08511—Methods for track change, selection or preliminary positioning by moving the head with focus pull-in only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/095—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
- G11B7/0956—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
Landscapes
- Optical Recording Or Reproduction (AREA)
- Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
Abstract
【課題】フォーカス制御を行うまでの時間を短縮する。
【解決手段】光ディスクの回転を停止させた状態で光ディスクに対して合焦位置よりも遠い第一離隔位置PS1から対物レンズを接近させて初期合焦位置PF1を検出し、光ディスクに対して第一離隔位置PS1よりも近い第二離隔位置PS2に戻ってから光ディスクを回転させている状態で対物レンズを接近させてデータ記録層の合焦位置PF1に追従するフォーカス制御を行う。初期合焦位置PF1は、データ記録層の合焦位置でもよい。第二離隔位置PS2は、光ディスクに対して初期合焦位置PF1から所定距離E遠い位置でもよい。
【選択図】図3
【解決手段】光ディスクの回転を停止させた状態で光ディスクに対して合焦位置よりも遠い第一離隔位置PS1から対物レンズを接近させて初期合焦位置PF1を検出し、光ディスクに対して第一離隔位置PS1よりも近い第二離隔位置PS2に戻ってから光ディスクを回転させている状態で対物レンズを接近させてデータ記録層の合焦位置PF1に追従するフォーカス制御を行う。初期合焦位置PF1は、データ記録層の合焦位置でもよい。第二離隔位置PS2は、光ディスクに対して初期合焦位置PF1から所定距離E遠い位置でもよい。
【選択図】図3
Description
本発明は、光ディスク装置、及び、そのフォーカス制御方法に関する。
光ディスクが回転するとき、「面振れ」が生じることがある。光ディスクの「面振れ」とは、光ディスクの回転に伴って光照射領域が上下することをいう。
特許文献1に示される光ディスク装置は、レーザ、対物レンズ、該対物レンズを動かすアクチュエータ、フォーカス誤差検出手段、スピンドルモータ、記憶手段、制御手段、を有している。前記フォーカス誤差検出手段は、対物レンズにより集光された光のフォーカス誤差を検出してS字状フォーカス誤差信号を出力する。記憶手段は、スピンドルモータにより光ディスクが回転したときの面振れ量(面振れの大きさ)を記憶する。制御手段は、光ディスクの回転数がゼロまたは十分低速の場合に光ディスク表面でフォーカスを引き込み、その後光ディスクの回転数を上げて面振れ量を記憶し、該記憶した面触れ量を加算して、前記アクチュエータを制御する。
特許文献1に示される光ディスク装置は、レーザ、対物レンズ、該対物レンズを動かすアクチュエータ、フォーカス誤差検出手段、スピンドルモータ、記憶手段、制御手段、を有している。前記フォーカス誤差検出手段は、対物レンズにより集光された光のフォーカス誤差を検出してS字状フォーカス誤差信号を出力する。記憶手段は、スピンドルモータにより光ディスクが回転したときの面振れ量(面振れの大きさ)を記憶する。制御手段は、光ディスクの回転数がゼロまたは十分低速の場合に光ディスク表面でフォーカスを引き込み、その後光ディスクの回転数を上げて面振れ量を記憶し、該記憶した面触れ量を加算して、前記アクチュエータを制御する。
特許文献2に示される光ディスク再生装置は、光源、対物レンズ、該対物レンズを光ディスクに対して略鉛直方向に移動させる駆動手段、フォーカス制御手段、再生手段、記憶手段、制御手段、を備えている。前記フォーカス制御手段は、前記駆動手段に前記対物レンズを一定範囲移動させて前記光源からの光を前記光ディスクに合焦させるフォーカス引き込み動作を実行する。記憶手段は、光ディスクの再生が中断したときに、中断した時点における前記フォーカス制御手段が前記対物レンズを移動させるために前記駆動手段に与える駆動電圧の最大値および最小値を記憶する。制御手段は、光ディスクの再生が再開したときに前記駆動電圧の最大値と最小値および前記光ディスクの再生再開地点における回転数から前記光ディスクの面ぶれ周波数を算出する。この制御手段は、前記面ぶれ周波数に基づいて前記フォーカス引き込み動作における前記対物レンズの移動する速度となる前記駆動手段に与える駆動周波数を決定し、前記フォーカス制御手段に前記フォーカス引き込み動作を行わせる。
上述した技術は、光ディスクを回転させてから対物レンズを光ディスクに接近させる1回の動作だけで光ディスクのデータ記録層の合焦位置に追従するフォーカス制御を行おうとする。面振れの可能性のある回転状態の光ディスクに対物レンズが接触しないようにするためには、光ディスクから十分に遠い位置から対物レンズをゆっくりと光ディスクに接近させる必要がある。
以上を鑑み、本発明は、フォーカス制御を行うまでの時間を短縮する目的を有している。
上記目的を達成するため、本発明の光ディスク装置は、データ記録層を有する光ディスクを回転させるスピンドルモータと、
前記光ディスクに光線を集束する対物レンズを有する光ピックアップと、
前記対物レンズを前記データ記録層に対して接近及び離隔させるフォーカス方向へ移動させるアクチュエータと、
前記光ディスクの回転を停止させた状態で前記光ディスクに対して合焦位置よりも遠い第一離隔位置から前記対物レンズを接近させて初期合焦位置を検出する初期合焦位置検出手段と、
前記光ディスクに対して前記第一離隔位置よりも近い第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行うフォーカス制御手段と、を備えた態様を有する。
前記光ディスクに光線を集束する対物レンズを有する光ピックアップと、
前記対物レンズを前記データ記録層に対して接近及び離隔させるフォーカス方向へ移動させるアクチュエータと、
前記光ディスクの回転を停止させた状態で前記光ディスクに対して合焦位置よりも遠い第一離隔位置から前記対物レンズを接近させて初期合焦位置を検出する初期合焦位置検出手段と、
前記光ディスクに対して前記第一離隔位置よりも近い第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行うフォーカス制御手段と、を備えた態様を有する。
また、本発明のフォーカス制御方法は、前記光ディスクの回転を停止させた状態で前記光ディスクに対して合焦位置よりも遠い第一離隔位置から前記対物レンズを接近させて初期合焦位置を検出し、前記光ディスクに対して前記第一離隔位置よりも近い第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、態様を有する。
請求項1,11に係る発明によれば、フォーカス制御を行うまでの時間を短縮することができる。
請求項2,6に係る発明では、フォーカス制御を行うまでの時間を短縮する好適な例を提供することができる。
請求項3に係る発明では、フォーカス制御を行うまでの処理の好適な例を提供することができる。
請求項4,5に係る発明では、フォーカス制御を行うまでの時間をさらに短縮することができる。
請求項7〜9に係る発明では、サーボ復帰の時間を短縮することができる。
請求項10に係る発明では、サーボ復帰処理の好適な例を提供することができる。
請求項2,6に係る発明では、フォーカス制御を行うまでの時間を短縮する好適な例を提供することができる。
請求項3に係る発明では、フォーカス制御を行うまでの処理の好適な例を提供することができる。
請求項4,5に係る発明では、フォーカス制御を行うまでの時間をさらに短縮することができる。
請求項7〜9に係る発明では、サーボ復帰の時間を短縮することができる。
請求項10に係る発明では、サーボ復帰処理の好適な例を提供することができる。
以下、本発明の実施形態を説明する。むろん、以下に説明する実施形態は、本発明を例示するものに過ぎない。
(1)光ディスク装置100、及び、そのフォーカス制御方法の概要:
まず、図1〜14を適宜参照して、光ディスク装置100、及び、そのフォーカス制御方法の概要を説明する。
まず、図1〜14を適宜参照して、光ディスク装置100、及び、そのフォーカス制御方法の概要を説明する。
[態様1](図1〜3参照)
光ディスク装置100は、スピンドルモータ2、光ピックアップ3、アクチュエータ31、初期合焦位置検出手段20a、フォーカス制御手段20b、を備える。スピンドルモータ2は、データ記録層41を有する光ディスク1を回転させる。光ピックアップ3は、前記光ディスク1に光線80を集束する対物レンズ33を有する。アクチュエータ31は、前記対物レンズ33を前記データ記録層41に対して接近及び離隔させるフォーカス方向DF1へ移動させる。初期合焦位置検出手段20aは、前記光ディスク1の回転を停止させた状態で前記光ディスク1に対して合焦位置よりも遠い第一離隔位置PS1から前記対物レンズ33を接近させて初期合焦位置PF1を検出する。フォーカス制御手段20bは、前記光ディスク1に対して前記第一離隔位置PS1よりも近い第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行う。
光ディスク装置100は、スピンドルモータ2、光ピックアップ3、アクチュエータ31、初期合焦位置検出手段20a、フォーカス制御手段20b、を備える。スピンドルモータ2は、データ記録層41を有する光ディスク1を回転させる。光ピックアップ3は、前記光ディスク1に光線80を集束する対物レンズ33を有する。アクチュエータ31は、前記対物レンズ33を前記データ記録層41に対して接近及び離隔させるフォーカス方向DF1へ移動させる。初期合焦位置検出手段20aは、前記光ディスク1の回転を停止させた状態で前記光ディスク1に対して合焦位置よりも遠い第一離隔位置PS1から前記対物レンズ33を接近させて初期合焦位置PF1を検出する。フォーカス制御手段20bは、前記光ディスク1に対して前記第一離隔位置PS1よりも近い第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行う。
上記初期合焦位置PF1は、光ディスク1の回転を停止させた状態で検出されるので、検出され易い。光ディスク1に対して第一離隔位置PS1よりも近い第二離隔位置PS2に戻ってから光ディスク1が回転している状態で対物レンズ33が接近するので、データ記録層41の合焦位置に追従するフォーカス制御(S116)が行われるまでの時間が短くて済む。
なお、光ディスク1には、BD(ブルーレイディスク)、DVD(Digital Versatile Disc)、CD(Compact Disc)、等が含まれる。光ディスク装置100には、光ディスクに対して記録及び再生を行うことが可能な光ディスク記録再生装置、光ディスクに対して再生のみ行う光ディスク再生装置、表示装置といった別の装置と一体化された光ディスク装置、等が含まれる。
なお、光ディスク1には、BD(ブルーレイディスク)、DVD(Digital Versatile Disc)、CD(Compact Disc)、等が含まれる。光ディスク装置100には、光ディスクに対して記録及び再生を行うことが可能な光ディスク記録再生装置、光ディスクに対して再生のみ行う光ディスク再生装置、表示装置といった別の装置と一体化された光ディスク装置、等が含まれる。
[態様2](図1〜3参照)
前記初期合焦位置PF1は、前記データ記録層41の合焦位置でもよい。前記第二離隔位置PS2は、前記光ディスク1に対して前記初期合焦位置PF1から所定距離E遠い位置でもよい。本態様は、フォーカス制御(S116)を行うまでの時間を短縮する好適な例を提供することができる。
前記初期合焦位置PF1は、前記データ記録層41の合焦位置でもよい。前記第二離隔位置PS2は、前記光ディスク1に対して前記初期合焦位置PF1から所定距離E遠い位置でもよい。本態様は、フォーカス制御(S116)を行うまでの時間を短縮する好適な例を提供することができる。
[態様3](図1〜3参照)
前記フォーカス制御手段20bは、前記光ディスク1に対して前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行うことができずに前記初期合焦位置PF1から所定距離E近い位置に到達した場合、前記光ディスク1に対して前記初期合焦位置PF1よりも遠い位置に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、フォーカス制御(S116)を行うまでの処理の好適な例を提供することができる。
前記フォーカス制御手段20bは、前記光ディスク1に対して前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行うことができずに前記初期合焦位置PF1から所定距離E近い位置に到達した場合、前記光ディスク1に対して前記初期合焦位置PF1よりも遠い位置に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、フォーカス制御(S116)を行うまでの処理の好適な例を提供することができる。
[態様4](図4,5参照)
前記フォーカス制御手段20bは、前記光ディスク1に対して前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行うことができなかった場合、前記光ディスク1に対して前記第二離隔位置PS2よりも遠く前記第一離隔位置PS1よりも近い第三離隔位置PS3に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、フォーカス制御(S116)を行うまでの時間をさらに短縮することができる。
前記フォーカス制御手段20bは、前記光ディスク1に対して前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行うことができなかった場合、前記光ディスク1に対して前記第二離隔位置PS2よりも遠く前記第一離隔位置PS1よりも近い第三離隔位置PS3に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、フォーカス制御(S116)を行うまでの時間をさらに短縮することができる。
[態様5](図6参照)
前記フォーカス制御手段20bは、前記光ディスク1に対して前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行うことができずに前記初期合焦位置PF1から前記光ディスク1の1回転分以上近い位置に到達した場合、前記光ディスク1に対して前記初期合焦位置PF1よりも遠い位置に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様も、フォーカス制御(S116)を行うまでの時間をさらに短縮することができる。
前記フォーカス制御手段20bは、前記光ディスク1に対して前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行うことができずに前記初期合焦位置PF1から前記光ディスク1の1回転分以上近い位置に到達した場合、前記光ディスク1に対して前記初期合焦位置PF1よりも遠い位置に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様も、フォーカス制御(S116)を行うまでの時間をさらに短縮することができる。
[態様6](図7,8参照)
前記初期合焦位置PF1は、前記光ディスク1のディスク表面48の合焦位置でもよい。前記光ディスク1において表面からの前記データ記録層41の深さをTとして、前記フォーカス制御手段20bは、前記光ディスク1に対して前記初期合焦位置PF1から前記深さTの分近い計算合焦位置(F’+T)よりも遠い前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行ってもよい。本態様は、フォーカス制御(S116)を行うまでの時間を短縮する好適な例を提供することができる。特に、複数のデータ記録層41を有する光ディスク1に対してフォーカス制御(S116)を行う場合に好適である。
前記初期合焦位置PF1は、前記光ディスク1のディスク表面48の合焦位置でもよい。前記光ディスク1において表面からの前記データ記録層41の深さをTとして、前記フォーカス制御手段20bは、前記光ディスク1に対して前記初期合焦位置PF1から前記深さTの分近い計算合焦位置(F’+T)よりも遠い前記第二離隔位置PS2に戻ってから前記光ディスク1を回転させている状態で前記対物レンズ33を接近させて前記フォーカス制御(S116)を行ってもよい。本態様は、フォーカス制御(S116)を行うまでの時間を短縮する好適な例を提供することができる。特に、複数のデータ記録層41を有する光ディスク1に対してフォーカス制御(S116)を行う場合に好適である。
[態様7](図9,10参照)
前記フォーカス制御手段20bは、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスク1の半径方向DT1において前記光ピックアップ3の最外周位置Dmaxに対する前記光ピックアップ3の現在位置Dnowの比Dnow/Dmaxに応じて前記光ディスク1に対して前記第二離隔位置PS2よりも近くした位置PS4に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、サーボ復帰の時間を短縮することができる。
前記フォーカス制御手段20bは、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスク1の半径方向DT1において前記光ピックアップ3の最外周位置Dmaxに対する前記光ピックアップ3の現在位置Dnowの比Dnow/Dmaxに応じて前記光ディスク1に対して前記第二離隔位置PS2よりも近くした位置PS4に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、サーボ復帰の時間を短縮することができる。
[態様8](図11参照)
前記フォーカス制御手段20bは、前記光ディスク1の半径方向DT1における前記光ピックアップ3の現在位置Dnowにおける前記光ディスク1の面振れ量(A+B)nowを取得し、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記面振れ量(A+B)nowに応じた位置PS5に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様も、サーボ復帰の時間を短縮することができる。
前記フォーカス制御手段20bは、前記光ディスク1の半径方向DT1における前記光ピックアップ3の現在位置Dnowにおける前記光ディスク1の面振れ量(A+B)nowを取得し、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記面振れ量(A+B)nowに応じた位置PS5に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様も、サーボ復帰の時間を短縮することができる。
[態様9](図12,14参照)
前記フォーカス制御手段20bは、前記光ピックアップ3の最外周位置における前記光ディスク1の面振れ量(A+B)maxを取得し、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスク1の半径方向DT1において前記光ピックアップ3の最外周位置Dmaxに対する前記光ピックアップ3の現在位置Dnowの比Dnow/Dmaxと前記面振れ量(A+B)maxとの乗算値に応じた位置PS6に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様も、サーボ復帰の時間を短縮することができる。
前記フォーカス制御手段20bは、前記光ピックアップ3の最外周位置における前記光ディスク1の面振れ量(A+B)maxを取得し、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスク1の半径方向DT1において前記光ピックアップ3の最外周位置Dmaxに対する前記光ピックアップ3の現在位置Dnowの比Dnow/Dmaxと前記面振れ量(A+B)maxとの乗算値に応じた位置PS6に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様も、サーボ復帰の時間を短縮することができる。
[態様10](図13,14参照)
前記フォーカス制御手段20bは、前記フォーカス制御(S116)を行っている最中に前記データ記録層41の平均合焦位置Faveを取得し、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスク1に対して前記平均合焦位置Faveよりも所定距離E遠い位置PS7に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、サーボ復帰処理(S120)の好適な例を提供することができる。
前記フォーカス制御手段20bは、前記フォーカス制御(S116)を行っている最中に前記データ記録層41の平均合焦位置Faveを取得し、前記光ディスク1を回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスク1に対して前記平均合焦位置Faveよりも所定距離E遠い位置PS7に戻ってから前記対物レンズ33を接近させて前記データ記録層41の合焦位置に追従するフォーカス制御(S116)を行ってもよい。本態様は、サーボ復帰処理(S120)の好適な例を提供することができる。
[態様11]
上記態様1〜10のいずれかのフォーカス制御(S116)を行う方法の態様も、上述した効果を奏する。
上記態様1〜10のいずれかのフォーカス制御(S116)を行う方法の態様も、上述した効果を奏する。
(2)光ディスク装置、及び、そのフォーカス制御方法の説明:
図1に示す光ディスク装置100は、光ピックアップ(OPU)3、スレッド4、サーボモータ2,30、ドライブ回路16〜19、RF(Radio Frequency)アンプ5、データ/同期信号分離回路6、データデコードエラー訂正回路9、AV(Audio/Video)デコード回路10、エラー検出回路11,12、操作部25、システムコントローラ(制御手段)20、等を備えている。
図1に示す光ディスク装置100は、光ピックアップ(OPU)3、スレッド4、サーボモータ2,30、ドライブ回路16〜19、RF(Radio Frequency)アンプ5、データ/同期信号分離回路6、データデコードエラー訂正回路9、AV(Audio/Video)デコード回路10、エラー検出回路11,12、操作部25、システムコントローラ(制御手段)20、等を備えている。
光ピックアップ3は、光ディスク1にレーザ光(光線80)を集束する対物レンズ33を有し、光ディスク1に記録された情報を再生したり光ディスク1に情報を記録したりするためにレーザ光を出射すると共に光ディスク1からの反射光を受光する。光ピックアップ3には、アクチュエータ31,32が設けられている。フォーカスアクチュエータ31は、光ディスク1の面状データ記録層41に対して略垂直のフォーカス方向DF1へ対物レンズ33を移動させるフォーカスサーボを行う。フォーカス方向DF1は、対物レンズ33をデータ記録層41に対して接近及び離隔させる方向であり、データ記録層41に対して厳密に直交する方向に限定されない。ここで、データ記録層41に対物レンズ33を接近させる方向を接近方向DF2と呼び、データ記録層41から対物レンズ33を離隔させる方向を離隔方向DF3と呼ぶことにする。トラッキングアクチュエータ32は、データ記録層41に対して略並行する半径方向(トラッキング方向)DT1へ対物レンズ33を移動させるトラッキングサーボを行う。半径方向DT1は、面状データ記録層41に沿って対物レンズ33を光ディスク1の回転軸に対して接近及び離隔させる方向であり、データ記録層41に対して厳密に平行な方向に限定されない。スピンドルモータ2は、データ記録層41を有する光ディスク1を所定の回転方向へ回転させる。スピンドルドライブ回路19は、スピンドルモータ2を駆動する。フォーカスドライブ回路16は、フォーカスアクチュエータ31を駆動する。トラッキングドライブ回路17は、トラッキングアクチュエータ32を駆動する。スレッドモータ30は、光ピックアップ3を搭載したスレッド4を光ディスク1の半径方向DT1へ移動させる。スレッドドライブ回路18は、スレッドモータ30を駆動する。
光ピックアップ3の対物レンズ33を搭載するレンズホルダは、スレッド4に対してフォーカス方向DF1へ移動することができるように、フォーカスアクチュエータ31によって移動可能に支持されている。フォーカスアクチュエータ31は、フォーカスドライブ回路16から供給されるフォーカスドライブ電圧(FD)によりレンズホルダをトラッキング方向(DT1)へシフトさせる。また、レンズホルダは、スレッド4に対して光ディスク1の半径方向DT1へ移動することができるように、トラッキングアクチュエータ32によって移動可能に支持されている。トラッキングアクチュエータ32は、トラッキングドライブ回路17から供給されるトラッキングドライブ電圧(TD)によりレンズホルダをトラッキング方向(DT1)へシフトさせる。
RFアンプ5は、光ディスク1の再生時に光ディスク1からの再生信号(読取信号)を入力して該再生信号よりRF信号を作成して増幅する。データ/同期信号分離回路6は、VCO(Voltage Controlled Oscillator)を含むPLL(Phase Locked Loop)8を備え、RFアンプ5からのRF信号を入力してデータと同期信号を分離する。データデコードエラー訂正回路9は、データ/同期信号分離回路6で分離されたデータを入力してデコード化することによりエラーチェックを行いデータに誤りがある場合はエラー訂正を行って正しいデータを出力する。AVデコード回路10は、データデコードエラー訂正回路9から正しいデータを入力しデコード化してビデオ信号とオーディオ信号を出力する。ビデオ信号は、ビデオ出力端子23を介してテレビジョン受像機(TV)22といった外部機器に供給される。オーディオ信号は、オーディオ出力端子24を介してTV22といった外部機器に供給される。
操作部25及びリモコン(リモートコントローラ)26は、光ディスク装置100の本体電源のオンオフ操作や再生操作といった各種操作を行うための複数のキーを有している。操作部25は、リモコン26からの操作指令を示す光信号を受信する受光手段を備え、この受光手段により光信号を電気信号に変換してシステムコントローラ20に指令信号を出力する。操作部25は、例えば、光ディスク装置100の本体の前面に設けられる。
トラッキングエラー検出回路11は、光ピックアップ3からの再生信号に含まれるトラッキングエラー(TE)信号を検出する。フォーカスエラー検出回路12は、光ピックアップ3からの再生信号に含まれるフォーカスエラー(FE)信号を検出する。エラー検出回路11,12には、例えば、特開2008-257765号公報に示されるエラー検出回路を用いることができる。
システムコントローラ(制御手段)20は、メモリ14に記憶されているプログラムや情報に従って光ディスク装置全体の処理を行うCPU(Central Processing Unit)15に従って上記各構成要素を制御する。例えば、システムコントローラ20は、光ピックアップ3からの再生信号に含まれるFE信号に基づいて光ピックアップ3のフォーカスサーボのための制御を行い、前記再生信号に含まれるTE信号に基づいて光ピックアップ3のトラッキングサーボのための制御を行う。また、システムコントローラ20は、スレッドドライブ回路18を介してスレッド4を駆動して光ピックアップ3を光ディスク1の半径方向DT1へ移動させる制御を行い、スピンドルドライブ回路19を介してスピンドルモータ2を駆動して光ディスク1を回転させる制御を行う。なお、システムコントローラ20は、初期合焦位置検出手段20a及びフォーカス制御手段20bを含む。
図3(c)は、スピンドルモータ2の回転駆動のオンオフ、フォーカスアクチュエータ31による対物レンズ33の駆動位置、及び、フォーカスエラー(FE)信号のタイミングチャートを示している。ここで、横軸は時間を示し、「フォーカス駆動位置」の縦軸はフォーカス方向DF1における対物レンズ33の位置を示し、「FE」の縦軸はFE信号の振幅を示している。データ記録層41に対して対物レンズ33が合焦位置よりも離れている場合、FE信号の振幅は0である。データ記録層41に対物レンズ33が近付いていくと、合焦位置を中心としたある範囲内でFE信号がS字状に振幅する。このS字カーブのゼロクロス点が合焦位置である。図2,3に示すように、本技術のシステムコントローラ20は、光ディスク1の回転を停止させた状態で光ディスク1に対して合焦位置よりも遠い第一離隔位置PS1から対物レンズ33を接近させて初期合焦位置PF1を検出する。その後、システムコントローラ20は、光ディスク1に対して第一離隔位置PS1よりも近い第二離隔位置PS2に戻ってから光ディスク1を回転させている状態で対物レンズ33を接近させてデータ記録層41の合焦位置に追従するフォーカス制御(S116)を行う。
(3)第一の例:
図2は、システムコントローラ20の第一の処理例を示している。本処理は、例えば、光ディスク装置100に光ディスク1を装着したときに開始し、マルチタスクにより他の処理と並列して行われる。第二の例以降においても、同様である。
なお、ステップS102〜S106は初期合焦位置検出手段20aに対応し、ステップS108〜122はフォーカス制御手段20bに対応する。第二の例以降においても、同様である。以下、「ステップ」の記載を省略する。
図2は、システムコントローラ20の第一の処理例を示している。本処理は、例えば、光ディスク装置100に光ディスク1を装着したときに開始し、マルチタスクにより他の処理と並列して行われる。第二の例以降においても、同様である。
なお、ステップS102〜S106は初期合焦位置検出手段20aに対応し、ステップS108〜122はフォーカス制御手段20bに対応する。第二の例以降においても、同様である。以下、「ステップ」の記載を省略する。
処理を開始すると、システムコントローラ20は、光ディスク1の回転が停止している状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して合焦位置よりも遠い第一離隔位置PS1に対物レンズ33を移動させる(S102)。第一離隔位置PS1は、フォーカスサーチを行うときの光ディスク(メディア)の種類に応じた移動範囲内で対物レンズ33が光ディスク1から最も離隔した位置である。図3(a)の例では、第一離隔位置PS1に対応する制御値Z=minがフォーカスドライブ回路16に与えられる。
S104では、光ディスク1の回転が停止している状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して第一離隔位置PS1から限界位置PLまで対物レンズ33を接近させて初期合焦位置PF1を検出するフォーカスサーチを行う。限界位置PLは、フォーカスサーチを行うときの移動範囲内で対物レンズ33が光ディスク1に最も接近した位置である。光ディスク装置100には、対物レンズ33が限界位置PLに到達した時点で対物レンズ33を離隔方向DF3へ移動させるディスク衝突防止機能がある。図3(c)に示す初期合焦位置PF1は、データ記録層41の合焦位置であり、FE信号の最大振幅のS字カーブにおけるゼロクロス点である。
S106では、初期合焦位置PF1が検出されたか否かを判断する。初期合焦位置が検出されない場合、システムコントローラ20は、例えば、エラーを出力し(S130)、処理をS102に戻す。初期合焦位置PF1が検出された場合、システムコントローラ20は、第一終了位置PE1に対応する制御値である上限値X、及び、第二離隔位置PS2に対応する制御値である下限値Yを算出する(S108)。これらの値X,Yは、製品設計パラメータに基づいて決定される。
例えば、以下の設計パラメータが規定されている場合を考える。
・メカ面振れ規格=A[μmpp]
・ディスク面振れ規格=B[μmpp](目標値)
・感度及び回路でのゲインばらつきレベル=±C[dB]
・リゼロ位置最大値=D[mm]
ここで、「メカ面振れ」とは、光ディスクを載せるターンテーブルの傾きといった装置に起因する面振れを意味する。「ディスク面振れ」とは、光ディスクに起因する面振れを意味する。面振れの単位「μmpp」は、フォーカス方向における最大位置と最小位置とのミクロン単位の距離を意味する。「感度及び回路でのゲインばらつきレベル」が6dB大きくなると、「感度及び回路でのゲインばらつき」は約2倍となる。「リゼロ位置最大値」は、光ディスクの半径方向における光ピックアップの最外周位置を意味する。
・メカ面振れ規格=A[μmpp]
・ディスク面振れ規格=B[μmpp](目標値)
・感度及び回路でのゲインばらつきレベル=±C[dB]
・リゼロ位置最大値=D[mm]
ここで、「メカ面振れ」とは、光ディスクを載せるターンテーブルの傾きといった装置に起因する面振れを意味する。「ディスク面振れ」とは、光ディスクに起因する面振れを意味する。面振れの単位「μmpp」は、フォーカス方向における最大位置と最小位置とのミクロン単位の距離を意味する。「感度及び回路でのゲインばらつきレベル」が6dB大きくなると、「感度及び回路でのゲインばらつき」は約2倍となる。「リゼロ位置最大値」は、光ディスクの半径方向における光ピックアップの最外周位置を意味する。
リゼロ位置最大値での面振れ最大値Eは、以下の式で表される。
E={(A+B)×(D/60)}×10(C/20)[μm] …(1)
フォーカスサーチ時に初期合焦位置PF1の検出値がFμmであったとすると、フォーカスオン時の設定値X,Yは以下の式で決めることができる。
上限値X=F+E[μm] …(2)
下限値Y=F−E[μm] …(3)
上限値Xについては、フォーカスオンに失敗した場合の保険として設定している。
例えば、A=50、B=1000、C=3.0、D=30である場合、式(1)〜(3)より、
面振れ最大値E=742[μm]
上限値X=1242[μm]
下限値Y=−242[μm]
となる。
E={(A+B)×(D/60)}×10(C/20)[μm] …(1)
フォーカスサーチ時に初期合焦位置PF1の検出値がFμmであったとすると、フォーカスオン時の設定値X,Yは以下の式で決めることができる。
上限値X=F+E[μm] …(2)
下限値Y=F−E[μm] …(3)
上限値Xについては、フォーカスオンに失敗した場合の保険として設定している。
例えば、A=50、B=1000、C=3.0、D=30である場合、式(1)〜(3)より、
面振れ最大値E=742[μm]
上限値X=1242[μm]
下限値Y=−242[μm]
となる。
下限値Yに対応する第二離隔位置PS2は、メディア以外の設計パラメータが考慮された位置であるため、メディア以外の設計パラメータが考慮されない第一離隔位置PS1よりも光ディスク1に近い位置となる。従って、Y>minである。また、第二離隔位置PS2は、光ディスク1の傾き等により変動する初期合焦位置PF1を基準とした位置であり、光ディスク1に対して初期合焦位置PF1から所定距離E遠い位置である。従って、図3(a)に示すように上限値X=F+Eに対応する終了位置PE1が限界位置PLよりも光ディスク1に近くなることもあれば、図3(b)に示すように上限値X=F+Eに対応する終了位置PE1が限界位置PLよりも光ディスク1から遠くなることもある。
終了位置PE1は、光ディスク1に対して初期合焦位置PF1から所定距離E近い位置である。
終了位置PE1は、光ディスク1に対して初期合焦位置PF1から所定距離E近い位置である。
フォーカスオン用の値X,Yが求まると、システムコントローラ20は、フォーカスアクチュエータ31を駆動して光ディスク1に対して第一離隔位置PS1(制御値min)よりも近い第二離隔位置PS2(制御値Y=F−E)に対物レンズ33を戻す(S110)。S112では、スピンドルモータ2を駆動して光ディスク1を回転させる。S114では、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第二離隔位置PS2から接近させてフォーカス制御を試みる。対物レンズ33をデータ記録層41の合焦位置に追従させることができずに対物レンズ33が限界位置PL又は終了位置PE1に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS110に戻し、リトライを実施する。限界位置PLが終了位置PE1よりも光ディスク1から遠ければ対物レンズ33が限界位置PLに到達した時点で処理がS110に戻り、終了位置PE1が限界位置PLよりも光ディスク1から遠ければ対物レンズ33が終了位置PE1に到達した時点で処理がS110に戻る。
フォーカスオンに成功すると、システムコントローラ20は、フォーカス制御を継続する(S116)。このフォーカス制御を継続することができないことがあるので、S118では、フォーカス制御が外れたか否かを判断する。フォーカス制御が外れた場合、システムコントローラ20は、サーボ復帰処理を行い(S120)、処理をS116に戻す。サーボ復帰処理は、例えば、S114のフォーカスオン処理と同様にして行うことができる。フォーカス制御が継続している場合、システムコントローラ20は、読み取られるデータが無くなるといったフォーカス制御の終了条件が成立したか否かを判断する(S122)。条件不成立時、システムコントローラ20は、処理をS116に戻す。条件成立時、システムコントローラ20は、処理を終了する。
ここで、図15に示すようにフォーカスオン開始時の離隔位置(下限値)をメディアによる固定設定とした例と比較する。図15の例では、フォーカスオン開始時の離隔位置がフォーカスサーチ開始時の離隔位置PS1となっており、この離隔位置PS1から初期合焦位置PF1までの距離が長い。このため、メカ高さばらつきといった装置に起因する面振れ、並びに、感度及び回路でのゲインばらつきが最も大きい光ディスク装置においても、フォーカスオンが可能である。しかし、装置に起因する面振れ、並びに、感度及び回路でのゲインばらつきが小さい光ディスク装置においては、フォーカス制御を行うまでに無駄な時間がかかることになる。
一方、図3(c)に示す例は、フォーカスオン開始時の第二離隔位置PS2がフォーカスサーチ開始時の第一離隔位置PS1よりも光ディスク1に近く、第二離隔位置PS2から初期合焦位置PF1までの距離が短い。従って、フォーカス制御を行うまでの時間が短縮される。初期合焦位置PF1から一定値E分下げた第二離隔位置PS2に戻ってからフォーカスオンを実施することで、メカ高さばらつきといった装置に起因する面振れ、並びに、感度及び回路でのゲインばらつきを最小限において考慮した最適な開始位置からのフォーカスオンが可能となる。特に、装置に起因する面振れ、並びに、感度及び回路でのゲインばらつきが小さい光ディスク装置について、効果が大きい。
なお、上限値X及び下限値Yは、光ピックアップの可動範囲や許容電流を超えない範囲内に制限されてもよい。
なお、上限値X及び下限値Yは、光ピックアップの可動範囲や許容電流を超えない範囲内に制限されてもよい。
(4)第二の例:
第一の例では製品設計パラメータを100%考慮して上限値X及び下限値Yを決定したが、実際の面振れや感度ばらつきはもう少し小さいと考えられる。そこで、第二の例では、1回目のフォーカスオン時にパラメータを100%考慮するのではなく、例えば、面振れや感度ばらつきをパラメータの半分程度と考えて上限値X及び下限値Yを算出してフォーカスオンを実施することにする。そのうえで、フォーカス制御を行うことができない場合にパラメータの考慮割合を増やして上限値X及び下限値Yを算出してリトライすることにする。
第一の例では製品設計パラメータを100%考慮して上限値X及び下限値Yを決定したが、実際の面振れや感度ばらつきはもう少し小さいと考えられる。そこで、第二の例では、1回目のフォーカスオン時にパラメータを100%考慮するのではなく、例えば、面振れや感度ばらつきをパラメータの半分程度と考えて上限値X及び下限値Yを算出してフォーカスオンを実施することにする。そのうえで、フォーカス制御を行うことができない場合にパラメータの考慮割合を増やして上限値X及び下限値Yを算出してリトライすることにする。
図4は、システムコントローラ20の第二の処理例を示している。本例は、第一の例のS108,S110,S114の代わりにS202,S204,S206の処理が行われる。図5(a),(b)は、各制御位置の関係の例を示している。図5(c)は、光ディスク装置100の動作例を示している。なお、第一の例と同様の箇所については、説明を省略する。第三の例以降についても、同様である。
S106において初期合焦位置PF1が検出された場合、システムコントローラ20は、第一終了位置PE1に対応する制御値である上限値X、及び、第二離隔位置PS2に対応する制御値である下限値Yを算出する(S202)。
上限値X=F+k・E[μm] …(4)
下限値Y=F−k・E[μm] …(5)
ここで、kは、0よりも大きく1以下の係数であり、1回目の処理時には1未満である。図4に示す係数kは、1回目の処理時に0.5に設定され、2回目の処理時に0.75に設定され、3回目の処理時に1.0に設定される。
上限値X=F+k・E[μm] …(4)
下限値Y=F−k・E[μm] …(5)
ここで、kは、0よりも大きく1以下の係数であり、1回目の処理時には1未満である。図4に示す係数kは、1回目の処理時に0.5に設定され、2回目の処理時に0.75に設定され、3回目の処理時に1.0に設定される。
フォーカスオン用の値X,Yが求まると、システムコントローラ20は、フォーカスアクチュエータ31を駆動して光ディスク1に対して第一離隔位置PS1(制御値min)よりも近い離隔位置(制御値Y=F−k・E)に対物レンズ33を戻す(S204)。1回目の処理時、対物レンズ33は、第二離隔位置PS2に戻される。2回目の処理時、対物レンズ33は、光ディスク1に対して第二離隔位置PS2よりも遠く第一離隔位置PS1よりも近い第三離隔位置PS3に戻される。2回目の処理が行われるのは、光ディスク1に対して第二離隔位置PS2に戻ってから光ディスク1を回転させている状態で対物レンズ33を接近させてフォーカス制御(S116)を行うことができなかった場合である。
S112で光ディスク1を回転させた後、システムコントローラ20は、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を離隔位置(制御値Y=F−k・E)から接近させてフォーカス制御を試みる(S206)。フォーカスオン失敗時、システムコントローラ20は、例えば、処理をS202に戻し、新たな係数kに基づいて上限値X及び下限値Yを算出してリトライを実施する。このようにして、システムコントローラ20は、光ディスク1に対して第二離隔位置PS2よりも遠く第一離隔位置PS1よりも近い第三離隔位置PS3に戻ってから対物レンズ33を接近させてフォーカス制御(S116)を試みる。
実際には、面振れが規格値の境界近くにある特殊な(質の良くない)メディアや、メカ面振れや感度ばらつきが境界近くにある特殊な(質の良くない)光ディスク装置でなければ、S206でフォーカスオンに成功する。従って、第二の例は、フォーカス制御(S116)を行うまでの時間をさらに短縮することができる。
図5(c)は、特殊なメディアや特殊な装置を用いた場合の光ディスク装置100の動作例を示している。この例は、1回目のフォーカスオン実施時にフォーカス制御を行うことができず、フォーカスオンの開始位置をPS2からPS3に変更した2回目のフォーカスオン実施時にフォーカス制御を行うことができた様子を示している。従って、特殊なメディアや特殊な装置を用いた場合であっても、フォーカス制御を行うことが可能である。
(5)第三の例:
第一の例では、フォーカスオン失敗の判定時を限界位置PL又は終了位置PE1に到達した時点にした。しかし、初期合焦位置PF1に到達してから光ディスクの最低1回転分、フォーカス制御を試みれば必ず対物レンズ33が合焦位置に到達しているはずである。そこで、第三の例では、対物レンズ33が初期合焦位置PF1に到達してから光ディスクの1回転分以上経過した時点でフォーカスオン失敗と判定し、リトライすることにする。
第一の例では、フォーカスオン失敗の判定時を限界位置PL又は終了位置PE1に到達した時点にした。しかし、初期合焦位置PF1に到達してから光ディスクの最低1回転分、フォーカス制御を試みれば必ず対物レンズ33が合焦位置に到達しているはずである。そこで、第三の例では、対物レンズ33が初期合焦位置PF1に到達してから光ディスクの1回転分以上経過した時点でフォーカスオン失敗と判定し、リトライすることにする。
図6は、システムコントローラ20の第三の処理例を示している。本例は、第一の例のS114の代わりにS302の処理が行われる。
S112で光ディスク1を回転させた後、システムコントローラ20は、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第二離隔位置PS2から接近させてフォーカス制御を試みる(S302)。ここで、対物レンズ33をデータ記録層41の合焦位置に追従させることができず光ディスク1に対して対物レンズ33が初期合焦位置PF1から光ディスク1の1回転分近い位置に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS110に戻し、リトライを実施する。なお、フォーカスオン失敗の判定時は、光ディスク1に対して対物レンズ33が初期合焦位置PF1から光ディスク1の2回転分近い位置に到達した場合等でもよい。限界位置PL及び終了位置PE1よりも光ディスク1から遠い位置であれば、フォーカスオン失敗の判定時は、光ディスク1に対して初期合焦位置PF1から1回転分以上近い位置でもよい。第三の例は、フォーカス制御を行うまでの時間をさらに短縮することができる。
S112で光ディスク1を回転させた後、システムコントローラ20は、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第二離隔位置PS2から接近させてフォーカス制御を試みる(S302)。ここで、対物レンズ33をデータ記録層41の合焦位置に追従させることができず光ディスク1に対して対物レンズ33が初期合焦位置PF1から光ディスク1の1回転分近い位置に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS110に戻し、リトライを実施する。なお、フォーカスオン失敗の判定時は、光ディスク1に対して対物レンズ33が初期合焦位置PF1から光ディスク1の2回転分近い位置に到達した場合等でもよい。限界位置PL及び終了位置PE1よりも光ディスク1から遠い位置であれば、フォーカスオン失敗の判定時は、光ディスク1に対して初期合焦位置PF1から1回転分以上近い位置でもよい。第三の例は、フォーカス制御を行うまでの時間をさらに短縮することができる。
(6)第四の例:
第一の例では、フォーカスサーチで取得したFE信号の最大振幅のS字カーブからフォーカスオンの駆動範囲を決定したが、FE信号の表面反射信号検出位置に基づいてフォーカスオンの駆動範囲を決定してもよい。図8(a)は、光ディスク1に対して対物レンズ33を近付けたときのFE信号の様子を示している。ディスク表面48からのデータ記録層41の深さTは、DVDの場合が0.6mm、CDの場合が1.2mm、BDのレイヤー(Layer)0の場合が0.1mmである。このパラメータTを用いて表面反射信号からおおよそのデータ記録層41の合焦位置を計算することができる。
第一の例では、フォーカスサーチで取得したFE信号の最大振幅のS字カーブからフォーカスオンの駆動範囲を決定したが、FE信号の表面反射信号検出位置に基づいてフォーカスオンの駆動範囲を決定してもよい。図8(a)は、光ディスク1に対して対物レンズ33を近付けたときのFE信号の様子を示している。ディスク表面48からのデータ記録層41の深さTは、DVDの場合が0.6mm、CDの場合が1.2mm、BDのレイヤー(Layer)0の場合が0.1mmである。このパラメータTを用いて表面反射信号からおおよそのデータ記録層41の合焦位置を計算することができる。
図8(b)に示す光ディスク1は、複数のデータ記録層41,42,43を有している。ここで、最もディスク表面48に近いデータ記録層41からの反射信号に基づくS字カーブが最大振幅となる仕様であるとする。にもかかわらず、データ記録層42,43のいずれかの層からの反射信号に基づくS字カーブが最大振幅となると、データ記録層42,43の合焦位置がデータ記録層41の合焦位置であると誤検出されてしまう。この場合、ディスク表面48の合焦位置に基づいてデータ記録層41の合焦位置を算出すると、フォーカスオンの適切な駆動範囲を決定することができる。
図7は、システムコントローラ20の第四の処理例を示している。本例は、第一の例のS106,S108の代わりにS402,S404の処理が行われる。初期合焦位置PF1は、ディスク表面48の合焦位置である。
S104でフォーカスサーチを行った後、システムコントローラ20は、初期合焦位置PF1(制御値F’)が検出されたか否かを判断する(S402)。初期合焦位置PF1が検出された場合、システムコントローラ20は、第一終了位置PE1に対応する制御値である上限値X、及び、第二離隔位置PS2に対応する制御値である下限値Yを算出する(S404)。データ記録層41の計算合焦位置は、制御値F’に対応する初期合焦位置PF1から距離T分、光ディスク1に近い位置(F’+T)となる。従って、上限値X及び下限値Yは、以下の式により求めることができる。
上限値X=F’+T+E[μm] …(6)
下限値Y=F’+T−E[μm] …(7)
S104でフォーカスサーチを行った後、システムコントローラ20は、初期合焦位置PF1(制御値F’)が検出されたか否かを判断する(S402)。初期合焦位置PF1が検出された場合、システムコントローラ20は、第一終了位置PE1に対応する制御値である上限値X、及び、第二離隔位置PS2に対応する制御値である下限値Yを算出する(S404)。データ記録層41の計算合焦位置は、制御値F’に対応する初期合焦位置PF1から距離T分、光ディスク1に近い位置(F’+T)となる。従って、上限値X及び下限値Yは、以下の式により求めることができる。
上限値X=F’+T+E[μm] …(6)
下限値Y=F’+T−E[μm] …(7)
フォーカスオン用の値X,Yが求まると、システムコントローラ20は、光ディスク1に対して第一離隔位置PS1(制御値min)よりも近い第二離隔位置PS2(制御値Y=F’+T−E)に対物レンズ33を戻す(S110)。S112では、スピンドルモータ2を駆動して光ディスク1を回転させる。S114では、光ディスク1に対して対物レンズ33を第二離隔位置PS2から接近させてフォーカス制御を試みる。このようにして、システムコントローラ20は、光ディスク1に対して初期合焦位置PF1から深さTの分近い計算合焦位置(F’+T)よりも遠い第二離隔位置PS2に戻ってから光ディスク1を回転させている状態で対物レンズ33を接近させてフォーカス制御(S116)を行う。
第四の例は、フォーカス制御(S116)を行うまでの時間を短縮する好適な例を提供することができる。特に、複数のデータ記録層を有する光ディスク1に対してフォーカス制御(S116)を行う場合に好適である。
第四の例は、フォーカス制御(S116)を行うまでの時間を短縮する好適な例を提供することができる。特に、複数のデータ記録層を有する光ディスク1に対してフォーカス制御(S116)を行う場合に好適である。
(7)第五の例:
第一の例では、S120のサーボ復帰処理として、S114のフォーカスオン処理と同様の処理を行った。フォーカスオンの駆動範囲はサーボ復帰の場合も適用することができるので、サーボ復帰の半径位置によって上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図9及び図10(a),(b)に示す第五の例では、光ディスク1の半径方向DT1において光ピックアップ3の最外周位置Dmax=60mmに対する光ピックアップ3の現在位置Dnowの比Dnow/Dmaxに応じた面振れ最大値E’を用いることにしている。位置Dmax,Dnowは、光ディスク1の回転軸からの距離である。従って、Dmaxは光ディスク1の回転軸から光ピックアップ3の最外周位置までの距離であり、Dnowは光ディスク1の回転軸から光ピックアップ3の現在位置までの距離である。
第一の例では、S120のサーボ復帰処理として、S114のフォーカスオン処理と同様の処理を行った。フォーカスオンの駆動範囲はサーボ復帰の場合も適用することができるので、サーボ復帰の半径位置によって上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図9及び図10(a),(b)に示す第五の例では、光ディスク1の半径方向DT1において光ピックアップ3の最外周位置Dmax=60mmに対する光ピックアップ3の現在位置Dnowの比Dnow/Dmaxに応じた面振れ最大値E’を用いることにしている。位置Dmax,Dnowは、光ディスク1の回転軸からの距離である。従って、Dmaxは光ディスク1の回転軸から光ピックアップ3の最外周位置までの距離であり、Dnowは光ディスク1の回転軸から光ピックアップ3の現在位置までの距離である。
図9は、システムコントローラ20の第五の処理例を示している。本例のサーボ復帰処理は、第一の例のS120で行われ、光ディスク1を回転させている途中で行うことができなくなったフォーカス制御(S116)を再び試みる場合に行われる。第六の例以降も、同様である。図10(a)は、半径位置と面振れ量との関係例を模式的に示している。図10(b)は各制御位置の関係の例を示している。
サーボ復帰処理を開始すると、システムコントローラ20は、光ディスク1の半径方向DT1における光ピックアップ3の現在位置Dnowを取得する(S502)。S504では、第二終了位置PE2に対応する制御値である上限値X’、及び、第四離隔位置PS4に対応する制御値である下限値Y’を算出する。
まず、現在位置Dnowにおける面振れ最大値E’は、以下の式で表される。
E’={(A+B)×(Dnow/Dmax)}×10(C/20)[μm] …(8)
最外周位置Dmaxは、例えば、60mmである。現在位置Dnowがリゼロ位置最大値Dよりも小さいので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’を用いて以下の式で決めることができる。
上限値X’=F+E’[μm] …(9)
下限値Y’=F−E’[μm] …(10)
まず、現在位置Dnowにおける面振れ最大値E’は、以下の式で表される。
E’={(A+B)×(Dnow/Dmax)}×10(C/20)[μm] …(8)
最外周位置Dmaxは、例えば、60mmである。現在位置Dnowがリゼロ位置最大値Dよりも小さいので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’を用いて以下の式で決めることができる。
上限値X’=F+E’[μm] …(9)
下限値Y’=F−E’[μm] …(10)
フォーカスオン用の値X’,Y’が求まると、システムコントローラ20は、フォーカスアクチュエータ31を駆動して光ディスク1に対して第二離隔位置PS2(制御値Y=F−E)よりも近い第四離隔位置PS4(制御値Y’=F−E’)に対物レンズ33を戻す(S506)。S508では、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第四離隔位置PS4から接近させてフォーカス制御を試みる。対物レンズ33をデータ記録層41の合焦位置に追従させることができずに対物レンズ33が限界位置PL又は第二終了位置PE2に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS506に戻し、リトライを実施する。このようにして、システムコントローラ20は、比Dnow/Dmaxに応じて光ディスク1に対して第二離隔位置PS2よりも近くした位置PS4に戻ってから対物レンズ33を接近させてフォーカス制御(S116)を試みる。
以上より、第五の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
以上より、第五の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
(8)第六の例:
また、サーボ復帰の場合は、フォーカスサーボオン時にフォーカスアクチュエータ31の駆動信号から取得することができる低域信号のレベルによって面振れ量が分かる。フォーカスアクチュエータ31の駆動信号は、フォーカス方向における対物レンズ33の位置を表す信号である。この駆動信号から得られる面振れ量を用いて上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図10(c)及び図11に示す第六の例では、光ディスク1の半径方向DT1における光ピックアップ3の現在位置Dnowにおける光ディスク1の面振れ量(A+B)nowを取得することにしている。
また、サーボ復帰の場合は、フォーカスサーボオン時にフォーカスアクチュエータ31の駆動信号から取得することができる低域信号のレベルによって面振れ量が分かる。フォーカスアクチュエータ31の駆動信号は、フォーカス方向における対物レンズ33の位置を表す信号である。この駆動信号から得られる面振れ量を用いて上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図10(c)及び図11に示す第六の例では、光ディスク1の半径方向DT1における光ピックアップ3の現在位置Dnowにおける光ディスク1の面振れ量(A+B)nowを取得することにしている。
図11は、システムコントローラ20の第六の処理例を示している。この処理が行われる前提として、S116(図2参照)のフォーカス制御処理中にフォーカスアクチュエータ31の駆動信号から現在面振れ量(A+B)nowが繰り返し求められているものとする。図10(c)は各制御位置の関係の例を示している。
サーボ復帰処理を開始すると、システムコントローラ20は、フォーカス制御処理中に求めた現在面振れ量(A+B)nowを取得する(S602)。S604では、第三終了位置PE3に対応する制御値である上限値X’、及び、第五離隔位置PS5に対応する制御値である下限値Y’を算出する。
まず、現在面振れ量(A+B)nowを用いた面振れ最大値E’は、以下の式で表される。
E’=(A+B)now×10(C/20)[μm] …(11)
現在面振れ量(A+B)nowが分かっているので、面振れ最大値E’を求めるために現在半径位置Dnowを用いる必要が無い。現在面振れ量(A+B)nowが実測値であるので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’を用いて以下の式で決めることができる。
上限値X’=F+E’[μm] …(12)
下限値Y’=F−E’[μm] …(13)
まず、現在面振れ量(A+B)nowを用いた面振れ最大値E’は、以下の式で表される。
E’=(A+B)now×10(C/20)[μm] …(11)
現在面振れ量(A+B)nowが分かっているので、面振れ最大値E’を求めるために現在半径位置Dnowを用いる必要が無い。現在面振れ量(A+B)nowが実測値であるので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’を用いて以下の式で決めることができる。
上限値X’=F+E’[μm] …(12)
下限値Y’=F−E’[μm] …(13)
フォーカスオン用の値X’,Y’が求まると、システムコントローラ20は、フォーカスアクチュエータ31を駆動して光ディスク1に対して第二離隔位置PS2(制御値Y=F−E)よりも近い第五離隔位置PS5(制御値Y’=F−E’)に対物レンズ33を戻す(S606)。S608では、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第五離隔位置PS5から接近させてフォーカス制御を試みる。対物レンズ33をデータ記録層41の合焦位置に追従させることができずに対物レンズ33が限界位置PL又は第三終了位置PE3に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS606に戻し、リトライを実施する。このようにして、システムコントローラ20は、現在面振れ量(A+B)nowに応じた位置PS5に戻ってから前記対物レンズ33を接近させて前記フォーカス制御(S116)を試みる。
以上より、第六の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
以上より、第六の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
(9)第七の例:
さらに、現在面振れ量(A+B)nowが分からなくても、光ピックアップ3の最外周位置Dmaxにおける光ディスク1の面振れ量(A+B)maxと現在半径位置Dnowが分かれば現在面振れ量(A+B)nowを計算することができる。そこで、最外周面振れ量(A+B)maxと現在半径位置Dnowを用いて上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図12に示す第七の例では、最外周面振れ量(A+B)maxを取得することにしている。
さらに、現在面振れ量(A+B)nowが分からなくても、光ピックアップ3の最外周位置Dmaxにおける光ディスク1の面振れ量(A+B)maxと現在半径位置Dnowが分かれば現在面振れ量(A+B)nowを計算することができる。そこで、最外周面振れ量(A+B)maxと現在半径位置Dnowを用いて上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図12に示す第七の例では、最外周面振れ量(A+B)maxを取得することにしている。
図12は、システムコントローラ20の第七の処理例を示している。この処理が行われる前提として、S116(図2参照)の最初のフォーカス制御処理時にフォーカスアクチュエータ31の駆動信号から最外周位置Dmaxにおける最外周面振れ量(A+B)maxが求められるものとする。
サーボ復帰処理を開始すると、システムコントローラ20は、フォーカス制御処理中に求めた最外周面振れ量(A+B)maxを取得する(S702)。S704では、光ディスク1の半径方向DT1における光ピックアップ3の現在位置Dnowを取得する。S706では、第四終了位置PE4に対応する制御値である上限値X’、及び、第六離隔位置PS6に対応する制御値である下限値Y’を算出する。
まず、最外周面振れ量(A+B)maxと現在位置Dnowを用いた面振れ最大値E’は、以下の式で表される。
E’={(A+B)max×(Dnow/Dmax)}×10(C/20)[μm] …(14)
最外周位置Dmaxは、例えば、60mmである。最外周面振れ量(A+B)maxが実測値であり、現在位置Dnowがリゼロ位置最大値Dよりも小さいので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’を用いて以下の式で決めることができる。
上限値X’=F+E’[μm] …(15)
下限値Y’=F−E’[μm] …(16)
まず、最外周面振れ量(A+B)maxと現在位置Dnowを用いた面振れ最大値E’は、以下の式で表される。
E’={(A+B)max×(Dnow/Dmax)}×10(C/20)[μm] …(14)
最外周位置Dmaxは、例えば、60mmである。最外周面振れ量(A+B)maxが実測値であり、現在位置Dnowがリゼロ位置最大値Dよりも小さいので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’を用いて以下の式で決めることができる。
上限値X’=F+E’[μm] …(15)
下限値Y’=F−E’[μm] …(16)
フォーカスオン用の値X’,Y’が求まると、システムコントローラ20は、フォーカスアクチュエータ31を駆動して光ディスク1に対して第二離隔位置PS2(制御値Y=F−E)よりも近い第六離隔位置PS6(制御値Y’=F−E’)に対物レンズ33を戻す(S708)。S710では、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第六離隔位置PS6から接近させてフォーカス制御を試みる。対物レンズ33をデータ記録層41の合焦位置に追従させることができずに対物レンズ33が限界位置PL又は第四終了位置PE4に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS708に戻し、リトライを実施する。このようにして、システムコントローラ20は、比Dnow/Dmaxと最外周面振れ量(A+B)maxとの乗算値に応じた位置PS6に戻ってから対物レンズ33を接近させてフォーカス制御(S116)を試みる。
以上より、第七の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
以上より、第七の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
(10)第八の例:
さらに、フォーカスサーボオン時にフォーカスアクチュエータ31の駆動信号から取得することができるフォーカス駆動平均値によってデータ記録層41の合焦位置の平均値が分かる。この合焦位置平均値を用いて上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図13に示す第八の例では、フォーカス制御(S116)を行っている最中にデータ記録層41の平均合焦位置Faveを取得することにしている。
さらに、フォーカスサーボオン時にフォーカスアクチュエータ31の駆動信号から取得することができるフォーカス駆動平均値によってデータ記録層41の合焦位置の平均値が分かる。この合焦位置平均値を用いて上記式(1)〜(3)を変えることにより、より適正なフォーカス駆動範囲でフォーカスオンが可能となる。そこで、図13に示す第八の例では、フォーカス制御(S116)を行っている最中にデータ記録層41の平均合焦位置Faveを取得することにしている。
図13は、システムコントローラ20の第八の処理例を示している。この処理が行われる前提として、S116(図2参照)のフォーカス制御処理中にフォーカスアクチュエータ31の駆動信号からデータ記録層41の平均合焦位置Faveが求められているものとする。
サーボ復帰処理を開始すると、システムコントローラ20は、フォーカス制御処理中に求めた平均合焦位置Faveを取得する(S802)。S804では、第五終了位置PE5に対応する制御値である上限値X’、及び、第七離隔位置PS7に対応する制御値である下限値Y’を算出する。
上限値X’=Fave+E[μm] …(17)
下限値Y’=Fave−E[μm] …(18)
上限値X’=Fave+E[μm] …(17)
下限値Y’=Fave−E[μm] …(18)
フォーカスオン用の値X’,Y’が求まると、システムコントローラ20は、フォーカスアクチュエータ31を駆動して第七離隔位置PS7(制御値Y’=Fave−E)に対物レンズ33を戻す(S806)。S808では、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第七離隔位置PS7から接近させてフォーカス制御を試みる。対物レンズ33をデータ記録層41の合焦位置に追従させることができずに対物レンズ33が限界位置PL又は第五終了位置PE5に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS806に戻し、リトライを実施する。このようにして、システムコントローラ20は、光ディスク1に対して平均合焦位置Faveよりも所定距離E遠い位置PS7に戻ってから対物レンズ33を接近させてフォーカス制御(S116)を試みる。
以上より、第八の例は、より適正なサーボ復帰処理(S120)の例を提供することができる。
以上より、第八の例は、より適正なサーボ復帰処理(S120)の例を提供することができる。
(11)第九の例:
上述した各例は、適宜、組合せ可能である。例えば、第五の例と第七の例と第八の例を全てのサーボ復帰を考慮すると、さらに適正なフォーカス駆動範囲でフォーカスオンが可能となる。
図14は、システムコントローラ20の第九の処理例を示している。この処理が行われる前提として、S116(図2参照)の最初のフォーカス制御処理時にフォーカスアクチュエータ31の駆動信号から最外周位置Dmaxにおける最外周面振れ量(A+B)maxが求められるものとする。また、S116のフォーカス制御処理中にフォーカスアクチュエータ31の駆動信号からデータ記録層41の平均合焦位置Faveが求められているものとする。
上述した各例は、適宜、組合せ可能である。例えば、第五の例と第七の例と第八の例を全てのサーボ復帰を考慮すると、さらに適正なフォーカス駆動範囲でフォーカスオンが可能となる。
図14は、システムコントローラ20の第九の処理例を示している。この処理が行われる前提として、S116(図2参照)の最初のフォーカス制御処理時にフォーカスアクチュエータ31の駆動信号から最外周位置Dmaxにおける最外周面振れ量(A+B)maxが求められるものとする。また、S116のフォーカス制御処理中にフォーカスアクチュエータ31の駆動信号からデータ記録層41の平均合焦位置Faveが求められているものとする。
サーボ復帰処理を開始すると、システムコントローラ20は、フォーカス制御処理中に求めた最外周面振れ量(A+B)maxを取得する(S902)。S904では、光ディスク1の半径方向DT1における光ピックアップ3の現在位置Dnowを取得する。S906では、フォーカス制御処理中に求めた平均合焦位置Faveを取得する。S908では、第六終了位置PE6に対応する制御値である上限値X’、及び、第八離隔位置PS8に対応する制御値である下限値Y’を算出する。
まず、最外周面振れ量(A+B)maxと現在位置Dnowを用いた面振れ最大値E’は、以下の式で表される。
E’={(A+B)max×(Dnow/Dmax)}×10(C/20)[μm] …(19)
最外周位置Dmaxは、例えば、60mmである。最外周面振れ量(A+B)maxが実測値であり、現在位置Dnowがリゼロ位置最大値Dよりも小さいので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’と平均合焦位置Faveを用いて以下の式で決めることができる。
上限値X’=Fave+E’[μm] …(20)
下限値Y’=Fave−E’[μm] …(21)
まず、最外周面振れ量(A+B)maxと現在位置Dnowを用いた面振れ最大値E’は、以下の式で表される。
E’={(A+B)max×(Dnow/Dmax)}×10(C/20)[μm] …(19)
最外周位置Dmaxは、例えば、60mmである。最外周面振れ量(A+B)maxが実測値であり、現在位置Dnowがリゼロ位置最大値Dよりも小さいので、E’<Eとなる。サーボ復帰のフォーカスオン時の値X’,Y’は、面振れ最大値E’と平均合焦位置Faveを用いて以下の式で決めることができる。
上限値X’=Fave+E’[μm] …(20)
下限値Y’=Fave−E’[μm] …(21)
フォーカスオン用の値X’,Y’が求まると、システムコントローラ20は、フォーカスアクチュエータ31を駆動して光ディスク1に対して第二離隔位置PS2(制御値Y=F−E)よりも近い第八離隔位置PS8(制御値Y’=Fave−E’)に対物レンズ33を戻す(S910)。S912では、光ディスク1を回転させている状態でフォーカスアクチュエータ31を駆動して光ディスク1に対して対物レンズ33を第八離隔位置PS8から接近させてフォーカス制御を試みる。対物レンズ33をデータ記録層41の合焦位置に追従させることができずに対物レンズ33が限界位置PL又は第六終了位置PE6に到達した場合、フォーカスオン失敗として、システムコントローラ20は、例えば、処理をS910に戻し、リトライを実施する。このようにして、システムコントローラ20は、光ディスク1に対して平均合焦位置Faveよりも所定距離E’遠い位置PS8に戻ってから対物レンズ33を接近させてフォーカス制御(S116)を試みる。
以上より、第九の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
以上より、第九の例は、サーボ復帰処理時のフォーカスアクチュエータ31の駆動範囲が少なくなるので、サーボ復帰の時間を短縮することができる。
(12)その他変形例:
上述した処理の各ステップの順番は、適宜、変更可能である。例えば、図2等の処理において、対物レンズ33を第二離隔位置PS2に戻るS110の処理の前にS112の光ディスク回転駆動処理を行ってもよい。
上述した処理の各ステップの順番は、適宜、変更可能である。例えば、図2等の処理において、対物レンズ33を第二離隔位置PS2に戻るS110の処理の前にS112の光ディスク回転駆動処理を行ってもよい。
(13)結び:
以上説明したように、本発明によると、種々の態様により、フォーカス制御を行うまでの時間を短縮する技術等を提供することができる。むろん、独立請求項に係る構成要件のみからなる技術等でも、上述した基本的な作用、効果が得られる。
以上説明したように、本発明によると、種々の態様により、フォーカス制御を行うまでの時間を短縮する技術等を提供することができる。むろん、独立請求項に係る構成要件のみからなる技術等でも、上述した基本的な作用、効果が得られる。
また、本発明は、前記実施例に限られない。当業者であれば言うまでもないことであるが、
・前記実施例の中で開示した相互に置換可能な部材及び構成等を置換して適用すること
・前記実施例の中で開示されていないが、公知技術であって前記実施例の中で開示した部材及び構成等と相互に置換可能な部材及び構成等に置換すること
・前記実施例の中で開示されていないが、公知技術等に基づいて当業者が前記実施例の中で開示した部材及び構成等の代用として想定し得る部材及び構成等に置換すること
は、いずれも実施可能である。これらの置換した態様も、本発明に含まれる。
・前記実施例の中で開示した相互に置換可能な部材及び構成等を置換して適用すること
・前記実施例の中で開示されていないが、公知技術であって前記実施例の中で開示した部材及び構成等と相互に置換可能な部材及び構成等に置換すること
・前記実施例の中で開示されていないが、公知技術等に基づいて当業者が前記実施例の中で開示した部材及び構成等の代用として想定し得る部材及び構成等に置換すること
は、いずれも実施可能である。これらの置換した態様も、本発明に含まれる。
1…光ディスク、2…スピンドルモータ、3…光ピックアップ(OPU)、
4…スレッド、12…フォーカスエラー検出回路、16…フォーカスドライブ回路、
17…トラッキングドライブ回路、18…スレッドドライブ回路、
19…スピンドルドライブ回路、20…システムコントローラ(制御手段)、
20a…初期合焦位置検出手段、20b…フォーカス制御手段、
30…スレッドモータ、31…フォーカスアクチュエータ、33…対物レンズ、
41〜43…データ記録層、48…ディスク表面、80…光線、
100…光ディスク装置、
DF1…フォーカス方向、DF2…接近方向、DF3…離隔方向、DT1…半径方向、
PE1〜PE6…終了位置、PL…限界位置、PF1…初期合焦位置、
PS1〜PS8…離隔位置。
4…スレッド、12…フォーカスエラー検出回路、16…フォーカスドライブ回路、
17…トラッキングドライブ回路、18…スレッドドライブ回路、
19…スピンドルドライブ回路、20…システムコントローラ(制御手段)、
20a…初期合焦位置検出手段、20b…フォーカス制御手段、
30…スレッドモータ、31…フォーカスアクチュエータ、33…対物レンズ、
41〜43…データ記録層、48…ディスク表面、80…光線、
100…光ディスク装置、
DF1…フォーカス方向、DF2…接近方向、DF3…離隔方向、DT1…半径方向、
PE1〜PE6…終了位置、PL…限界位置、PF1…初期合焦位置、
PS1〜PS8…離隔位置。
Claims (11)
- データ記録層を有する光ディスクを回転させるスピンドルモータと、
前記光ディスクに光線を集束する対物レンズを有する光ピックアップと、
前記対物レンズを前記データ記録層に対して接近及び離隔させるフォーカス方向へ移動させるアクチュエータと、
前記光ディスクの回転を停止させた状態で前記光ディスクに対して合焦位置よりも遠い第一離隔位置から前記対物レンズを接近させて初期合焦位置を検出する初期合焦位置検出手段と、
前記光ディスクに対して前記第一離隔位置よりも近い第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行うフォーカス制御手段と、を備えた光ディスク装置。 - 前記初期合焦位置は、前記データ記録層の合焦位置であり、
前記第二離隔位置は、前記光ディスクに対して前記初期合焦位置から所定距離遠い位置である、請求項1に記載の光ディスク装置。 - 前記初期合焦位置は、前記データ記録層の合焦位置であり、
前記フォーカス制御手段は、前記光ディスクに対して前記第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記フォーカス制御を行うことができずに前記初期合焦位置から所定距離近い位置に到達した場合、前記光ディスクに対して前記初期合焦位置よりも遠い位置に戻ってから前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、請求項1又は請求項2に記載の光ディスク装置。 - 前記フォーカス制御手段は、前記光ディスクに対して前記第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記フォーカス制御を行うことができなかった場合、前記光ディスクに対して前記第二離隔位置よりも遠く前記第一離隔位置よりも近い第三離隔位置に戻ってから前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、請求項1〜請求項3のいずれか一項に記載の光ディスク装置。
- 前記フォーカス制御手段は、前記光ディスクに対して前記第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記フォーカス制御を行うことができずに前記初期合焦位置から前記光ディスクの1回転分以上近い位置に到達した場合、前記光ディスクに対して前記初期合焦位置よりも遠い位置に戻ってから前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、請求項1又は請求項2に記載の光ディスク装置。
- 前記初期合焦位置は、前記光ディスクのディスク表面の合焦位置であり、
前記光ディスクにおいて表面からの前記データ記録層の深さをTとして、前記フォーカス制御手段は、前記光ディスクに対して前記初期合焦位置から前記深さTの分近い計算合焦位置よりも遠い前記第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記フォーカス制御を行う、請求項1に記載の光ディスク装置。 - 前記フォーカス制御手段は、前記光ディスクを回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスクの半径方向において前記光ピックアップの最外周位置Dmaxに対する前記光ピックアップの現在位置Dnowの比Dnow/Dmaxに応じて前記光ディスクに対して前記第二離隔位置よりも近くした位置に戻ってから前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、請求項1〜請求項6のいずれか一項に記載の光ディスク装置。
- 前記フォーカス制御手段は、前記光ディスクの半径方向における前記光ピックアップの現在位置における前記光ディスクの面振れ量を取得し、前記光ディスクを回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記面振れ量に応じた位置に戻ってから前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、請求項1〜請求項7のいずれか一項に記載の光ディスク装置。
- 前記フォーカス制御手段は、前記光ピックアップの最外周位置における前記光ディスクの面振れ量を取得し、前記光ディスクを回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスクの半径方向において前記光ピックアップの最外周位置Dmaxに対する前記光ピックアップの現在位置Dnowの比Dnow/Dmaxと前記面振れ量との乗算値に応じた位置に戻ってから前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、請求項1〜請求項8のいずれか一項に記載の光ディスク装置。
- 前記フォーカス制御手段は、前記フォーカス制御を行っている最中に前記データ記録層の平均合焦位置を取得し、前記光ディスクを回転させている途中で前記フォーカス制御を行うことができなくなった場合、前記光ディスクに対して前記平均合焦位置よりも所定距離遠い位置に戻ってから前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、請求項1〜請求項8のいずれか一項に記載の光ディスク装置。
- データ記録層を有する光ディスクを回転させるスピンドルモータと、前記光ディスクに光線を集束する対物レンズを有する光ピックアップと、前記対物レンズを前記データ記録層に対して接近及び離隔させるフォーカス方向へ移動させるアクチュエータと、を備えた光ディスク装置のフォーカス制御方法であって、
前記光ディスクの回転を停止させた状態で前記光ディスクに対して合焦位置よりも遠い第一離隔位置から前記対物レンズを接近させて初期合焦位置を検出し、前記光ディスクに対して前記第一離隔位置よりも近い第二離隔位置に戻ってから前記光ディスクを回転させている状態で前記対物レンズを接近させて前記データ記録層の合焦位置に追従するフォーカス制御を行う、光ディスク装置のフォーカス制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013226646A JP2015088205A (ja) | 2013-10-31 | 2013-10-31 | 光ディスク装置、及び、そのフォーカス制御方法 |
US14/513,217 US9082420B2 (en) | 2013-10-31 | 2014-10-14 | Optical disc device and focus control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013226646A JP2015088205A (ja) | 2013-10-31 | 2013-10-31 | 光ディスク装置、及び、そのフォーカス制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015088205A true JP2015088205A (ja) | 2015-05-07 |
Family
ID=52997014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013226646A Pending JP2015088205A (ja) | 2013-10-31 | 2013-10-31 | 光ディスク装置、及び、そのフォーカス制御方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9082420B2 (ja) |
JP (1) | JP2015088205A (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06290466A (ja) * | 1993-04-02 | 1994-10-18 | Sony Corp | フォーカスサーボ装置 |
US5745450A (en) * | 1993-04-02 | 1998-04-28 | Sony Corporation | Focusing servo system and focus servo acquisition enable with multiple velocity acquisition modes |
JP2004039002A (ja) * | 2002-06-28 | 2004-02-05 | Matsushita Electric Ind Co Ltd | 光ディスク装置、並びに、ピックアップ制御装置および方法 |
JP2005025813A (ja) * | 2003-06-30 | 2005-01-27 | Funai Electric Co Ltd | 光ディスク装置 |
JP2007026580A (ja) * | 2005-07-20 | 2007-02-01 | Victor Co Of Japan Ltd | 光ディスク装置 |
JP2008108389A (ja) * | 2006-10-27 | 2008-05-08 | Hitachi-Lg Data Storage Inc | 光ディスク装置およびフォーカス制御方法 |
JP2009146537A (ja) * | 2007-12-17 | 2009-07-02 | Kenwood Corp | データ読取装置、焦点距離の再調整方法およびプログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4520965B2 (ja) | 2006-07-12 | 2010-08-11 | パイオニア株式会社 | 光ディスク再生装置、光ディスク再生方法、光ディスク再生プログラムおよび記録媒体 |
JP4497155B2 (ja) | 2006-12-07 | 2010-07-07 | 株式会社日立製作所 | 光ディスク装置およびフォーカス引き込み方法 |
-
2013
- 2013-10-31 JP JP2013226646A patent/JP2015088205A/ja active Pending
-
2014
- 2014-10-14 US US14/513,217 patent/US9082420B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06290466A (ja) * | 1993-04-02 | 1994-10-18 | Sony Corp | フォーカスサーボ装置 |
US5745450A (en) * | 1993-04-02 | 1998-04-28 | Sony Corporation | Focusing servo system and focus servo acquisition enable with multiple velocity acquisition modes |
JP2004039002A (ja) * | 2002-06-28 | 2004-02-05 | Matsushita Electric Ind Co Ltd | 光ディスク装置、並びに、ピックアップ制御装置および方法 |
JP2005025813A (ja) * | 2003-06-30 | 2005-01-27 | Funai Electric Co Ltd | 光ディスク装置 |
JP2007026580A (ja) * | 2005-07-20 | 2007-02-01 | Victor Co Of Japan Ltd | 光ディスク装置 |
JP2008108389A (ja) * | 2006-10-27 | 2008-05-08 | Hitachi-Lg Data Storage Inc | 光ディスク装置およびフォーカス制御方法 |
JP2009146537A (ja) * | 2007-12-17 | 2009-07-02 | Kenwood Corp | データ読取装置、焦点距離の再調整方法およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
US9082420B2 (en) | 2015-07-14 |
US20150121404A1 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7586816B2 (en) | Playback apparatus and layer jump method | |
JP3589347B2 (ja) | 光ディスク装置 | |
EP1331632A1 (en) | Focus control device and focus control method | |
JP2015088205A (ja) | 光ディスク装置、及び、そのフォーカス制御方法 | |
US20080089193A1 (en) | Apparatus and method for controlling focus jump between recording layers in high-density multi-layer disk | |
JP2008108389A (ja) | 光ディスク装置およびフォーカス制御方法 | |
JP2012169019A (ja) | 光ディスク装置 | |
JP5338855B2 (ja) | 光ディスク装置 | |
JP5310789B2 (ja) | 光ディスク装置 | |
JP2005203018A (ja) | ディスク装置 | |
JP5392299B2 (ja) | 光ディスク装置 | |
US7800991B2 (en) | Optical disk device | |
JP5397395B2 (ja) | 光ディスク装置 | |
JP2008269750A (ja) | 光ディスク装置 | |
JP2008234698A (ja) | 光ディスク再生装置 | |
JP2009277283A (ja) | 光ディスク装置 | |
JP2007200405A (ja) | 光ディスク装置 | |
JP2012243342A (ja) | 光ディスク駆動装置 | |
JP2009129509A (ja) | 光ディスク装置 | |
JP2001325734A (ja) | 光ディスク再生装置 | |
JP2009163832A (ja) | 光ディスク装置、レンズ位置制御方法、およびプログラム | |
JP2008269664A (ja) | 光ディスク駆動装置、フォーカスサーボ制御方法、プログラム | |
JP2002056547A (ja) | ディスク再生装置のトラッキングサーボ制御方法 | |
JP2016021270A (ja) | 光ディスク装置、及び、そのゲイン調整方法 | |
JP2013069385A (ja) | 光ディスク装置及びフォーカス制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170718 |