本発明の燃料電池用膜電極接合体は、電解質材料と、触媒金属を担持させていない固体材料と、触媒担体および前記触媒担体に担持される触媒金属からなる触媒と、を含み、前記固体材料の含有量は、前記触媒担体と前記固体材料との合計重量に対して25重量%以上である。
本発明者らは、上記特許文献1に記載の構成を有する触媒層においては、触媒と電解質材料が接触することにより電解質材料が劣化し、触媒層のイオン伝導性が低下することを見出した。これに対して、本発明者らは、電解質材料と触媒の他に、触媒金属を担持させていない固体材料を混合した触媒層を使用することにより、イオン伝導性が向上することを見出した。
本発明によれば、触媒金属を担持させていない固体材料は、触媒金属との接触によって分解されにくいため、電解質の腐食が抑制されイオン伝導性が向上する。このため、本発明の膜電極接合体はイオン伝導性に優れ、該膜電極接合体を用いた本発明の燃料電池は発電性能に優れる。
以下、適宜図面を参照しながら、本発明の膜電極接合体の一実施形態、およびこれを使用した燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態を、図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
また、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で測定する。
なお、本明細書中では、半径が1nm未満の空孔を「ミクロ孔」とも称する。また、本明細書中では、半径1nm以上の空孔を「メソ孔」とも称する。
[燃料電池]
燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータと、を有する。本形態の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
本発明の膜電極接合体は、アノード触媒層3aおよびカソード触媒層3cの少なくとも一方が、本発明に係る触媒層を有する。本発明に係る触媒層は、アノード側に設けてもよいし、カソード側に設けてもよいし、カソード側およびアノード側双方に設けてもよいなど、特に制限されるものではない。
上記のような、本発明のMEAを有する燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜−電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。
以下、本形態の燃料電池を構成する部材について簡単に説明するが、本発明の技術的範囲は下記の形態のみに制限されない。
[触媒層]
本発明の膜電極接合体は、電解質材料、触媒金属を担持させていない固体材料、および触媒担体および前記触媒担体に担持される触媒金属からなる触媒が混合されてなる触媒層を、電解質膜上に有する。固体材料の含有量は、前記触媒担体と前記固体材料との合計重量に対して25重量%以上であり、好ましくは35重量%以上であり、より好ましくは50重量%以上である。固体材料の含有量が25重量%より少ないと十分なプロトン伝導性向上の効果が得られないことから好ましくない。また、固体材料の含有量の上限値は特に制限されないが、90重量%以下であることが好ましく、より好ましくは75重量%以下、さらに好ましくは60重量%以下である。固体材料の含有量が90重量%より多いと触媒の含有量が少なくなり十分な出力が得られない場合がある。
(電解質材料)
電解質材料は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。
当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。
フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、Nafion(登録商標、Dupont社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン−g−スチレンスルホン酸系ポリマー、エチレン−テトラフルオロエチレン共重合体、ポリビニリデンフルオリド−パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S−PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S−PEEK)、スルホン化ポリフェニレン(S−PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
プロトンの伝達を担う電解質においては、プロトンの伝導度が重要となる。ここで、電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい電解質材料を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の電解質材料を含み、より好ましくは1200g/eq.以下の電解質材料を含み、特に好ましくは1000g/eq.以下の電解質材料を含む。
一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる場合がある。かような観点から、電解質材料のEWは500以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。
(固体材料)
固体材料の材質は、特に制限されないが、酸化還元反応(電子伝導性)を損なうことなく発電性能の向上を達成できるという観点から電子伝導体であることが好ましい。好ましくは、主成分がカーボンである。具体的には、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)、活性炭などからなるカーボン粒子が挙げられる。「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2〜3重量%程度以下の不純物の混入が許容されうることを意味する。
プロトン輸送抵抗を十分に下げるという観点から、グラファイト化ケッチェンブラックが好ましい。
上記カーボンの他、Sn(錫)やTi(チタン)などの多孔質金属、さらには導電性を有する金属酸化物、例えば、RuO2、TiO2なども固体材料として好ましく使用できる。このような金属酸化物を用いることにより、固体材料の腐食が低減され、膜電極接合体の耐久性がより向上する。
固体材料のBET比表面積は、1300m2/g固体材料未満であることが好ましく、750m2/g固体材料以下であることがより好ましい。上記したような比表面積の範囲であれば、触媒層のプロトン輸送抵抗を低減することができる。なお、固体材料のBET比表面積の下限値は特に制限されないが、4m2/g固体材料以上であることが好ましく、19m2/g固体材料以上であることが好ましい。
固体材料の平均粒径は1〜10μmであることが好ましい。かような範囲であれば、固体材料の機械的強度が維持され、かつ、触媒層の厚みを適切な範囲で制御することができる。「固体材料の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
なお、固体材料としては、必ずしも上記したような粒状の多孔質担体を用いる必要はない。すなわち、固体材料として、非多孔質の導電性担体やガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなども挙げられる。
上記したような比表面積を有する固体材料の製造方法は、特に制限されないが、通常、国際公開第2010/126119号などに記載される方法が好ましく使用される。
本発明の固体材料はその表面に酸性基を有してもよい。酸性基とは、特に限定されないが、ヒドロキシル基、ラクトン基、カルボキシル基などを意味する。酸性基の量としては、0.3mmol/g固体材料未満であることが好ましく、より好ましくは0.2mmol/g固体材料未満であり、さらに好ましくは0.1mmol/g固体材料未満である。固体材料表面の酸性基の量が0.1mmol/g固体材料以上であれば、固体材料表面の電解質によるプロトン伝導性向上の効果が十分に得られる。
固体材料表面の酸性基量は、滴定法により測定することができる。
なお、触媒層に含まれる「触媒金属を担持させていない固体材料」とは、触媒層の製造時において、触媒金属を担持させていない固体材料であることを意味する。燃料電池の運転の過程または結果として、触媒層に含まれる固体材料にも多少の触媒金属が担持される場合もあるが、そのようなものも本発明に係る「触媒金属を担持させていない固体材料」として扱うものとする。換言すれば、予め人為的に触媒金属を担持させたものではない固体材料は、すべて本発明に係る「触媒金属を担持させていない固体材料」に包含される。なお、この「触媒金属を担持させていない固体材料」は、TEMにより確認することができる。
触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
(触媒)
触媒は、触媒担体および前記触媒担体に担持される触媒金属からなる。この触媒としては、下記に示すような、ミクロ孔およびメソ孔を有する触媒担体に触媒金属が担持されている触媒が好ましい。以下、詳細に説明する。
[触媒(電極触媒)]
図2は、本発明の一実施形態に係る触媒の形状・構造を示す概略断面説明図である。図2に示されるように、触媒20は、触媒担体23および前記触媒担体23に担持される触媒金属22からなる。また、触媒20は、半径が1nm未満の空孔(ミクロ孔)25および半径1nm以上の空孔(メソ孔)24を有する。ここで、ミクロ孔25およびメソ孔24は、複数の触媒担体23の集合により形成される。また、触媒金属22は、メソ孔24の内部に担持される。また、触媒金属22は、少なくとも一部がメソ孔24の内部に担持されていればよく、一部が触媒担体23表面に担持されていてもよい。しかし、触媒層での触媒層の電解質材料と触媒金属の接触を防ぐという観点からは、実質的にすべての触媒金属22がメソ孔24の内部に担持されることが好ましい。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。
また、上記図2では、複数の触媒担体23の集合により、触媒20にミクロ孔25およびメソ孔24が形成されるが、本発明は、上記形態に限定されない。例えば、図3に示されるように、一つの触媒担体23中に所望のミクロ孔25およびメソ孔24が形成されていてもよい。
本明細書において、「触媒金属がメソ孔の内部に担持される」ことは、触媒担体への触媒金属の担持前後のメソ孔の容積の減少によって確認できる。詳細には、触媒担体は、ミクロ孔およびメソ孔を有し、各空孔はそれぞれ一定の容積を有しているが、触媒金属がこれらの空孔に担持されると、各空孔の容積は減少する。したがって、触媒金属担持前の触媒(担体)のメソ孔の容積と触媒金属担持後の触媒(担体)のメソ孔の容積の差[=(担持前の容積)−(担持後の容積)]が0を超える場合には、「触媒金属がメソ孔の内部に担持される」こととなる。同様にして、触媒金属担持前の触媒(担体)のミクロ孔の容積と触媒金属担持後の触媒(担体)のミクロ孔の容積の差[=(担持前の容積)−(担持後の容積)]が0を超える場合には、「触媒金属がミクロ孔の内部に担持される」こととなる。好ましくは、触媒金属が、ミクロ孔よりメソ孔に多く担持される(即ち、担持前後のメソ孔の容積の減少値>担持前後のミクロ孔の容積の減少値)。これにより、ガス輸送抵抗を低減し、ガス輸送のためのパスを十分確保できるからである。ガス輸送抵抗の低減、ガス輸送のためのパスの確保などを考慮すると、上記触媒金属担持前後のメソ孔の空孔容積の減少値が0.02cc/g以上であることが好ましく、0.02〜0.21cc/gであることがより好ましい。
触媒担体は、半径が1nm未満の空孔(ミクロ孔)で形成される表面積が、前記半径1nm以上の空孔(メソ孔)で形成される表面積以上(即ち、ミクロ孔で形成される表面積≧メソ孔で形成される表面積)である関係を満たす。このようにミクロ孔が多く存在することにより、触媒の輸送時や電極製造時など様々な機械的ストレス(例えば、せん断力や遠心力)を受けても、メソ孔内に存在する触媒金属が系外に(触媒担体から)脱離するのを抑制・防止する。ここで、ミクロ孔で形成される表面積とメソ孔で形成される表面積との差[=(ミクロ孔で形成される表面積)−(メソ孔で形成される表面積)]は、特に制限されないが、好ましくは50〜2000m2/g触媒担体であり、より好ましくは200〜2000m2/g触媒担体である。このような表面積差があれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、ミクロ孔の空孔容積を十分確保できるため、ガスの輸送パスを十分確保できる。ゆえに、メソ孔内の触媒金属に酸素等のガスを効率よく輸送できる、すなわち、ガス輸送抵抗を低減できる。
触媒担体の空孔分布は、上記ミクロ孔およびメソ孔で形成される表面積の関係を満たすものであれば特に制限されない。
例えば、半径が1nm未満の空孔(ミクロ孔)で形成される表面積[触媒担体1gあたりの触媒担体のミクロ孔の表面積(m2/g触媒担体)]は、特に制限されないが、200〜2500m2/g触媒担体であることが好ましい。より好ましくは、ミクロ孔で形成される表面積は、500〜2500m2/g触媒担体であることが特に好ましい。このような空孔容積であれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明に係る触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。また、ミクロ孔内には電解質(アイオノマー)や液体(例えば、水)が侵入できず、ガスのみを選択的に通す(ガス輸送抵抗を低減できる)。なお、本明細書では、半径が1nm未満の空孔(ミクロ孔)で形成される表面積を単に「ミクロ孔による表面積」とも称する。
また、半径1nm以上の空孔(メソ孔)で形成される表面積[触媒担体1gあたりの触媒担体のメソ孔の表面積(m2/g触媒担体)]は、ミクロ孔で形成される表面積以下であれば特に制限されない。メソ孔で形成される表面積は、150〜1000m2/g担体であることが特に好ましい。このような空孔容積であれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での触媒層の電解質材料と触媒金属とを物理的に離す(触媒金属と電解質材料との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。なお、本明細書では、半径が1nm以上の空孔(メソ孔)で形成される表面積を単に「メソ孔による表面積」とも称する。
触媒担体の半径1nm未満の空孔(ミクロ孔)の空孔容積は、特に制限されないが、0.1cc/g触媒担体以上であることが好ましい。より好ましくは、ミクロ孔の空孔容積は、0.3〜3cc/g触媒担体であり、0.4〜2cc/g触媒担体であることが特に好ましい。このような空孔容積であれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明に係る触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。また、ミクロ孔内には電解質(アイオノマー)や液体(例えば、水)が侵入できず、ガスのみを選択的に通す(ガス輸送抵抗を低減できる)。なお、本明細書では、半径1nm未満の空孔の空孔容積を単に「ミクロ孔の空孔容積」とも称する。
また、触媒担体の半径1nm以上の空孔(メソ孔)の空孔容積は、特に制限されないが、0.4cc/g触媒担体以上、より好ましくは0.4〜3cc/g触媒担体であり、特に好ましくは0.4〜2cc/g触媒担体であることが好ましい。空孔容積が上記したような範囲にあれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質材料と触媒金属とを物理的に離す(触媒金属と電解質材料との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。なお、本明細書では、半径1nm以上の空孔の空孔容積を単に「メソ孔の空孔容積」とも称する。
触媒担体のBET比表面積[触媒担体1gあたりの触媒担体のBET比表面積(m2/g担体)]は、特に制限されないが、好ましくは1000m2/g触媒担体以上、より好ましくは1000〜3000m2/g触媒担体、特に好ましくは1100〜1800m2/g触媒担体である。なお、触媒担体の空孔は、ミクロ孔およびメソ孔のみから構成されることが好ましい。この場合には、触媒担体のBET比表面積は、ミクロ孔およびメソ孔で形成される表面積の和となる。上記したような比表面積であれば、十分なメソ孔及びミクロ孔を確保できるため、ガス輸送を行うのに十分なミクロ孔(より低いガス輸送抵抗)を確保しつつ、メソ孔により多くの触媒金属を格納(担持)できる。また、触媒層での電解質材料と触媒金属とを物理的に離す(触媒金属と電解質材料との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのミクロ孔およびメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。また、触媒担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。
なお、本明細書において、「表面積(m2/g触媒担体)」および「BET比表面積(m2/g触媒担体)」は、窒素吸着法により測定される。詳細には、試料(触媒粉末または触媒担体) 約0.04〜0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、株式会社島津製作所製、電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全重量から、同面積のテフロン(基材)重量を差し引いた塗布層の正味の重量約0.03〜0.04gを試料重量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00〜0.45の範囲から、BETプロットを作成することで、その傾きと切片から表面積およびBET比表面積を算出する。
「ミクロ孔の空孔の半径(nm)」は、窒素吸着法(MP法)により測定される空孔の半径を意味する。また、「ミクロ孔の空孔分布のモード半径(nm)」は、窒素吸着法(MP法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、ミクロ孔の空孔半径の下限は、窒素吸着法により測定可能な下限値、すなわち、0.42nm以上である。同様にして、「メソ孔の空孔の半径(nm)」は、窒素吸着法(DH法)により測定される空孔の半径を意味する。また、「メソ孔の空孔分布のモード半径(nm)」は、窒素吸着法(DH法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、メソ孔の空孔半径の上限は、特に制限されないが、10nm以下であり、好ましくは5nm以下である。
「ミクロ孔の空孔容積」は、触媒に存在する半径1nm未満のミクロ孔の総容積を意味し、担体1gあたりの容積(cc/g触媒担体)で表される。「ミクロ孔の空孔容積(cc/g触媒担体)」は、窒素吸着法(MP法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。同様にして、「メソ孔の空孔容積」は、触媒に存在する半径1nm以上のメソ孔の総容積を意味し、担体1gあたりの容積(cc/g触媒担体)で表される。「メソ孔の空孔容積(cc/g触媒担体)」は、窒素吸着法(DH法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。
「微分細孔分布」とは、細孔径を横軸に、触媒中のその細孔径に相当する細孔容積を縦軸にプロットした分布曲線である。すなわち、窒素吸着法(ミクロ孔の場合にはMP法;メソ孔の場合にはDH法)により得られる触媒の空孔容積をVとし、空孔直径をDとした際の、差分空孔容積dVを空孔直径の対数差分d(logD)で割った値(dV/d(logD))を求める。そして、このdV/d(logD)を各区分の平均空孔直径に対してプロットすることにより微分細孔分布曲線が得られる。差分空孔容積dVとは、測定ポイント間の空孔容積の増加分をいう。
ここで、窒素吸着法(MP法)によるミクロ孔の半径及び空孔容積の測定方法は、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)、「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、R. Sh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci.,26, 45(1968)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(MP法)によるミクロ孔の半径および空孔容積は、R. Sh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci.,26, 45(1968)に記載される方法によって、測定された値である。
また、窒素吸着法(DH法)によるメソ孔の半径および空孔容積の測定方法もまた、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)や「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(DH法)によるメソ孔の半径および空孔容積は、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964) に記載される方法によって、測定された値である。
上記したような特定の空孔分布を有する触媒担体の製造方法は、特に制限されないが、通常、触媒担体の空孔分布(ミクロ孔およびメソ孔)を上記したような空孔分布とすることが重要である。具体的には、図2に記載されるようなミクロ孔およびメソ孔を有し、かつミクロ孔およびメソ孔で形成される表面積の関係を上記のように満たす触媒担体の製造方法としては、米国特許第6,398,858号明細書などの公報に記載される方法が好ましく使用される。また、図3に記載されるようなミクロおよびメソ孔を有し、かつミクロ孔およびメソ孔で形成される表面積の関係を上記のように満たす触媒担体の製造方法としては、国際公開第2009/075264号などの公報に記載される方法が好ましく使用される。
触媒担体の材質は、上述した空孔容積またはモード径を有する空孔(一次空孔)を触媒担体の内部に形成することができ、かつ、触媒成分をメソ孔内部に分散状態で担持させるのに充分な比表面積と充分な電子伝導性とを有するものであれば特に制限されない。好ましくは、主成分がカーボンである。具体的には、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラック、など)、活性炭などからなるカーボン粒子が挙げられる。「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2〜3重量%程度以下の不純物の混入が許容されうることを意味する。
より好ましくは、担体内部に所望の空孔領域を形成し易いことから、カーボンブラックを使用することが好ましく、より好ましくは、Black Pearls(登録商標)を使用する。
上記カーボン材料の他、Sn(錫)やTi(チタン)などの多孔質金属、さらには導電性金属酸化物なども触媒担体として使用可能である。
触媒担体の平均一次粒径は10〜100nmであることが好ましい。かような範囲であれば、触媒担体に上記空孔構造を設けた場合であっても機械的強度が維持され、かつ、触媒層を適切な範囲で制御することができる。「触媒担体の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
なお、本発明においては、触媒内に上記したようなミクロ孔およびメソ孔の空孔分布(ミクロ孔およびメソ孔の表面積差)を有するものである限り、必ずしも上記したような粒状の多孔質担体を用いる必要はない。
すなわち、担体として、非多孔質の導電性担体やガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなども挙げられる。このとき、触媒をこれら非多孔質の導電性担体に担持したり、膜電極接合体のガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなどに直接付着させたりすることも可能である。
(触媒金属)
触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード側の触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード側の触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。
これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30〜90原子%とし、白金と合金化する金属の含有量を10〜70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード側触媒層に用いられる触媒金属およびカソード側触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード側触媒層用およびカソード側触媒層用の触媒金属についての説明は、両者について同様の定義である。しかし、アノード側触媒層およびカソード側触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。
触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。この際、触媒金属(触媒金属粒子)の平均粒径は、特に制限されないが、3nm以上、より好ましくは3nm超30nm以下、さらに好ましくは3nm超10nm以下であることが好ましい。触媒金属の平均粒径が3nm以上であれば、触媒金属の活性および安定性をより向上できる。また、触媒金属がメソ孔内に比較的強固に担持され、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、触媒層内で電解質材料と接触するのをより有効に抑制・防止される。また、ミクロ孔が触媒金属で塞がれずに残存し、ガスの輸送パスがより良好に確保されて、ガス輸送抵抗をより低減できる。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。一方、触媒金属粒子の平均粒径が30nm以下であれば、担体のメソ孔内部に触媒金属を簡便な方法で担持することができ、触媒金属の電解質被覆率を低減することができる。なお、本発明における「触媒金属粒子の平均粒径」は、X線回折(XRD)における触媒金属成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子径の平均値として測定されうる。本明細書では、「触媒金属粒子の平均粒径」は、統計上有意な数(例えば、少なくとも203個)のサンプルについて透過型電子顕微鏡像より調べられる触媒成分の粒子径の平均値である。
本形態において、単位触媒塗布面積当たりの触媒含有量(mg/cm2)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、0.01〜1mg/cm2である。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm2以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm2以上である。より好ましくは、当該白金含有量は0.02〜0.4mg/cm2である。本形態では、触媒担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。
なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm2)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm2)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。
また、触媒担体における触媒金属の担持量(担持率とも称する場合がある)は、触媒担持体(つまり、触媒担体および触媒金属)の全量に対して、好ましくは10〜80重量%、より好ましくは20〜70重量%とするのがよい。担持量が前記範囲であれば、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、単位重量あたりの触媒活性が達成できるため好ましい。
(触媒金属担持後の)触媒のBET比表面積[触媒担体1gあたりの触媒のBET比表面積(m2/g触媒担体)]は、特に制限されないが、715m2/g触媒担体以上であることが好ましく、750m2/g触媒担体以上であることがより好ましく、1200m2/g触媒担体以上であることがさらに好ましい。上記したようなBET比表面積であれば、十分な空孔(メソ孔)を確保できるため、空孔(メソ孔)内部により多くの触媒金属を格納(担持)できる。よって、触媒層での電解質材料の触媒金属への被覆を抑制することができる(触媒金属と電解質材料との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用でき、触媒反応をより効果的に促進できる。(触媒金属担持後の)触媒のBET比表面積の上限値は特に制限されないが、2000m2/g触媒担体以下であることが好ましい。
なお、本明細書において、触媒の「BET比表面積(m2/g触媒担体)」は、窒素吸着法により測定される。詳細な測定方法は、上記と同様であるので、ここでは説明を省略する。
(触媒の製造方法)
上記したミクロ孔およびメソ孔を有する触媒の製造方法は、特に制限されない。好ましくは、触媒担体の表面に触媒金属を析出させた後、熱処理を行い、触媒金属の粒径を増大させる方法が好ましい。上記方法は、析出後に熱処理を施して触媒金属の粒径を増大させる。このため、触媒担体の空孔(特にメソ孔)内部に粒径の大きな触媒金属を担持することができる。すなわち、(i)触媒担体の表面に触媒金属を析出させる工程(析出工程)、および(ii)前記析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる工程(熱処理工程)を含む製造方法が好ましい。以下、上記製造方法を説明するが、本発明は、下記形態に限定されない。
(i)析出工程
本工程では、触媒担体の表面に触媒金属を析出させる。本工程は、既知の方法であり、例えば、触媒金属の前駆体溶液に、触媒担体を浸漬した後、還元する方法が好ましく使用される。
ここで、触媒金属の前駆体としては、特に制限されず、使用される触媒金属の種類によって適宜選択される。具体的には、上記白金等の触媒金属の塩化物、硝酸塩、硫酸塩、塩化物、酢酸塩およびアミン化合物などが例示できる。より具体的には、塩化白金(ヘキサクロロ白金酸六水和物)、塩化パラジウム、塩化ロジウム、塩化ルテニウム、塩化コバルトなどの塩化物、硝酸パラジウム、硝酸ロジウム、硝酸イリジウムなどの硝酸塩、硫酸パラジウム、硫酸ロジウムなどの硫酸塩、酢酸ロジウムなどの酢酸塩、ジニトロジアンミン白金硝酸、ジニトロジアンミンパラジウムなどのアンミン化合物などが好ましく、例示される。また、触媒金属の前駆体溶液の調製に使用される溶媒は、触媒金属の前駆体を溶解できるものであれば特に制限されず、使用される触媒金属の前駆体の種類によって適宜選択される。具体的には、水、酸、アルカリ、有機溶媒などが挙げられる。触媒金属の前駆体溶液中の触媒金属の前駆体の濃度は、特に制限されないが、金属換算で0.1〜50重量%であることが好ましく、より好ましくは0.5〜20重量%である。
還元剤としては、水素、ヒドラジン、水素化ホウ素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L−アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素等が挙げられる。なお、水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤の量は、上記触媒金属の前駆体を触媒金属に還元できる量であれば特に制限されず、公知の量を同様にして適用できる。
析出条件は、触媒金属が触媒担体に析出できる条件であれば特に制限されない。例えば、析出温度は、溶媒の沸点付近の温度、より好ましくは室温〜100℃であることが好ましい。また、析出時間は、好ましくは1〜10時間、より好ましくは2〜8時間である。なお、上記析出工程は、必要であれば、攪拌・混合しながら行ってもよい。
これにより、触媒金属の前駆体が触媒金属に還元されて、触媒金属が触媒担体に析出(
担持)する。
(ii)熱処理工程
本工程では、上記(i)析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる。
熱処理条件は、触媒金属の粒径が増大できる条件であれば特に制限されない。例えば、熱処理温度は、好ましくは300〜1200℃、より好ましくは500〜1150℃、特に好ましくは700〜1000℃であることが好ましい。また、熱処理時間は、好ましくは0.02〜3時間、より好ましくは0.1〜2時間、特に好ましくは0.2〜1.5時間である。なお、熱処理工程は、水素雰囲気下で行われてもよい。
これにより、触媒金属は、触媒担体で(特に触媒担体のメソ孔内で)粒径が増大する。このため、触媒金属粒子は、系外に(触媒担体から)脱離しにくくなる。また、触媒金属より触媒担体表面付近に存在するミクロ孔が存在することにより、機械的ストレス下であってもより大きな触媒金属粒子が触媒担体から脱離することをより効果的に抑制・防止する。ゆえに、触媒をより有効に利用できる。
本形態の触媒層は、触媒と電解質材料との間に、触媒と電解質材料とをプロトン伝導可能な状態に連結しうる液体プロトン伝導材を含んでもよい。液体プロトン伝導材が導入されることによって、触媒と電解質材料との間に、液体プロトン伝導材を介したプロトン輸送経路が確保され、発電に必要なプロトンを効率的に触媒表面へ輸送することが可能となる。これにより、触媒の利用効率が向上するため、発電性能を維持しながら触媒の使用量を低減することが可能となる。この液体プロトン伝導材は触媒と電解質材料との間に介在していればよく、触媒層内の触媒担体間の空孔(二次空孔)や触媒担体内の空孔(ミクロ孔またはメソ孔:一次空孔)内に配置されうる。
液体プロトン伝導材としては、イオン伝導性を有し、触媒と電解質材料と間のプロトン輸送経路を形成する機能を発揮しうる限り、特に限定されることはない。具体的には水、プロトン性イオン液体、過塩素酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液などを挙げることができる。
液体プロトン伝導材として水を使用する場合には、発電を開始する前に少量の液水か加湿ガスにより触媒層を湿らせることによって、触媒層内に液体プロトン伝導材としての水を導入することができる。また、燃料電池の作動時における電気化学反応によって生じた生成水を液体プロトン伝導材として利用することもできる。したがって、燃料電池の運転開始の状態においては、必ずしも液体プロトン伝導材が保持されている必要はない。例えば、触媒と電解質材料との表面距離を、水分子を構成する酸素イオン径である0.28nm以上とすることが望ましい。このような距離を保持することによって、触媒と電解質材料との非接触状態を保持しながら、触媒と電解質材料との間(液体伝導材保持部)に水(液体プロトン伝導材)を介入させることができ、両者間の水によるプロトン輸送経路が確保されることになる。
イオン性液体など、水以外のものを液体プロトン伝導材として使用する場合には、触媒層形成用インク作製時に、イオン性液体と電解質材料と触媒とを溶液中に分散させることが望ましいが、触媒を基材に塗布する際にイオン性液体を添加してもよい。
本発明に係る好ましい触媒では、触媒の高分子電解質と接触している総面積が、この触媒が液体伝導材保持部に露出している総面積よりも小さいものとなっている。
これら面積の比較は、例えば、上記液体伝導材保持部に液体プロトン伝導材を満たした状態で、触媒−高分子電解質界面と触媒−液体プロトン伝導材界面に形成される電気二重層の容量の大小関係を求めることによって行うことができる。すなわち、電気二重層容量は、電気化学的に有効な界面の面積に比例するため、触媒−電解質界面に形成される電気二重層容量が触媒−液体プロトン伝導材界面に形成される電気二重層容量より小さければ、触媒の電解質との接触面積が液体伝導材保持部への露出面積よりも小さいことになる。
ここで、触媒−電解質界面、触媒−液体プロトン伝導材界面にそれぞれ形成される電気二重層容量の測定方法、言い換えると、触媒−電解質間および触媒−液体プロトン伝導材間の接触面積の大小関係(触媒の電解質との接触面積と液体伝導材保持部への露出面積の大小関係の判定方法)について説明する。
すなわち、本形態の触媒層においては、
(1)触媒−高分子電解質(C−S)
(2)触媒−液体プロトン伝導材(C−L)
(3)多孔質担体−高分子電解質(Cr−S)
(4)多孔質担体−液体プロトン伝導材(Cr−L)
の4種の界面が電気二重層容量(Cdl)として寄与し得る。
電気二重層容量は、上記したように、電気化学的に有効な界面の面積に正比例するため、CdlC−S(触媒−高分子電解質界面の電気二重層容量)およびCdlC−L(触媒−液体プロトン伝導材界面の電気二重層容量)を求めればよい。そして、電気二重層容量(Cdl)に対する上記4種の界面の寄与については、以下のようにして分離することができる。
まず、例えば100%RHのような高加湿条件、及び10%RH以下のような低加湿条件下において、電気二重層容量をそれぞれ計測する。なお、電気二重層容量の計測手法としては、サイクリックボルタンメトリーや電気化学インピーダンス分光法などを挙げることができる。これらの比較から、液体プロトン伝導材(この場合は「水」)の寄与、すなわち上記(2)および(4)を分離することができる。
さらに触媒を失活させること、例えば、Ptを触媒として用いた場合には、測定対象の電極にCOガスを供給してCOをPt表面上に吸着させることによる触媒の失活によって、その電気二重層容量への寄与を分離することができる。このような状態で、前述のように高加湿および低加湿条件における電気二重層容量を同様の手法で計測し、これらの比較から、触媒の寄与、つまり上記(1)及び(2)を分離することができる。
以上により、上記(1)〜(4)全ての寄与を分離することができ、触媒と高分子電解質および液体プロトン伝導材両界面に形成される電気二重層容量を求めることができる。
すなわち、高加湿状態における測定値(A)が上記(1)〜(4)の全界面に形成される電気二重層容量、低加湿状態における測定値(B)が上記(1)および(3)の界面に形成される電気二重層容量になる。また、触媒失活・高加湿状態における測定値(C)が上記(3)および(4)の界面に形成される電気二重層容量、触媒失活・低加湿状態における測定値(D)が上記(3)の界面に形成される電気二重層容量になる。
したがって、AとCとの差が(1)および(2)の界面に形成される電気二重層容量、BとDとの差が(1)の界面に形成される電気二重層容量ということになる。そして、これら値の差、(A−C)−(B−D)を算出すれば、(2)の界面に形成される電気二重層容量を求めることができる。なお、触媒の高分子電解質との接触面積や、伝導材保持部への露出面積については、上記の他には、例えば、TEM(透過型電子顕微鏡)トモグラフィなどによっても求めることができる。
触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
(触媒層の平均厚み)
触媒層の平均厚みは、1μm以上であることが好ましく、4μm以上であることがより好ましい。なお、触媒層の平均厚みの上限値は特に制限されないが、50μm以下であることが好ましく、20μm以下であることがより好ましい。なお、触媒層の平均厚みは、走査型電子顕微鏡(SEM)により計測した、触媒層の最薄部の厚みおよび触媒層の最厚部の厚みの算術平均により求めた値を採用するものとする。
(触媒層の製造方法)
以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。
まず、固体材料、および触媒担体(以下、本明細書では、「多孔質担体」または「導電性多孔質担体」とも称する)を準備し、これらを熱処理することにより空孔構造を制御する。具体的には、上記固体材料の製造方法で説明したように、作製すればよい。これにより、所望の比表面積を有する固体材料、および触媒担体が得られる。
当該熱処理の条件は材料に応じて異なり、所望の比表面積が得られるように適宜決定される。このような熱処理条件は、空孔構造を確認しつつ、材料に応じて決定すればよく、当業者であれば容易に決定することができるであろう。なお、従来、高温で炭素系材料を熱処理することにより黒鉛化する技術が知られているが、従来の熱処理では炭素系材料内の空孔のほとんどが塞がれており、ミクロな空孔構造(広くて浅い一次空孔)の制御は行われていなかった。
次いで、触媒の多孔質担体に触媒金属を担持させて、触媒粉末とする。多孔質担体への触媒金属の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
続いて、固体材料、触媒粉末、電解質材料、および溶剤を含む触媒層形成用インクを作製する。溶剤としては、特に制限されず、通常の溶媒が使用できる。具体的には、水道水、純水、イオン交換水、蒸留水等の水、シクロヘキサノール、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、イソブタノール、およびtert−ブタノール等の炭素数1〜4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチル、ジメチルエーテル、エチレングリコールなどが溶媒として用いられてもよい。これらの溶剤は、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。
触媒層形成用インクを構成する溶剤の量は、電解質材料を完全に溶解できる量であれば特に制限されない。具体的には、固体材料、触媒粉末および電解質材料などを合わせた固形分の濃度が、触媒層形成用インク中、好ましくは1〜50重量%、より好ましくは5〜30重量%程度とするのが好ましい。
なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒層形成用インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、触媒層形成用インクの全重量に対して、好ましくは5〜20重量%である。
次に、基材の表面に触媒層形成用インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。
この際、触媒層形成用インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)、ガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。
最後に、触媒層形成用インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温〜150℃で、1〜60分間乾燥する。これにより、触媒層が形成される。
(電解質膜)
電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、本発明に係る触媒層に用いた電解質と必ずしも同じものを用いる必要はない。
電解質膜の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質膜の厚さは、通常は5〜300μm程度である。電解質膜の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性および使用時の出力特性のバランスが適切に制御されうる。
(ガス拡散層)
ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30〜500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10〜100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10〜40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
(膜電極接合体の製造方法)
膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の電解質の種類(パ−フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
(膜電極接合体)
本発明の膜電極接合体は、固体高分子電解質膜2、前記電解質膜2の一方の側に配置されたカソード触媒層3aと、前記電解質膜の他方の側に配置されたアノード触媒層3cと、前記電解質膜2、ならびに前記アノード触媒層3aおよび前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する。そしてこの膜電極接合体において、前記アノード触媒層3aおよび前記カソード触媒層3cの少なくとも一方が、上記した本発明に係る触媒層を有する。
本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。
(セパレータ)
セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
上述した膜電極接合体は、イオン伝導性に優れ、また、耐久性に優れる。したがって、当該PEFCは耐久性に優れる。
本発明のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
<インクの調製>
BET比表面積が1440m2/g担体であるBlack Pearls(登録商標)(担体A)、BET比表面積が100m2/g担体であるグラファイト化ケッチェンブラック(担体B)、およびBET比表面積が750m2/g担体であるケッチェンブラック(担体C)のカーボン材料を使用した。
なお、担体Aのミクロ孔の空孔容積、BET比表面積および平均空孔半径は、それぞれ、0.494cc/g、1042m2/g、および0.47nmであった。また、メソ孔の空孔容積、BET比表面積および平均空孔半径は、それぞれ、1.616cc/g、649m2/gおよび5nmであった。
担体Aを用い、これに触媒金属として平均粒径4.0nmの白金−コバルト合金を担持率が50重量%となるように担持させて、触媒粉末Aを得た。すなわち、5gの担体Aを、所定量のPtジニトロジアミン硝酸溶液(Pt(NO2)2(NH3)2)及び塩化コバルト(CoCl2・6H2O)をイオン交換水100mLに溶解させた金属塩溶液に浸漬し、マグネティックスターラーにて攪拌した。次に、この溶液に濃度1重量%の水素化ホウ素ナトリウム(SBH)溶液500mLを滴下・攪拌して還元処理し、担体Aに白金及びコバルトを担持した。その後、白金及びコバルトを担持した担体Aを、ろ過・洗浄・乾燥し、水素気流下900℃にて30分間、熱処理することによって合金化させた。
得られた触媒粉末A、担体B、および高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とを触媒粉末A、担体B、およびアイオノマーの重量比が1:0.5:0.9となるよう混合した(担体Aと担体Bとの重量比は1:1)。
さらに、溶媒としてノルマルプロピルアルコール溶液(50%)を固形分率(触媒粉末A+担体B+アイオノマー)が7重量%となるよう添加して、インクAを調製した。触媒金属担持後の触媒粉末AのBET比表面積は1200m2/g触媒担体であった。
上記担体Cを用い、これに触媒金属として平均粒径4.0nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末Bを得た。すなわち、白金濃度4.6質量%のジニトロジアンミン白金硝酸溶液1000g(白金含有量:46g)に担体Cを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Cに担持させた。そして、濾過、乾燥することにより、担持率が50重量%の触媒粉末Bを得た。また、別途、触媒粉末Bを水素雰囲気において、温度900℃に1時間保持し、触媒粉末Cを得た。触媒粉末B、および触媒粉末Cと、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをそれぞれカーボン担体とアイオノマーの重量比が1:0.9となるよう混合した。さらに、溶媒としてノルマルプロピルアルコール溶液(50%)を固形分率(触媒粉末B(または触媒粉末C)+アイオノマー)が7%となるよう添加して、触媒粉末Bとアイオノマーとを含むインクC、触媒粉末Cとアイオノマーとを含むインクDを、それぞれ調製した。また、担体Cを用い、白金担持率が30%となるように担持させた触媒粉末Dを用い、インクCの調製と同様な操作で、触媒粉末D、アイオノマー(高分子電解質)を含むインクEを調製した。インクE中の触媒粉末D、およびアイオノマーの重量比は、1:0.45であった。また、触媒金属担持後の触媒粉末DのBET比表面積は750m2/g触媒担体であった。
(実施例1)
高分子電解質膜(Dupont社製、Nafion(登録商標) NR211、厚み:25μm)の両面の周囲にガスケット(帝人Dupont社製、テオネックス(登録商標)、厚み:25μm(接着層:10μm))を配置した。次いで、高分子電解質膜の片面の露出部にインクAをスプレー塗布法により、反対面の露出部に、インクEをスプレー塗布法により、5cm×2cmのサイズに塗布した。スプレー塗布を行うステージを60℃に1分間保つことでインクを乾燥し、カソード触媒層を得た。このとき、触媒層の白金担持量は0.15mg/cm2であった。
走査型電子顕微鏡により求めた、カソード触媒層の平均厚みは4μm、アノード触媒層の平均厚みは2μmであった。
(実施例2)
実施例1において、インクAを使用せず、インクE(アノード側)、インクE(カソード側)をそれぞれ電解質膜の露出面に直接塗布したこと以外は、実施例1と同様の操作を行い、膜電極接合体(2)を作製した。作製したカソード触媒層の平均厚みは20μmであった。
(比較例1)
実施例1において、インクAにおいて、固体材料である担体Bを含まないこと以外は、実施例1と同様の操作を行い、比較膜電極接合体(1)を作製した。
(比較例2)
実施例1において、インクCを電解質膜の両面に直接塗布すること以外は、実施例1と同様の操作を行い、比較膜電極接合体(2)を作製した。作製したカソード触媒層の平均厚みは4μmであった。
(比較例3)
実施例1において、インクAを使用せず、インクC(アノード側)、およびD(カソード側)をそれぞれ電解質膜の露出面に直接塗布すること以外は、実施例1と同様の操作を行い、比較膜電極接合体(3)を作製した。
[プロトン輸送抵抗の評価条件]
上記実施例1で作製された膜電極接合体(1)、比較例1で作製された比較膜電極接合体(1)、および比較例2で作製された比較膜電極接合体(2)のプロトン輸送抵抗は、電気化学インピーダンス分光法により、計測した。
結果を図4に示す。図4から固体電解質、固体材料、および触媒層を含む本発明に係る触媒層のプロトン伝導抵抗は、固体材料を含まない比較例1、2の触媒層のプロトン伝導抵抗に比べて大幅に低いことが理解できる。
なお、使用機器としては、北斗電工株式会社製電気化学測定システムHZ−3000と、エヌエフ回路設計ブロック社製周波数応答分析器FRA5020とを用い、以下の測定条件を採用した。
[発電性能の評価]
実施例1で作製された膜電極接合体(1)および実施例2で作製された膜電極接合体(2)について、下記表2に記載の評価条件下で各電流値時の電圧(V)を測定し、発電性能の評価を行った。結果を図5に示す。なお、図5中の■は膜電極接合体(1)の結果を、◆は膜電極接合体(2)の結果をそれぞれ示す。
図5の結果から、触媒層の平均厚みが4μmである膜電極接合体(1)、および触媒層の平均厚みが20μmである膜電極接合体(2)は、ともに発電性能に優れることが分かる。
(参考:酸性基量計測の条件)
固体材料の酸性基の量は、以下のような滴定法により測定した。すなわち、まず、2.5gの酸性基を有する触媒粉末を1Lの温純水にて洗浄、乾燥した。乾燥後、酸性基を有する触媒に含まれるカーボン量が0.25gとなるよう計量し、55mlの水と10分間攪拌後、2分間超音波分散を行った。次に、この触媒分散液を窒素ガスにてパージしたグローブボックスへ移動させ、窒素ガスを10分間バブリングした。そして、触媒分散液に0.1Mの塩基水溶液を過剰に投入し、この塩基性溶液に対して0.1Mの塩酸にて中和滴定を行ない、中和点から官能基量を定量した。ここで、塩基水溶液は、NaOH、Na2CO3、NaHCO3の3種類を用い、それぞれについて中和滴定作業を行っている。これは使用する塩基毎に中和される官能基の種類が異なるからであり、NaOHの場合はカルボキシル基、ラクトン基、ヒドロキシル基と、Na2CO3の場合はカルボキシル基、ラクトン基と、NaHCO3の場合はカルボキシル基と中和反応するからである。そして、これら滴定で投入した3種類の塩基の種類と量、および消費した塩酸量の結果により、酸性基の量を算出した。尚、中和点の確認には、pHメーターを使用し、NaOHの場合はpH7.0、Na2CO3の場合はpH8.5、NaHCO3の場合はpH4.5を中和点とした。これにより、触媒に付加しているカルボキシル基、ラクトン基、およびヒドロキシル基の総量を求めた。
担体Bおよび担体Cについて、酸性基の量を測定した結果を図6に示す。
図6から明らかなように、本発明において固体材料として使用したグラファイト化ケッチェンブラック(担体B)は、表面の酸性基の量がケッチェンブラック(担体C)に比べて少ないことが理解できる。このように固体材料の表面酸性基が少ないことによって触媒層のプロトン伝導パスの形成が促進され発電性能が向上すると考えられる。
(参考:固体材料のプロトン輸送抵抗の評価)
固体材料として、BET比表面積が155m2/g固体材料であるグラファイト化ケッチェンブラック、BET比表面積が779m2/g固体材料であるケッチェンブラック、および上記担体Aを準備し、それぞれについて、アイオノマーと混合し、3種類のインクを調製した。
3種類のインクを、それぞれ電解質膜の両面に直接塗布し乾燥し、電解質膜の両面に固体材料を含む層のみが形成された、参考積層体(1)〜(3)を作製した。
参考積層体(1)〜(3)のプロトン輸送抵抗を、電気化学インピーダンス分光法により、計測した。なお、使用機器としては、北斗電工株式会社製、電気化学測定システムHZ−3000と、株式会社エヌエフ回路設計ブロック製、周波数応答分析器FRA5020と、を用い下記表1の測定条件により評価を行った。結果を下記表3に示す。
上記表3の結果から、触媒層に用いられる固体材料のBET比表面積が1300m2/g固体材料未満であれば、プロトン輸送抵抗が低いことが分かる。