JP2015059870A - Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus - Google Patents

Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus Download PDF

Info

Publication number
JP2015059870A
JP2015059870A JP2013194469A JP2013194469A JP2015059870A JP 2015059870 A JP2015059870 A JP 2015059870A JP 2013194469 A JP2013194469 A JP 2013194469A JP 2013194469 A JP2013194469 A JP 2013194469A JP 2015059870 A JP2015059870 A JP 2015059870A
Authority
JP
Japan
Prior art keywords
radioactive
adsorption
waste
liquid waste
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194469A
Other languages
Japanese (ja)
Other versions
JP6046582B2 (en
Inventor
祐子 可児
Yuko Kani
祐子 可児
守 鴨志田
Mamoru Kamoshita
守 鴨志田
浅野 隆
Takashi Asano
浅野  隆
優介 北本
Yusuke Kitamoto
優介 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013194469A priority Critical patent/JP6046582B2/en
Priority to GB1602829.2A priority patent/GB2533497B/en
Priority to US14/913,024 priority patent/US9799418B2/en
Priority to PCT/JP2014/069898 priority patent/WO2015025681A1/en
Priority to TW105102028A priority patent/TWI576859B/en
Priority to TW103127246A priority patent/TWI579864B/en
Publication of JP2015059870A publication Critical patent/JP2015059870A/en
Application granted granted Critical
Publication of JP6046582B2 publication Critical patent/JP6046582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive waste liquid treatment method capable of adjusting a final pH of radioactive waste liquid to a neutral region (pH 4 to 9) while suppressing addition of treatment processes and increase of radioactive waste.SOLUTION: A filtration device 2 is connected to a colloid removal device 3. A most upstream adsorption tower 6 in an adsorption device 5 is connected to the colloid removal device 3. The colloid removal device 3 includes electrostatic filters 4. The adsorption towers 6 in the adsorption device 5 are sequentially connected. An adsorption tower 21 loaded with oxine-impregnated activated carbon is arranged downstream of the adsorption device 5. A discharge pipe 14 is connected to the adsorption tower 21. Not less than 1 μm of particles contained in radioactive waste liquid are filtered out by the filtration device 2 and negatively charged colloids are filtered out by the positively charged electrostatic filters 4. Radionuclides are removed by the adsorption device 5. Heavy metal ions contained in the radioactive waste liquid from the adsorption device 5 are removed by the adsorption tower 21. Furthermore, a pH of the radioactive waste liquid is adjusted to fall within a range of 4 to 9.

Description

本発明は、放射性廃液の処理方法及び放射性廃液処理装置に係り、特に、放射性核種を含む放射性廃液から放射性核種を分離除去するのに好適な放射性廃液の処理方法及び放射性廃液処理装置に関する。   The present invention relates to a radioactive waste liquid treatment method and a radioactive waste liquid treatment apparatus, and more particularly to a radioactive waste liquid treatment method and a radioactive waste liquid treatment apparatus suitable for separating and removing a radionuclide from a radioactive waste liquid containing a radionuclide.

原子力関連施設、例えば、原子力プラントにおいて発生する放射性核種を含む放射性廃液の処理方法の一つとして、イオン交換樹脂等を用いて放射性核種を放射性廃液から除去する吸着処理方法がある。この吸着処理方法は、無機系または有機系の吸着剤、またはイオン交換樹脂によりイオン状の放射性核種を吸着して除去する処理方法である。   As one of the processing methods for radioactive liquid waste containing radioactive nuclides generated in nuclear facilities, for example, nuclear power plants, there is an adsorption processing method for removing the radioactive nuclides from the radioactive liquid waste using an ion exchange resin or the like. This adsorption treatment method is a treatment method in which ionic radionuclides are adsorbed and removed by an inorganic or organic adsorbent or an ion exchange resin.

原子力関連施設において発生する放射性廃液には、種々の性状(含有成分及びpHなど)が想定される。例えば、酸性の放射性廃液及びアルカリ性の放射性廃液が考えられる。また、吸着剤によっては吸着性能を発揮するために適切なpH領域があり、そのような吸着剤を選択する場合には、吸着剤に応じて放射性廃液のpHを酸性あるいはアルカリ性に調整し、その後、放射性廃液に含まれる放射性核種を吸着剤に吸着させる処理になる場合もある。いずれにしても、吸着処理後の放射性廃液は、発生時の性状、または含まれる放射性核種及び選択された吸着剤に応じて、種々のpHになると考えられる。   Various properties (including components and pH) are assumed for the radioactive liquid waste generated in nuclear facilities. For example, acidic radioactive liquid waste and alkaline radioactive liquid waste are conceivable. In addition, depending on the adsorbent, there is an appropriate pH range for exerting the adsorption performance. When selecting such an adsorbent, the pH of the radioactive liquid waste is adjusted to acidic or alkaline according to the adsorbent, and then In some cases, the radionuclide contained in the radioactive liquid waste is adsorbed on the adsorbent. In any case, the radioactive liquid waste after the adsorption treatment is considered to have various pHs depending on the properties at the time of generation or the contained radionuclide and the selected adsorbent.

放射性核種を除去した後の放射性廃液の処理は、濃縮減容、貯留、固化または系外(例えば環境への)放出などの種々の選択肢が考えられる。いずれの場合も、放射性廃液のpHを中性付近に調整した後に、これらを実施する。従って、放射性核種の吸着処理後の放射性廃液のpHが中性領域(例えば、pH4〜9)を外れている場合には、放射性廃液のpHを調整する工程が必要である。放射性廃液が酸性になっていればアルカリ添加または脱酸処理を行い、放射性廃液がアルカリ性であれば酸を加えて中和することが必要である。   The treatment of the radioactive liquid waste after the removal of the radionuclide has various options such as concentration reduction, storage, solidification, or release outside the system (for example, to the environment). In any case, these are carried out after adjusting the pH of the radioactive liquid waste to near neutrality. Therefore, when the pH of the radioactive liquid waste after the radionuclide adsorption treatment is out of the neutral region (for example, pH 4 to 9), a step of adjusting the pH of the radioactive liquid waste is necessary. If the radioactive liquid waste is acidic, it is necessary to carry out alkali addition or deoxidation treatment, and if the radioactive liquid waste is alkaline, it is necessary to neutralize it by adding an acid.

放射性廃液から放射性核種を吸着除去する処理方法の一例が、例えば、Ikeda et al., Proceedings of GLOBAL 2011, Dec.11-16, 2011, Makuhari, Japan, USA, Paper No. 524705 (2011)に記載されている。この放射性核種の吸着除去処理方法では、吸着材を充填した容器内に放射性廃液を通水し、放射性廃液に含まれたイオン状の放射性核種を吸着材に吸着させて除去している。なお、吸着材を充填した容器内に放射性廃液を供給する前において、放射性廃液に含まれる粒状物質がろ過装置で除去される。   An example of a treatment method for adsorbing and removing radionuclides from radioactive liquid waste is described in, for example, Ikeda et al., Proceedings of GLOBAL 2011, Dec.11-16, 2011, Makuhari, Japan, USA, Paper No. 524705 (2011). Has been. In this radionuclide adsorption / removal treatment method, radioactive waste liquid is passed through a container filled with an adsorbent, and ionic radionuclides contained in the radioactive waste liquid are adsorbed on the adsorbent and removed. In addition, before supplying a radioactive waste liquid in the container filled with the adsorbent, the particulate matter contained in the radioactive waste liquid is removed by a filtration device.

特開2013−108808号公報に記載された放射性廃液の処理方法でも、放射性廃液に含まれるコロイド成分がろ過装置(例えば、限外ろ過膜)で除去されている。放射性廃液のろ過装置への供給は、放射性廃液に水酸化ナトリウムを添加して放射性廃液のpHを所定の値に調節した後に行われる。ろ過装置でコロイドが除去された放射性廃液がチタン酸塩系吸着材を充填した吸着塔に供給される。チタン酸塩系吸着材はストロンチウムを吸着しやすいので、放射性廃液に含まれたストロンチウムが吸着塔内で除去される。   In the radioactive waste liquid treatment method described in JP 2013-108808 A, the colloidal component contained in the radioactive waste liquid is removed by a filtration device (for example, an ultrafiltration membrane). The radioactive waste liquid is supplied to the filtration device after sodium hydroxide is added to the radioactive waste liquid and the pH of the radioactive waste liquid is adjusted to a predetermined value. The radioactive waste liquid from which the colloid has been removed by the filtration device is supplied to an adsorption tower packed with a titanate adsorbent. Since the titanate adsorbent easily adsorbs strontium, strontium contained in the radioactive waste liquid is removed in the adsorption tower.

特開2013−108808号公報JP 2013-108808 A

Ikeda et al., Proceedings of GLOBAL 2011, Dec.11-16, 2011, Makuhari, Japan, USA, Paper No. 524705 (2011)Ikeda et al., Proceedings of GLOBAL 2011, Dec.11-16, 2011, Makuhari, Japan, USA, Paper No. 524705 (2011)

吸着処理後の放射性廃液に対して、酸及びアルカリなどの薬剤を添加してpH調整を行うと、その分、放射性廃液の処理方法の工程が増え、さらに、放射性廃液中の塩濃度が増えて最終的な放射性廃棄物の発生量が増加するという課題が生じる。   When chemicals such as acids and alkalis are added to the radioactive waste liquid after adsorption treatment and pH adjustment is performed, the process steps of the radioactive waste liquid increase accordingly, and the salt concentration in the radioactive waste liquid increases. There arises a problem that the amount of final radioactive waste generated increases.

本発明の目的は、処理工程の追加及び放射性廃棄物の増加を抑制しつつ放射性廃液の最終的なpHを中性領域(pH4〜9)に調整できる放射性廃液の処理方法及び放射性廃液処理装置を提供することにある。   An object of the present invention is to provide a radioactive waste liquid treatment method and a radioactive waste liquid treatment apparatus capable of adjusting the final pH of a radioactive waste liquid to a neutral region (pH 4 to 9) while suppressing the addition of a treatment process and an increase in radioactive waste. It is to provide.

上記の目的を達成する本発明の特徴は、コロイド状物質、前記コロイド状物質よりも粒径が大きい粒子状物質及び放射性物質を含む放射性廃液を、ろ過装置に供給して粒子状物質をろ過装置で除去し、ろ過装置から排出された放射性廃液に含まれるコロイド状物質を除去し、コロイド状物質が除去された放射性廃液が第1吸着装置に供給され、放射性廃液に含まれる放射性核種を第1吸着装置で除去し、第1吸着装置から排出された放射性廃液を、第1吸着装置の下流に配置されて、オキシン基を表面に担持した吸着剤を充填している第2吸着装置に供給することにある。   A feature of the present invention that achieves the above object is that a colloidal substance, a particulate matter having a particle size larger than the colloidal substance, and a radioactive waste liquid containing the radioactive substance are supplied to the filtration device, and the particulate matter is filtered. The colloidal substance contained in the radioactive waste liquid discharged from the filtration device is removed, the radioactive waste liquid from which the colloidal substance has been removed is supplied to the first adsorption device, and the radionuclide contained in the radioactive waste liquid is first removed. The radioactive waste liquid removed by the adsorption device and discharged from the first adsorption device is supplied to the second adsorption device which is arranged downstream of the first adsorption device and is filled with an adsorbent carrying an oxine group on the surface. There is.

第1吸着装置の下流に配置されている、オキシン基を表面に担持した吸着剤を充填している第2吸着装置に、第1吸着装置から排出された放射性廃液を救急するので、pHを調節する薬剤を放射性廃液に投入することなしに、放射性廃液のpHを4〜9の範囲に調整することができ、放射性廃棄物の発生量を低減することができる。   The second adsorber, which is located downstream of the first adsorber and is filled with an adsorbent carrying an oxine group on the surface, rescues radioactive waste liquid discharged from the first adsorber, so the pH is adjusted. Without introducing the chemical to be added into the radioactive liquid waste, the pH of the radioactive liquid waste can be adjusted to a range of 4 to 9, and the amount of radioactive waste generated can be reduced.

好ましくは、第1吸着装置で放射性核種のイオンが除去された放射性廃液に、酸化剤、pH調整剤及び還元剤のうちの少なくとも1つを注入し、酸化剤、pH調整剤及び還元剤のうちの少なくとも1つの注入により放射性廃液に生成された、放射性核種のイオンを、第3吸着装置内の吸着剤で除去し、第3吸着装置から排出された放射性廃液を第2吸着装置に供給することが望ましい。   Preferably, at least one of an oxidizing agent, a pH adjusting agent and a reducing agent is injected into the radioactive liquid waste from which radionuclide ions have been removed by the first adsorption device, and the oxidizing agent, the pH adjusting agent and the reducing agent are injected. The radionuclide ions generated in the radioactive waste liquid by the injection of at least one of the above are removed by the adsorbent in the third adsorption device, and the radioactive waste liquid discharged from the third adsorption device is supplied to the second adsorption device. Is desirable.

これにより、イオンが第1吸着装置で除去された放射性廃液に、酸化剤、pH調整剤及び還元剤のうちの少なくとも1つを注入し、酸化剤、pH調整剤及び還元剤のうちの少なくとも1つの注入により放射性廃液に生成された、放射性核種のイオンを、第2吸着装置内の吸着剤で除去するので、放射性廃液に含まれる放射性核種の除去効率をさらに向上させることができる。   Accordingly, at least one of the oxidizing agent, the pH adjusting agent, and the reducing agent is injected into the radioactive waste liquid from which the ions have been removed by the first adsorption device, and at least one of the oxidizing agent, the pH adjusting agent, and the reducing agent. Since the radionuclide ions generated in the radioactive liquid waste by one injection are removed by the adsorbent in the second adsorption device, the removal efficiency of the radionuclide contained in the radioactive liquid waste can be further improved.

本発明によれば、放射性廃棄物の発生量を低減しつつ、簡素な装置構成で放射性廃液から放射性廃液のpHを中性付近に調整することができる。   According to the present invention, it is possible to adjust the pH of a radioactive waste liquid from a radioactive waste liquid to near neutrality with a simple apparatus configuration while reducing the amount of generated radioactive waste.

本発明の好適な一実施例である実施例1の放射性廃液の処理方法に用いられる放射性廃液処理装置の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the radioactive waste liquid processing apparatus used for the processing method of the radioactive waste liquid of Example 1 which is one suitable Example of this invention. 本発明の他の好適な実施例である実施例2の放射性廃液の処理方法に用いられる放射性廃液処理装置の構成図である。It is a block diagram of the radioactive waste liquid processing apparatus used for the processing method of the radioactive waste liquid of Example 2 which is another suitable Example of this invention. pHの異なる各放射性廃液に含まれる放射性ルテニウムの化学形態、及び放射性ルテニウムの化学形態ごとの、除去される割合を示す説明図である。It is explanatory drawing which shows the removal rate for every chemical form of radioactive ruthenium contained in each radioactive waste liquid from which pH differs, and the chemical form of radioactive ruthenium.

発明者らは、種々の放射性核種のイオンを吸着処理するプロセスを開発する過程で、放射性核種の吸着に伴う放射性廃液のpHの変化を調べる試験を行った。これは、吸着剤の組み合わせによっては前段の或る吸着剤による放射性核種の吸着処理が後段の他の吸着剤による別の放射性核種の吸着性能に影響を及ぼす場合があるかもしれないと考えて実施した試験である。その結果、放射性廃液の性状が酸性及びアルカリ性のいずれであっても、放射性廃液を、遷移元素イオンを吸着することで知られるオキシン添着活性炭の充填層を通すことにより、放射性廃液のpHが4〜9の範囲内に調整されることを発見した。   The inventors conducted a test to investigate the change in pH of the radioactive liquid waste accompanying the adsorption of the radionuclide in the course of developing a process for adsorbing various radionuclide ions. This is done with the assumption that depending on the combination of the adsorbents, the adsorption process of the radionuclide with one adsorbent in the previous stage may affect the adsorption performance of another radionuclide with another adsorbent in the subsequent stage. It was a test. As a result, regardless of whether the radioactive liquid waste is acidic or alkaline, the radioactive liquid waste is passed through a packed bed of oxine-impregnated activated carbon known to adsorb transition element ions so that the pH of the radioactive liquid waste is 4 to 4. Found to be adjusted within the range of 9.

発明者らによる上記の試験結果を基に得られた新たな知見に基づいて、発明者らは、オキシン添着活性炭を充填した吸着塔を、放射性廃液に含まれた放射性核種を吸着除去する吸着装置の下流に配置することにより、放射性核種を除去した放射性廃液のpHを4〜9の範囲内に調整できることを見出し、本発明の創生に至った。   Based on the new findings obtained based on the above test results by the inventors, the inventors have adopted an adsorption device that adsorbs and removes radionuclides contained in radioactive waste liquid from an adsorption tower packed with activated carbon impregnated with oxine. It has been found that the pH of the radioactive liquid waste from which the radionuclide has been removed can be adjusted within the range of 4 to 9 by disposing it downstream of the radionuclide, leading to the creation of the present invention.

放射性廃液の処理は、放射性のセシウムやストロンチウムなどの陽イオン、及び放射性アンチモンなどの陰イオン、及び放射性コバルトなどの遷移金属イオンを含む放射性廃液を処理することを想定した。放射性セシウム及び放射性ストロンチウムを選択的に吸着するために、例えば、天然ゼオライト、人工ゼオライトあるいはケイチタン酸を用いる。放射性アンチモン等を選択的に吸着するために、例えば、含水酸化セリウム担持吸着剤を用い、放射性の重金属(例えば、遷移金属及び希土類のイオン)を選択的に吸着するために、例えば、オキシン添着活性炭を用いる。   The treatment of the radioactive waste liquid was assumed to treat a radioactive waste liquid containing a cation such as radioactive cesium or strontium, an anion such as radioactive antimony, and a transition metal ion such as radioactive cobalt. In order to selectively adsorb radioactive cesium and radioactive strontium, for example, natural zeolite, artificial zeolite or silicotitanate is used. In order to selectively adsorb radioactive antimony and the like, for example, using a cerium hydroxide-containing adsorbent, for selectively adsorbing radioactive heavy metals (for example, transition metal and rare earth ions), for example, oxine-impregnated activated carbon Is used.

Figure 2015059870
Figure 2015059870

表1は、上記の放射性イオンを吸着除去する場合に使用可能な吸着剤、及びこの吸着剤の充填層の通過前後の各試験水のpHを示している。試験水−1、試験水−2及び試験水−3は、いずれも、放射性廃液の模擬水である。入口の( )内の数値は、吸着剤の充填層の入口での試験水−1、試験水−2及び試験水−3のそれぞれのpH値を示している。「Cs,Sr除去」、「アニオン除去」及び「重金属除去」のそれぞれの欄の( )内の各数値は、各試験水が吸着剤充填層を通過した後のpH値である。いずれの場合も、放射性核種吸着の最終段に、オキシン添着炭充填層を配置することによって、各試験水のpHを4〜9の範囲に調整することができる。   Table 1 shows adsorbents that can be used when the above radioactive ions are removed by adsorption, and the pH of each test water before and after passing through the packed bed of the adsorbent. Test water-1, test water-2 and test water-3 are all simulated water of radioactive liquid waste. Numerical values in parentheses () at the inlet indicate the respective pH values of test water-1, test water-2 and test water-3 at the inlet of the packed bed of the adsorbent. Each numerical value in () in each column of “Cs, Sr removal”, “anion removal” and “heavy metal removal” is a pH value after each test water passes through the adsorbent packed bed. In any case, the pH of each test water can be adjusted to a range of 4 to 9 by disposing the oxine-impregnated coal packed bed in the final stage of the radionuclide adsorption.

さらに、発明者らは上記の基礎的検討にとどまらず、機器システムの観点からも課題と対応策を検討した。単に、オキシン添着活性炭を充填した吸着塔の配置だけでは、吸着塔の中で放射性廃液のpHが中性領域になった結果、放射性廃液に含まれる溶存成分が吸着塔内で析出して閉塞を起こすことが懸念される。その対策として、吸着工程の前にろ過装置及びコロイド除去装置を配置し、固形分の析出ポテンシャルを極力低減するシステム構成にすることが必要である。   Furthermore, the inventors examined the problems and countermeasures not only from the basic examination described above but also from the viewpoint of the equipment system. Simply by arranging the adsorption tower filled with activated carbon impregnated with oxine, the pH of the radioactive liquid waste became neutral in the adsorption tower, so that dissolved components contained in the radioactive liquid waste were deposited in the adsorption tower and blocked. There is concern about waking up. As a countermeasure, it is necessary to arrange a filtration device and a colloid removal device before the adsorption step so that the system configuration can reduce the solids precipitation potential as much as possible.

上記の検討結果を反映した、本発明の実施例を以下に説明する。   Examples of the present invention reflecting the above examination results will be described below.

上記の知見に基づいた本発明の好適な一実施例である実施例1の放射性廃液の処理方法を、図1を用いて説明する。さらに、この放射性廃液の処理方法に用いられる放射性廃液処理装置を、図1を用いて説明する。   A method for treating the radioactive liquid waste of Example 1, which is a preferred example of the present invention based on the above knowledge, will be described with reference to FIG. Furthermore, the radioactive waste liquid processing apparatus used for the processing method of this radioactive waste liquid is demonstrated using FIG.

本実施例に用いられる放射性廃液処理装置1は、ろ過装置2、コロイド除去装置3、吸着装置(第1吸着装置)5及び吸着塔(第2吸着装置)21を有する。ろ過装置2は、放射性廃液に含まれる粒子成分を物理的にろ過する装置であり、ろ過材を充填したカートリッジフィルタ(またはプリーツフィルタ)を内部に設けている。ろ過装置2は、放射性廃液に含まれる約1μm以上の粒子を除去する。コロイド除去装置3は、ケーシング内に複数の静電フィルタ4を設置している。吸着装置5は複数の吸着塔6を有する。放射性廃液に含まれる放射性核種の種類に応じて選定した吸着剤が、別々に各吸着塔6内に充填されている。放射性廃液供給管7がろ過装置2に接続される。ろ過装置2とコロイド除去装置3は接続配管8によって接続される。吸着装置5における複数の吸着塔6のうち最も上流に位置する吸着塔6が、接続配管9によってコロイド除去装置3に接続される。吸着装置5内のそれぞれの吸着塔6は、配管10によって順次接続されている。吸着装置5の下流に配置されてオキシン添着活性炭が充填された吸着塔21が、配管11によって吸着装置5内で最も下流に位置する吸着塔6に接続される。オキシン添着活性炭は、オキシン基が担体である活性炭の表面に担持されている吸着剤である。   The radioactive liquid waste treatment apparatus 1 used in this embodiment includes a filtration device 2, a colloid removal device 3, an adsorption device (first adsorption device) 5, and an adsorption tower (second adsorption device) 21. The filtration device 2 is a device for physically filtering the particle components contained in the radioactive waste liquid, and has a cartridge filter (or pleat filter) filled with a filter material inside. The filtration device 2 removes particles of about 1 μm or more contained in the radioactive liquid waste. The colloid removing device 3 has a plurality of electrostatic filters 4 installed in the casing. The adsorption device 5 has a plurality of adsorption towers 6. Adsorbents selected according to the type of radionuclide contained in the radioactive liquid waste are packed in each adsorption tower 6 separately. A radioactive waste liquid supply pipe 7 is connected to the filtration device 2. The filtration device 2 and the colloid removal device 3 are connected by a connection pipe 8. Among the plurality of adsorption towers 6 in the adsorption apparatus 5, the adsorption tower 6 located on the most upstream side is connected to the colloid removing apparatus 3 by a connection pipe 9. Each adsorption tower 6 in the adsorption device 5 is sequentially connected by a pipe 10. An adsorption tower 21 disposed downstream of the adsorption device 5 and filled with activated carbon impregnated with oxine is connected to the adsorption tower 6 located most downstream in the adsorption device 5 by the pipe 11. Oxin-impregnated activated carbon is an adsorbent supported on the surface of activated carbon having an oxine group as a carrier.

吸着装置5の各吸着塔6に充填する吸着剤としては、放射性セシウム及び放射性ストロンチウムを選択的に吸着するために、例えば、天然ゼオライト、人工ゼオライト及びケイチタン酸を用い、放射性アンチモン等を選択的に吸着するために、例えば、含水酸化セリウム担持吸着剤を用い、放射性の重金属を選択的に吸着するために、例えば、オキシン添着活性炭を用いる。これらの吸着剤が各吸着塔6に別々に充填されている。吸着装置5において用いられる放射性核種を吸着する吸着剤として、ゼオライト、フェロシアン化物、チタン酸化合物、チタン酸塩化合物、イオン交換樹脂、キレート樹脂、活性炭及び添着活性炭のうちの少なくとも一つが選択される。ここで、本実施例では、上記したように、オキシン添着活性炭を充填した吸着塔21が、吸着装置5の下流に配置されている。   As an adsorbent to be packed in each adsorption tower 6 of the adsorption device 5, for example, natural zeolite, artificial zeolite and silicic titanic acid are selectively used to selectively adsorb radioactive cesium and radioactive strontium. In order to adsorb, for example, a hydrous cerium-containing adsorbent is used, and in order to selectively adsorb radioactive heavy metals, for example, oxine-impregnated activated carbon is used. These adsorbents are packed in each adsorption tower 6 separately. At least one of zeolite, ferrocyanide, titanate compound, titanate compound, ion exchange resin, chelate resin, activated carbon and impregnated activated carbon is selected as the adsorbent for adsorbing the radionuclide used in the adsorption device 5. . Here, in the present embodiment, as described above, the adsorption tower 21 filled with oxine-impregnated activated carbon is disposed downstream of the adsorption device 5.

放射性廃液処理装置1を用いた本実施例の放射性廃液の処理方法を説明する。   The processing method of the radioactive waste liquid of a present Example using the radioactive waste liquid processing apparatus 1 is demonstrated.

放射性廃液に含まれた1μm以上の粒子がろ過装置2内のカートリッジフィルタによって除去される。ろ過装置2から排出された放射性廃液が、接続配管8を通してコロイド除去装置3に供給される。   Particles of 1 μm or more contained in the radioactive liquid waste are removed by the cartridge filter in the filtration device 2. The radioactive waste liquid discharged from the filtration device 2 is supplied to the colloid removal device 3 through the connection pipe 8.

放射性廃液に含まれるコロイドが、コロイド除去装置3内の静電フィルタ4によって除去される。1μm未満の微粒子は、コロイドと呼ばれている。コロイドが放射性核種(放射性セシウム、放射性ストロンチウム及び放射性アンチモンなど)を含んでおり、静電フィルタ4によるコロイドの除去は、コロイドに含まれる放射性核種も併せて除去する。コロイドは表面が正または負に帯電している。コロイドの帯電が正か負かは、そのコロイドを形成する物質及び表面構造によって決まる。例えば、土壌成分由来のコロイドは負に帯電していることが多い。本実施例では、コロイド除去装置3内の静電フィルタ4は正に帯電したものを使用し、放射性廃液に含まれた負に帯電しているコロイドが静電フィルタ4の表面に付着されて除去される。コロイド除去装置3に供給される放射性廃液のpH調節は不要である。静電フィルタ4では、約1nm以上1μm未満の範囲の粒径を有するコロイド粒子が除去される。   The colloid contained in the radioactive liquid waste is removed by the electrostatic filter 4 in the colloid removing device 3. Fine particles of less than 1 μm are called colloids. The colloid contains a radionuclide (such as radiocesium, radiostrontium and radioantimony), and the removal of the colloid by the electrostatic filter 4 also removes the radionuclide contained in the colloid. The surface of the colloid is positively or negatively charged. Whether the colloid is positively or negatively charged depends on the material forming the colloid and the surface structure. For example, colloids derived from soil components are often negatively charged. In the present embodiment, a positively charged electrostatic filter 4 in the colloid removing device 3 is used, and the negatively charged colloid contained in the radioactive waste liquid is attached to the surface of the electrostatic filter 4 and removed. Is done. It is not necessary to adjust the pH of the radioactive liquid waste supplied to the colloid removing device 3. In the electrostatic filter 4, colloidal particles having a particle size in the range of about 1 nm or more and less than 1 μm are removed.

コロイド粒子が除去された放射性廃液が、接続配管9を通して吸着装置5の吸着塔6に供給される。吸着装置5に供給される放射性廃液は、粒子成分及びコロイドを含んでいない。放射性廃液に含まれる、例えば、放射性セシウム、放射性ストロンチウム及び放射性アンチモン等の放射性核種はイオンになっている。放射性廃液が複数の吸着塔6を通過するたびに、放射性廃液に含まれる放射性セシウム、放射性ストロンチウム、放射性ヨウ素等の各放射性核種が各吸着塔6で別々に吸着剤に吸着されて除去される。   The radioactive liquid waste from which the colloidal particles have been removed is supplied to the adsorption tower 6 of the adsorption device 5 through the connection pipe 9. The radioactive liquid waste supplied to the adsorption device 5 does not contain particle components and colloids. For example, radioactive nuclides such as radioactive cesium, radioactive strontium and radioactive antimony contained in the radioactive liquid waste are ions. Each time the radioactive liquid waste passes through the plurality of adsorption towers 6, each radionuclide such as radioactive cesium, radioactive strontium, and radioactive iodine contained in the radioactive liquid waste is separately adsorbed and removed by the adsorbent in each adsorption tower 6.

吸着装置5から排出された放射性廃液に残存しているコバルトなどの遷移金属イオン及び欄端及びセシウムなどの希土類の金属元素イオンが、吸着塔21内のオキシン添着活性炭に吸着されて除去されると共に、吸着塔21内で放射性廃液のpHが中性(pH4〜9の範囲)に調整される。吸着塔21から排出管14に排出された処理水のpHは(pH4〜9の範囲)に調整されている。吸着装置5のそれぞれの吸着塔6には、放射性廃液に含まれるそれぞれの放射性核種の全量を十分に吸着できる量の該当する吸着剤が充填されている。このため、吸着塔21から排出管14に排出された処理水に含まれる各放射性核種の濃度は、測定下限値以下になる。吸着装置5から排出された処理水は、排出管14を通して貯蔵タンク(図示せず)に供給されて保管される。   Transition metal ions such as cobalt remaining in the radioactive waste liquid discharged from the adsorbing device 5 and rare earth metal element ions such as balustrade and cesium are adsorbed and removed by the oxine-impregnated activated carbon in the adsorption tower 21. In the adsorption tower 21, the pH of the radioactive liquid waste is adjusted to neutral (pH 4 to 9). The pH of the treated water discharged from the adsorption tower 21 to the discharge pipe 14 is adjusted to (range 4 to 9). Each adsorption tower 6 of the adsorption device 5 is filled with a corresponding adsorbent in an amount capable of sufficiently adsorbing the total amount of each radionuclide contained in the radioactive liquid waste. For this reason, the density | concentration of each radionuclide contained in the treated water discharged | emitted from the adsorption tower 21 to the discharge pipe 14 becomes below a measurement lower limit. The treated water discharged from the adsorption device 5 is supplied to and stored in a storage tank (not shown) through the discharge pipe 14.

本実施例によれば、ろ過装置2、静電フィルタ4を用いたコロイド除去装置3及び吸着装置5を有する簡素な装置構成で、放射性廃棄物の発生量を低減することができ、放射性核種を測定下限値以下まで除去することができる。さらに、オキシン添着活性炭を充填した吸着塔21を吸着装置5の下流に配置することにより、特別に、pHを調節する薬剤を放射性廃液に投入することなしに、放射性廃液のpHを4〜9の範囲に調整することができる。   According to the present embodiment, the amount of radioactive waste generated can be reduced with a simple device configuration including the filtration device 2, the colloid removal device 3 using the electrostatic filter 4, and the adsorption device 5. It can be removed up to the lower limit of measurement. Furthermore, by arranging the adsorption tower 21 filled with oxine-impregnated activated carbon downstream of the adsorption device 5, the pH of the radioactive liquid waste is adjusted to 4 to 9 without introducing the chemical for adjusting the pH into the radioactive liquid waste. Can be adjusted to the range.

吸着剤を用いた、放射性廃液からの放射性核種の除去には、陽イオン交換樹脂、キレート樹脂、及び陰イオン交換樹脂などが用いられる。これらの吸着剤は、プラスの電荷を有するイオン、マイナスの電荷を有するイオン、及び錯体を形成するイオンに対しては高い除去性能を有している。しかしながら、吸着剤は、コロイド及び中性溶存種については、比較的低い除去性能しか有していない。   For the removal of the radionuclide from the radioactive liquid waste using the adsorbent, a cation exchange resin, a chelate resin, an anion exchange resin, or the like is used. These adsorbents have a high removal performance for ions having a positive charge, ions having a negative charge, and ions forming a complex. However, the adsorbent has relatively low removal performance for colloids and neutral dissolved species.

このため、放射性廃液に含まれている放射性核種を効率良く除去するために、酸化剤、還元剤またはpH調整剤を用いて、放射性廃液に含まれる放射性核種の化学形態を調整することが望ましい。しかし、実際には、多くの放射性核種が複数の化学形態をとるため、放射性廃液の状態(pHなど)をある一つの条件に調整したとしても、放射性廃液に含まれるあらゆる放射性核種を完全に除去することは困難である。   For this reason, in order to efficiently remove the radionuclide contained in the radioactive liquid waste, it is desirable to adjust the chemical form of the radionuclide contained in the radioactive liquid waste using an oxidizing agent, a reducing agent or a pH adjuster. However, in reality, many radionuclides take multiple chemical forms, so even if the state of the radioactive liquid waste (such as pH) is adjusted to a certain condition, all the radionuclides contained in the radioactive liquid are completely removed. It is difficult to do.

そこで、発明者らは、放射性核種の種類及び濃度、及び放射性廃液の組成などが不明である場合においても、放射性核種を吸着剤により放射性廃液から効率良く除去できる方法を、鋭意、検討した。この検討の結果、放射性廃液に含まれる放射性核種を吸着剤層に通水して吸着剤層内の吸着剤により除去し、その後に、酸化剤、還元剤及びpH調整剤のうちの少なくとも1つの薬剤を放射性廃液に添加し、その薬剤を添加した放射性廃液を、再度、吸着剤層に通液してこの放射性廃液に含まれる放射性核種を除去することが、放射性廃液からの、効果的な放射性核種の除去方法となることを発明者らはさらに見出した。   Therefore, the inventors diligently studied a method capable of efficiently removing the radionuclide from the radioactive liquid waste using the adsorbent even when the type and concentration of the radionuclide and the composition of the radioactive liquid waste are unknown. As a result of this examination, the radionuclide contained in the radioactive liquid waste is passed through the adsorbent layer and removed by the adsorbent in the adsorbent layer, and then, at least one of the oxidizing agent, the reducing agent, and the pH adjusting agent. It is effective to remove the radioactive nuclides contained in the radioactive waste liquid by adding the chemical to the radioactive waste liquid and passing the radioactive waste liquid containing the chemical through the adsorbent layer again to remove the radionuclide contained in the radioactive waste liquid. The inventors have further found that this is a method for removing nuclides.

放射性核種の一つであるルテニウムを例として説明する。ルテニウムの放射性同位体、例えばRu−106は、放射性廃液の性状により複数の酸化数を取り且つ複数の化学形態をとることが知られている。   An explanation will be given by taking ruthenium, which is one of radionuclides, as an example. It is known that a ruthenium radioisotope, for example, Ru-106, takes a plurality of oxidation numbers and takes a plurality of chemical forms depending on the properties of the radioactive liquid waste.

発明者らは、ルテニウムを含む海水のpHを酸性(pH2)、中性(pH7)、及びアルカリ性(pH12)と変え、各pHの海水に含まれる化学形態が異なる各ルテニウムの吸着剤による除去率を求めた。この結果、上記の各pHの海水に含まれるルテニウムの代表的な各化学形態、及びそれぞれのpHの海水に含まれる各化学形態のルテニウムの、吸着剤による除去率を図3に示す。   The inventors changed the pH of seawater containing ruthenium to acidic (pH 2), neutral (pH 7), and alkaline (pH 12), and the removal rate by the adsorbent of each ruthenium having different chemical forms contained in sea water at each pH. Asked. As a result, the typical chemical forms of ruthenium contained in the seawater of each pH described above and the removal rate of the ruthenium of each chemical form contained in the seawater of each pH by the adsorbent are shown in FIG.

中性の海水中では、ルテニウムは、主に陽イオン(Ru(OH)2 +など)及び中性溶存種(Ru(OH)4など)として存在しており、吸着剤により除去困難な中性溶存種の割合は約74%である。一方、酸性(pH2)の海水では、ルテニウムの約58%が陽イオン(RuCl2 +など)、及び約12%が陰イオン(RuCl4 -など)として存在し、ルテニウムの中性溶存種(RuCl3など)は約30%になっている。アルカリ性の海水中では、ほぼ100%がルテニウムの中性溶存種(Ru(OH)4)である。 In neutral seawater, ruthenium exists mainly as cations (Ru (OH) 2 + and the like) and neutral dissolved species (Ru (OH) 4 and the like) and is difficult to remove due to the adsorbent. The proportion of dissolved species is about 74%. On the other hand, in acidic (pH 2) seawater, about 58% of ruthenium is present as a cation (such as RuCl 2 + ) and about 12% as an anion (such as RuCl 4 ). 3 ) is about 30%. In alkaline seawater, almost 100% are ruthenium neutral dissolved species (Ru (OH) 4 ).

したがって、放射性廃液に含まれるルテニウムを吸着剤により除去するためには、放射性廃液を酸性に調整した後でルテニウムを吸着剤で吸着して除去することが望ましい。この場合では、酸性の放射性廃液に含まれる約30%の中性溶存種は吸着剤によって除去することができない。   Therefore, in order to remove ruthenium contained in the radioactive liquid waste with the adsorbent, it is desirable to remove the ruthenium by adsorbing with the adsorbent after adjusting the radioactive liquid waste to be acidic. In this case, about 30% of the neutral dissolved species contained in the acidic radioactive liquid waste cannot be removed by the adsorbent.

そこで、例えば、最初に、中性の放射性廃液に対して吸着剤によるルテニウムの吸着処理を行った場合には、26%のルテニウムの陽イオン(Ru(OH)2 +)が除去される。その後、その放射性廃液を酸性(例えば、pH2)に調整してルテニウムの吸着処理を行うと、放射性廃液に残存する中性溶存種の割合を約22%(=74%×30%)に低減することができる。このため、放射性廃液のpH調整前に、放射性廃液から除去可能なルテニウムを吸着除去し、その後、放射性廃液のpHを酸性(例えば、pH2)に調整して、再度、ルテニウムの吸着処理を行うことにより、放射性廃液に含まれる、吸着剤での除去が困難な中性溶存種を、低減することができる。 Therefore, for example, when ruthenium adsorption treatment is first performed with an adsorbent on a neutral radioactive liquid waste, 26% of ruthenium cations (Ru (OH) 2 + ) are removed. After that, when the radioactive liquid waste is adjusted to acidic (for example, pH 2) and the ruthenium is adsorbed, the ratio of neutral dissolved species remaining in the radioactive liquid waste is reduced to about 22% (= 74% × 30%). be able to. Therefore, before adjusting the pH of the radioactive liquid waste, the ruthenium that can be removed from the radioactive liquid waste is adsorbed and removed, and then the pH of the radioactive liquid waste is adjusted to acidic (for example, pH 2) and the ruthenium adsorption process is performed again. Thus, it is possible to reduce neutral dissolved species that are difficult to remove with an adsorbent contained in the radioactive liquid waste.

また、例えば、放射性廃液のpHが2であった場合、放射性廃液に含まれるルテニウムの吸着処理を行うと、約30%の中性溶存種が放射性廃液中に残存する。この放射性廃液のpHを、再度、pH2に調整して吸着剤による吸着処理を行った場合には、放射性廃液に残存する中性溶存種の割合が、9%(=30%×30%)に低減される。   For example, when the pH of the radioactive liquid waste is 2, when the adsorption treatment of ruthenium contained in the radioactive liquid waste is performed, about 30% of the neutral dissolved species remains in the radioactive liquid waste. When the pH of the radioactive liquid waste is adjusted to pH 2 again and the adsorption treatment with the adsorbent is performed, the ratio of the neutral dissolved species remaining in the radioactive liquid waste is 9% (= 30% × 30%). Reduced.

このように、以上に述べた、発明者らが新たに創生した放射性廃液の処理方法によれば、放射性廃液に含まれる放射性核種を吸着剤により効率良く除去することができる。   As described above, according to the method for treating a radioactive waste liquid newly created by the inventors, the radionuclide contained in the radioactive waste liquid can be efficiently removed by the adsorbent.

吸着剤としては、例えば、イオン交換樹脂(陽イオン交換樹脂、陰イオン交換樹脂)、キレート樹脂、活性炭、オキシン添着活性炭、ゼオライト、チタン酸化合物、チタン酸塩化合物及びフェロシアン化物のうち少なくとも一つが用いられる。これらの吸着剤は、吸着する放射性核種の種類に応じて適宜選択して使用される。また、使用可能な酸化剤としては、例えば、過酸化水素、オゾン、過マンガン酸及びその塩の水溶液、次亜塩素酸及びその塩の水溶液がある。   Examples of the adsorbent include at least one of ion exchange resin (cation exchange resin, anion exchange resin), chelate resin, activated carbon, oxine-impregnated activated carbon, zeolite, titanate compound, titanate compound, and ferrocyanide. Used. These adsorbents are appropriately selected and used according to the type of radionuclide to be adsorbed. Examples of usable oxidizing agents include aqueous solutions of hydrogen peroxide, ozone, permanganic acid and salts thereof, and aqueous solutions of hypochlorous acid and salts thereof.

使用可能な還元剤としては、例えば、アスコルビン酸、ヒドラジン、シュウ酸などがある。pH調整剤としては、例えば、塩酸、硝酸、硫酸、及びリン酸等の酸溶液、及び炭酸水素ナトリウム、炭酸ナトリウム、水酸化ナトリウム、及び水酸化カリウム等のアルカリ溶液がある。   Examples of the reducing agent that can be used include ascorbic acid, hydrazine, and oxalic acid. Examples of the pH adjuster include acid solutions such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, and alkaline solutions such as sodium hydrogen carbonate, sodium carbonate, sodium hydroxide, and potassium hydroxide.

発明者らが得た上記の新しい知見を前述の実施例1に反映してなる、本発明の他の好適な実施例である実施例2の放射性廃液の処理方法を、図2を用いて説明する。   The method for treating the radioactive liquid waste of Example 2, which is another preferred example of the present invention, reflecting the above-mentioned new knowledge obtained by the inventors in the above-mentioned Example 1, will be described with reference to FIG. To do.

本実施例の放射性廃液の処理方法に用いられる放射性廃液処理装置1Bは、実施例1の放射性廃液の処理方法に用いられる放射性廃液処理装置1において調整タンク(液性調整部)4、pH調整剤供給装置及び吸着装置5Bを追加した構成を有する。放射性廃液処理装置1Bの他の構成は放射性廃液処理装置1と同じである。   The radioactive waste liquid treatment apparatus 1B used in the radioactive waste liquid treatment method of the present embodiment is the same as the adjustment tank (liquidity adjustment unit) 4 and pH adjuster in the radioactive waste liquid treatment apparatus 1 used in the radioactive waste liquid treatment method of Example 1. It has the structure which added the supply apparatus and the adsorption | suction apparatus 5B. Other configurations of the radioactive liquid waste treatment apparatus 1B are the same as those of the radioactive liquid waste treatment apparatus 1.

放射性廃液処理装置1Bの、放射性廃液処理装置1と異なる構成を説明する。調整タンク15が、配管12によって吸着装置2内で最も下流に位置する吸着塔2Aに接続される。pH調整剤供給装置はpH調整剤タンク16及びpH調整剤供給配管17を有し、pH調整剤タンク16は開閉弁(図示せず)を設けたpH調整剤供給配管17によって調整タンク15に接続される。本実施例では、pH調整剤である塩酸水溶液がpH調整剤タンク16に充填されている。   The structure different from the radioactive waste liquid processing apparatus 1 of the radioactive waste liquid processing apparatus 1B is demonstrated. The adjustment tank 15 is connected to the adsorption tower 2 </ b> A located most downstream in the adsorption device 2 by the pipe 12. The pH adjusting agent supply device has a pH adjusting agent tank 16 and a pH adjusting agent supply pipe 17, and the pH adjusting agent tank 16 is connected to the adjustment tank 15 by a pH adjusting agent supply pipe 17 provided with an on-off valve (not shown). Is done. In this embodiment, the pH adjusting agent tank 16 is filled with a hydrochloric acid aqueous solution that is a pH adjusting agent.

吸着装置5Bは複数の吸着塔6Bを有する。放射性廃液に含まれる放射性核種の種類に応じて選定した吸着剤が、別々に各吸着塔6B内に充填されている。調整タンク15に接続された配管13が、吸着装置5B内で最も上流に位置する吸着塔6Bに接続される。吸着装置5B内の各吸着塔6Bは配管10Bによって順次接続されている。   The adsorption device 5B has a plurality of adsorption towers 6B. The adsorbent selected according to the type of radionuclide contained in the radioactive liquid waste is separately packed in each adsorption tower 6B. The pipe 13 connected to the adjustment tank 15 is connected to the adsorption tower 6B located most upstream in the adsorption device 5B. Each adsorption tower 6B in the adsorption device 5B is sequentially connected by a pipe 10B.

オキシン添着活性炭が充填された吸着塔21が、吸着装置5Bの下流に配置され、配管11によって吸着装置5B内で最も下流に位置する吸着塔6Bに接続される。排出管14が吸着塔21に接続される。   The adsorption tower 21 filled with oxine-impregnated activated carbon is disposed downstream of the adsorption device 5B, and is connected to the adsorption tower 6B located most downstream in the adsorption device 5B by the pipe 11. A discharge pipe 14 is connected to the adsorption tower 21.

各吸着塔6B内のそれぞれの吸着剤層には、吸着により除去する放射性核種に応じて選択された吸着剤が別々に充填されている。放射性セシウム及び放射性ストロンチウムを選択的に吸着するためには、例えば、天然ゼオライト、人工ゼオライト及びケイチタン酸を用い、放射性アンチモン等を選択的に吸着するためには、例えば、含水酸化セリウム担持吸着剤を用いる。また、ある吸着塔2Aの吸着剤層には、イオン交換樹脂(陽イオン交換樹脂及び陰イオン交換樹脂)が充填される。   Each adsorbent layer in each adsorption tower 6B is separately filled with an adsorbent selected according to the radionuclide to be removed by adsorption. In order to selectively adsorb radioactive cesium and radioactive strontium, for example, natural zeolite, artificial zeolite and silicic titanic acid are used, and in order to selectively adsorb radioactive antimony and the like, for example, a hydrous cerium-containing adsorbent is used. Use. In addition, an adsorbent layer of a certain adsorption tower 2A is filled with ion exchange resins (cation exchange resin and anion exchange resin).

放射性廃液処理装置1Bを用いた本実施例の放射性廃液の処理方法を説明する。本実施例の放射性廃液の処理方法では、沸騰水型原子力プラントにおいて発生した放射性廃液が処理される。放射性廃液は、例えば、ルテニウム、テクネチウム及びニオブなどの遷移金属、セシウムなどのアルカリ金属、ストロンチウムなどのアルカリ土類金属、セリウムなどの希土類といった金属元素、アンチモン、テルル、ヨウ素などのハロゲン、及び炭素、ホウ素といった非金属元素のうちの一種あるいは複数の放射性核種を含んでいる。   The processing method of the radioactive waste liquid of a present Example using the radioactive waste liquid processing apparatus 1B is demonstrated. In the method for treating the radioactive liquid waste of the present embodiment, the radioactive liquid waste generated in the boiling water nuclear power plant is processed. The radioactive liquid waste includes, for example, transition metals such as ruthenium, technetium and niobium, alkali metals such as cesium, alkaline earth metals such as strontium, rare earth elements such as cerium, halogens such as antimony, tellurium and iodine, and carbon, Contains one or more radionuclide of non-metallic elements such as boron.

複数の放射性核種を含む放射性廃液は、実施例1と同様に、ろ過装置2及びコロイド除去装置3に順次供給される。放射性廃液に含まれる1μm以上の粒子がろ過装置2で除去される。その後、ろ過装置2から排出された放射性廃液が吸着装置5の各吸着塔6内を流れるとき、各吸着塔6内の吸着剤は、吸着剤層内の吸着剤の種類に応じて、その放射性廃液に含まれるルテニウム等の放射性核種の陽イオン及び陰イオンを吸着して除去する。各吸着塔6内の吸着剤によって吸着除去されなかった放射性核種は、放射性廃液と共に配管12内を流れて調整タンク15に導かれる。   The radioactive liquid waste containing a plurality of radionuclides is sequentially supplied to the filtration device 2 and the colloid removal device 3 as in the first embodiment. Particles of 1 μm or more contained in the radioactive liquid waste are removed by the filtration device 2. Then, when the radioactive waste liquid discharged | emitted from the filtration apparatus 2 flows in each adsorption tower 6 of the adsorption apparatus 5, the adsorbent in each adsorption tower 6 is the radioactive according to the kind of adsorbent in an adsorbent layer. It adsorbs and removes cations and anions of radionuclides such as ruthenium contained in the waste liquid. The radionuclide that has not been adsorbed and removed by the adsorbent in each adsorption tower 6 flows through the pipe 12 together with the radioactive waste liquid and is guided to the adjustment tank 15.

吸着装置5に供給される放射性廃液のpHが7である場合には、放射性核種の一種であるルテニウムは、放射性廃液内で陽イオン(Ru(OH)2 +など)及び中性溶存種(Ru(OH)4など)として存在している。放射性廃液が吸着装置5内を流れる間に該当する吸着塔6において、ルテニウムの陽イオン(Ru(OH)2 +など)が吸着されて除去される。ルテニウムの中性溶存種(Ru(OH)4など)は、吸着装置5で除去されないまま、調整タンク15に流入する。 When the pH of the radioactive liquid waste supplied to the adsorption device 5 is 7, ruthenium, which is a kind of radionuclide, is a cation (such as Ru (OH) 2 + ) and neutral dissolved species (Ru) in the radioactive liquid waste. (OH) 4 etc.). Ruthenium cations (Ru (OH) 2 + and the like) are adsorbed and removed in the corresponding adsorption tower 6 while the radioactive liquid waste flows through the adsorption device 5. Ruthenium neutral dissolved species (such as Ru (OH) 4 ) flow into the adjustment tank 15 without being removed by the adsorption device 5.

pH調整剤タンク16内の塩酸水溶液がpH調整剤供給配管17を通して調整タンク15内の放射性廃液に注入される。オゾンが溶解された放射性廃液及び塩酸水溶液が、調整タンク15内で、上記の撹拌装置によって混合される。オゾンガスの注入によってもルテニウムの陽イオンに転換されなかったルテニウムの中性溶存種(Ru(OH)4)が、塩酸水溶液の注入によって放射性廃液を酸性(例えば、pH2)に調整することにより、ルテニウムの陽イオン(RuCl2 +など)、ルテニウムの陰イオン(RuCl4 -など)及びルテニウムの中性溶存種(RuCl3など)に転換される。放射性廃液に含まれるルテニウム以外の放射性核種も陽イオン及び陰イオンに転換される。 The aqueous hydrochloric acid solution in the pH adjusting agent tank 16 is injected into the radioactive waste liquid in the adjusting tank 15 through the pH adjusting agent supply pipe 17. The radioactive waste liquid in which ozone is dissolved and the hydrochloric acid aqueous solution are mixed in the adjustment tank 15 by the stirring device. Ruthenium neutral dissolved species (Ru (OH) 4 ), which was not converted to ruthenium cations by ozone gas injection, adjusts the radioactive liquid waste to acidic (for example, pH 2) by injection of hydrochloric acid aqueous solution. To cations (such as RuCl 2 + ), ruthenium anions (such as RuCl 4 ), and neutral dissolved species of ruthenium (such as RuCl 3 ). Radionuclides other than ruthenium contained in the radioactive liquid waste are also converted into cations and anions.

調整タンク15内で生成されたルテニウムの陽イオン(RuCl2 +など)、ルテニウムの陰イオン(RuCl4 -など)及びルテニウムの中性溶存種(RuCl3など)、さらに、ルテニウム以外の放射性核種の陽イオン、陰イオン及び中性溶存種を含む放射性廃液が、配管13を通して、吸着装置5Bの最上流に位置する吸着塔6Bに供給される。そして、この放射性廃液は、配管12を通して吸着装置の他のそれぞれの吸着塔6Bに、順次、供給される。3価のルテニウムの陽イオン(RuCl2 +など)及びルテニウムの陰イオン(RuCl4 -など)、及びルテニウム以外の放射性核種の陽イオン及び陰イオンが、該当する吸着塔6Bで吸着剤に吸着されて除去される。吸着装置5Bの各吸着塔6Bで除去されなかったルテニウムの中性溶存種(RuCl3など)及びルテニウム以外の放射性核種を含む放射性廃液が、吸着装置5Bから排出管14に排出される。 Ruthenium cations (such as RuCl 2 + ), ruthenium anions (such as RuCl 4 ) and neutral dissolved species of ruthenium (such as RuCl 3 ) generated in the adjustment tank 15, and radionuclides other than ruthenium A radioactive liquid waste containing cations, anions and neutral dissolved species is supplied through the pipe 13 to the adsorption tower 6B located at the uppermost stream of the adsorption device 5B. And this radioactive waste liquid is sequentially supplied to each other adsorption tower 6B of the adsorption device through the pipe 12. Trivalent ruthenium cations (such as RuCl 2 + ), ruthenium anions (such as RuCl 4 ), and radionuclide cations and anions other than ruthenium are adsorbed by the adsorbent in the corresponding adsorption tower 6B. Removed. Radioactive waste liquid containing neutral dissolved species of ruthenium (such as RuCl 3 ) and radionuclides other than ruthenium that have not been removed by each adsorption tower 6B of the adsorption device 5B is discharged from the adsorption device 5B to the exhaust pipe 14.

pH調整剤水溶液は、調整タンク15内の放射性廃液に必要に応じて添加してもよいし、または添加しなくてもよい。   The aqueous pH adjuster solution may or may not be added to the radioactive waste liquid in the adjustment tank 15 as necessary.

本実施例では、放射性廃液にpH調整剤を添加する例について述べたが、放射性廃液に添加する薬剤としては、酸化剤、還元剤及びpH調整剤のうち少なくとも1種を用いればよい。例えば、さらに、調整タンク15内の放射性廃液に酸化剤及び還元剤を添加する場合には、pH調整剤と同様に、酸化剤タンク、及び開閉弁を設けた酸化剤供給配管を有する酸化剤供給装置、及び還元剤タンク、及び開閉弁を設けた還元剤供給配管を有する還元剤供給装置をそれぞれ調整タンク15に接続すればよい。   In the present embodiment, an example in which a pH adjuster is added to the radioactive liquid waste has been described. However, as the chemical agent to be added to the radioactive liquid waste, at least one of an oxidizing agent, a reducing agent, and a pH adjuster may be used. For example, when an oxidizing agent and a reducing agent are further added to the radioactive liquid waste in the adjustment tank 15, an oxidizing agent supply having an oxidizing agent tank and an oxidizing agent supply pipe provided with an on-off valve is provided in the same manner as the pH adjusting agent. What is necessary is just to connect the reducing agent supply apparatus which has a reducing agent supply piping which provided the apparatus, the reducing agent tank, and the on-off valve to the adjustment tank 15, respectively.

本実施例は実施例1で生じる効果を得ることができる。さらに、本実施例では、吸着装置5で放射性廃液に含まれるルテニウム等の放射性核種のイオン(陽イオン及び陰イオン)を除去し、調整タンク15内で、ルテニウム等の放射性核種の中性溶存種を含む放射性廃液にpH調整剤である塩酸を注入して、ルテニウム等の放射性核種の中性溶存種を、放射性廃液のpHを、例えば、酸性に調整することによって、ルテニウム等の放射性核種の中性溶存種を、陽イオン及び陰イオンに変えることができる。このため、中性溶存種から生成されたルテニウム等の放射性核種の陽イオン及び陰イオンを吸着装置5Bで吸着により除去することができる。このため、放射性廃液に含まれる放射性核種をさらに低減することができる。本実施例では、放射性廃液に含まれる放射性核種の除去効率をさらに向上させることができる。   In the present embodiment, the effects produced in the first embodiment can be obtained. Furthermore, in the present embodiment, ions (cations and anions) of the radionuclide such as ruthenium contained in the radioactive waste liquid are removed by the adsorption device 5, and the neutral dissolved species of the radionuclide such as ruthenium are contained in the adjustment tank 15. Injecting hydrochloric acid, which is a pH adjuster, into the radioactive liquid waste containing the radioactive nuclides such as ruthenium, and adjusting the pH of the radioactive liquid waste to, for example, the acidity of the radioactive nuclides such as ruthenium. Sex dissolved species can be converted into cations and anions. For this reason, cations and anions of radionuclides such as ruthenium generated from neutral dissolved species can be removed by adsorption with the adsorption device 5B. For this reason, the radionuclide contained in the radioactive liquid waste can be further reduced. In this embodiment, the removal efficiency of the radionuclide contained in the radioactive liquid waste can be further improved.

1、1B…放射性廃液処理装置、2…ろ過装置、3…コロイド除去装置、4…静電フィルタ、5、5B…吸着装置、6、6B、21…吸着塔、15…調整タンク、16…pH調整剤タンク、17…pH調整剤供給配管。   DESCRIPTION OF SYMBOLS 1, 1B ... Radioactive waste liquid processing apparatus, 2 ... Filtration apparatus, 3 ... Colloid removal apparatus, 4 ... Electrostatic filter, 5, 5B ... Adsorption apparatus, 6, 6B, 21 ... Adsorption tower, 15 ... Adjustment tank, 16 ... pH Adjustment agent tank, 17 ... pH adjustment agent supply piping.

Claims (8)

コロイド状物質、前記コロイド状物質よりも粒径が大きい粒子状物質及び放射性物質を含む放射性廃液を、ろ過装置に供給して前記粒子状物質を前記ろ過装置で除去し、前記ろ過装置から排出された前記放射性廃液に含まれる前記コロイド状物質を除去し、前記コロイド状物質が除去された前記放射性廃液が第1吸着装置に供給され、前記放射性廃液に含まれる放射性核種を前記第1吸着装置で除去し、前記第1吸着装置から排出された前記放射性廃液を、前記第1吸着装置の下流に配置されて、オキシン基を表面に担持した吸着剤を充填している第2吸着装置に供給することを特徴とする放射性廃液の処理方法。   A colloidal material, a radioactive waste liquid containing a particulate material having a particle size larger than that of the colloidal material and a radioactive material is supplied to a filtration device, the particulate material is removed by the filtration device, and discharged from the filtration device. The colloidal substance contained in the radioactive liquid waste is removed, the radioactive liquid waste from which the colloidal substance has been removed is supplied to the first adsorption device, and the radionuclide contained in the radioactive liquid waste is removed by the first adsorption device. The radioactive waste liquid removed and discharged from the first adsorbing device is supplied to a second adsorbing device which is disposed downstream of the first adsorbing device and is filled with an adsorbent carrying an oxine group on its surface. A method for treating radioactive liquid waste. 前記コロイド状物質を静電フィルタで除去する請求項1に記載の放射性廃液の処理方法。   The method for treating radioactive liquid waste according to claim 1, wherein the colloidal substance is removed by an electrostatic filter. 負に帯電している前記コロイド状物質の除去が正に帯電される前記静電フィルタを用いて行われる請求項2に記載の放射性廃液の処理方法。   The method for treating a radioactive liquid waste according to claim 2, wherein the removal of the negatively charged colloidal substance is performed using the electrostatic filter that is positively charged. 前記第1吸着装置で前記放射性核種のイオンが除去された前記放射性廃液に、酸化剤、pH調整剤及び還元剤のうちの少なくとも1つを注入し、前記酸化剤、前記pH調整剤及び前記還元剤のうちの少なくとも1つの注入により前記放射性廃液に生成された、前記放射性核種のイオンを、第3吸着装置内の吸着剤で除去し、前記第3吸着装置から排出された前記放射性廃液を前記第2吸着装置に供給する請求項1に記載の放射性廃液の処理方法。   At least one of an oxidizing agent, a pH adjusting agent and a reducing agent is injected into the radioactive liquid waste from which the radionuclide ions have been removed by the first adsorption device, and the oxidizing agent, the pH adjusting agent and the reducing agent are injected. The radionuclide ions generated in the radioactive liquid waste by injection of at least one of the agents are removed by the adsorbent in the third adsorption device, and the radioactive liquid waste discharged from the third adsorption device is removed. The processing method of the radioactive liquid waste of Claim 1 supplied to a 2nd adsorption | suction apparatus. 前記第1吸着装置から排出された前記放射性廃液を液性調整部に供給し、前記酸化剤、前記pH調整剤及び前記還元剤のうちの少なくとも1つの前記放射性廃液への注入が、前記液性調整部内で行われる請求項4に記載の放射性廃液の処理方法。   The radioactive waste liquid discharged from the first adsorption device is supplied to a liquidity adjusting unit, and injection into at least one of the oxidizing agent, the pH adjusting agent, and the reducing agent into the radioactive waste liquid is performed as the liquidity. The processing method of the radioactive liquid waste of Claim 4 performed in an adjustment part. 放射性廃液からコロイド状物質よりも粒径が大きい粒子状物質を除去するろ過装置と、前記ろ過装置に接続され、前記コロイド状物質を除去するコロイド除去装置と、前記コロイド除去装置に接続され、放射性核種を吸着する吸着剤を有する第1吸着装置と、前記第1吸着装置の下流に配置されて前記第1吸着装置に連絡され、オキシン基を表面に担持した吸着剤を充填している第2吸着装置とを備えたことを特徴とする放射性廃液処理装置。   A filtration device that removes particulate matter having a particle size larger than the colloidal material from the radioactive liquid waste, a colloid removal device that is connected to the filtration device and removes the colloidal material, and is connected to the colloid removal device and is radioactive. A first adsorbing device having an adsorbent for adsorbing nuclides, and a second adsorbing material arranged downstream of the first adsorbing device and connected to the first adsorbing device and carrying an oxine group on the surface thereof. A radioactive waste liquid treatment device comprising an adsorption device. 前記コロイド除去装置が前記コロイド状物質を除去する静電フィルタを有する請求項6に記載の放射性廃液処理装置。   The radioactive waste liquid processing apparatus according to claim 6, wherein the colloid removing apparatus has an electrostatic filter for removing the colloidal substance. 前記放射性核種が除去されて前記第1吸着装置から排出される前記放射性廃液に、酸化剤、pH調整剤及び還元剤のうちの少なくとも1つを注入する注入装置と、前記酸化剤、前記pH調整剤及び前記還元剤のうちの少なくとも1つの注入により前記放射性廃液に生成される前記放射性核種のイオンを除去する第3吸着装置とを備え、
前記第2吸着装置が、前記第3吸着装置の下流に配置され、前記第3吸着装置に接続される請求項6に記載の放射性廃液処理装置。
An injection device for injecting at least one of an oxidizing agent, a pH adjusting agent, and a reducing agent into the radioactive liquid waste that has been removed from the first adsorption device after removal of the radionuclide, the oxidizing agent, and the pH adjustment A third adsorption device for removing ions of the radionuclide generated in the radioactive liquid waste by injection of at least one of an agent and the reducing agent;
The radioactive waste liquid treatment apparatus according to claim 6, wherein the second adsorption device is disposed downstream of the third adsorption device and connected to the third adsorption device.
JP2013194469A 2013-08-23 2013-09-19 Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste Active JP6046582B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013194469A JP6046582B2 (en) 2013-09-19 2013-09-19 Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
GB1602829.2A GB2533497B (en) 2013-08-23 2014-07-29 Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
US14/913,024 US9799418B2 (en) 2013-08-23 2014-07-29 Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
PCT/JP2014/069898 WO2015025681A1 (en) 2013-08-23 2014-07-29 Radioactive waste liquid treatment method and radioactive waste liquid treatment device
TW105102028A TWI576859B (en) 2013-08-23 2014-08-08 A radioactive waste treatment method and a radioactive waste liquid treatment apparatus
TW103127246A TWI579864B (en) 2013-08-23 2014-08-08 A radioactive waste treatment method and a radioactive waste liquid treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194469A JP6046582B2 (en) 2013-09-19 2013-09-19 Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste

Publications (2)

Publication Number Publication Date
JP2015059870A true JP2015059870A (en) 2015-03-30
JP6046582B2 JP6046582B2 (en) 2016-12-21

Family

ID=52817515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194469A Active JP6046582B2 (en) 2013-08-23 2013-09-19 Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste

Country Status (1)

Country Link
JP (1) JP6046582B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195096A1 (en) * 2015-06-04 2016-12-08 株式会社荏原製作所 Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said adsorbent
WO2017110485A1 (en) * 2015-12-24 2017-06-29 株式会社荏原製作所 Adsorbent for radioactive antimony, radioactive iodine, and radioactive ruthenium, and method of processing radioactive waste liquid using said adsorbent
JP2017181144A (en) * 2016-03-29 2017-10-05 日立Geニュークリア・エナジー株式会社 Method and apparatus for treatment of radioactive waste liquid
JP2017203680A (en) * 2016-05-11 2017-11-16 日立Geニュークリア・エナジー株式会社 Adsorption removal system and adsorption removal method
JP2018081104A (en) * 2017-12-27 2018-05-24 日立Geニュークリア・エナジー株式会社 Processing method of radioactive waste liquid and processing unit
JP2018205276A (en) * 2017-06-09 2018-12-27 日立Geニュークリア・エナジー株式会社 Treatment method and treatment device for radioactive waste liquid
CN113782244A (en) * 2021-09-14 2021-12-10 江苏核工业格林水处理有限责任公司 Nuclear factor-containing wastewater treatment process based on ion exchange method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551480A (en) * 1978-10-09 1980-04-15 Japan Organo Co Ltd Treating aqueous solution by using both cation and anion exchange fiber and particulate ion exchange resin
JPS5748971A (en) * 1980-09-08 1982-03-20 Sumitomo Chem Co Ltd Novel alkylimidazole derivative
JPS60214299A (en) * 1984-04-11 1985-10-26 株式会社日立製作所 Method of removing radioactivity in radioactive waste liquor
JPH02258006A (en) * 1989-03-30 1990-10-18 Mitsubishi Nuclear Fuel Co Ltd Adsorptive filtration film
JP2002031697A (en) * 2000-07-17 2002-01-31 Jgc Corp Method for treating radioactive waste liquid
JP2009520185A (en) * 2005-12-14 2009-05-21 エナジーソリューションズ デバーシファイド サービシズ インコーポレイテッド Method and system for treating radioactive wastewater
JP2009216577A (en) * 2008-03-11 2009-09-24 Hitachi-Ge Nuclear Energy Ltd Chemical decontamination method and chemical decontamination device
JP2009220067A (en) * 2008-03-18 2009-10-01 Ngk Insulators Ltd Method and apparatus for detoxifying heavy-metal ion simultaneously with inorganic suspended particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551480A (en) * 1978-10-09 1980-04-15 Japan Organo Co Ltd Treating aqueous solution by using both cation and anion exchange fiber and particulate ion exchange resin
JPS5748971A (en) * 1980-09-08 1982-03-20 Sumitomo Chem Co Ltd Novel alkylimidazole derivative
JPS60214299A (en) * 1984-04-11 1985-10-26 株式会社日立製作所 Method of removing radioactivity in radioactive waste liquor
JPH02258006A (en) * 1989-03-30 1990-10-18 Mitsubishi Nuclear Fuel Co Ltd Adsorptive filtration film
JP2002031697A (en) * 2000-07-17 2002-01-31 Jgc Corp Method for treating radioactive waste liquid
JP2009520185A (en) * 2005-12-14 2009-05-21 エナジーソリューションズ デバーシファイド サービシズ インコーポレイテッド Method and system for treating radioactive wastewater
JP2009216577A (en) * 2008-03-11 2009-09-24 Hitachi-Ge Nuclear Energy Ltd Chemical decontamination method and chemical decontamination device
JP2009220067A (en) * 2008-03-18 2009-10-01 Ngk Insulators Ltd Method and apparatus for detoxifying heavy-metal ion simultaneously with inorganic suspended particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195096A1 (en) * 2015-06-04 2016-12-08 株式会社荏原製作所 Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said adsorbent
US10388419B2 (en) 2015-06-04 2019-08-20 Ebara Corporation Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said absorbent
WO2017110485A1 (en) * 2015-12-24 2017-06-29 株式会社荏原製作所 Adsorbent for radioactive antimony, radioactive iodine, and radioactive ruthenium, and method of processing radioactive waste liquid using said adsorbent
JP2017116407A (en) * 2015-12-24 2017-06-29 株式会社荏原製作所 Adsorbent for radioactive antimony, radioactive iodine, and radioactive ruthenium, and radioactive waste liquid treatment method using the adsorbent
US11213799B2 (en) 2015-12-24 2022-01-04 Ebara Corporation Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent
JP2017181144A (en) * 2016-03-29 2017-10-05 日立Geニュークリア・エナジー株式会社 Method and apparatus for treatment of radioactive waste liquid
JP2017203680A (en) * 2016-05-11 2017-11-16 日立Geニュークリア・エナジー株式会社 Adsorption removal system and adsorption removal method
JP2018205276A (en) * 2017-06-09 2018-12-27 日立Geニュークリア・エナジー株式会社 Treatment method and treatment device for radioactive waste liquid
JP2018081104A (en) * 2017-12-27 2018-05-24 日立Geニュークリア・エナジー株式会社 Processing method of radioactive waste liquid and processing unit
CN113782244A (en) * 2021-09-14 2021-12-10 江苏核工业格林水处理有限责任公司 Nuclear factor-containing wastewater treatment process based on ion exchange method

Also Published As

Publication number Publication date
JP6046582B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6046582B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
WO2015025681A1 (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment device
Weerasekara et al. Metal oxide enhanced microfiltration for the selective removal of Co and Sr ions from nuclear laundry wastewater
JP5880851B2 (en) Radionuclide decontamination system and radionuclide decontamination method
Yazdanbakhsh et al. Performance of granular activated carbon/nanoscale zero-valent iron for removal of humic substances from aqueous solution based on Experimental Design and Response Surface Modeling
JP5849342B2 (en) Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater
CN110349689B (en) Radioactive waste liquid treatment device for nuclear power station
JP2008232773A (en) Treater for water containing radioactive material in nuclear power plant
JP2012233749A (en) Nuclear facility, and waste water treating apparatus and waste water treating method thereof
KR101551233B1 (en) Treatment method for radioactive wastewater generated in severe accident in nuclear power plant
JP2015064221A (en) Radioactive nuclide removal system and radioactive nuclide removal method
JP6587973B2 (en) Apparatus and method for treating radioactive liquid waste
JP2014001991A (en) Radioactive nuclide removing system and radioactive nuclide removing method
JP6125960B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP2013156130A (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
JP6028545B2 (en) How to recover cesium
JP2019070581A (en) Contamination water processing method, contamination water processing system and sodium compound addition device used therefor
JP6046574B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP6879791B2 (en) Radioactive contaminated water treatment equipment, radioactive contaminated water treatment system
JP2016522411A (en) Method and system for removing radionuclides from water
Farhan et al. Copper and lead ions removal from aqueous solution using MgO, nanostractured MgO
JP2013108818A (en) Radioactive waste liquid treatment method and treatment system
Savkin Development and trials of a technology for reprocessing of NPP liquid radioactive wastes
JP2020003248A (en) Radioactive waste liquid processor and method for processing radioactive waste liquid
JP7481986B2 (en) Contaminated water treatment method and contaminated water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161117

R150 Certificate of patent or registration of utility model

Ref document number: 6046582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150