JP2009216577A - Chemical decontamination method and chemical decontamination device - Google Patents

Chemical decontamination method and chemical decontamination device Download PDF

Info

Publication number
JP2009216577A
JP2009216577A JP2008061228A JP2008061228A JP2009216577A JP 2009216577 A JP2009216577 A JP 2009216577A JP 2008061228 A JP2008061228 A JP 2008061228A JP 2008061228 A JP2008061228 A JP 2008061228A JP 2009216577 A JP2009216577 A JP 2009216577A
Authority
JP
Japan
Prior art keywords
decontamination
pipe
liquid
chemical
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061228A
Other languages
Japanese (ja)
Other versions
JP5091727B2 (en
Inventor
Makoto Nagase
誠 長瀬
Satoshi Ouchi
智 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008061228A priority Critical patent/JP5091727B2/en
Publication of JP2009216577A publication Critical patent/JP2009216577A/en
Application granted granted Critical
Publication of JP5091727B2 publication Critical patent/JP5091727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical decontamination method for shortening furthermore a decontamination time. <P>SOLUTION: Chemical decontamination is performed for a recirculation system A (A-system) and a recirculation system B (B-system) of a boiling water reactor nuclear power plant. Water is filled into the A-system and circulated to raise a temperature of the A-system. Then, the water in the A-system is transferred into the B-system and circulated to raise a temperature of the B-system. After the temperature rise, while transferring the water in the B-system into the A-system, oxidization decontamination liquid containing an oxidization decontamination agent is injected into the water. Oxidization decontamination of the A-system and oxidization decontamination of the B-system are executed successively by circulating the oxidization decontamination liquid. Reduction decontamination liquid containing a reduction decontamination agent is injected to decompose the oxidization decontamination agent, and then reduction decontamination of the A-system and the B-system by the reduction decontamination liquid is executed alternately. After finish of the reduction decontamination, the reduction decontamination agent is decomposed, while transferring the reduction decontamination liquid reciprocally between the B-system and the A-system. After finish of decomposition of the reduction decontamination agent, a purification process is executed, while transferring the water between the A-system and the B-system. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化学除染方法及び化学除染装置に係り、特に、水冷却型原子力発電プラントに適用するのに好適な化学除染方法及び化学除染装置に関する。   The present invention relates to a chemical decontamination method and a chemical decontamination apparatus, and more particularly to a chemical decontamination method and a chemical decontamination apparatus suitable for application to a water-cooled nuclear power plant.

従来の化学除染に関する技術の例が、特開2000−105295号公報、特開2004−205245号公報及び米国特許第6466636号明細書に記載されている。特開2000−105295号公報及び特開2004−205245号公報に記載された化学除染方法は、酸化除染液として過マンガン酸カリウム(酸化除染剤)の水溶液を、還元除染液としてヒドラジンを含むシュウ酸(還元除染剤)の水溶液を用いている。過マンガン酸カリウム水溶液を用いた酸化除染、及びヒドラジンを含むシュウ酸水溶液を用いた還元除染により、水冷却型原子力発電プラントの構造部材(例えば、沸騰水型原子力発電プラントの再循環系配管)の冷却水と接触する表面の化学除染が行われる。さらに、還元除染液に含まれるシュウ酸及びヒドラジンが、触媒及び過酸化水素により二酸化炭素、窒素および水に分解される。このため、二次廃棄物が増えることが抑制される。   Examples of conventional techniques related to chemical decontamination are described in JP-A-2000-105295, JP-A-2004-205245, and US Pat. No. 6,466,636. The chemical decontamination methods described in JP-A Nos. 2000-105295 and 2004-205245 use an aqueous solution of potassium permanganate (oxidative decontamination agent) as an oxidative decontamination solution, and hydrazine as a reduction decontamination solution. An aqueous solution of oxalic acid (reductive decontamination reagent) containing is used. Structural members of water-cooled nuclear power plants (for example, recirculation piping for boiling water nuclear power plants) by oxidative decontamination using potassium permanganate aqueous solution and reductive decontamination using oxalic acid aqueous solution containing hydrazine ) Chemical decontamination of the surface in contact with the cooling water. Furthermore, oxalic acid and hydrazine contained in the reductive decontamination solution are decomposed into carbon dioxide, nitrogen and water by the catalyst and hydrogen peroxide. For this reason, it is suppressed that secondary waste increases.

また、米国特許第6466636号明細書は、沸騰水型原子力発電プラントの2系統の再循環系配管を対象にした化学除染方法を記載している。それぞれの再循環系配管が接続される原子炉圧力容器の各ノズルをプラグで封鎖し、各再循環系配管が接続されるそれぞれのライザ管(原子炉圧力容器内に設置)の上端部に設けられた各配管曲がり部をプラグで封鎖している。加熱器及びイオン交換器を有する除染ユニットが、切り替えバルブを介して再循環系配管A及び再循環系配管Bにそれぞれ一箇所で接続される。切り替えバルブの切り替え操作により、再循環系配管A内の除染液の、再循環系配管B内への供給、及び再循環系配管B内の除染液の、再循環系配管A内への供給を交互に行っている。すなわち、1系統の再循環系配管に対しては、除染液のフィルアンドドレインが繰り返し行われることになる。米国特許第6466636号明細書は、さらに、除染液内の薬剤をイオン交換器で除去することも記載している。   In addition, US Pat. No. 6,466,636 describes a chemical decontamination method for two recirculation pipes of a boiling water nuclear power plant. Each nozzle of the reactor pressure vessel to which each recirculation system pipe is connected is sealed with a plug, and provided at the upper end of each riser pipe (installed in the reactor pressure vessel) to which each recirculation system pipe is connected Each pipe bend is sealed with a plug. A decontamination unit having a heater and an ion exchanger is connected to the recirculation system pipe A and the recirculation system pipe B at one location via a switching valve. By switching the switching valve, the decontamination liquid in the recirculation system pipe A is supplied into the recirculation system pipe B, and the decontamination liquid in the recirculation system pipe B is supplied into the recirculation system pipe A. Supply is performed alternately. That is, the fill-and-drain of the decontamination liquid is repeatedly performed on one system recirculation piping. US Pat. No. 6,466,636 further describes the removal of the drug in the decontamination solution with an ion exchanger.

特開2000−105295号公報JP 2000-105295 A 特開2004−205245号公報JP 2004-205245 A 米国特許第6466636号明細書US Pat. No. 6,466,636

特開2000−105295号公報に記載された化学除染方法は、1つの除染対象部位(例えば、原子炉プラントの配管)に除染液を供給している。この化学除染を2系統の再循環系配管で実施する場合には、例えば、1系統の再循環系配管の化学除染終了後にもう1系統の再循環系配管を化学除染することが考えられる。この場合には、1系統の再循環系配管の化学除染に要する時間の2倍の時間が必要になる。さらに、2系統の再循環系配管を仮設配管により直列または並列に接続して、1つの化学除染装置を用いて1回のプロセスとして施工することも考えられる。この場合には、2系統の再循環系配管内を循環する除染液の必要量が増えるため、除染液に含まれる除染剤の分解及び系統内の浄化に必要な時間が増加すると共に、自由液面の数が増えるため循環運転を安定して行うことが難しくなる。   In the chemical decontamination method described in Japanese Patent Application Laid-Open No. 2000-105295, a decontamination liquid is supplied to one decontamination target site (for example, piping of a reactor plant). When this chemical decontamination is carried out with two recirculation pipes, for example, it may be possible to chemically decontaminate another recirculation pipe after the completion of chemical decontamination of one recirculation pipe. It is done. In this case, twice the time required for chemical decontamination of one recirculation piping is required. Furthermore, it is also conceivable that two recirculation pipes are connected in series or in parallel by temporary pipes and constructed as a single process using one chemical decontamination apparatus. In this case, since the necessary amount of the decontamination liquid circulating in the two recirculation system pipes increases, the time required for the decomposition of the decontamination agent contained in the decontamination liquid and the purification in the system increases. Since the number of free liquid levels increases, it becomes difficult to perform the circulating operation stably.

米国特許第6466636号明細書に記載の化学除染方法では、除染対象である2系統の再循環系配管に対し、1つの化学除染装置を用いて除染液のフィルアンドドレインが繰り返し行われる。この化学除染は、ポンプの吸い込み側が負圧となってキャビテーションを発生しないレベルの水頭を維持するだけの除染液の量を残して、各再循環系配管の間で除染液を交互に移送するため、必要な除染液の体積が1系統の再循環系配管の化学除染に必要なその体積の1.5倍程度で済む。また、その化学除染方法は、1系統の再循環系配管の後にもう1系統の再循環系配管を化学除染する場合に比べて除染時間を短縮することができる。   In the chemical decontamination method described in US Pat. No. 6,466,636, the fill and drain of the decontamination solution is repeatedly performed by using one chemical decontamination apparatus for the two recirculation pipes to be decontaminated. Is called. This chemical decontamination alternates between each recirculation system piping, leaving enough decontamination liquid to maintain a level of water head that does not generate cavitation due to negative pressure on the suction side of the pump. Since it is transferred, the volume of the necessary decontamination solution is about 1.5 times the volume necessary for chemical decontamination of one recirculation pipe. In addition, the chemical decontamination method can shorten the decontamination time as compared with the case of chemical decontamination of another recirculation system pipe after one system recirculation system pipe.

しかしながら、米国特許第6466636号明細書に記載の化学除染方法は、それぞれの再循環系配管に対し、除染液のフィルアンドドレインを繰り返しているので、除染液の温度が低下する可能性がある。この温度低下は、フィルアンドドレインが行われるので、除染液が存在しない領域が2系統の再循環系配管内に交互に形成されることに起因している。除染液の温度低下は、再循環系配管に対する除染性能が低下する恐れが大きくなる。   However, in the chemical decontamination method described in US Pat. No. 6,466,636, the fill and drain of the decontamination liquid is repeated for each recirculation system pipe, so that the temperature of the decontamination liquid may decrease. There is. This drop in temperature is caused by the fact that, since fill and drain are performed, regions where no decontamination solution exists are alternately formed in the two recirculation system pipes. The decrease in the temperature of the decontamination liquid increases the risk that the decontamination performance of the recirculation system pipe will decrease.

化学除染方法においては、化学除染に要する時間の短縮が望まれている。発明者らは、複数系統の除染対象物の化学除染を行う場合に、その時間短縮のためには化学除染における除染剤の分解工程、特に、還元除染剤の分解工程に要する時間を短縮することであることを見出した。なお、米国特許第6466636号明細書は、除染剤の分解工程に対して何ら言及していない。   In chemical decontamination methods, it is desired to shorten the time required for chemical decontamination. When performing chemical decontamination of a plurality of systems of decontamination objects, the inventors require a decontamination process for chemical decontamination, particularly a decontamination process for reducing decontamination, in order to shorten the time. I found that it was to shorten the time. Note that US Pat. No. 6,466,636 does not mention any decontamination process.

本発明の目的は、除染時間をより短縮できる化学除染方法及び化学除染装置を提供することにある。   The objective of this invention is providing the chemical decontamination method and chemical decontamination apparatus which can shorten decontamination time more.

上記した目的を達成する本発明の特徴は、プラントに設けられた複数の配管系内に除染剤を含む除染液を供給して配管系の内面の除染を行い、除染が終了した1つの配管系内の除染液を、除染が終了した他の配管系に移送する際において、移送される除染液に含まれた除染剤を分解することにある。   The feature of the present invention that achieves the above-described object is that decontamination of the inner surface of the piping system is performed by supplying a decontamination solution containing a decontamination agent into a plurality of piping systems provided in the plant, and the decontamination is completed. When transferring the decontamination liquid in one piping system to another piping system after decontamination, the decontamination agent contained in the transferred decontamination liquid is decomposed.

除染が終了した1つの配管系内の前記除染液を、除染が終了した他の配管系に移送する際において、除染液に含まれた除染剤を分解しているので、分解により除染剤の濃度が低下した除染液と除染剤の濃度が低下する前の除染液の混合を防止することができる。このため、除染剤の分解効率が向上し、複数の配管系を対象とした化学除染において除染時間を短縮することができる。   When transferring the decontamination liquid in one piping system after decontamination to another piping system after decontamination, the decontamination agent contained in the decontamination liquid is decomposed. Therefore, it is possible to prevent the decontamination liquid in which the concentration of the decontamination agent is lowered and the decontamination solution before the concentration of the decontamination agent is reduced. For this reason, the decomposition efficiency of a decontaminating agent improves and decontamination time can be shortened in the chemical decontamination for several piping systems.

本発明によれば、複数の配管系を対象とした化学除染において除染時間を短縮することができる。   According to the present invention, the decontamination time can be shortened in chemical decontamination for a plurality of piping systems.

発明者らは、複数の系統を対象に化学除染を行う場合に除染時間をより短縮できる化学除染方法を見出すために種々の検討を行った。除染時間とは、除染剤(酸化除染剤及び還元除染剤)を用いて、直接、除染対象部材を除染しているときに要する時間ではなく、昇温工程、除染工程、還元除染剤の分解工程及び浄化工程等を含む化学除染の一連の工程を実施するために要する時間である。発明者らは、特に、除染剤の分解工程に要する時間を短縮できる対策を検討した。発明者らは、この検討により新しい化学除染方法を見出すことができた。得られた新しい化学除染方法の一例の概念を、図1を用いて説明する。   The inventors have made various studies in order to find a chemical decontamination method that can shorten the decontamination time when performing chemical decontamination on a plurality of lines. The decontamination time is not the time required when decontaminating a member to be decontaminated directly using decontamination agents (oxidative decontamination agent and reductive decontamination agent). This is the time required for carrying out a series of steps of chemical decontamination including a decontamination step and a purification step of the reductive decontamination agent. The inventors particularly examined measures that can reduce the time required for the decontamination process. The inventors were able to find a new chemical decontamination method by this study. The concept of an example of the obtained new chemical decontamination method will be described with reference to FIG.

図1に示す新しい化学除染方法は、2つの系統、すなわち、プラントに設けられたA系統(例えば、沸騰水型原子力発電プラントの再循環系A)及びB系統(例えば、沸騰水型原子力発電プラントの再循環系B)を対象に化学除染を行う一例である。   The new chemical decontamination method shown in FIG. 1 has two systems, that is, a system A provided in the plant (for example, a recirculation system A of a boiling water nuclear power plant) and a system B (for example, boiling water nuclear power generation). It is an example which performs chemical decontamination for the recirculation system B) of a plant.

まずA系統内に水を張って水を循環させながらA系統の昇温を行う。A系統の昇温完了後にA系統内の水をB系統内に移送しこの水を循環させながらB系統の昇温を実施する。B系統の昇温完了後にB系統内の水をA系統内に移送しながら、酸化除染剤(例えば、過マンガン酸カリウム)を移送される水に注入する。この後、酸化除染剤を含む酸化除染液(例えば、過マンガン酸カリウム水溶液)によって、A系統の酸化除染及びB系統の酸化除染を順次実施する。それぞれの系統で酸化除染を行う場合には、酸化除染液は各系統を通して循環されている。酸化除染終了後、酸化除染剤を分解しながらB系統からA系統に水を移送する。酸化除染剤の分解は、還元除染剤(例えば、シュウ酸)を酸化除染液に注入することによって行われる。この還元除染剤の注入は、酸化除染剤の分解に必要とされる量の還元除染剤だけでなく、次の還元除染に用いる還元除染液(例えば、シュウ酸水溶液)の生成に必要な量の還元除染剤も注入するように行われる。したがって、酸化除染剤が分解されて還元除染剤が溶解した還元除染液がA系統内に導かれることになり、A系統の還元除染が開始される。還元除染を行っている間、還元除染液はA系統を通して循環される。還元除染工程は多くの場合10時間を越える長時間となるため、還元除染液が循環していないB系統の温度が下がり過ぎないように、図1では、A系統の還元除染を、必要とされる還元除染時間の半分で、一旦中止している。A系統内の還元除染液をB系統に移送し、還元除染液をB系統を通して循環させながらB系統の還元除染を実施する。B系統の還元除染も、必要とされる還元除染時間の半分で、一旦中止される。その後、A系統及びB系統を対象に、残りの還元除染時間に対する還元除染が順番に実施される。B系統の還元除染が終了した後、B系統とA系統の間で還元除染液を往復移送しながら還元除染液に含まれている還元除染剤を分解する。還元除染剤の分解終了後は、系統間で水を移送しながら浄化工程が実施される。以上で、化学除染の第1サイクルが終了する。図1に示す化学除染方法では、第1サイクルの後に、同様な工程を有する第2サイクルが実施される。   First, the temperature of system A is increased while water is circulated by circulating water in system A. After completion of the temperature increase in the A system, the water in the A system is transferred into the B system, and the temperature of the B system is increased while circulating this water. An oxidative decontamination agent (for example, potassium permanganate) is injected into the transferred water while transferring the water in the B system into the A system after completion of the temperature increase in the B system. Thereafter, oxidative decontamination of the A line and oxidative decontamination of the B line are sequentially performed by an oxidative decontamination liquid (for example, potassium permanganate aqueous solution) containing the oxidative decontamination agent. When oxidative decontamination is performed in each system, the oxidative decontamination solution is circulated through each system. After the oxidative decontamination is completed, water is transferred from the B system to the A system while decomposing the oxidative decontamination reagent. The decomposition of the oxidative decontamination reagent is performed by injecting a reductive decontamination reagent (for example, oxalic acid) into the oxidative decontamination liquid. The injection of this reductive decontaminant produces not only the amount of reductive decontaminant required for the decomposition of the oxidative decontaminant, but also the reductive decontaminant used for the next reductive decontamination (eg, oxalic acid aqueous solution) The amount of reductive decontamination agent necessary for the injection is also injected. Therefore, the reductive decontamination solution in which the oxidative decontamination agent is decomposed and the reductive decontamination agent is dissolved is led into the A line, and the reductive decontamination of the A line is started. During reductive decontamination, reductive decontamination liquid is circulated through the A line. In many cases, the reductive decontamination process takes a long time exceeding 10 hours. Therefore, in order to prevent the temperature of the B system in which the reductive decontamination liquid is not circulated, the reductive decontamination of the A line is performed in FIG. Stopped once in half of the reductive decontamination time required. The reductive decontamination solution in the A system is transferred to the B system, and the reductive decontamination of the B system is performed while circulating the reductive decontamination solution through the B system. The reductive decontamination of the B line is temporarily stopped in half of the required reductive decontamination time. After that, reductive decontamination for the remaining reductive decontamination time is sequentially performed on the A line and the B line. After the reduction decontamination of the B system is completed, the reductive decontamination agent contained in the reduction decontamination liquid is decomposed while reciprocating the reduction decontamination liquid between the B system and the A system. After the decomposition of the reductive decontamination agent, the purification process is carried out while transferring water between the systems. This completes the first cycle of chemical decontamination. In the chemical decontamination method shown in FIG. 1, a second cycle having the same steps is performed after the first cycle.

この新しい化学除染方法に対し、従来の化学除染方法の一例は、図2に示す工程を有する。図2に示す例は、プラントの1つの系統(例えば、沸騰水型原子力発電プラントの1つの再循環系)に対して実施する化学除染方法の工程である。この化学除染方法は、昇温、酸化剤注入、酸化、酸化剤分解、還元、還元剤分解、中間浄化、酸化剤注入、酸化、酸化剤分解、還元、還元剤分解及び最終浄化の各工程を含んでいる。プラントの2つの系統に図2に示す化学除染方法を適用する場合には、上記の各工程を別々に二回繰り返すことになる。2系統に対して化学除染を別々に実施する場合には、図2に示す除染時間の2倍の除染時間、及び2倍の酸化除染液及び還元除染液が必要となる。   In contrast to this new chemical decontamination method, an example of a conventional chemical decontamination method includes the steps shown in FIG. The example shown in FIG. 2 is a process of a chemical decontamination method performed for one system of a plant (for example, one recirculation system of a boiling water nuclear power plant). This chemical decontamination method includes steps of temperature increase, oxidant injection, oxidation, oxidant decomposition, reduction, reductant decomposition, intermediate purification, oxidant injection, oxidation, oxidant decomposition, reduction, reductant decomposition and final purification. Is included. When the chemical decontamination method shown in FIG. 2 is applied to two systems of the plant, each of the above steps is separately repeated twice. When chemical decontamination is separately performed for the two systems, a decontamination time twice as long as the decontamination time shown in FIG. 2, and an oxidative decontamination solution and a reduction decontamination solution twice are required.

以上の検討から、図1に示す新しい化学除染方法は、図2に示す従来の化学除染方法を2系統に対して別々に実施する場合に比べて、除染時間を短縮することができ、必要とする除染液(酸化除染液及び還元除染液)の量も減少することが明らかになった。   From the above examination, the new chemical decontamination method shown in FIG. 1 can shorten the decontamination time compared to the case where the conventional chemical decontamination method shown in FIG. It was revealed that the amount of decontamination liquid (oxidative decontamination liquid and reductive decontamination liquid) required also decreased.

以上に述べた検討結果を反映した、本発明の実施例を以下に説明する。   Examples of the present invention reflecting the above-described examination results will be described below.

本発明の好適な一実施例である化学除染方法を、図3〜図14を用いて以下に説明する。この化学除染方法は、沸騰水型原子力発電プラント(以下、BWRプラントという)の2系統の再循環系配管に適用した一例である。本実施例における化学除染方法は、BWRプラントの運転を停止した後の定期検査期間において行われる。   A chemical decontamination method which is a preferred embodiment of the present invention will be described below with reference to FIGS. This chemical decontamination method is an example applied to two recirculation piping of a boiling water nuclear power plant (hereinafter referred to as a BWR plant). The chemical decontamination method in the present embodiment is performed in a periodic inspection period after the operation of the BWR plant is stopped.

BWRプラント1は、原子炉を構成する原子炉圧力容器(以下、RPVという)2及び2系統の再循環系A,Bを有する。米国特許第6466636号明細書に記載されているように、複数の燃料集合体が装荷された炉心(図示せず)、炉心を取り囲む炉心シュラウド(図示せず)、及び炉心シュラウドとRPV2の間に形成された環状のダウンカマに配置された複数のジェットポンプ(図示せず)が、RPV2内に配置される。再循環系Aは、RPV2の外に配置された再循環ポンプ4、及び再循環ポンプ4を設けた再循環系配管2を有する。隔離弁6,7が、再循環ポンプ4の上流及び下流で再循環系配管2に設置される。再循環系Bは、RPV2の外に配置された再循環ポンプ5、及び再循環ポンプ5を設けた再循環系配管3を有する。隔離弁8,9が、再循環ポンプ5の上流及び下流で再循環系配管3に設置される。再循環系配管2,3のそれぞれの上流側端部は、RPV2に形成された2つのノズル52,53に接続され、ダウンカマにそれぞれ連絡される。再循環系配管2,3のそれぞれの下流側端部54,55は、RPV2内に達し、該当するジェットポンプのノズル(図示せず)にそれぞれ接続される。   The BWR plant 1 has a reactor pressure vessel (hereinafter referred to as RPV) 2 and two recirculation systems A and B constituting the reactor. As described in US Pat. No. 6,466,636, a core (not shown) loaded with a plurality of fuel assemblies, a core shroud (not shown) surrounding the core, and between the core shroud and the RPV 2 A plurality of jet pumps (not shown) arranged in the formed annular downcomer are arranged in the RPV 2. The recirculation system A has a recirculation pump 4 disposed outside the RPV 2 and a recirculation system pipe 2 provided with the recirculation pump 4. Isolation valves 6 and 7 are installed in the recirculation system pipe 2 upstream and downstream of the recirculation pump 4. The recirculation system B has a recirculation pump 5 disposed outside the RPV 2 and a recirculation system pipe 3 provided with the recirculation pump 5. Isolation valves 8 and 9 are installed in the recirculation system pipe 3 upstream and downstream of the recirculation pump 5. The upstream ends of the recirculation pipes 2 and 3 are connected to two nozzles 52 and 53 formed in the RPV 2 and communicated with the downcomer, respectively. The respective downstream end portions 54 and 55 of the recirculation pipes 2 and 3 reach the inside of the RPV 2 and are respectively connected to nozzles (not shown) of the corresponding jet pumps.

化学除染装置11の詳細な構成を、図4により説明する。化学除染装置11は、サージタンク12、ポンプ13,14、循環配管(除染液配管)16、フィルタ26、加熱器27、カチオン交換樹脂塔29、分解装置31、酸化剤タンク32及び接続配管17,19,21,23を備えている。上流より、弁34、ポンプ13、加熱器27、弁35,36,37、サージタンク12、ポンプ14、弁38が、上流よりこの順に循環配管16に設けられている。弁34をバイパスする配管39が循環配管16に接続される。フィルタ26が配管39に設けられ、フィルタ26の上流及び下流に配置された弁40,41が配管39に設置される。加熱器27及び弁35をバイパスする配管42が循環配管16に接続される。冷却器28及び弁43が配管42に設置される。両端が循環配管16に接続されて弁36をバイパスする配管44に、カチオン交換樹脂塔29及び弁45が設置される。両端が配管44に接続されてカチオン交換樹脂塔29及び弁45をバイパスする配管46に、混床樹脂塔30及び弁47が設置される。弁37をバイパスして分解装置(例えば、触媒塔)31及び弁49が設置される配管48が、循環配管16及びサージタンク12にそれぞれ接続される。分解装置31は、内部に、例えば、0.5%のルテニウムを活性炭の表面に添着した活性炭触媒を充填している。ポンプ14と弁38の間で循環配管16に接続される配管52が、サージタンク12に接続されている。ホッパ25及び弁53が配管52に設置される。図示されていないが、化学除染の対象となる再循環系配管2,3の内面の汚染物を酸化溶解するための過マンガン酸カリウム(酸化除染剤)、それらの配管内の汚染物を還元溶解するためのシュウ酸(還元除染剤)及びpH調節剤であるヒドラジンをそれぞれ供給する各タンク(図示せず)がホッパ25に接続されている。酸化剤タンク32が配管50によって分解装置31の上流で配管48に接続される。注入ポンプ33及び弁51が配管50に設置される。   A detailed configuration of the chemical decontamination apparatus 11 will be described with reference to FIG. The chemical decontamination apparatus 11 includes a surge tank 12, pumps 13 and 14, a circulation pipe (decontamination liquid pipe) 16, a filter 26, a heater 27, a cation exchange resin tower 29, a decomposition apparatus 31, an oxidant tank 32, and a connection pipe. 17, 19, 21, 23. From upstream, a valve 34, a pump 13, a heater 27, valves 35, 36, and 37, a surge tank 12, a pump 14, and a valve 38 are provided in the circulation pipe 16 in this order from the upstream. A pipe 39 that bypasses the valve 34 is connected to the circulation pipe 16. The filter 26 is provided in the pipe 39, and valves 40 and 41 arranged upstream and downstream of the filter 26 are installed in the pipe 39. A pipe 42 that bypasses the heater 27 and the valve 35 is connected to the circulation pipe 16. A cooler 28 and a valve 43 are installed in the pipe 42. A cation exchange resin tower 29 and a valve 45 are installed in a pipe 44 having both ends connected to the circulation pipe 16 and bypassing the valve 36. The mixed bed resin tower 30 and the valve 47 are installed in a pipe 46 that is connected to the pipe 44 at both ends and bypasses the cation exchange resin tower 29 and the valve 45. A pipe 48 that bypasses the valve 37 and is provided with a decomposition device (for example, a catalyst tower) 31 and a valve 49 is connected to the circulation pipe 16 and the surge tank 12, respectively. The decomposition apparatus 31 is filled with, for example, an activated carbon catalyst in which 0.5% of ruthenium is impregnated on the surface of the activated carbon. A pipe 52 connected to the circulation pipe 16 between the pump 14 and the valve 38 is connected to the surge tank 12. A hopper 25 and a valve 53 are installed in the pipe 52. Although not shown, potassium permanganate (oxidative decontamination agent) for oxidizing and dissolving contaminants on the inner surfaces of the recirculation pipes 2 and 3 to be subjected to chemical decontamination, and contaminants in those pipes. Each tank (not shown) for supplying oxalic acid (reduction decontamination agent) for reducing and dissolving and hydrazine as a pH adjusting agent is connected to the hopper 25. The oxidant tank 32 is connected to the pipe 48 upstream of the decomposition apparatus 31 by the pipe 50. An injection pump 33 and a valve 51 are installed in the pipe 50.

接続配管(第1除染液供給管)17及び接続配管(第2除染液供給管)22が循環配管16の一端部に接続される。開閉弁18が接続配管17に設けられ、開閉弁22が接続配管21に設けられる。接続配管(第1除染液戻り管)19及び接続配管(第2除染液戻り管)23が循環配管16の他端部に接続される。開閉弁20が接続配管19に設けられ、開閉弁24が接続配管23に設けられる。開閉弁18及び22は、接続配管17,21のうち選択された1つの接続配管への除染液等の液体の供給を切り替える第1切替え装置である。開閉弁20及び24は、接続配管19,23のうち選択された1つの接続配管から循環配管16への除染液等の液体の供給を切り替える第2切替え装置である。   A connection pipe (first decontamination liquid supply pipe) 17 and a connection pipe (second decontamination liquid supply pipe) 22 are connected to one end of the circulation pipe 16. An on-off valve 18 is provided in the connection pipe 17, and an on-off valve 22 is provided in the connection pipe 21. A connection pipe (first decontamination liquid return pipe) 19 and a connection pipe (second decontamination liquid return pipe) 23 are connected to the other end of the circulation pipe 16. The on-off valve 20 is provided in the connection pipe 19, and the on-off valve 24 is provided in the connection pipe 23. The on-off valves 18 and 22 are first switching devices that switch the supply of a liquid such as a decontamination liquid to one connection pipe selected from the connection pipes 17 and 21. The on-off valves 20 and 24 are second switching devices that switch the supply of liquid such as decontamination liquid from one connection pipe selected from the connection pipes 19 and 23 to the circulation pipe 16.

BWRプラント1の運転が停止された後、再循環系配管2,3のそれぞれの化学除染が実施される。この化学除染の実施に際しては、仮設の化学除染装置11を再循環系配管2,3に接続しなければならない。化学除染装置11の接続配管17,19が再循環系配管2に連絡され、接続配管21,23が再循環系配管3に連絡される。すなわち、再循環系配管2に接続された余熱除去系の戻り配管56に設けられた弁12が開放され、再循環系配管3に接続された余熱除去系の戻り配管57に設けられた弁13が開放される。開放された弁12のボンネットのフランジに接続配管17が接続される。開放された弁12の、再循環系配管2と反対側がプラグで封鎖される。開放された弁13のボンネットのフランジに接続配管21が接続される。開放された弁13の、再循環系配管2と反対側がプラグで封鎖される。接続配管19は、再循環系配管2に接続されたドレン配管(図示せず)に接続される。接続配管23は、再循環系配管3に接続されたドレン配管(図示せず)に接続される。このとき、下流側端部54,55はそれぞれ大気に開放されている。   After the operation of the BWR plant 1 is stopped, the chemical decontamination of the recirculation pipes 2 and 3 is performed. In carrying out this chemical decontamination, the temporary chemical decontamination apparatus 11 must be connected to the recirculation pipes 2 and 3. The connection pipes 17 and 19 of the chemical decontamination apparatus 11 are connected to the recirculation system pipe 2, and the connection pipes 21 and 23 are connected to the recirculation system pipe 3. That is, the valve 12 provided in the return pipe 56 of the residual heat removal system connected to the recirculation system pipe 2 is opened, and the valve 13 provided in the return pipe 57 of the residual heat removal system connected to the recirculation system pipe 3. Is released. A connection pipe 17 is connected to the flange of the opened bonnet of the valve 12. The side of the opened valve 12 opposite to the recirculation pipe 2 is sealed with a plug. The connection pipe 21 is connected to the flange of the opened hood of the valve 13. The side of the opened valve 13 opposite to the recirculation pipe 2 is sealed with a plug. The connection pipe 19 is connected to a drain pipe (not shown) connected to the recirculation system pipe 2. The connection pipe 23 is connected to a drain pipe (not shown) connected to the recirculation system pipe 3. At this time, the downstream end portions 54 and 55 are open to the atmosphere.

上記したように接続配管17,19を再循環系配管2に連絡し、接続配管21,23を再循環系配管3に連絡することによって、仮設の化学除染装置11を用いて再循環系配管2,3のそれぞれにおいて除染液を循環させながら、再循環系配管2,3の各内面の除染を行うことができる。   By connecting the connection pipes 17 and 19 to the recirculation system pipe 2 and connecting the connection pipes 21 and 23 to the recirculation system pipe 3 as described above, the recirculation system pipe is used using the temporary chemical decontamination apparatus 11. The inner surfaces of the recirculation pipes 2 and 3 can be decontaminated while the decontamination liquid is circulated in each of 2 and 3.

本実施例における化学除染方法を、図1に示す工程及び図4〜図14に基づいて具体的に説明する。図4〜図14において、白抜きの弁は開状態にあることを、黒塗りの弁は閉状態にあることを、及び斜線を付した弁は中間開度の状態をそれぞれ示している。   The chemical decontamination method in this example will be specifically described based on the steps shown in FIG. 1 and FIGS. 4 to 14, the white valve indicates the open state, the black valve indicates the closed state, and the hatched valve indicates the intermediate opening state.

まず、A系統の再循環系配管2の昇温を行う。この昇温工程を、図4を用いて説明する。開閉弁18,20及び弁34〜38が開いて、開閉弁22,24及び弁40,41,43,45,47,49,51,53が閉じられている。ポンプ13,14を駆動し、サージタンク12内の水を、循環配管16及び接続配管17を通して再循環系配管2内に供給する。この水は、再循環系配管2内を通り、接続配管19を経て循環配管16に戻され、加熱器27で加熱される。加熱器27によって、再循環系配管2に供給される水は85℃以上、例えば92℃に加熱する。接続配管19より循環配管16に戻された水の温度が90℃になったとき、再循環系配管2の昇温工程が終了する。   First, the temperature of the A-system recirculation piping 2 is increased. This temperature raising step will be described with reference to FIG. The on-off valves 18 and 20 and the valves 34 to 38 are opened, and the on-off valves 22 and 24 and the valves 40, 41, 43, 45, 47, 49, 51, and 53 are closed. The pumps 13 and 14 are driven, and the water in the surge tank 12 is supplied into the recirculation system pipe 2 through the circulation pipe 16 and the connection pipe 17. The water passes through the recirculation system pipe 2, returns to the circulation pipe 16 through the connection pipe 19, and is heated by the heater 27. The water supplied to the recirculation system pipe 2 is heated to 85 ° C. or higher, for example, 92 ° C. by the heater 27. When the temperature of the water returned from the connection pipe 19 to the circulation pipe 16 reaches 90 ° C., the temperature raising process of the recirculation pipe 2 is completed.

B系統の再循環系配管3の昇温を実施するために、再循環系配管2から再循環系配管3に水を移送する操作が行われる。この移送操作を、図5を用いて説明する。化学除染装置11の幾つかの弁が操作される。開閉弁22及び弁40,41が開き、開閉弁18及び弁34が閉じられる。再循環系配管2及び循環配管16内を循環していた90℃の水が、循環配管16から接続配管21を通して再循環系配管3内に供給される。このとき、化学除染装置11の放射性物質による汚染が進まないように、再循環系配管2から接続配管19を通して戻される水をフィルタ26に導くことによって、再循環系配管2の内面から剥離してその水に含まれているクラッドをフィルタ26で除去する。フィルタ26を通って加熱器27で90℃に加熱された水が、接続配管21を通って再循環系配管3内に移送される。ポンプ13としては、キャビテーションを発生することのないダイアフラム式ポンプを用いることが望ましい。ダイアフラム式ポンプを用いることによって、再循環系配管2内の水を、できるだけ多く再循環系配管3内に移送することができる。この水の移送の完了は、ポンプ13の音の変化から知ることができる。ダイヤフラムポンプは、水の移送が完了して入口側に空気が巻き込まれた場合には、そのポンプの騒音が明らかに変化する。この騒音の変化によって水の移送が完了したことを知ることができる。後述の酸化除染液及び還元除染液のある再循環系配管から他の再循環系配管への移送完了も、同様に、ポンプの騒音の変化から知ることができる。再循環系配管に水頭測定用の圧力センサを設置し、この圧力センサの計測値に基づいて再循環系配管内の水位を監視することによっても、水の移送完了を知ることができる。すなわち、液面の水位が再循環系配管の水平配管の下面よりも低くなったことを確認することによって、その移送完了を知ることができる。さらに、再循環系配管内の液面を示すマノメータの浮きの位置でその液面を確認し、その移送完了を知ることができる。   In order to increase the temperature of the recirculation system pipe 3 of the B system, an operation of transferring water from the recirculation system pipe 2 to the recirculation system pipe 3 is performed. This transfer operation will be described with reference to FIG. Several valves of the chemical decontamination apparatus 11 are operated. The on-off valve 22 and the valves 40 and 41 are opened, and the on-off valve 18 and the valve 34 are closed. The 90 ° C. water circulating in the recirculation pipe 2 and the circulation pipe 16 is supplied from the circulation pipe 16 through the connection pipe 21 into the recirculation pipe 3. At this time, the water returned from the recirculation system pipe 2 through the connection pipe 19 is guided to the filter 26 so that the chemical decontamination apparatus 11 is not contaminated by radioactive substances, and is peeled off from the inner surface of the recirculation system pipe 2. Then, the clad contained in the water is removed by the filter 26. The water heated to 90 ° C. by the heater 27 through the filter 26 is transferred into the recirculation system pipe 3 through the connection pipe 21. As the pump 13, it is desirable to use a diaphragm pump that does not generate cavitation. By using the diaphragm pump, as much water as possible in the recirculation pipe 2 can be transferred into the recirculation pipe 3. The completion of the water transfer can be known from the change in the sound of the pump 13. When a diaphragm pump completes the transfer of water and air is entrained on the inlet side, the noise of the pump clearly changes. It can be known that the transfer of water is completed by the change of the noise. Similarly, the completion of transfer from a recirculation system pipe having an oxidative decontamination liquid and a reduction decontamination liquid, which will be described later, to another recirculation system pipe can be known from the change in the noise of the pump. The completion of the water transfer can also be known by installing a pressure sensor for measuring the head in the recirculation system piping and monitoring the water level in the recirculation system piping based on the measurement value of the pressure sensor. That is, the transfer completion can be known by confirming that the water level on the liquid level is lower than the lower surface of the horizontal piping of the recirculation piping. Furthermore, the liquid level can be confirmed at the position of the manometer indicating the liquid level in the recirculation system pipe, and the completion of the transfer can be known.

再循環系配管2から再循環系配管3への水の移送が完了した後、B系統の再循環系配管3の昇温が行われる。再循環系配管3の昇温を、図6を用いて説明する。開閉弁24及び弁34が開き、開閉弁20及び弁40,41が閉じられる。加熱器27で加熱された水は、ポンプ13,14の駆動により、循環配管16、接続配管21、再循環系配管3及び接続配管23内を循環する。接続配管23を通して循環配管16に戻された水の温度が、85℃以上、例えば90℃になったとき、再循環系配管3の昇温工程が終了する。フィルタ26への通水の有無により循環する水の流量が変動する場合には、サージタンク12の水位を監視しながら、適宜、ポンプ14の回転数を調節し、ポンプ14から吐出される水の流量を調整する。   After the transfer of water from the recirculation system pipe 2 to the recirculation system pipe 3 is completed, the temperature of the B system recirculation system pipe 3 is increased. The temperature rise of the recirculation pipe 3 will be described with reference to FIG. The on-off valve 24 and the valve 34 are opened, and the on-off valve 20 and the valves 40 and 41 are closed. The water heated by the heater 27 is circulated in the circulation pipe 16, the connection pipe 21, the recirculation system pipe 3 and the connection pipe 23 by driving the pumps 13 and 14. When the temperature of the water returned to the circulation pipe 16 through the connection pipe 23 reaches 85 ° C. or higher, for example, 90 ° C., the temperature raising process of the recirculation system pipe 3 is completed. When the flow rate of the circulated water varies depending on the presence or absence of water flow to the filter 26, the rotation speed of the pump 14 is adjusted as appropriate while monitoring the water level of the surge tank 12, and the water discharged from the pump 14 is monitored. Adjust the flow rate.

再循環系配管3の昇温工程が終了した後、再循環系配管2の酸化除染を行うために、酸化除染剤を含む酸化除染液を循環する水に注入する(酸化除染剤の注入工程)。この酸化除染剤の注入工程を、図7を用いて説明する。開閉弁18及び弁39,40,53を開き、開閉弁22及び弁44を閉じる。この注入工程では、再循環系配管3内の水を駆動しているポンプ13,14によって再循環系配管2内に移送し、フィルタ26を通すので、移送された水に含まれたクラッドがフィルタ26によって除去される。過マンガン酸カリウム(酸化除染剤)が、ホッパ25から配管52内を流れる水に注入される。注入された過マンガン酸カリウムは、配管52を通ってサージタンク12内に流入し、循環配管16内を流れて加熱器27で加熱された水に混入される。この水の温度は90℃である。主にサージタンク12内で過マンガン酸カリウムが水に溶け、酸化除染液(過マンガン酸カリウム水溶液)が生成される。再循環系配管2に移送される水に含まれる過マンガン酸カリウムの濃度が、除染対象の系統に合せた設定濃度、例えば、200〜300ppmになるように、ホッパ25から配管52に投入する酸化除染液の量を調整する。開閉弁18はホッパ25からの酸化除染剤の注入開始と共に開けられる。開閉弁18を開いた後、直ちに開閉弁22を閉じる。循環配管16に供給された酸化除染液は接続配管17によって再循環系配管2内に導かれる。再循環系配管3から再循環系配管2に水を移送する間に、酸化除染剤の必要量が全てホッパ25からサージタンク12に供給されるように、ホッパ25への酸化除染剤の注入量が調整される。   After the temperature raising process of the recirculation system pipe 3 is completed, an oxidative decontamination liquid containing an oxidative decontamination liquid is injected into the circulating water in order to perform oxidative decontamination of the recirculation system pipe 2 (oxidative decontamination agent). Injection process). The injection process of this oxidative decontamination agent will be described with reference to FIG. The on-off valve 18 and the valves 39, 40, 53 are opened, and the on-off valve 22 and the valve 44 are closed. In this injection process, the water in the recirculation system pipe 3 is transferred into the recirculation system pipe 2 by the pumps 13 and 14 driving the filter 26 and passes through the filter 26, so that the clad contained in the transferred water is filtered. 26. Potassium permanganate (oxidative decontamination agent) is injected from the hopper 25 into the water flowing in the pipe 52. The injected potassium permanganate flows into the surge tank 12 through the pipe 52, flows through the circulation pipe 16, and is mixed into the water heated by the heater 27. The temperature of this water is 90 ° C. Mainly, potassium permanganate is dissolved in water in the surge tank 12, and an oxidative decontamination solution (potassium permanganate aqueous solution) is generated. The concentration of potassium permanganate contained in the water transferred to the recirculation piping 2 is charged from the hopper 25 to the piping 52 so that the concentration is set to the decontamination target system, for example, 200 to 300 ppm. Adjust the amount of oxidative decontamination solution. The on-off valve 18 is opened at the start of injection of the oxidative decontamination agent from the hopper 25. After opening the on-off valve 18, the on-off valve 22 is immediately closed. The oxidative decontamination solution supplied to the circulation pipe 16 is guided into the recirculation system pipe 2 by the connection pipe 17. While transferring water from the recirculation system pipe 3 to the recirculation system pipe 2, the oxidative decontamination agent to the hopper 25 is supplied so that all necessary amount of the oxidative decontamination agent is supplied from the hopper 25 to the surge tank 12. The injection volume is adjusted.

酸化除染剤の注入工程において再循環系配管3から再循環系配管2への水の移送が完了した後、再循環系配管2の酸化除染が行われる(酸化除染工程)。この酸化除染工程においては、図4に示すように、開閉弁20及び弁34を開き、開閉弁24及び弁40,41を閉じる。過マンガン酸カリウムを含む酸化除染液が、循環配管16、接続配管17、再循環系配管2及び接続配管19で形成される閉ループ内を循環する。酸化除染工程において、酸化除染液をフィルタ26に供給しない理由は、(1)酸化除染における反応で生成される二酸化マンガンの粘性が高くてフィルタ26の差圧が上昇しやすく、酸化除染液を循環させるポンプ13,14の運転がしずらくなる、及び(2)フィルタ26付近での不要な過マンガン酸イオンの分解を防ぐことにある。酸化除染を行っている間、再循環系配管2に供給される酸化除染液は、加熱器27によって90℃に加熱されている。再循環系配管2の内面に対する酸化除染は、所定時間(例えば6時間)実施された後に終了する。再循環系配管2に対する酸化除染が終了した後、再循環系配管3に対する酸化除染が行われる。この再循環系配管3の酸化除染工程においては、図6に示すように、開閉弁22,24が開き、開閉弁18,20が閉じられる。加熱器27で90℃に加熱された酸化除染液が、接続配管21を通して再循環系配管3内に供給される。再循環系配管3の酸化除染工程では、酸化除染液が循環配管16、接続配管21、再循環系配管3及び接続配管23で形成される閉ループ内を循環する。再循環系配管3の内面に対する酸化除染も、所定時間(例えば6時間)実施された後に終了する。   After the transfer of water from the recirculation system pipe 3 to the recirculation system pipe 2 is completed in the oxidative decontamination agent injection process, the recirculation system pipe 2 is subjected to oxidative decontamination (oxidation decontamination process). In this oxidative decontamination step, as shown in FIG. 4, the on-off valve 20 and the valve 34 are opened, and the on-off valve 24 and the valves 40 and 41 are closed. An oxidative decontamination solution containing potassium permanganate circulates in the closed loop formed by the circulation pipe 16, the connection pipe 17, the recirculation system pipe 2 and the connection pipe 19. In the oxidative decontamination process, the reason why the oxidative decontamination solution is not supplied to the filter 26 is that (1) the viscosity of manganese dioxide produced by the reaction in the oxidative decontamination is high, and the differential pressure of the filter 26 is likely to increase. It is difficult to operate the pumps 13 and 14 for circulating the dye solution, and (2) to prevent unnecessary decomposition of permanganate ions in the vicinity of the filter 26. During the oxidative decontamination, the oxidative decontamination liquid supplied to the recirculation system pipe 2 is heated to 90 ° C. by the heater 27. The oxidative decontamination on the inner surface of the recirculation pipe 2 is completed after a predetermined time (for example, 6 hours). After the oxidative decontamination of the recirculation system pipe 2 is completed, the oxidative decontamination of the recirculation system pipe 3 is performed. In the oxidative decontamination process of the recirculation system pipe 3, as shown in FIG. 6, the on-off valves 22 and 24 are opened and the on-off valves 18 and 20 are closed. The oxidative decontamination liquid heated to 90 ° C. by the heater 27 is supplied into the recirculation system pipe 3 through the connection pipe 21. In the oxidative decontamination step of the recirculation system pipe 3, the oxidative decontamination liquid circulates in a closed loop formed by the circulation pipe 16, the connection pipe 21, the recirculation system pipe 3 and the connection pipe 23. The oxidative decontamination on the inner surface of the recirculation pipe 3 is also completed after a predetermined time (for example, 6 hours).

再循環系配管3の酸化除染工程が終了した後、酸化除染液に含まれている酸化除染剤を分解する(酸化除染剤分解工程)。酸化除染剤分解工程での化学除染装置11の各弁の開閉状態は、図7に示す酸化除染剤の注入工程におけるそれらの弁の開閉状態と同じになる。再循環系配管3内の酸化除染液、すなわち、過マンガン酸カリウムが溶解している水が再循環系配管3から接続配管23を通して循環配管16に移送される。ホッパ25からシュウ酸(還元除染剤)を配管52内に注入する。注入されたシュウ酸は、サージタンク12内に導かれ、酸化除染液の水によって溶解される。サージタンク12内に存在する酸化除染液に含まれる過マンガン酸イオンがシュウ酸によって分解される。シュウ酸がサージタンク12内に供給されることによって、再循環系配管3内の酸化除染液が循環配管16に戻された再循環系配管3内の酸化除染液に含まれる過酸化マンガンイオンは、サージタンク12内のシュウ酸によって分解される。このようにして、酸化除染液に含まれる過酸化マンガンイオンはシュウ酸によって完全に分解される。シュウ酸のホッパ25からの注入量は、残留している過マンガン酸イオンの分解に必要な量と併せて次工程の還元除染に用いられるシュウ酸水溶液(還元除染液)の生成に必要な量を合計した量になる。過マンガン酸イオンが分解されることによって過マンガン酸カリウム水溶液はシュウ酸水溶液になる。この結果、シュウ酸水溶液が接続配管17を通して再循環系配管2内に移送される。再循環系配管2内に移送される還元除染液に含まれるシュウ酸の濃度が所定濃度(例えば約2000ppm)になるように、ホッパ25から注入されるシュウ酸水溶液に含まれるシュウ酸の濃度が調整される。   After the oxidative decontamination process of the recirculation system pipe 3 is completed, the oxidative decontamination agent contained in the oxidative decontamination liquid is decomposed (oxidative decontamination reagent decomposition process). The open / close state of each valve of the chemical decontamination apparatus 11 in the oxidative decontamination agent decomposition step is the same as the open / close state of the valves in the oxidative decontamination agent injection step shown in FIG. The oxidative decontamination solution in the recirculation pipe 3, that is, water in which potassium permanganate is dissolved is transferred from the recirculation pipe 3 to the circulation pipe 16 through the connection pipe 23. Oxalic acid (reductive decontamination agent) is injected into the pipe 52 from the hopper 25. The injected oxalic acid is guided into the surge tank 12 and is dissolved by the water of the oxidative decontamination solution. Permanganate ions contained in the oxidative decontamination solution present in the surge tank 12 are decomposed by oxalic acid. Manganese peroxide contained in the oxidative decontamination liquid in the recirculation system pipe 3 in which the oxidative decontamination liquid in the recirculation system pipe 3 is returned to the circulation pipe 16 by supplying oxalic acid into the surge tank 12. Ions are decomposed by oxalic acid in the surge tank 12. In this way, manganese peroxide ions contained in the oxidative decontamination solution are completely decomposed by oxalic acid. The amount of oxalic acid injected from the hopper 25 is necessary for the production of an aqueous oxalic acid solution (reducing decontamination solution) used for the reductive decontamination in the next step together with the amount necessary for the decomposition of the remaining permanganate ions. This is the total amount. When the permanganate ions are decomposed, the aqueous potassium permanganate solution becomes an oxalic acid aqueous solution. As a result, the aqueous oxalic acid solution is transferred into the recirculation system pipe 2 through the connection pipe 17. The concentration of oxalic acid contained in the oxalic acid aqueous solution injected from the hopper 25 so that the concentration of oxalic acid contained in the reductive decontamination liquid transferred into the recirculation system pipe 2 becomes a predetermined concentration (for example, about 2000 ppm). Is adjusted.

酸化除染剤分解工程で還元除染液の再循環系配管2内への移送が終了した後、再循環系配管2の還元除染が行われる(還元除染工程)。この還元除染工程では、図8に示すように、開閉弁20及び弁34,45が開き、弁36を調整開度(中間開度)の状態にし、開閉弁24及び弁40,41を閉じる。加熱器27で90℃に加熱された還元除染液が、循環配管16、接続配管17、再循環系配管2及び接続配管19で形成される閉ループ内を循環する。このようにして、再循環系配管2の内面に対する還元除染が行われる。還元除染では、弁45が開いているので、循環配管16に戻された還元除染液の一部である所定流量が、カチオン交換樹脂塔29に導かれる。残りの還元除染液は調整開度になっている弁36を通過する。カチオン交換樹脂塔29は、還元除染によって再循環系配管2内で生成されて還元除染液に含まれている鉄イオン、マンガンイオン、ニッケルイオン及びコバルトイオンなどのカチオン成分を放射性核種と共に還元除染液から除去する。   After the transfer of the reductive decontamination solution into the recirculation system pipe 2 is completed in the oxidative decontamination process, the recirculation system pipe 2 is subjected to reductive decontamination (reduction decontamination process). In this reductive decontamination step, as shown in FIG. 8, the on-off valve 20 and the valves 34 and 45 are opened, the valve 36 is set to an adjusted opening (intermediate opening), and the on-off valve 24 and the valves 40 and 41 are closed. . The reductive decontamination liquid heated to 90 ° C. by the heater 27 circulates in the closed loop formed by the circulation pipe 16, the connection pipe 17, the recirculation system pipe 2 and the connection pipe 19. In this way, reductive decontamination is performed on the inner surface of the recirculation pipe 2. In the reductive decontamination, since the valve 45 is open, a predetermined flow rate that is a part of the reductive decontamination liquid returned to the circulation pipe 16 is guided to the cation exchange resin tower 29. The remaining reductive decontamination liquid passes through the valve 36 having an adjusted opening degree. The cation exchange resin tower 29 reduces cation components such as iron ions, manganese ions, nickel ions, and cobalt ions that are generated in the recirculation piping 2 by reductive decontamination and contained in the reductive decontamination solution together with radionuclides. Remove from decontamination solution.

再循環系配管2を対象とした還元除染の際には、pH調整剤であるヒドラジンを還元除染液に添加して還元除染液のpHを例えば約2.5に調整する。このヒドラジンによるpH調整によって、化学除染を行う対象の構造部材(例えば、再循環系配管2,3)の腐食が抑制される。上記したヒドラジンの還元除染液への添加は、ホッパ25からの注入によって行われ、還元除染期間を通して連続して行われる。ヒドラジンの添加により還元除染液のpHが常に約2.5に制御される。ただし、ヒドラジンがカチオン交換樹脂塔29からブレークした後では、ホッパ25からのヒドラジンの注入を停止する。   At the time of reductive decontamination for the recirculation system pipe 2, the pH of the reductive decontamination solution is adjusted to, for example, about 2.5 by adding hydrazine as a pH adjusting agent to the reductive decontamination solution. By adjusting the pH with hydrazine, corrosion of the structural member (for example, the recirculation pipes 2 and 3) to be subjected to chemical decontamination is suppressed. The above-described addition of hydrazine to the reductive decontamination solution is performed by injection from the hopper 25, and is continuously performed throughout the reductive decontamination period. By adding hydrazine, the pH of the reducing decontamination solution is always controlled to about 2.5. However, after hydrazine breaks from the cation exchange resin tower 29, injection of hydrazine from the hopper 25 is stopped.

再循環系Aの再循環系配管2に対する還元除染の時間が、還元除染開始後、再循環系配管2に対して必要な還元除染時間の半分に達したとき、再循環系配管2の還元除染が一旦中止される。そして、再循環系配管2内の還元除染液が再循環系Bの再循環系配管3内に移送される。この還元除染液の移送は、各開閉弁及び各弁の開閉状態を図9に示す状態にして行われる。すなわち、開閉弁22及び弁40,41を開き、開閉弁18及び弁34を閉じる。   When the decontamination time for the recirculation system pipe 2 in the recirculation system A reaches half of the reductive decontamination time required for the recirculation system pipe 2 after the start of the reduction decontamination, the recirculation system pipe 2 Reductive decontamination of is temporarily stopped. Then, the reductive decontamination liquid in the recirculation system pipe 2 is transferred into the recirculation system pipe 3 of the recirculation system B. The reductive decontamination liquid is transferred with the on-off valves and the open / closed states of the valves shown in FIG. That is, the on-off valve 22 and the valves 40 and 41 are opened, and the on-off valve 18 and the valve 34 are closed.

還元除染液の再循環系配管3内への移送が終了した後、再循環系配管3に対する還元除染工程が実施される。このとき、図10に示すように、開閉弁24及び弁34を開き、開閉弁20及び弁40,41を閉じる。加熱器27で90℃に加熱された還元除染液が、循環配管16、接続配管21、再循環系配管3及び接続配管23で形成される閉ループ内を循環し、再循環系配管3の内面に対する還元除染が行われる。還元除染液のpHは、上記したように、ヒドラジンの注入によって約2.5に維持される。カチオン交換樹脂塔29は、還元除染によって再循環系配管3内で生成されて還元除染液に含まれている上記したカチオン成分を放射性核種と共に還元除染液から除去する。再循環系配管3に対する還元除染の時間が、再循環系配管3の還元除染開始後、再循環系配管3に対して必要な還元除染時間の半分に達したとき、再循環系配管3の還元除染が一旦中止される。各弁の開閉状態が図11に示す状態に変更され、再循環系配管3内の還元除染液が再循環系配管2内に移送される。   After the transfer of the reductive decontamination liquid into the recirculation system pipe 3 is completed, a reductive decontamination step for the recirculation system pipe 3 is performed. At this time, as shown in FIG. 10, the on-off valve 24 and the valve 34 are opened, and the on-off valve 20 and the valves 40 and 41 are closed. The reductive decontamination liquid heated to 90 ° C. by the heater 27 circulates in the closed loop formed by the circulation pipe 16, the connection pipe 21, the recirculation system pipe 3 and the connection pipe 23, and the inner surface of the recirculation system pipe 3. Reductive decontamination is performed. The pH of the reductive decontamination solution is maintained at about 2.5 by hydrazine injection as described above. The cation exchange resin tower 29 removes the above-described cation component generated in the recirculation system pipe 3 by reductive decontamination and contained in the reductive decontamination liquid together with the radionuclide from the reductive decontamination liquid. When the recirculation decontamination time for the recirculation system pipe 3 reaches half of the reductive decontamination time required for the recirculation system pipe 3 after the start of the reduction decontamination of the recirculation system pipe 3, the recirculation system pipe The reductive decontamination of 3 is once stopped. The open / close state of each valve is changed to the state shown in FIG. 11, and the reducing decontamination liquid in the recirculation system pipe 3 is transferred into the recirculation system pipe 2.

還元除染液の再循環系配管2内への移送が完了したとき、化学除染装置11における各弁の開閉状態が、図8に示す状態になる。再循環系配管2に必要な還元除染期間の残り半分の期間において、再度、再循環系配管2に対する還元除染が、上記したように、実行される。再循環系配管2に対するこの還元除染が終了したとき、各弁の開閉状態が図9に示す状態に変更され、再循環系配管2内の還元除染液が再循環系配管3内に移送される。この還元除染液の移送が終了したとき、各弁の開閉状態が図10に示す状態に変更される。再循環系配管3に必要な還元除染期間の残り半分の期間において、再度、再循環系配管3に対する還元除染も、上記したように、実行される。   When the transfer of the reductive decontamination liquid into the recirculation pipe 2 is completed, the open / close state of each valve in the chemical decontamination apparatus 11 becomes the state shown in FIG. In the remaining half of the reductive decontamination period necessary for the recirculation system pipe 2, reductive decontamination for the recirculation system pipe 2 is performed again as described above. When this reductive decontamination for the recirculation system pipe 2 is completed, the open / close state of each valve is changed to the state shown in FIG. 9, and the reductive decontamination liquid in the recirculation system pipe 2 is transferred into the recirculation system pipe 3. Is done. When the transfer of the reductive decontamination liquid is completed, the open / close state of each valve is changed to the state shown in FIG. In the remaining half of the reductive decontamination period required for the recirculation system pipe 3, reductive decontamination for the recirculation system pipe 3 is performed again as described above.

以上に述べた還元除染工程の終了後に、還元除染剤の分解工程が実施される。還元除染液に含まれている還元除染剤の分解は、還元除染液の再循環系配管3から再循環系配管2への移送、及び還元除染剤の再循環系配管2から再循環系配管3への移送を交互に行いながら、分解装置31を用いて実行される。   After the reduction decontamination process described above is completed, a reduction decontamination process is performed. The reductive decontamination liquid contained in the reductive decontamination liquid is decomposed by transferring the reductive decontamination liquid from the recirculation pipe 3 to the recirculation pipe 2 and recirculating the reductive decontamination liquid from the recirculation pipe 2. It is executed using the decomposition device 31 while alternately transferring to the circulation system pipe 3.

まず、再循環系配管3から再循環系配管2に還元除染液を移送するときにおいて、還元除染液に含まれたシュウ酸及びヒドラジンの分解について説明する。還元除染終了後に、図12に示すように、弁53が閉じられ、ポンプ13から吐出される還元除染液の流量を還元除染剤の分解時に適切な値に調整する。これに合せて、ポンプ14から吐出される還元除染液の流量も調整して、サージタンク12内の水位を所定の設定水位に保持する。このようなポンプ13からの吐出流量の調整及びサージタンク12内の水位の調整は、開閉弁22,24が開いて開閉弁18,20が閉じられた状態で行われる。その後、図12に示すように、弁36を閉じ、弁49を開いて弁37を閉じる。還元除染液は、加熱器27で90℃に加熱されており、分解装置31に供給され、サージタンク12に導かれる。分解装置31が温まった後、弁51を開いて注入ポンプ33を駆動する。酸化剤タンク32内に存在する過酸化水素が配管50及び48を経て分解装置31内に供給される。循環配管16から分解装置31に供給される還元除染液に含まれたシュウ酸及びヒドラジンが、分解装置31内において、過酸化水素の存在下で触媒の作用により分解される。分解装置31への過酸化水素の供給量は、シュウ酸及びヒドラジンの分解に必要なモル数の1.2倍程度の量である。この量の過酸化水素の注入により、分解装置31は、シュウ酸及びヒドラジンを同時に分解する。   First, decomposition of oxalic acid and hydrazine contained in the reductive decontamination liquid when the reductive decontamination liquid is transferred from the recirculation system pipe 3 to the recirculation system pipe 2 will be described. After the reduction decontamination, as shown in FIG. 12, the valve 53 is closed, and the flow rate of the reduction decontamination liquid discharged from the pump 13 is adjusted to an appropriate value when the reduction decontamination agent is decomposed. In accordance with this, the flow rate of the reductive decontamination liquid discharged from the pump 14 is also adjusted to maintain the water level in the surge tank 12 at a predetermined set water level. The adjustment of the discharge flow rate from the pump 13 and the adjustment of the water level in the surge tank 12 are performed in a state where the on-off valves 22 and 24 are open and the on-off valves 18 and 20 are closed. Thereafter, as shown in FIG. 12, the valve 36 is closed, the valve 49 is opened, and the valve 37 is closed. The reductive decontamination liquid is heated to 90 ° C. by the heater 27, supplied to the decomposition apparatus 31, and guided to the surge tank 12. After the decomposition device 31 is warmed, the valve 51 is opened and the infusion pump 33 is driven. Hydrogen peroxide present in the oxidant tank 32 is supplied into the decomposition apparatus 31 via the pipes 50 and 48. Oxalic acid and hydrazine contained in the reductive decontamination solution supplied from the circulation pipe 16 to the decomposition device 31 are decomposed in the decomposition device 31 by the action of a catalyst in the presence of hydrogen peroxide. The amount of hydrogen peroxide supplied to the decomposition apparatus 31 is about 1.2 times the number of moles required for decomposition of oxalic acid and hydrazine. By injecting this amount of hydrogen peroxide, the decomposition device 31 simultaneously decomposes oxalic acid and hydrazine.

ポンプ14の下流で循環配管16に設置されている導電率計(図示せず)で計測された還元除染液の導電率がシュウ酸等の分解によって大きく低下したことが確認された後、開閉弁18を開いて開閉弁22を閉じる。この開閉弁操作によって、再循環系配管3内の還元除染液が分解装置31に供給され、シュウ酸及びヒドラジンが分解されてそれぞれの濃度が低下した還元除染液がサージタンク12及び循環配管16を経て接続配管17に流入する。シュウ酸及びヒドラジンの各濃度が低下した還元除染液が、接続配管17を通って再循環系配管2内に移送される。   After confirming that the conductivity of the reductive decontamination solution measured by a conductivity meter (not shown) installed in the circulation pipe 16 downstream of the pump 14 is greatly reduced by decomposition of oxalic acid, etc. The valve 18 is opened and the on-off valve 22 is closed. By this opening / closing valve operation, the reductive decontamination liquid in the recirculation system pipe 3 is supplied to the decomposing device 31, and the reductive decontamination liquid whose oxalic acid and hydrazine are decomposed to reduce their respective concentrations becomes the surge tank 12 and the circulation pipe. 16 flows into the connection pipe 17 via 16. The reductive decontamination liquid having reduced concentrations of oxalic acid and hydrazine is transferred into the recirculation system pipe 2 through the connection pipe 17.

ポンプ14の下流における導電率が大きく低下した後で開閉弁18を開いて開閉弁22を閉じる理由は、以下の通りである。その導電率が低下する前に開閉弁18を開く、すなわち、開閉弁18を早く開きすぎると、サージタンク12内に残留していた、シュウ酸及びヒドラジンが高濃度になっている還元除染液が再循環系配管2内に流れてしまう。これは、分解装置31の作用によってシュウ酸及びヒドラジンが低い濃度になった還元除染液が、再循環系配管2内で上記の高濃度のシュウ酸及びヒドラジンを含む還元除染液と混合され、前者の還元除染液におけるシュウ酸及びヒドラジンの各濃度を高めてしまう。したがって、シュウ酸及びヒドラジンの分解に要する時間が長くなってしまう。本実施例は、ポンプ14の下流における導電率が大きく低下した後で開閉弁18を開いているため、シュウ酸及びヒドラジンの分解に要する時間を短縮することができる。   The reason why the on-off valve 18 is opened and the on-off valve 22 is closed after the conductivity downstream of the pump 14 is greatly reduced is as follows. If the on-off valve 18 is opened before the electrical conductivity decreases, that is, if the on-off valve 18 is opened too early, the reductive decontamination liquid remaining in the surge tank 12 and having a high concentration of oxalic acid and hydrazine. Will flow into the recirculation piping 2. This is because the reductive decontamination liquid in which the concentrations of oxalic acid and hydrazine are reduced by the action of the decomposition apparatus 31 is mixed with the reductive decontamination liquid containing the above high concentrations of oxalic acid and hydrazine in the recirculation system pipe 2. The concentration of oxalic acid and hydrazine in the former reductive decontamination solution is increased. Therefore, the time required for the decomposition of oxalic acid and hydrazine is increased. In this embodiment, since the on-off valve 18 is opened after the electrical conductivity downstream of the pump 14 is greatly reduced, the time required for the decomposition of oxalic acid and hydrazine can be shortened.

分解装置31に供給される還元除染液に含まれるシュウ酸の初期濃度は約2000ppmである。分解装置31内の触媒によるシュウ酸の分解率が90%である場合、分解装置31から排出される還元除染液に含まれるシュウ酸濃度は約200ppmとなる。接続配管17によって再循環系配管2に導かれる還元除染液に含まれるシュウ酸濃度は、分解装置31から排出される還元除染液のその濃度(約200ppm)になる。還元除染剤の分解工程は、還元除染液に含まれる還元除染剤(シュウ酸)の濃度が10ppm以下になるまで行われる。   The initial concentration of oxalic acid contained in the reductive decontamination solution supplied to the decomposition apparatus 31 is about 2000 ppm. When the decomposition rate of oxalic acid by the catalyst in the decomposition apparatus 31 is 90%, the concentration of oxalic acid contained in the reducing decontamination liquid discharged from the decomposition apparatus 31 is about 200 ppm. The concentration of oxalic acid contained in the reductive decontamination liquid guided to the recirculation system pipe 2 by the connecting pipe 17 becomes the concentration (about 200 ppm) of the reductive decontamination liquid discharged from the decomposition apparatus 31. The decomposition process of the reductive decontaminating agent is performed until the concentration of the reductive decontaminating agent (oxalic acid) contained in the reductive decontamination liquid becomes 10 ppm or less.

還元除染剤の分解工程において、再循環系配管3から再循環系配管2への還元除染液の移送が終了した後、図13に示すように、開閉弁20を開いて開閉弁24を閉じる。この時点では、図12に示すように、開閉弁18が開いて開閉弁22が閉じている。再循環系配管2内の還元除染液が、循環配管16に戻されて過酸化水素が導かれている分解装置31に供給される。分解装置31において、還元除染液に含まれたシュウ酸及びヒドラジンが分解される。このとき、分解装置31から排出される還元除染液に含まれているシュウ酸の濃度は約20ppmになる。サージタンク12から循環配管16に排出された還元除染液の導電率がポンプ14の下流における導電率計の設置位置でさらに大きく低下したことを確認した後、図13に示すように、開閉弁22を開いて開閉弁18を閉じる。シュウ酸の濃度が約20ppmに低下した還元除染液が、接続配管21を通って再循環系配管3内に移送される。   After the transfer of the reductive decontamination solution from the recirculation system pipe 3 to the recirculation system pipe 2 is completed in the decomposition process of the reductive decontamination agent, as shown in FIG. close. At this time, as shown in FIG. 12, the on-off valve 18 is open and the on-off valve 22 is closed. The reductive decontamination liquid in the recirculation pipe 2 is returned to the circulation pipe 16 and supplied to the decomposition apparatus 31 to which hydrogen peroxide is introduced. In the decomposition apparatus 31, oxalic acid and hydrazine contained in the reductive decontamination solution are decomposed. At this time, the concentration of oxalic acid contained in the reductive decontamination liquid discharged from the decomposition apparatus 31 is about 20 ppm. After confirming that the conductivity of the reductive decontamination liquid discharged from the surge tank 12 to the circulation pipe 16 has further decreased at the position where the conductivity meter is installed downstream of the pump 14, as shown in FIG. 22 is opened and the on-off valve 18 is closed. The reductive decontamination liquid whose oxalic acid concentration has been reduced to about 20 ppm is transferred into the recirculation system pipe 3 through the connection pipe 21.

還元除染剤の分解工程において、再循環系配管2から再循環系配管3への還元除染液の移送が終了した後、前述したように、再循環系配管3内の還元除染液を再び再循環系配管2に移送する。この移送に際しても、再循環系配管3内の還元除染液に含まれているシュウ酸が分解装置31で分解される。この分解によって、分解装置31から約2ppmのシュウ酸を含む水が排出される。この約2ppmのシュウ酸を含む水は、接続配管17を通って再循環系配管2内に移送される。還元除染剤の分解工程における3回目の移送による還元除染剤の分解によって、シュウ酸濃度が10ppm以下の約2ppmまで低下したので、還元除染剤の分解工程が終了する。   After the transfer of the reductive decontamination liquid from the recirculation system pipe 2 to the recirculation system pipe 3 is completed in the decomposition process of the reductive decontamination agent, as described above, the reductive decontamination liquid in the recirculation system pipe 3 is removed. It is again transferred to the recirculation piping 2. Also during this transfer, oxalic acid contained in the reductive decontamination liquid in the recirculation pipe 3 is decomposed by the decomposition device 31. By this decomposition, water containing about 2 ppm of oxalic acid is discharged from the decomposition device 31. The water containing about 2 ppm of oxalic acid is transferred into the recirculation system pipe 2 through the connection pipe 17. Since the oxalic acid concentration has been reduced to about 2 ppm, which is 10 ppm or less, due to the decomposition of the reducing decontaminating agent by the third transfer in the reducing decontaminating step, the reducing decontaminating step is completed.

以上に述べた還元除染剤の分解工程において、再循環系配管内に存在する還元除染液の液量が10m、還元除染剤分解時での流量が還元除染液の1回目の移送時で4m/h、2回目以降の移送時で12m/hである場合、還元除染剤(シュウ酸)の分解時間は4時間10分となる。還元除染液を、再循環系配管内を循環させながら、還元除染剤(シュウ酸)の分解を行う従来法では、還元除染剤の分解率が同じであっても、還元除染剤の希釈によって分解効率が悪くなるため、その分解時間が約7時間40分になることが想定される。すなわち、本実施例のように還元除染液を再循環系配管2と再循環系配管3の間で往復させて移送しながら還元除染剤の分解を行う場合には、上記の従来法に比べて、1回当たり3時間半程度の分解時間の短縮が期待できる。 In the decontamination process of the reductive decontamination described above, the amount of reductive decontamination liquid present in the recirculation system pipe is 10 m 3 , and the flow rate during reductive decontamination is 1 In the case of 4 m 3 / h at the time of transfer and 12 m 3 / h at the second and subsequent transfers, the decomposition time of the reductive decontaminant (oxalic acid) is 4 hours and 10 minutes. In the conventional method of decomposing reductive decontaminant (oxalic acid) while circulating reductive decontamination liquid in the recirculation system piping, even if the decontamination rate of reductive decontaminant is the same, reductive decontaminant Since the decomposition efficiency deteriorates due to the dilution, the decomposition time is assumed to be about 7 hours and 40 minutes. That is, when the reductive decontamination solution is decomposed while being reciprocated between the recirculation system pipe 2 and the recirculation system pipe 3 as in this embodiment, In comparison, shortening of the decomposition time of about 3 and a half hours can be expected.

還元除染剤の分解工程が終了した後、浄化工程である中間浄化工程が実施される。中間浄化工程の開始に際して、図14に示すように、開閉弁20を開いて開閉弁24を閉じる。このとき、図12に示すように、開閉弁18は開いて開閉弁22が閉じている。さらに、弁37を開き、注入ポンプ33を停止して弁49,51を閉じる。加熱器27による加熱を停止し、冷却器28に冷却水を通水した後、弁43を開いて弁35を閉じる。ポンプ13,14が駆動しているので、再循環系配管2内の約2ppmのシュウ酸を含む水が、接続配管19によって循環配管16に戻され、冷却器28に供給される。この水の温度が混床樹脂塔30に供給可能な60℃以下まで低下したとき、弁47を開けて弁45を閉じて冷却器28で冷却された水を混床樹脂塔30に供給する。このようにして、中間浄化が開始される。中間浄化工程では、還元除染剤の分解工程でカチオン交換樹脂塔29によって除去されずに残っている化学除染による溶出物及び残留している除染剤が、混床樹脂塔30で除去される。混床樹脂塔30は陽イオン交換樹脂及び陰イオン交換樹脂を充填している。ポンプ14の下流に設置された前述の導電率計で計測された導電率が、次工程の酸化除染工程の開始に十分なレベルまで低下したとき、開閉弁22を開けて開閉弁18を閉じる。この開閉弁の操作によって、混床樹脂塔30から排出された導電率の低い水が、接続配管21によって再循環系配管3内に移送される。この低導電率の水の再循環系配管3内への移送が終了したとき、中間浄化工程が終了する。   After the decomposition process of the reductive decontamination agent is completed, an intermediate purification process that is a purification process is performed. At the start of the intermediate purification process, as shown in FIG. 14, the on-off valve 20 is opened and the on-off valve 24 is closed. At this time, as shown in FIG. 12, the on-off valve 18 is open and the on-off valve 22 is closed. Further, the valve 37 is opened, the injection pump 33 is stopped, and the valves 49 and 51 are closed. After the heating by the heater 27 is stopped and cooling water is passed through the cooler 28, the valve 43 is opened and the valve 35 is closed. Since the pumps 13 and 14 are driven, water containing about 2 ppm of oxalic acid in the recirculation system pipe 2 is returned to the circulation pipe 16 by the connection pipe 19 and supplied to the cooler 28. When the temperature of the water is lowered to 60 ° C. or lower that can be supplied to the mixed bed resin tower 30, the valve 47 is opened and the valve 45 is closed, and the water cooled by the cooler 28 is supplied to the mixed bed resin tower 30. In this way, intermediate purification is started. In the intermediate purification process, the eluate resulting from the chemical decontamination remaining without being removed by the cation exchange resin tower 29 in the decomposition process of the reductive decontamination and the remaining decontamination reagent are removed by the mixed bed resin tower 30. The The mixed bed resin tower 30 is filled with a cation exchange resin and an anion exchange resin. When the conductivity measured by the above-described conductivity meter installed downstream of the pump 14 is lowered to a level sufficient for the start of the next oxidative decontamination step, the on-off valve 22 is opened and the on-off valve 18 is closed. . By the operation of this on-off valve, the low conductivity water discharged from the mixed bed resin tower 30 is transferred into the recirculation system pipe 3 by the connection pipe 21. When the transfer of the low conductivity water into the recirculation pipe 3 is completed, the intermediate purification process is completed.

中間浄化工程の終了によって、図1に示す昇温工程から中間浄化工程までの化学除染の第1サイクルが終了する。第1サイクルの終了後は、図1に示す第2サイクルが第1サイクルと同様に実施される。   With the completion of the intermediate purification process, the first cycle of chemical decontamination from the temperature raising process to the intermediate purification process shown in FIG. 1 is completed. After the end of the first cycle, the second cycle shown in FIG. 1 is performed in the same manner as the first cycle.

第1サイクルの中間浄化工程が終了したとき、弁35を開いて加熱器27による加熱を再開する。弁43を閉じて冷却器28への冷却水の供給を停止する。さらに、弁34を開いて弁39,40を閉じる。その後、第2サイクルにおける昇温工程から最終浄化工程までの操作が図1に示す第1サイクルのそれらと同様に実行される。第2サイクルの最終浄化工程は、基本的には中間浄化工程と同様な操作が行われるが、各再循環系配管に接続されたベント配管及びドレン配管などのフラッシングを実施する必要がある。このため、最終浄化工程では、2系統の再循環系配管の間で水等の移送が何回か繰り返される。   When the intermediate purification process of the first cycle is completed, the valve 35 is opened and heating by the heater 27 is resumed. The valve 43 is closed and the supply of cooling water to the cooler 28 is stopped. Further, the valve 34 is opened and the valves 39 and 40 are closed. Thereafter, operations from the temperature raising step to the final purification step in the second cycle are performed in the same manner as those in the first cycle shown in FIG. The final purification process of the second cycle is basically performed in the same manner as the intermediate purification process, but it is necessary to perform flushing of vent pipes and drain pipes connected to each recirculation system pipe. For this reason, in a final purification process, transfer of water etc. is repeated several times between two recirculation system piping.

本実施例は、酸化除染工程及び還元除染工程において、再循環系配管2に対しては循環配管16、接続配管17、再循環系配管2及び接続配管19で形成される閉ループを、再循環系配管3に対しては循環配管16、接続配管21、再循環系配管3及び接続配管23で形成される閉ループをそれぞれ形成している。加熱器27で90℃に加熱された酸化除染液が酸化除染工程時においてそれぞれの閉ループ内を循環するので、再循環系配管2,3の温度が所定の温度に保持され、循環している酸化除染液の温度が低下しない。このため、本実施例は、再循環系配管2,3のそれぞれに対する酸化除染性能が向上する。   In this embodiment, in the oxidative decontamination process and the reduction decontamination process, the closed loop formed by the circulation pipe 16, the connection pipe 17, the recirculation system pipe 2 and the connection pipe 19 is re-reused with respect to the recirculation system pipe 2. A closed loop formed by the circulation pipe 16, the connection pipe 21, the recirculation system pipe 3, and the connection pipe 23 is formed for the circulation system pipe 3. Since the oxidative decontamination liquid heated to 90 ° C. by the heater 27 circulates in each closed loop during the oxidative decontamination process, the temperature of the recirculation pipes 2 and 3 is maintained at a predetermined temperature and circulated. The temperature of the oxidative decontamination solution does not decrease. For this reason, the present embodiment improves the oxidative decontamination performance for each of the recirculation pipes 2 and 3.

また、本実施例の還元除染工程においても、加熱器27で90℃に加熱された還元除染液がそれぞれの閉ループ内を循環するので、再循環系配管2,3の温度が所定の温度に保持され、循環している還元除染液の温度も低下しない。このため、本実施例は、再循環系配管2,3のそれぞれに対する還元除染性能が向上する。したがって、本実施例の化学除染における除染性能が向上する。   In the reductive decontamination process of the present embodiment, the reductive decontamination liquid heated to 90 ° C. by the heater 27 circulates in the respective closed loops, so that the temperature of the recirculation system pipes 2 and 3 is a predetermined temperature. The temperature of the reductive decontamination liquid held and circulated does not decrease. For this reason, the present embodiment improves the reductive decontamination performance for each of the recirculation pipes 2 and 3. Therefore, the decontamination performance in the chemical decontamination of this example is improved.

本実施例は、上記の各閉ループ内で酸化除染液を循環させながら酸化除染剤の分解を行うのではなく、一方の再循環系配管(例えば、再循環系配管3)から他方の再循環系配管(例えば、再循環系配管2)に酸化除染液を移送する際に酸化除染剤の分解を行っているので、酸化除染剤の分解効率が高くなり、その分解に要する時間を短縮することができる。すなわち、閉ループ内で酸化除染液を循環させながら酸化除染剤の分解を行った場合には、酸化除染剤が分解した後の液体と酸化除染剤が分解されていない酸化除染液が混合するので、その後の酸化除染剤の分解効率が低下する。本実施例は、酸化除染剤が分解した後の液体と酸化除染剤が分解されていない酸化除染液が混合することが無いので、酸化除染剤の分解効率が向上する。   In this embodiment, the oxidative decontaminant is not decomposed while circulating the oxidative decontamination solution in each of the above closed loops, but one recirculation piping (for example, the recirculation piping 3) is recirculated to the other. Since the oxidative decontamination reagent is decomposed when the oxidative decontamination liquid is transferred to the circulation system pipe (for example, the recirculation system pipe 2), the decomposition efficiency of the oxidative decontamination agent is increased and the time required for the decomposition is increased. Can be shortened. That is, when the oxidative decontamination agent is decomposed while circulating the oxidative decontamination solution in a closed loop, the liquid after the oxidative decontamination agent is decomposed and the oxidative decontamination solution in which the oxidative decontamination agent is not decomposed As a result, the decomposition efficiency of the subsequent oxidative decontamination agent decreases. In this embodiment, since the liquid after the oxidative decontamination is decomposed and the oxidative decontamination liquid that is not decomposed are not mixed, the decomposition efficiency of the oxidative decontamination improves.

特に、還元除染液に含まれる還元除染剤の分解にはかなりの時間を必要とするので、上記の閉ループ内で還元除染液を循環させながら還元除染剤の分解を行った場合には、分解によって還元除染剤の濃度が低下した還元除染液と還元除染剤の濃度が低下する前の還元除染液の混合が、より長期に亘って生じる可能性がある。このため、長期に亘って還元除染剤の分解効率が低下し、還元除染剤の分解にかなりの時間を要することになる。本実施例は、一方の再循環系配管と他方の再循環系配管の間で還元除染液を往復移送させながら還元除染剤を分解しているので、上記のような混合が生じなく、より高い還元除染剤の分解効率を得ることができる。このため、本実施例における還元除染剤の分解に要する時間をより短縮することができる。   In particular, since it takes a considerable amount of time to decompose the reducing decontamination solution contained in the reducing decontamination solution, the reduction decontamination agent is decomposed while circulating the reduction decontamination solution in the closed loop. There is a possibility that mixing of the reduction decontamination liquid in which the concentration of the reduction decontamination agent is reduced by the decomposition and the reduction decontamination liquid before the reduction in the concentration of the reduction decontamination agent occurs for a longer period of time. For this reason, the decomposition efficiency of the reducing decontaminating agent is lowered over a long period of time, and it takes a considerable time to decompose the reducing decontaminating agent. In this embodiment, the reductive decontaminant is decomposed while reciprocating the reductive decontamination liquid between one recirculation system pipe and the other recirculation system pipe, so that the above mixing does not occur, A higher decomposition efficiency of the reductive decontamination agent can be obtained. For this reason, the time required for decomposition | disassembly of the reductive decontamination agent in a present Example can be shortened more.

本実施例は、還元除染剤の分解工程における還元除染液の往復移送時に、還元除染液を、カチオン交換樹脂塔29を通過させるので、還元除染液に含まれたカチオン成分及び放射性核種を効率よく除去することができる。   In this embodiment, the reductive decontamination liquid is passed through the cation exchange resin tower 29 during the reciprocating transfer of the reductive decontamination liquid in the decomposition process of the reductive decontamination agent. The nuclide can be removed efficiently.

本実施例は、浄化工程においても一方の再循環系配管から他方の再循環系配管に水を移送し、その移送時において混床樹脂塔30に通水する。このため、移送する水に含まれている化学除染による溶出物及び残留している除染剤が、混床樹脂塔30によって効率良く除去することができる。本実施例は、浄化効率が向上し、浄化に要する時間を短縮することができる。   In the present embodiment, water is transferred from one recirculation system pipe to the other recirculation system pipe also in the purification step, and is passed through the mixed bed resin tower 30 at the time of the transfer. For this reason, the eluate by chemical decontamination contained in the water to be transferred and the remaining decontamination agent can be efficiently removed by the mixed bed resin tower 30. In this embodiment, the purification efficiency is improved and the time required for purification can be shortened.

さらに、本実施例は、循環配管16に設けたポンプ13としてダイアフラムポンプを用いている。ダイアフラムポンプは、ポンプの吸い込み側の水頭が不要である。このため、一方の再循環系配管から他方の再循環系配管に水等の液体を移送する場合に、一方の再循環系配管内に存在する液体のほとんどを、他方の再循環系配管に移送することができる。これによっても、前述の除染剤の分解工程、及び浄化工程に要する時間をさらに短縮することができる。   Further, in this embodiment, a diaphragm pump is used as the pump 13 provided in the circulation pipe 16. Diaphragm pumps do not require a water head on the suction side of the pump. For this reason, when liquid such as water is transferred from one recirculation system pipe to the other recirculation system pipe, most of the liquid present in the one recirculation system pipe is transferred to the other recirculation system pipe. can do. This also makes it possible to further shorten the time required for the above-described decontamination agent decomposition process and purification process.

上記のように、除染時間を短縮することができる本実施例は、BWRプラントの稼働率を向上させることができる。また、使用する除染液(酸化除染液及び還元除染液)が減少するので、放射性廃液の発生量が低減される。   As described above, the present embodiment, which can shorten the decontamination time, can improve the operating rate of the BWR plant. Moreover, since the decontamination liquid (oxidation decontamination liquid and reductive decontamination liquid) to be used decreases, the generation amount of radioactive waste liquid is reduced.

本発明の他の実施例である実施例2の化学除染方法を、以下に説明する。実施例1は、2系統存在する除染対象物としてBWRプラントの2系統の再循環系配管に対して化学除染を実施した例である。実施例1で述べた余熱除去系には、それぞれポンプが設けられる3系統の配管系が設けられる存在する場合がある。この余熱除去系の3系統の配管系のうちの2系統の配管系を除染対象にする場合には、実施例1と同様に化学除染を実施することができる。   The chemical decontamination method of Example 2, which is another example of the present invention, will be described below. Example 1 is an example in which chemical decontamination was performed on two recirculation pipes of a BWR plant as two systems of decontamination objects. In the residual heat removal system described in the first embodiment, there are cases where three piping systems each provided with a pump are provided. When two piping systems out of the three piping systems of the residual heat removal system are to be decontaminated, chemical decontamination can be performed in the same manner as in the first embodiment.

本実施例では、3系統の各配管系を対象に化学除染を実行する。このため、本実施例の化学除染方法に用いられる化学除染装置は、化学除染装置11の循環配管16の一端部に接続配管17,21の他にもう1本の接続配管(以下、第1接続配管という)を接続し、循環配管16の他端部に接続配管19,23の他にもう1本の接続配管(以下、第2接続配管という)を接続した構成を有する。第1及び第2接続配管にも開閉弁がそれぞれ取り付けられる。本実施例の化学除染方法に用いられる化学除染装置の他の構成は、化学除染装置11と同じである。その余熱除去系の第1配管系をA系統、第2配管系をB系統及び第3配管系をC系統と称する。この場合、本実施例の化学除染方法は、昇温(A系統)→昇温(B系統)→昇温(C系統)→酸化剤注入(A系統に移送)→酸化除染(A系統)→酸化除染(B系統)→酸化除染(C系統)→酸化剤分解(A系統に移送)→還元除染(A系統)→還元除染(B系統)→還元除染(C系統)→還元剤分解(A系統に移送)→還元剤分解(B系統に移送)→還元剤分解(C系統に移送)→中間浄化(A系統に移送)のように、A,B,C系統に順に該当する除染液を移送しながら酸化除染及び還元除染のそれぞれを実施すると共に、1つの工程が終了したとき、除染液を移送しながら除染分解、浄化などの操作を実施すれば良い。本実施例は、3つの配管系に対し、以上に述べた化学除染の一連の工程を実施例1のように繰り返すことで除染作業を完了することができる。本実施例のように、除染対象が3系統ある場合でも、除染液の分解及び浄化の工程を実施する回数は、各系統をそれぞれ独立に実施する場合に比べて少なくなる。このため、本実施例は、除染時間を短縮することができ、二次廃棄物の発生量を抑制することができる。本実施例は、実施例1で生じる効果を得ることができる。   In the present embodiment, chemical decontamination is executed for each of the three piping systems. For this reason, the chemical decontamination apparatus used in the chemical decontamination method of the present embodiment is connected to one end of the circulation pipe 16 of the chemical decontamination apparatus 11 in addition to the connection pipes 17 and 21 (hereinafter referred to as “connecting pipes”). 1) and the other end of the circulation pipe 16 in addition to the connection pipes 19 and 23, another connection pipe (hereinafter referred to as a second connection pipe) is connected. On-off valves are also attached to the first and second connection pipes, respectively. Other configurations of the chemical decontamination apparatus used in the chemical decontamination method of the present embodiment are the same as those of the chemical decontamination apparatus 11. The first piping system of the residual heat removal system is called A system, the second piping system is called B system, and the third piping system is called C system. In this case, the chemical decontamination method of this example is as follows: temperature rise (A system) → temperature rise (B system) → temperature rise (C system) → oxidant injection (transfer to A system) → oxidative decontamination (A system) ) → Oxidative decontamination (B line) → Oxidative decontamination (C line) → Oxidant decomposition (transfer to A line) → Reduction decontamination (A line) → Reduction decontamination (B line) → Reduction decontamination (C line) ) → Reducing agent decomposition (transfer to system A) → Reducing agent decomposition (transfer to system B) → Reducing agent decomposition (transfer to system C) → Intermediate purification (transfer to system A) A, B, C systems Each of the decontamination liquid and the decontamination decontamination is carried out while transferring the decontamination liquid corresponding to the above, and when one process is completed, operations such as decontamination and purification are carried out while the decontamination liquid is transferred. Just do it. In the present embodiment, the decontamination work can be completed by repeating the series of steps of chemical decontamination described above for the three piping systems as in the first embodiment. Even in the case where there are three decontamination targets as in this embodiment, the number of times that the decontamination solution is decomposed and purified is smaller than when each system is performed independently. For this reason, a present Example can shorten decontamination time and can suppress the generation amount of a secondary waste. In the present embodiment, the effects produced in the first embodiment can be obtained.

本発明の他の実施例である実施例3の化学除染方法を、以下に説明する。本実施例の化学除染方法に用いられる化学除染装置は、実施例1の化学除染方法で用いられた化学除染装置11である。本実施例の化学除染方法は、実施例1の化学除染方法とは酸化除染剤の注入工程が異なるだけである。   The chemical decontamination method of Example 3, which is another example of the present invention, will be described below. The chemical decontamination apparatus used in the chemical decontamination method of this example is the chemical decontamination apparatus 11 used in the chemical decontamination method of Example 1. The chemical decontamination method of this example is different from the chemical decontamination method of Example 1 only in the injection step of the oxidative decontamination agent.

実施例1では、再循環系配管3の昇温工程が終了した後、開閉弁18,22の切り替えを行って水を再循環系配管3から再循環系配管2に移送している間に行われる。これに対し、本実施例は、再循環系配管3の昇温工程が終了した後、すなわち、図6の状態で、弁53を開く(図15参照)。過マンガン酸カリウムを含む酸化除染液が、ホッパ25から配管52内を流れる水に注入され、サージタンク12内に導かれる。この酸化除染液は、循環配管16、接続配管21、再循環系配管3及び接続配管23で形成さている閉ループ内を循環している90℃の水に、サージタンク12から供給される。実施例1における酸化除染工程は再循環系配管2から実施されるが、本実施例では、酸化除染工程は、再循環系配管3から実施され、次に、再循環系配管2に対して実施される。本実施例も、実施例1と同様な昇温工程、酸化除染剤分解工程、還元除染工程、還元除染剤の分解工程及び浄化工程が実施される。   In the first embodiment, after the temperature raising process of the recirculation system pipe 3 is finished, the on-off valves 18 and 22 are switched and water is transferred from the recirculation system pipe 3 to the recirculation system pipe 2. Is called. In contrast, in this embodiment, the valve 53 is opened after the temperature raising step of the recirculation system pipe 3 is completed, that is, in the state of FIG. 6 (see FIG. 15). An oxidative decontamination solution containing potassium permanganate is injected from the hopper 25 into the water flowing in the pipe 52 and guided into the surge tank 12. This oxidative decontamination solution is supplied from the surge tank 12 to 90 ° C. water circulating in the closed loop formed by the circulation pipe 16, the connection pipe 21, the recirculation system pipe 3 and the connection pipe 23. Although the oxidative decontamination process in Example 1 is performed from the recirculation system pipe 2, in this example, the oxidative decontamination process is performed from the recirculation system pipe 3, and then to the recirculation system pipe 2. Implemented. In the present embodiment, the same temperature raising step, oxidative decontamination agent decomposition step, reductive decontamination step, reductive decontamination decomposition step and purification step are performed as in the first embodiment.

本実施例も、実施例1で生じる効果を得ることができる。さらに、本実施例は、昇温工程終了後に再循環系配管3及び循環配管16等で形成される閉ループ内を循環している水に酸化除染液を注入するので、再循環系配管2と再循環系配管3の間での水の移送時に実施されるフィルタ26への通水等の弁の開閉回数が減少する。このため、本実施例は、化学除染装置の運転操作が容易となる。しかしながら、本実施例は、昇温工程終了後における再循環系配管2と再循環系配管3の間の水の移送を減らすため、再循環系Aの再循環系配管2における昇温工程終了時から酸化除染工程開始時までの待機時間が長くなる。これにより、酸化除染工程開始時における再循環系配管2の温度がより低くなってしまう。再循環系配管2の酸化除染工程における初期の僅かな期間ではその温度低下によって酸化除染性能の僅かな低下が見られるが、90℃に加熱された酸化除染液が循環されるので、再循環系配管2の酸化除染性能は直ぐ向上する。   Also in this embodiment, the effect produced in the first embodiment can be obtained. Furthermore, since the present embodiment injects the oxidative decontamination solution into the water circulating in the closed loop formed by the recirculation pipe 3 and the circulation pipe 16 after the temperature raising step, the recirculation pipe 2 and The number of times of opening and closing valves such as water flow to the filter 26 that is performed when water is transferred between the recirculation pipes 3 is reduced. For this reason, in this embodiment, the operation of the chemical decontamination apparatus becomes easy. However, this embodiment reduces the transfer of water between the recirculation system pipe 2 and the recirculation system pipe 3 after the temperature raising process is completed, so that the temperature increase process in the recirculation system pipe 2 of the recirculation system A is completed. The waiting time from the start of the oxidative decontamination process becomes longer. Thereby, the temperature of the recirculation system piping 2 at the time of an oxidative decontamination process start will become lower. In the initial slight period in the oxidative decontamination process of the recirculation system pipe 2, a slight decrease in oxidative decontamination performance is seen due to the temperature decrease, but the oxidative decontamination liquid heated to 90 ° C is circulated. The oxidative decontamination performance of the recirculation pipe 2 is improved immediately.

以上に述べた各実施例の化学除染方法は、沸騰水型原子力発電プラントの系統だけではなく、加圧水型原子力発電プラント及び各燃料再処理プラントの系統に対しても適用することができる。   The chemical decontamination method of each Example described above can be applied not only to the boiling water nuclear power plant system but also to the pressurized water nuclear power plant and each fuel reprocessing plant system.

本発明の好適な一実施例である実施例1の化学除染方法の工程を示す説明図である。It is explanatory drawing which shows the process of the chemical decontamination method of Example 1 which is one suitable Example of this invention. 従来の化学除染方法の概略工程を示す説明図である。It is explanatory drawing which shows the schematic process of the conventional chemical decontamination method. 図1に示す化学除染方法を実施するに際して化学除染装置を、沸騰水型原子力発電プラントの2系統の再循環系配管に接続した状態を示す説明図である。It is explanatory drawing which shows the state which connected the chemical decontamination apparatus to 2 recirculation system piping of a boiling water nuclear power plant when implementing the chemical decontamination method shown in FIG. 図3に示す化学除染装置の詳細構成図であり、再循環系Aの再循環系配管での図1に示す昇温工程における弁の開閉状態を示す化学除染装置の構成図である。It is a detailed block diagram of the chemical decontamination apparatus shown in FIG. 3, and is a block diagram of the chemical decontamination apparatus showing the open / close state of the valve in the temperature raising step shown in FIG. 1 in the recirculation system piping of the recirculation system A. 図1に示す昇温工程で再循環系Aの再循環系配管から再循環系Bの再循環系配管に水を移送する場合における化学除染装置の弁の開閉状態を示す説明図である。It is explanatory drawing which shows the open / close state of the valve | bulb of a chemical decontamination apparatus in the case of transferring water from the recirculation system piping of the recirculation system A to the recirculation system piping of the recirculation system B at the temperature rising process shown in FIG. 再循環系Bの再循環系配管での図1に示す昇温工程における化学除染装置の弁の開閉状態を示す説明図である。It is explanatory drawing which shows the opening-and-closing state of the valve | bulb of the chemical decontamination apparatus in the temperature rising process shown in FIG. 図1に示す酸化剤注入工程における化学除染装置の弁の開閉状態を示す説明図である。It is explanatory drawing which shows the open / close state of the valve | bulb of the chemical decontamination apparatus in the oxidizing agent injection | pouring process shown in FIG. 再循環系Aの再循環系配管での図1に示す還元除染工程における化学除染装置の弁の開閉状態を示す説明図である。It is explanatory drawing which shows the open / close state of the valve | bulb of the chemical decontamination apparatus in the reductive decontamination process shown in FIG. 図1に示す還元除染工程で再循環系Aの再循環系配管から再循環系Bの再循環系配管に還元除染液を移送する場合における化学除染装置の弁の開閉状態を示す説明図である。Explanation of the state of opening and closing of the valve of the chemical decontamination apparatus when the reducing decontamination liquid is transferred from the recirculation system pipe of the recirculation system A to the recirculation system pipe of the recirculation system B in the reduction decontamination step shown in FIG. FIG. 再循環系Bの再循環系配管での図1に示す還元除染工程における化学除染装置の弁の開閉状態を示す説明図である。It is explanatory drawing which shows the opening-and-closing state of the valve | bulb of the chemical decontamination apparatus in the reductive decontamination process shown in FIG. 図1に示す還元除染工程で再循環系Bの再循環系配管から再循環系Aの再循環系配管に還元除染液を移送する場合における化学除染装置の弁の開閉状態を示す説明図である。Explanation of the state of opening and closing of the valve of the chemical decontamination apparatus when the reducing decontamination liquid is transferred from the recirculation pipe of the recirculation system B to the recirculation pipe of the recirculation system A in the reductive decontamination step shown in FIG. FIG. 図1に示す還元除染剤の分解工程で再循環系Bの再循環系配管から再循環系Aの再循環系配管に還元除染液を移送する場合における化学除染装置の弁の開閉状態を示す説明図である。The state of opening and closing of the valve of the chemical decontamination apparatus when the reductive decontamination liquid is transferred from the recirculation system piping of the recirculation system B to the recirculation system piping of the recirculation system A in the decomposition process of the reductive decontamination agent shown in FIG. It is explanatory drawing which shows. 図1に示す還元除染剤の分解工程で再循環系Aの再循環系配管から再循環系Bの再循環系配管に還元除染液を移送する場合における化学除染装置の弁の開閉状態を示す説明図である。The state of opening and closing of the valve of the chemical decontamination apparatus when the reductive decontamination liquid is transferred from the recirculation system piping of the recirculation system A to the recirculation system piping of the recirculation system B in the decomposition process of the reductive decontamination agent shown in FIG. It is explanatory drawing which shows. 図1に示す中間浄化工程で再循環系Aの再循環系配管から再循環系Bの再循環系配管に水を移送する場合における化学除染装置の弁の開閉状態を示す説明図である。It is explanatory drawing which shows the open / close state of the valve | bulb of a chemical decontamination apparatus in the case of transferring water from the recirculation system piping of the recirculation system A to the recirculation system piping of the recirculation system B in the intermediate | middle purification process shown in FIG. 本発明の他の実施例である実施例3の化学除染方法の酸化剤注入工程における化学除染装置の弁の開閉状態を示す説明図である。It is explanatory drawing which shows the open / close state of the valve | bulb of the chemical decontamination apparatus in the oxidizing agent injection | pouring process of the chemical decontamination method of Example 3 which is another Example of this invention.

符号の説明Explanation of symbols

1…沸騰水型原子力発電プラント、2…原子炉圧力容器、2、3…再循環系配管、4、5…再循環ポンプ、11…化学除染装置、12…サージタンク、13,14…ポンプ、16…循環配管、17,19,21,23…接続配管、18,20,22,24…開閉弁、25…ホッパ、26…フィルタ、27…加熱器、28…冷却器、29…カチオン交換樹脂塔、30…混床樹脂塔、31…分解装置、32…酸化剤タンク、A,B…再循環系。   DESCRIPTION OF SYMBOLS 1 ... Boiling water nuclear power plant, 2 ... Reactor pressure vessel, 2, 3 ... Recirculation piping, 4, 5 ... Recirculation pump, 11 ... Chemical decontamination apparatus, 12 ... Surge tank, 13, 14 ... Pump , 16 ... circulation piping, 17, 19, 21, 23 ... connection piping, 18, 20, 22, 24 ... open / close valve, 25 ... hopper, 26 ... filter, 27 ... heater, 28 ... cooler, 29 ... cation exchange Resin tower, 30 ... Mixed bed resin tower, 31 ... Decomposition unit, 32 ... Oxidant tank, A, B ... Recirculation system.

Claims (14)

プラントに設けられた複数の配管系内に除染剤を含む除染液を供給して前記配管系の内面の除染を行い、除染が終了した1つの前記配管系内の前記除染液を、除染が終了した他の前記配管系に移送する際において、前記除染液に含まれた前記除染剤を分解することを特徴とする化学除染方法。   A decontamination liquid containing a decontamination agent is supplied to a plurality of piping systems provided in a plant to decontaminate the inner surface of the piping system, and the decontamination liquid in one piping system after decontamination is completed. The chemical decontamination method is characterized by decomposing the decontaminant contained in the decontamination liquid when the decontamination liquid is transferred to another piping system after decontamination. 前記除染に用いられた除染液が酸化除染剤を含む酸化除染液であり、前記除染剤の分解が、前記酸化除染液に還元除染剤を含む還元除染液を注入することによって行われる請求項1に記載の化学除染方法。   The decontamination solution used for the decontamination is an oxidative decontamination solution containing an oxidative decontamination agent, and the decomposition of the decontamination agent is injected with a reduction decontamination solution containing a reduction decontamination agent The chemical decontamination method according to claim 1, wherein the chemical decontamination method is performed. 前記除染に用いられた除染液が還元除染剤を含む還元除染液であり、前記除染剤の分解が、酸化剤及び触媒を用いて前記還元除染液を分解することである請求項1に記載の化学除染方法。   The decontamination solution used for the decontamination is a reduction decontamination solution containing a reduction decontamination agent, and the decomposition of the decontamination agent is to decompose the reduction decontamination solution using an oxidizing agent and a catalyst. The chemical decontamination method according to claim 1. 前記還元除染液の分解時において、前記1つの配管系から前記他の配管系に移送する前記還元除染液を、カチオン交換樹脂が充填されたカチオン交換樹脂塔を通過させる請求項3に記載の化学除染方法。   4. The reduction decontamination liquid transported from the one piping system to the other piping system is allowed to pass through a cation exchange resin tower filled with a cation exchange resin when the reduction decontamination liquid is decomposed. Chemical decontamination method. 前記還元除染剤の分解後において、前記1つの配管系から前記他の配管系に移送する液体を浄化する請求項3または請求項4に記載の化学除染方法。   5. The chemical decontamination method according to claim 3, wherein the liquid transferred from the one piping system to the other piping system is purified after the reduction decontamination agent is decomposed. 前記液体の浄化時において、移送される前記液体を、混床樹脂塔を通過させる請求項5に記載の化学除染方法。   The chemical decontamination method according to claim 5, wherein the liquid to be transferred is passed through a mixed bed resin tower during purification of the liquid. 前記1つの配管系から前記他の配管系への前記除染液の移送は、ダイアフラム式ポンプによって行う請求項1ないし請求項6のいずれか1項に記載の化学除染方法。   The chemical decontamination method according to any one of claims 1 to 6, wherein the transfer of the decontamination liquid from the one piping system to the other piping system is performed by a diaphragm pump. 前記配管系の内面の除染が、前記除染液を、前記配管系を通して循環させながら行われる請求項1に記載の化学除染方法。   The chemical decontamination method according to claim 1, wherein decontamination of the inner surface of the piping system is performed while circulating the decontamination solution through the piping system. 前記除染に用いられた除染液が酸化除染剤を含む酸化除染液であり、前記配管系の内面の除染が、前記酸化除染液を、前記配管系を通して循環させながら行われる請求項1に記載の化学除染方法。   The decontamination liquid used for the decontamination is an oxidative decontamination liquid containing an oxidative decontamination agent, and decontamination of the inner surface of the piping system is performed while circulating the oxidative decontamination liquid through the piping system. The chemical decontamination method according to claim 1. 前記除染に用いられた除染液が還元除染剤を含む還元除染液であり、前記配管系の内面の除染が、前記還元除染液を、前記配管系を通して循環させながら行われる請求項1に記載の化学除染方法。   The decontamination solution used for the decontamination is a reductive decontamination solution containing a reductive decontamination agent, and decontamination of the inner surface of the piping system is performed while circulating the reducing decontamination solution through the piping system. The chemical decontamination method according to claim 1. 前記触媒がルテニウム添着活性炭である請求項3に記載の化学除染方法。   The chemical decontamination method according to claim 3, wherein the catalyst is ruthenium-impregnated activated carbon. ポンプが設置された除染液配管と、前記除染液配管の一端部に接続され、プラントに設けられた複数の配管系のうちの1つの前記配管系に前記除染液配管内を流れる除染液を供給する第1除染液供給管と、前記除染液配管の一端部に接続され、前記複数の配管系のうちの他の前記配管系に前記除染液配管内を流れる除染液を供給する第2除染液供給管と、前記除染液配管の他端部に接続され、前記1つの配管系から前記除染液配管に前記除染液を戻す第1除染液戻り管と、前記除染液配管の他端部に接続され、前記他の前記配管系から前記除染液配管に前記除染液を戻す第2除染液戻り管と、前記第1除染液供給管及び前記第2除染液供給管のうち選択された1つの供給管への前記除染液の供給を切り替える第1切替え装置と、前記第1除染液戻り管及び前記第2除染液戻り管のうち選択された1つの戻り管から前記除染液配管への前記除染液の供給を切り替える第2切替え装置とを備えたことを特徴とする化学除染装置。   A decontamination liquid pipe provided with a pump and a decontamination liquid pipe connected to one end of the decontamination liquid pipe and flowing through the decontamination liquid pipe to one of the plurality of piping systems provided in the plant. A first decontamination liquid supply pipe that supplies the dye liquid, and a decontamination that is connected to one end of the decontamination liquid pipe and that flows in the decontamination liquid pipe to the other piping system of the plurality of piping systems A first decontamination liquid return pipe connected to the second decontamination liquid supply pipe for supplying the liquid and the other end of the decontamination liquid pipe and returning the decontamination liquid from the one pipe system to the decontamination liquid pipe. A second decontamination liquid return pipe connected to the pipe and the other end of the decontamination liquid pipe and returning the decontamination liquid from the other piping system to the decontamination liquid pipe; and the first decontamination liquid A first switching device for switching the supply of the decontamination liquid to a selected one of the supply pipe and the second decontamination liquid supply pipe; and the first decontamination A second switching device for switching supply of the decontamination liquid from one return pipe selected from the return pipe and the second decontamination liquid return pipe to the decontamination liquid pipe; Decontamination equipment. 前記ポンプがダイアフラム式ポンプである請求項12に記載の化学除染装置。   The chemical decontamination apparatus according to claim 12, wherein the pump is a diaphragm pump. 前記除染液配管に接続され、触媒が充填された分解装置と、前記分解装置に酸化剤を供給する酸化剤供給装置とを備えた請求項12または請求項13に記載の化学除染装置。   The chemical decontamination apparatus according to claim 12 or 13, comprising a decomposition apparatus connected to the decontamination liquid pipe and filled with a catalyst, and an oxidant supply apparatus for supplying an oxidant to the decomposition apparatus.
JP2008061228A 2008-03-11 2008-03-11 Chemical decontamination method Expired - Fee Related JP5091727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061228A JP5091727B2 (en) 2008-03-11 2008-03-11 Chemical decontamination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061228A JP5091727B2 (en) 2008-03-11 2008-03-11 Chemical decontamination method

Publications (2)

Publication Number Publication Date
JP2009216577A true JP2009216577A (en) 2009-09-24
JP5091727B2 JP5091727B2 (en) 2012-12-05

Family

ID=41188582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061228A Expired - Fee Related JP5091727B2 (en) 2008-03-11 2008-03-11 Chemical decontamination method

Country Status (1)

Country Link
JP (1) JP5091727B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033011A (en) * 2011-08-03 2013-02-14 Mitsubishi Heavy Ind Ltd Radioactive contamination removal unit and decontamination method
JP2013117526A (en) * 2011-11-01 2013-06-13 Mitsubishi Heavy Ind Ltd Method for treating decontamination liquid
WO2015025681A1 (en) * 2013-08-23 2015-02-26 日立Geニュークリア・エナジー株式会社 Radioactive waste liquid treatment method and radioactive waste liquid treatment device
JP2015040826A (en) * 2013-08-23 2015-03-02 日立Geニュークリア・エナジー株式会社 Radioactive waste liquid disposal method, and radioactive waste liquid disposal device
JP2015059852A (en) * 2013-09-19 2015-03-30 日立Geニュークリア・エナジー株式会社 Method for treating radioactive waste liquid and apparatus for treating radioactive waste liquid
JP2015059870A (en) * 2013-09-19 2015-03-30 日立Geニュークリア・エナジー株式会社 Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
JP2017133927A (en) * 2016-01-27 2017-08-03 株式会社東芝 Method for performing chemical decontamination
JP2019078706A (en) * 2017-10-27 2019-05-23 株式会社東芝 Decontamination implementation method and decontamination implementation system
JP2019219426A (en) * 2019-10-02 2019-12-26 株式会社東芝 Decontamination method and decontamination device
WO2023136544A1 (en) * 2022-01-14 2023-07-20 한국수력원자력 주식회사 Systemic decontamination method of heavy water reactor
KR102585849B1 (en) * 2023-05-20 2023-10-10 주식회사 올네이션 Radiation shield of the welded pipe for radiography and a manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105295A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Chemical decontamination method and its apparatus
US6466636B1 (en) * 2000-07-26 2002-10-15 Westinghouse Electric Company Llc Decontamination method
JP2005010005A (en) * 2003-06-19 2005-01-13 Hitachi Ltd Method of decontaminating nuclear instrumentation housing in reactor
JP2006105828A (en) * 2004-10-06 2006-04-20 Toshiba Plant Systems & Services Corp Chemical decontamination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105295A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Chemical decontamination method and its apparatus
US6466636B1 (en) * 2000-07-26 2002-10-15 Westinghouse Electric Company Llc Decontamination method
JP2005010005A (en) * 2003-06-19 2005-01-13 Hitachi Ltd Method of decontaminating nuclear instrumentation housing in reactor
JP2006105828A (en) * 2004-10-06 2006-04-20 Toshiba Plant Systems & Services Corp Chemical decontamination method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033011A (en) * 2011-08-03 2013-02-14 Mitsubishi Heavy Ind Ltd Radioactive contamination removal unit and decontamination method
JP2013117526A (en) * 2011-11-01 2013-06-13 Mitsubishi Heavy Ind Ltd Method for treating decontamination liquid
US9799418B2 (en) 2013-08-23 2017-10-24 Hitachi-Ge Nuclear Energy, Ltd. Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
WO2015025681A1 (en) * 2013-08-23 2015-02-26 日立Geニュークリア・エナジー株式会社 Radioactive waste liquid treatment method and radioactive waste liquid treatment device
JP2015040826A (en) * 2013-08-23 2015-03-02 日立Geニュークリア・エナジー株式会社 Radioactive waste liquid disposal method, and radioactive waste liquid disposal device
GB2533497B (en) * 2013-08-23 2017-12-20 Hitachi Ge Nuclear Energy Ltd Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
GB2533497A (en) * 2013-08-23 2016-06-22 Hitachi Ge Nuclear Energy Ltd Radioactive waste liquid treatment method and radioactive waste liquid treatment device
JP2015059852A (en) * 2013-09-19 2015-03-30 日立Geニュークリア・エナジー株式会社 Method for treating radioactive waste liquid and apparatus for treating radioactive waste liquid
JP2015059870A (en) * 2013-09-19 2015-03-30 日立Geニュークリア・エナジー株式会社 Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
JP2017133927A (en) * 2016-01-27 2017-08-03 株式会社東芝 Method for performing chemical decontamination
JP2019078706A (en) * 2017-10-27 2019-05-23 株式会社東芝 Decontamination implementation method and decontamination implementation system
JP2019219426A (en) * 2019-10-02 2019-12-26 株式会社東芝 Decontamination method and decontamination device
WO2023136544A1 (en) * 2022-01-14 2023-07-20 한국수력원자력 주식회사 Systemic decontamination method of heavy water reactor
KR20230110015A (en) * 2022-01-14 2023-07-21 한국수력원자력 주식회사 System decontamination method in heavy water nuclear reactor
KR102667516B1 (en) * 2022-01-14 2024-05-20 한국수력원자력 주식회사 System decontamination method in heavy water nuclear reactor
KR102585849B1 (en) * 2023-05-20 2023-10-10 주식회사 올네이션 Radiation shield of the welded pipe for radiography and a manufacturing method thereof

Also Published As

Publication number Publication date
JP5091727B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5091727B2 (en) Chemical decontamination method
TWI503845B (en) Chemical decontamination method of carbon steel components in nuclear power plant
JP2014044190A (en) Method for adhering noble metal to component member of nuclear power plant
JP2001074887A (en) Chemical decontamination method
JP2010266393A (en) Chemical decontamination method
JP4567765B2 (en) Radionuclide adhesion suppression method and film forming apparatus for nuclear plant components
JP2012247322A (en) Method for forming platinum film on plant component
JP6470467B1 (en) Decontamination method
JP2007192672A (en) Method and device for forming ferrite coating film on surface of carbon steel member in nuclear power plant
JP2011247651A (en) Ferrite film formation method to plant configuration member
JP5500958B2 (en) Method for forming ferrite film on nuclear member, method for suppressing progress of stress corrosion cracking, and ferrite film forming apparatus
JP5420472B2 (en) Method for forming ferrite film on plant components
JP2008180740A (en) Nuclear power plant constitutive member
JP5377147B2 (en) Method of forming nickel ferrite film on carbon steel member
JP2009210307A (en) Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device
JP6059106B2 (en) Chemical decontamination method for carbon steel components in nuclear power plant
JP4945487B2 (en) Method and apparatus for forming ferrite film on carbon steel member
JP6088173B2 (en) Method for suppressing radionuclide adhesion to components of nuclear power plant
JP6467080B1 (en) Decontamination method and decontamination device
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JP7446180B2 (en) Chemical decontamination methods for nuclear plants
JP2023037387A (en) Chemical decontamination method and chemical decontamination device
JP2007218898A (en) Deposition suppression method of radionuclide
JP2013088213A (en) Chemical decontamination method and apparatus therefor
JP6164801B2 (en) Decontamination apparatus and decontamination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees