JP2015064221A - Radioactive nuclide removal system and radioactive nuclide removal method - Google Patents

Radioactive nuclide removal system and radioactive nuclide removal method Download PDF

Info

Publication number
JP2015064221A
JP2015064221A JP2013197050A JP2013197050A JP2015064221A JP 2015064221 A JP2015064221 A JP 2015064221A JP 2013197050 A JP2013197050 A JP 2013197050A JP 2013197050 A JP2013197050 A JP 2013197050A JP 2015064221 A JP2015064221 A JP 2015064221A
Authority
JP
Japan
Prior art keywords
adsorption
contaminated water
radionuclide
removal system
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013197050A
Other languages
Japanese (ja)
Inventor
山本 誠二
Seiji Yamamoto
誠二 山本
矢板 由美
Yumi Yaita
由美 矢板
直樹 田嶋
Naoki Tajima
直樹 田嶋
三倉 通孝
Michitaka Mikura
通孝 三倉
大里 哲夫
Tetsuo Osato
哲夫 大里
金子 昌章
Masaaki Kaneko
昌章 金子
宮本 真哉
Masaya Miyamoto
真哉 宮本
恒雄 大村
Tsuneo Omura
恒雄 大村
山田 和矢
Kazuya Yamada
和矢 山田
昭 池田
Akira Ikeda
昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013197050A priority Critical patent/JP2015064221A/en
Publication of JP2015064221A publication Critical patent/JP2015064221A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive nuclide removal system and a method capable of efficiently utilizing filled adsorbent for removing radioactive nuclide from radioactive contaminated water which contains absorption inhibitory substances such as sea water components.SOLUTION: A radioactive nuclide removal system 10 includes: piping 12 for delivering radioactive contaminated water from a storing tank 11; plural absorption units 13 (13a, 13b, 13c) each of which is filled with an adsorbent having a different absorbing characteristics of the radioactive nuclide with respect to radioactive contaminated water 25 which contains absorption inhibitory substances; a switch part 14 that switches to allow the radioactive contaminated water 25 to pass through any one of the plural absorption units 13 (13a, 13b, 13c) according to the measured concentration value of the absorption inhibitory substance in the tank 11. The radioactive nuclide removal system 10 switches the absorption unit according to the concentration of the absorption inhibitory substances.

Description

本発明は、放射能汚染水から放射性核種を除去する技術に関する。   The present invention relates to a technique for removing radionuclides from radioactively contaminated water.

原子力施設で使用される水は、フィルタによりろ過や樹脂によるイオン交換などにより処理され、放射性核種などの不純物が除去される。
例えば、沸騰水型原子炉(BWR)における一次冷却水の復水は、中空糸等の復水ろ過器とイオン交換樹脂等の復水脱塩塔とからなる復水浄化設備により浄化される。
また炉水は、プリコートした粉末イオン交換樹脂や混床式脱塩塔からなる炉水浄化設備により浄化される(特許文献1)。
Water used in nuclear facilities is treated by filtration with a filter or ion exchange with a resin to remove impurities such as radionuclides.
For example, condensate of primary cooling water in a boiling water reactor (BWR) is purified by a condensate purification facility comprising a condensate filter such as a hollow fiber and a condensate demineralizer such as an ion exchange resin.
The reactor water is purified by a reactor water purification facility comprising a pre-coated powder ion exchange resin and a mixed bed type desalting tower (Patent Document 1).

そして、原子炉の冷却水以外の例えば洗濯により発生した廃液は、濃縮器や脱塩処理装置により浄化・再利用される(特許文献2)。
このようにして、通常運転中の原子力発電プラントで使用される水は、常時、放射能レベルを十分低く維持することができる。
The waste liquid generated by washing other than the reactor coolant, for example, is purified and reused by a concentrator or a desalinating apparatus (Patent Document 2).
In this way, the water used in the nuclear power plant during normal operation can always maintain a sufficiently low radioactivity level.

特公平7−69460号公報Japanese Examined Patent Publication No. 7-69460 特開2012−71263号公報JP 2012-71263 A

ところで、原子力発電プラントで過酷事故が発生して燃料が破損した場合は、ウランの核分裂生成物であるセシウム、ヨウ素、ストロンチウム等の放射性核種を含んだ放射能汚染水が、発生する。
また、事故後の冷却に海水を用いた場合は、この放射能汚染水に、海水由来の塩素、ナトリウム、カルシウム等も含まれることになる。
By the way, when a severe accident occurs in a nuclear power plant and fuel is damaged, radioactive polluted water containing radionuclides such as cesium, iodine, and strontium, which are uranium fission products, is generated.
In addition, when seawater is used for cooling after an accident, this radioactively contaminated water contains chlorine, sodium, calcium, etc. derived from seawater.

放射性核種を除去する方法として、元素の種類やその形態、例えば、中性物質、陽イオン、陰イオンなどに応じた、適切な吸着材を用いる方法がある。
吸着塔に、このような適切な吸着材を充填し、処理対象水を通水することで、水中の放射性核種を除去することができる。
この吸着塔において、核種を十分に除去できなくなった場合や、表面の線量率が高くなった場合は、吸着材を充填し直したり、又は吸着塔を交換したりすることとなる。
As a method of removing the radionuclide, there is a method of using an appropriate adsorbent according to the type and form of the element, for example, a neutral substance, a cation, or an anion.
By filling the adsorption tower with such an appropriate adsorbent and passing water to be treated, radionuclides in the water can be removed.
In this adsorption tower, when the nuclide cannot be sufficiently removed or the dose rate on the surface becomes high, the adsorbent is refilled or the adsorption tower is replaced.

しかし、セシウムの吸着材として有力なゼオライトは、塩分濃度が高い条件において吸着性能が低下することが知られている。
また、ヨウ素の吸着材として有力な銀も、ヨウ素と塩素の化学的性質が類似しているために、塩分濃度が高い条件において吸着性能が低下することが知られている。
同様に、ストロンチウムの吸着材の吸着性能も、カルシウム濃度に影響され、その高濃度条件における性能低下が避けられない。
However, it is known that zeolite, which is an effective cesium adsorbent, has reduced adsorption performance under conditions where the salt concentration is high.
Further, it is known that silver, which is an effective adsorbent for iodine, also has a decrease in adsorption performance under high salt concentration conditions because the chemical properties of iodine and chlorine are similar.
Similarly, the adsorption performance of the adsorbent for strontium is also affected by the calcium concentration, and performance degradation under high concentration conditions is inevitable.

したがって、塩分濃度やカルシウム濃度が高い汚染水を処理対象とする場合は、放射性核種に対する吸着材の飽和点が低くなる。その結果、吸着塔は、放射性核種の吸着量が少ないまま、短時間のうちにその除去能力を喪失してしまう課題がある(図2(A)参照)。
一方、塩分濃度やカルシウム濃度が低い汚染水を処理対象とする場合は、吸着塔の上部で放射性核種が多量に吸着される。その結果、吸着塔の末端の吸着材が放射性核種を吸着し始める前に、吸着塔表面の線量率が制限値を超えて高くなり(図2(B)参照)、吸着材交換又は吸着塔交換の必要に迫られる課題がある。
Therefore, when contaminated water having a high salinity concentration or calcium concentration is treated, the saturation point of the adsorbent with respect to the radionuclide is lowered. As a result, there is a problem that the adsorption tower loses its removal capability within a short time while the adsorption amount of the radionuclide is small (see FIG. 2A).
On the other hand, when contaminated water having a low salinity concentration or calcium concentration is treated, a large amount of radionuclide is adsorbed at the upper part of the adsorption tower. As a result, before the adsorbent at the end of the adsorption tower begins to adsorb the radionuclide, the dose rate on the adsorption tower surface exceeds the limit value (see FIG. 2B), and the adsorbent exchange or adsorption tower exchange is performed. There are issues that need to be addressed.

本発明はこのような事情を考慮してなされたもので、海水成分等を含む放射能汚染水から放射性核種を除去するにあたり、充填された吸着材を効率的に運用することができる放射性核種除去技術を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and in removing radionuclides from radioactively contaminated water containing seawater components etc., radionuclide removal that can efficiently operate the packed adsorbent The purpose is to provide technology.

本発明の放射性核種除去システムは、タンクに収容されている放射能汚染水を配送する配管と、吸着阻害物質の溶存する前記放射能汚染水に対して放射性核種の吸着能が異なる吸着材を別々に充填した複数の吸着ユニットと、前記タンクにおける前記吸着阻害物質の濃度の測定値に応じて前記複数の吸着ユニットのうちいずれか一つに前記放射能汚染水を通過させる切替部と、を備えることを特徴とする。   In the radionuclide removal system of the present invention, a pipe for delivering radioactively contaminated water accommodated in a tank and an adsorbent having different radionuclide adsorption capacities with respect to the radioactively contaminated water in which an adsorption inhibitor is dissolved are separately provided. A plurality of adsorption units filled in the tank, and a switching unit that allows the radioactively contaminated water to pass through any one of the plurality of adsorption units according to a measured value of the concentration of the adsorption inhibitor in the tank. It is characterized by that.

本発明により、海水成分等を含む放射能汚染水から放射性核種を除去するにあたり、充填された吸着材を効率的に運用することができる放射性核種除去技術を提供することを目的とする。   It is an object of the present invention to provide a radionuclide removal technique that can efficiently operate a filled adsorbent when removing radionuclides from radioactively contaminated water containing seawater components and the like.

本発明に係る放射性核種除去システムの第1実施形態を示す概略図。Schematic which shows 1st Embodiment of the radionuclide removal system which concerns on this invention. (A)(B)(C)各々は、汚染水中の塩分濃度に対する吸着ユニット内の放射性核種の吸着濃度を示す特性図。(A), (B), and (C) are characteristic diagrams showing the adsorption concentration of the radionuclide in the adsorption unit with respect to the salinity concentration in the contaminated water. 本発明に係る放射性核種除去システムの第2実施形態を示す概略図。Schematic which shows 2nd Embodiment of the radionuclide removal system which concerns on this invention. 本発明に係る放射性核種除去システムの第3実施形態を示す概略図。Schematic which shows 3rd Embodiment of the radionuclide removal system which concerns on this invention. 本発明に係る放射性核種除去システムの第4実施形態を示す概略図。Schematic which shows 4th Embodiment of the radionuclide removal system which concerns on this invention.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように、第1実施形態に係る放射性核種除去システム10は、タンク11に収容されている放射能汚染水25を配送する配管12と、吸着阻害物質の溶存する前記放射能汚染水25に対して放射性核種の吸着能が異なる吸着材を別々に充填した複数の吸着ユニット13(13a,13b,13c)と、タンク11における吸着阻害物質の濃度の測定値に応じて複数の吸着ユニット13(13a,13b,13c)のうちいずれか一つに放射能汚染水25を通過させる切替部14と、を備えている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the radionuclide removal system 10 according to the first embodiment includes a pipe 12 that delivers radioactive contaminated water 25 accommodated in a tank 11, and the radioactive contaminated water in which an adsorption inhibitor is dissolved. A plurality of adsorption units 13 (13a, 13b, 13c) separately packed with adsorbents having different radionuclide adsorption capacities with respect to 25, and a plurality of adsorption units according to the measured value of the concentration of the adsorption inhibitor in the tank 11. 13 (13a, 13b, 13c) is provided with a switching unit 14 that allows the radioactively contaminated water 25 to pass therethrough.

タンク11は、放射能汚染水25を一時的に収容するものであって、接続される配管12によってこの放射能汚染水25を外部に配送することができる。
この放射能汚染水25には、ウランの核分裂生成物であるセシウム、ヨウ素、ストロンチウム等の放射性核種が含まれ、さらに冷却に用いた海水に由来する塩素、ナトリウム、カルシウム等の成分も含まれている。
The tank 11 temporarily stores the radioactive contaminated water 25, and the radioactive contaminated water 25 can be delivered to the outside through the connected pipe 12.
This radioactively contaminated water 25 contains radionuclides such as cesium, iodine and strontium which are uranium fission products, and also contains components such as chlorine, sodium and calcium derived from seawater used for cooling. Yes.

なお、図面において一つのみ記載されているタンク11は、実際には、複数存在している。そして、収容されている放射能汚染水25の放射性核種及び海水由来成分の濃度は、複数のタンク11のそれぞれにおいて相違している。
したがって、タンク11から放射能汚染水25の一部をサンプル27として採取し、離れにある分析室28において定性定量分析を行い、それぞれのタンク11における放射性核種及び海水由来成分の濃度を認識する。
Note that there are actually a plurality of tanks 11, in which only one tank 11 is shown in the drawing. And the density | concentration of the radionuclide and the seawater origin component of the radioactive contamination water 25 accommodated is different in each of the some tank 11. FIG.
Therefore, a part of the radioactively contaminated water 25 is collected as the sample 27 from the tank 11 and qualitative and quantitative analysis is performed in the analysis chamber 28 at a distance to recognize the concentrations of the radionuclide and seawater-derived components in each tank 11.

ここで、図1に示される吸着ユニット13a,13b,13cは、説明上この順番で、吸着阻害物質(海水由来成分)が溶存する条件下で、汚染水中の放射性核種の吸着能が高位、中位、低位の三種類の吸着材がそれぞれに充填されているとする。   Here, the adsorption units 13a, 13b, and 13c shown in FIG. 1 have a high adsorption ability of radionuclides in the contaminated water under the conditions in which the adsorption inhibitor (seawater-derived component) is dissolved in this order for explanation. It is assumed that three kinds of adsorbents of lower and lower levels are filled with each.

図2に基づいて、放射性核種の吸着能が中位である吸着ユニット13bを例にとり、汚染水中の塩分濃度に対する吸着ユニット内の放射性核種の吸着濃度の分布を説明する。
図2(A)に示すように、吸着能が中位である吸着ユニット13bに塩分濃度の高い放射能汚染水25を通過させると、低い飽和点で吸着材は、入口から出口に向かい徐々に吸着飽和に達する。そして、短時間(汚染水25の処理量が少ない)のうちに、放射性核種の除去が不十分な処理水26が出口から出力されてしまう。
Based on FIG. 2, the distribution of the adsorption concentration of the radionuclide in the adsorption unit with respect to the salinity concentration in the contaminated water will be described using the adsorption unit 13b having a medium radionuclide adsorption ability as an example.
As shown in FIG. 2A, when the radioactively contaminated water 25 having a high salinity concentration is passed through the adsorption unit 13b having a medium adsorption capacity, the adsorbent gradually moves from the inlet toward the outlet at a low saturation point. Adsorption saturation is reached. And in a short time (the amount of treatment of the contaminated water 25 is small), the treated water 26 in which the removal of the radionuclide is insufficient is output from the outlet.

図2(B)に示すように、吸着能が中位である吸着ユニット13bに塩分濃度の低い放射能汚染水25を通過させると、高い飽和点で吸着材は、入口から徐々に吸着飽和に達する。そして、この飽和点が吸着ユニット13bの出口に到達する前にその表面線量率が制限値を超えて高くなり、未使用の吸着材を多く残したまま吸着ユニット13bの交換に迫られることになる。   As shown in FIG. 2B, when the radioactively contaminated water 25 having a low salinity concentration is passed through the adsorption unit 13b having a medium adsorption capacity, the adsorbent gradually becomes saturated with adsorption at the high saturation point. Reach. And before this saturation point reaches the exit of the adsorption unit 13b, the surface dose rate exceeds the limit value, and the adsorption unit 13b needs to be replaced while leaving a large amount of unused adsorbent. .

図2(C)に示すように、吸着能が中位である吸着ユニット13bに塩分濃度が中程度の放射能汚染水25を通過させると、適切な高さの飽和点で吸着材は、入口から出口まで吸着飽和に達する。これにより、吸着ユニット13bは、表面線量率が制限値を超えることなく大量の放射能汚染水25を処理することができる。   As shown in FIG. 2 (C), when the radioactively contaminated water 25 having a medium salinity concentration is passed through the adsorption unit 13b having a medium adsorption capacity, the adsorbent enters the inlet at an appropriate height saturation point. Adsorption saturation is reached from the outlet to the outlet. Thereby, the adsorption unit 13b can process a large amount of radioactively contaminated water 25 without the surface dose rate exceeding the limit value.

切替部14は、吸着阻害物質の濃度の測定値が高いタンク11の放射能汚染水25を放射性核種の吸着能が高位の吸着ユニット13aに通過させ、この測定値が低いタンク11の放射能汚染水25をその吸着能が低位の吸着ユニット13cに通過させ、この測定値が中間のタンク11の放射能汚染水25をその吸着能が中位の吸着ユニット13bに通過させる。
なお、吸着ユニット13(13a,13b,13c)の末端には、逆止弁16(16a,16b,16c)が設けられ、いずれか一つの吸着ユニット13を通過した処理水26が、他の吸着ユニット13を逆流しないように構成されている。
The switching unit 14 passes the radioactively contaminated water 25 of the tank 11 having a high measured value of the adsorption inhibitory substance to the adsorption unit 13a having a high radionuclide adsorbing capacity, and the radioactively contaminated tank 11 having a low measured value. The water 25 is passed through the adsorption unit 13c having a low adsorption capacity, and the radioactively contaminated water 25 of the tank 11 having the intermediate measured value is passed through the adsorption unit 13b having a medium adsorption capacity.
A check valve 16 (16a, 16b, 16c) is provided at the end of the adsorption unit 13 (13a, 13b, 13c), and the treated water 26 that has passed through any one of the adsorption units 13 is adsorbed to other adsorption valves. The unit 13 is configured not to flow backward.

これにより、吸着阻害物質の濃度に応じて放射能汚染水25は、適切な吸着ユニット13を通過して、これら吸着ユニット13は図2(C)に示すように、入口から出口まで適度な飽和点で吸着飽和に達し、効率的に使用されたことになる。
なお、吸着ユニット13を通過して放射能汚染水25は、無害化された処理水26となってプール15に蓄積される。
As a result, the radioactively contaminated water 25 passes through an appropriate adsorption unit 13 according to the concentration of the adsorption inhibitor, and these adsorption units 13 are moderately saturated from the inlet to the outlet as shown in FIG. At this point, adsorption saturation was reached, and it was used efficiently.
The radioactively contaminated water 25 passing through the adsorption unit 13 is accumulated in the pool 15 as detoxified treated water 26.

(第2実施形態)
次に図3に基づいて本発明における第2実施形態について説明する。
図3に示すように、第2実施形態に係る放射性核種除去システム10は、それぞれの吸着ユニット13(13a,13b,13c)は、放射性核種に依存して吸着能の異なる吸着材が別々に充填された複数の吸着塔17(17a1〜17a4、17b1〜17b4、17c1〜17c4)がそれぞれ直列に接続されている。
なお、図3において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described based on FIG.
As shown in FIG. 3, in the radionuclide removal system 10 according to the second embodiment, each adsorption unit 13 (13a, 13b, 13c) is separately filled with adsorbents having different adsorption capacities depending on the radionuclide. The plurality of adsorption towers 17 (17 a1 to 17 a4 , 17 b1 to 17 b4 , and 17 c1 to 17 c4 ) are respectively connected in series.
3, parts having the same configuration or function as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

吸着材は、放射性核種の種類(例えば、Cs,Sr,Co等)に応じて吸着能の優劣が存在し、いずれの放射性核種の吸着能が優位であるかについても、この吸着材の種類に依存する。
このため、例えば、一段目にはCsの吸着能が優位である吸着材を充填した吸着塔17a1〜17c1を配置し、二段目にはSrの吸着能が優位である吸着材を充填した吸着塔17a2〜17c2を配置し、三段目にはCoの吸着能が優位である吸着材を充填した吸着塔17a3〜17c3を配置し、四段目にはその他の放射性核種の吸着能が優位である吸着材を充填した吸着塔17a4〜17c4を配置する。
これにより、放射能汚染水25に含まれる多くの種類の放射性核種を偏りなく除去することができる。
The adsorbent has adsorbability superiority or inferiority depending on the type of radionuclide (for example, Cs, Sr, Co, etc.), and the type of adsorbent also determines which radionuclide adsorbability is superior. Dependent.
For this reason, for example, adsorption towers 17 a1 to 17 c1 filled with an adsorbent that is superior in Cs adsorption capacity are arranged in the first stage, and adsorbent that is superior in Sr adsorption capacity is arranged in the second stage. The adsorbing towers 17 a2 to 17 c2 are arranged, the third stage is arranged with the adsorbing towers 17 a3 to 17 c3 filled with the adsorbent having superior Co adsorption ability, and the fourth stage is the other radionuclide. Adsorption towers 17 a4 to 17 c4 packed with an adsorbent that is superior in adsorbing capacity are arranged.
As a result, many types of radionuclides contained in the radioactively contaminated water 25 can be removed without unevenness.

(第3実施形態)
次に図4に基づいて本発明における第3実施形態について説明する。
図4に示すように、第3実施形態に係る放射性核種除去システム10は、吸着塔17(17a1〜17c1、17a2〜17c2、17a3〜17c3、17a4〜17c4)は、切替部14(141,142,143,144)を介して直列に接続されている。
なお、図4において図3と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
これにより、放射能汚染水25に含まれる多種類の放射性核種のそれぞれの濃度に応じて適切に吸着塔17を直列接続し、これら放射性核種を高効率に除去することができる吸着ユニット13のパスを形成することができる。
(Third embodiment)
Next, a third embodiment of the present invention will be described based on FIG.
As shown in FIG. 4, the radionuclide removal system 10 according to the third embodiment includes an adsorption tower 17 (17 a1 to 17 c1 , 17 a2 to 17 c2 , 17 a3 to 17 c3 , 17 a4 to 17 c4 ), They are connected in series via the switching unit 14 (14 1 , 14 2 , 14 3 , 14 4 ).
4, parts having the same configuration or function as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.
Thereby, the adsorption tower 17 can be appropriately connected in series according to the concentrations of the various types of radionuclides contained in the radioactively contaminated water 25, and the path of the adsorption unit 13 that can remove these radionuclides with high efficiency. Can be formed.

(第4実施形態)
次に図5に基づいて本発明における第4実施形態について説明する。
図5に示すように、第4実施形態に係る放射性核種除去システム10は、吸着ユニット13(13a,13b,13c)よりも上流側に、吸着阻害物質の除去手段20が設けられている。
この吸着阻害物質の除去手段20は、沈殿槽21及び濾過槽22から構成されている。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described based on FIG.
As shown in FIG. 5, the radionuclide removal system 10 according to the fourth embodiment is provided with an adsorption inhibitor removal means 20 on the upstream side of the adsorption unit 13 (13a, 13b, 13c).
The adsorption inhibiting substance removing means 20 includes a precipitation tank 21 and a filtration tank 22.

放射能汚染水25に、吸着阻害物質である金属イオン成分(放射性核種も含む)が多く含まれる場合は、適切な薬剤を投与して、この金属イオン成分を中和沈殿させて、吸着阻害物質の濃度を軽減することができる。
沈殿槽21は、この沈殿物と上澄み水とを二相分離し、さらにこの上澄み水を濾過槽22に通過させることで、固形分を含まない液体成分のみを吸着ユニット13に導くことができる。
When radioactively contaminated water 25 contains a large amount of metal ion components (including radionuclides) that are adsorption inhibitors, an appropriate drug is administered to neutralize and precipitate the metal ion components, thereby inhibiting the adsorption. The concentration of can be reduced.
The sedimentation tank 21 separates the sediment and the supernatant water into two phases, and further allows the supernatant water to pass through the filtration tank 22 so that only the liquid component not containing the solid content can be guided to the adsorption unit 13.

例えば、放射能汚染水25にカルシウムが存在する場合、吸着ユニット13においてストロンチウムの吸着が阻害される。そこで、放射能汚染水25をタンク11から沈殿槽21に移送し炭酸ナトリウムを添加することで、カルシウムは炭酸カルシウムとなって沈殿し、ろ過により除去することができる。
これにより、吸着ユニット13において放射性核種であるストロンチウムの効率的な除去が実現される。なお、放射能汚染水25を吸着阻害物質の除去手段20に通過させるか否かについては、吸着阻害物質の含有濃度に応じて、バルブVの切り替えにより選択することができる。
For example, when calcium is present in the radioactively contaminated water 25, adsorption of strontium is inhibited in the adsorption unit 13. Therefore, by transferring the radioactively contaminated water 25 from the tank 11 to the settling tank 21 and adding sodium carbonate, calcium is precipitated as calcium carbonate and can be removed by filtration.
Thereby, efficient removal of strontium which is a radionuclide is realized in the adsorption unit 13. Whether or not the radioactively contaminated water 25 is allowed to pass through the adsorption inhibiting substance removing means 20 can be selected by switching the valve V according to the concentration of the adsorption inhibiting substance.

また、第4実施形態に係る放射性核種除去システム10は、吸着ユニット13よりも下流側に、中性物質の除去手段23が設けられている。
吸着ユニット13を通過させイオン状の放射性核種を除去した後であっても、放射能汚染水25には、中性の放射性核種が残留する場合がある。
中性物質の除去手段23は、このように放射能汚染水25に残留している中性の放射性核種を除去するものであって、例えば、活性炭、モレキュラーシーブ等により実現される。
Further, the radionuclide removal system 10 according to the fourth embodiment is provided with a neutral substance removal means 23 on the downstream side of the adsorption unit 13.
Even after passing through the adsorption unit 13 and removing ionic radionuclides, neutral radionuclides may remain in the radioactively contaminated water 25.
The neutral substance removing means 23 removes the neutral radionuclide remaining in the radioactively contaminated water 25 as described above, and is realized by, for example, activated carbon, molecular sieve, or the like.

以上述べた少なくともひとつの実施形態の放射性核種除去システムによれば、放射性核種の吸着能が異なる吸着材を別々に充填した複数の吸着ユニットに対し、吸着阻害物質の濃度の測定値に応じて放射能汚染水を切り換えて通過させることにより、海水成分等を含む放射能汚染水の無害化処理を効率的に実施することができる。   According to the radionuclide removal system of at least one of the embodiments described above, radiation is radiated according to the measured value of the concentration of the adsorption inhibitor for a plurality of adsorption units separately packed with adsorbents having different radionuclide adsorption capacities. By switching the contaminated water to pass through, the detoxification treatment of the radioactively contaminated water containing seawater components and the like can be carried out efficiently.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…放射性核種除去システム、11…タンク、12…配管、13(13a,13b,13c)…吸着ユニット、14…切替部、15…プール、16…逆止弁、17(17a1〜17a4、17b1〜17b4、17c1〜17c4)…吸着塔、20…吸着阻害物質の除去手段、21…沈殿槽、22…濾過槽、23…中性物質の除去手段、25…放射能汚染水、26…処理水、27…サンプル、28…分析室。 10 ... radionuclide removal system, 11 ... tank, 12 ... pipe, 13 (13a, 13b, 13c ) ... adsorption unit, 14 ... switch unit, 15 ... pool, 16 ... check valve, 17 (17 a1 ~17 a4, 17 b1 to 17 b4 , 17 c1 to 17 c4 )... Adsorption tower, 20... Removal means for adsorption inhibiting substances, 21... Precipitation tank, 22. , 26 ... treated water, 27 ... sample, 28 ... analysis room.

Claims (7)

タンクに収容されている放射能汚染水を配送する配管と、
吸着阻害物質の溶存する前記放射能汚染水に対して放射性核種の吸着能が異なる吸着材を別々に充填した複数の吸着ユニットと、
前記タンクにおける前記吸着阻害物質の濃度の測定値に応じて前記複数の吸着ユニットのうちいずれか一つに前記放射能汚染水を通過させる切替部と、を備えることを特徴とする放射性核種除去システム。
Piping for delivering radioactively contaminated water contained in the tank;
A plurality of adsorption units separately packed with adsorbents having different radionuclide adsorption capacities for the radioactively contaminated water in which the adsorption inhibitor is dissolved;
A radionuclide removal system comprising: a switching unit that allows the radioactively contaminated water to pass through any one of the plurality of adsorption units according to a measured value of the concentration of the adsorption-inhibiting substance in the tank. .
それぞれの前記吸着ユニットは、前記放射性核種に依存して吸着能の異なる吸着材が別々に充填された複数の吸着塔が直列に接続されたものであることを特徴とする請求項1に記載の放射性核種除去システム。   2. The adsorption unit according to claim 1, wherein each of the adsorption units is a series of a plurality of adsorption towers that are separately packed with adsorbents having different adsorption capacities depending on the radionuclide. Radionuclide removal system. 前記吸着塔は、切替部を介して直列に接続されていることを特徴とする請求項2に記載の放射性核種除去システム。   The radionuclide removal system according to claim 2, wherein the adsorption towers are connected in series via a switching unit. 前記吸着ユニットよりも上流側に、前記吸着阻害物質の除去手段が設けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の放射性核種除去システム。   The radionuclide removal system according to any one of claims 1 to 3, wherein means for removing the adsorption-inhibiting substance is provided upstream of the adsorption unit. 前記吸着阻害物質の除去手段は、沈殿槽及び濾過槽から構成されることを特徴とする請求項4に記載の放射性核種除去システム。   The radionuclide removal system according to claim 4, wherein the adsorption inhibiting substance removing unit includes a precipitation tank and a filtration tank. 前記吸着ユニットよりも下流側に、中性物質の除去手段が設けられていることを特徴とする請求項1から請求項5のいずれか1項に記載の放射性核種除去システム。   The radionuclide removal system according to any one of claims 1 to 5, wherein a neutral substance removal unit is provided downstream of the adsorption unit. 吸着阻害物質の溶存する放射能汚染水に対して放射性核種の吸着能が異なる吸着材を複数の吸着ユニットにそれぞれ別々に充填するステップと、
タンクに収容されている放射能汚染水における吸着阻害物質の濃度を測定するステップと、
前記吸着阻害物質の濃度の測定値に応じて前記複数の吸着ユニットのうちいずれか一つに前記放射能汚染水を通過させるステップと、を含むことを特徴とする放射性核種除去方法。
A step of individually filling a plurality of adsorption units with adsorbents having different radionuclide adsorption capacities for radioactively contaminated water in which adsorption inhibitors are dissolved;
Measuring the concentration of the adsorption inhibitor in the radioactively contaminated water contained in the tank;
Passing the radioactively contaminated water through any one of the plurality of adsorption units according to the measured value of the concentration of the adsorption inhibitor.
JP2013197050A 2013-09-24 2013-09-24 Radioactive nuclide removal system and radioactive nuclide removal method Pending JP2015064221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013197050A JP2015064221A (en) 2013-09-24 2013-09-24 Radioactive nuclide removal system and radioactive nuclide removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013197050A JP2015064221A (en) 2013-09-24 2013-09-24 Radioactive nuclide removal system and radioactive nuclide removal method

Publications (1)

Publication Number Publication Date
JP2015064221A true JP2015064221A (en) 2015-04-09

Family

ID=52832227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197050A Pending JP2015064221A (en) 2013-09-24 2013-09-24 Radioactive nuclide removal system and radioactive nuclide removal method

Country Status (1)

Country Link
JP (1) JP2015064221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898151A (en) * 2015-06-12 2015-09-09 苏州热工研究院有限公司 Method for measuring activity concentration of kalium-subtracted total beta radionuclides in seawater
CN105879835A (en) * 2016-02-29 2016-08-24 哈尔滨工程大学 Method for preparing uranium-adsorbing material with oil shale semi-coke as raw material
CN107093483A (en) * 2017-04-27 2017-08-25 华北电力大学 A kind of radionuclide collection device
KR102624080B1 (en) * 2023-07-28 2024-01-12 한국건설기술연구원 Mobile radioactive contaminated water treatment system for simultaneous removal of high-concentration multi-nuclide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898151A (en) * 2015-06-12 2015-09-09 苏州热工研究院有限公司 Method for measuring activity concentration of kalium-subtracted total beta radionuclides in seawater
CN105879835A (en) * 2016-02-29 2016-08-24 哈尔滨工程大学 Method for preparing uranium-adsorbing material with oil shale semi-coke as raw material
CN107093483A (en) * 2017-04-27 2017-08-25 华北电力大学 A kind of radionuclide collection device
CN107093483B (en) * 2017-04-27 2024-04-09 华北电力大学 Radionuclide collection device
KR102624080B1 (en) * 2023-07-28 2024-01-12 한국건설기술연구원 Mobile radioactive contaminated water treatment system for simultaneous removal of high-concentration multi-nuclide

Similar Documents

Publication Publication Date Title
CN104900286B (en) By Spent Radioactive water process to the horizontal system of natural background radioactivity and application
US9799418B2 (en) Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP5880851B2 (en) Radionuclide decontamination system and radionuclide decontamination method
JP6046582B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP2015064221A (en) Radioactive nuclide removal system and radioactive nuclide removal method
Chen et al. Influence of boron on rejection of trace nuclides by reverse osmosis
JP5849342B2 (en) Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater
CN110349689B (en) Radioactive waste liquid treatment device for nuclear power station
JP2008232773A (en) Treater for water containing radioactive material in nuclear power plant
CN110349690B (en) Method and device for treating radioactive waste liquid
JP2014001991A (en) Radioactive nuclide removing system and radioactive nuclide removing method
KR20140042067A (en) Treatment method for radioactive contaminated water and treatment device
JP2014016210A (en) System and process for decontaminating radioactive contaminated water
JP4943376B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP5038232B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2014119417A (en) Method for treating radioactive waste liquid
Kim et al. Performance Improvement of Liquid Waste Management System for APR1400
JP2019060731A (en) Contaminated water treatment equipment, and operation method of contaminated water treatment equipment
JP2015081891A (en) Method and apparatus for purifying nuclear-power-generation used fuel pool water, and method and apparatus for treating used fuel pool water
JP2019060731A5 (en)
JP4383091B2 (en) Condensate desalination method and apparatus
JP2000002787A (en) Hydrogen peroxide concentration reducing device for nuclear power plant
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP6354990B2 (en) Treatment method of contaminated water