JP2015033764A - ガスバリア性フィルム - Google Patents

ガスバリア性フィルム Download PDF

Info

Publication number
JP2015033764A
JP2015033764A JP2013164202A JP2013164202A JP2015033764A JP 2015033764 A JP2015033764 A JP 2015033764A JP 2013164202 A JP2013164202 A JP 2013164202A JP 2013164202 A JP2013164202 A JP 2013164202A JP 2015033764 A JP2015033764 A JP 2015033764A
Authority
JP
Japan
Prior art keywords
gas barrier
group
layer
coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013164202A
Other languages
English (en)
Other versions
JP6060848B2 (ja
Inventor
後藤 良孝
Yoshitaka Goto
良孝 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013164202A priority Critical patent/JP6060848B2/ja
Publication of JP2015033764A publication Critical patent/JP2015033764A/ja
Application granted granted Critical
Publication of JP6060848B2 publication Critical patent/JP6060848B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】膜厚方向にほぼ均一に改質され、高温高湿条件下で保存した後でも、層間密着力や屈曲耐性に優れるガスバリア性フィルムを提供する。【解決手段】基材上に、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得た後、前記基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行うことにより得られる、複数のガスバリア層を有するガスバリア性フィルムであって、前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルム。【選択図】なし

Description

本発明は、ガスバリア性フィルムに関する。
従来、食品、包装材料、医薬品などの分野で、水蒸気や酸素等のガスの透過を防ぐため、樹脂基材の表面に金属や金属酸化物の蒸着膜等の無機膜を設けた比較的簡易な構造を有するガスバリア性フィルムが用いられてきた。
近年、このような水蒸気や酸素等の透過を防ぐガスバリア性フィルムが、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)などの電子デバイスの分野にも利用されつつある。このような電子デバイスに、フレキシブル性と軽くて割れにくいという性質を付与するためには、硬くて割れ易いガラス基板ではなく、高いガスバリア性を有するガスバリア性フィルムが必要となってくる。
特許文献1には、基材上にポリシラザンを含む塗布液を用いて塗膜を形成した後、エキシマランプ等により真空紫外線を照射して改質処理を施しガスバリア層を形成するという工程を複数回繰り返す、複数層のガスバリア層を有するガスバリア性フィルムの製造方法が開示されている。
また、特許文献2には、ポリシラザンを含む塗布液を用いて複数層の塗膜を得た後、エキシマランプ等により真空紫外線を照射して、複数層の改質処理を一括で行うガスバリア性フィルムの製造方法が開示されている。
さらに、特許文献3には、蒸着により形成された膜上にポリシラザンを含む塗膜を形成した後改質処理を行うことにより技術が開示されている。
特開2012−599号公報 特開2012−250181号公報 特開2012−148416号公報
しかしながら、特許文献1に記載の技術では、真空紫外線照射による改質処理をガスバリア層ごとに行うため、塗布工程と改質処理とを交互に繰り返すことになり、工程が煩雑になり、また工程数も多くなる。これにより、工程内環境での異物、ゴミのガスバリア層への混入がたびたび発生し、ガスバリア層が均一な膜質とならず、ガスバリア性が大きく低下するという問題があった。
また、特許文献2に記載の技術では、真空紫外線の照射エネルギーを増大させることで最上層とその近傍に存在する層はある程度均一に改質されるものの、層数が多くなる程、膜厚方向に対して均一には改質されず、層間の密着力がない積層膜となり、その結果、全体としてガスバリア性が低下するという問題があった。また、ガスバリア層が均一に改質処理されていないことで、屈曲耐性や層間密着力という物性も低下するという問題があった。
さらに、特許文献3に記載の技術では、過酷な環境下で保存した後のガスバリア層の安定性や密着力が不十分であり、かつポリシラザン化合物の未改質部分が残存することで高温高湿環境下での保管後、膜質や層間密着力が大きな劣化を起こし、ガスバリア性が不十分であるという問題があった。
このように、複数層のガスバリア層を有するガスバリア性フィルムにおいて、膜厚方向に均一な改質処理がなされ、高温高湿条件下で保存した後でも、各ガスバリア層間の密着力や屈曲耐性が劣化しない技術が求められていた。
本発明は、上記問題に鑑みてなされたものであり、膜厚方向にほぼ均一に改質され、高温高湿条件下で保存した後でも、層間密着力や屈曲耐性に優れるガスバリア性フィルムおよびその製造方法、ならびに前記ガスバリア性フィルムを含む電子デバイスを提供することを目的とする。
本発明者は鋭意研究を行った。その結果、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得た後、基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行うことにより得られる、複数のガスバリア層を有するガスバリア性フィルムであって、前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有するガスバリア性フィルムにより、上記課題が解決することを見出し、本発明を完成するに至った。
本発明の上記課題は、以下の手段により達成される。
1.基材上に、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得た後、前記基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行うことにより得られる、複数のガスバリア層を有するガスバリア性フィルムであって、前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルム。
2.前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素が、アルミニウム、インジウム、ガリウム、マグネシウム、カルシウム、ゲルマニウム、およびホウ素からなる群より選択される少なくとも1種である、上記1.に記載のガスバリア性フィルム。
3.蒸着法により形成されるガスバリア層をさらに有する、上記1.または2.に記載のガスバリア性フィルム。
4.前記改質処理の後に、さらに温度処理されて形成される、上記1.〜3.のいずれか1つに記載のガスバリア性フィルム。
5.基材上に、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得る工程と、前記基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行う工程と、を含む、複数のガスバリア層を有するガスバリア性フィルムの製造方法であって、前記塗膜層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)の化合物を含有する、ガスバリア性フィルムの製造方法。
6.電子デバイス本体と、上記1.〜4.のいずれか1つに記載のガスバリア性フィルムまたは上記5.に記載の製造方法により得られるガスバリア性フィルムと、を有する、電子デバイス。
本発明によれば、膜厚方向にほぼ均一に改質され、高温高湿条件下で保存した後でも、層間密着力や屈曲耐性に優れるガスバリア性フィルムが提供される。
本発明に係る蒸着ガスバリア層を形成する際に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。 真空紫外線照射装置の一例を示す断面模式図である。
本発明は、基材上に、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得た後、前記基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行うことにより得られる、複数のガスバリア層を有するガスバリア性フィルムであって、前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)(以下、単に添加元素とも称する)を含有する、ガスバリア性フィルムである。
このような構成とすることにより、膜厚方向にほぼ均一に改質され、高温高湿条件下で保存した後でも、層間密着力や屈曲耐性に優れるガスバリア性フィルムが得られる。
本発明のガスバリア性フィルムにおける効果発現の詳細なメカニズムは不明であるが、以下のような理由によるものと考えられる。
ポリシラザンを含む塗布液を塗布乾燥し塗膜層を得た後、エキシマランプ等による真空紫外線を照射して改質処理を施しガスバリア層を形成する従来のガスバリア性フィルムの製造方法においては、塗膜層の表面から改質されるため、塗膜層内部に酸素や水分が入っていかず、塗膜層内部や、塗膜層と基材との界面までの酸化が進みにくい。よって、未改質の塗膜層が不安定なまま残ってしまい、特に高温高湿下で保存した後のガスバリア性等の性能が劣化するという問題があった。特許文献2に記載の技術のように、真空紫外線の照射量を増加させ、改質を行う試みもされているが、真空紫外線を当てるにつれ、塗膜層表面にダングリングボンドが形成され、表面吸収される真空紫外線の量が増え、改質の効率が悪くなるという問題もあり、複数の塗膜層を一度に改質処理することは、極めて難しいという問題があった。
ポリシラザンを含有する塗布液を塗布乾燥して形成された層であって、第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(以下、単に添加元素とも称する)を含有していない層は、改質処理としてエネルギー線を照射していくと、上述したようにダングリングボンドが増大するためか250nm以下の吸光度が増大していき、層内部までエネルギー線が徐々に侵入しにくくなり層表面しか改質されない。これに対し、理由はあきらかではないが、添加元素を含有させると、エネルギー線を照射するにつれ低波長側の吸光度が減少する。このため、複数層の塗膜層のうち、塗膜層の少なくとも1層が添加元素を含んでいれば、基材から最も離れた塗膜層の側から真空紫外線を照射することにより、基材から最も離れた塗膜層表面から内部、その下部の層の改質も同様に均一に行われ、さらにその下部の層、またさらにその下部の層というように、膜厚方向に改質が均一に行われることが分かり、結果的に1回の真空紫外線照射により全層の改質が行われるという驚くべき現象が起こることを、本発明により初めて見出した。
このことにより、複数のガスバリア層を形成する際、特許文献1のように塗布工程と改質処理の工程とを交互に行うという煩雑な操作を必要とせず、工程数が簡易になるため、膜内に混入する工程内環境での異物やゴミが著しく減少する。また、膜厚方向に均一な膜質となることにより、複数のガスバリア層間の密着力も著しく向上し、ガスバリア層内部やガスバリア層間で局部的に応力集中する箇所が著しく減少する。したがって、高温高湿条件下で保存した後でも、クラックの発生がほとんどなく、層間密着力や屈曲耐性に優れ、ガスバリア性がほとんど劣化しないガスバリア性フィルムとなる。
なお、上記のメカニズムは推定によるものであり、本発明は上記メカニズムに何ら限定されるものではない。
以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施形態のみには限定されない。
また、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で測定する。
[ガスバリア性フィルム]
本発明のガスバリア性フィルムは、基材と、複数のガスバリア層と、を有する。本発明のガスバリア性フィルムは、他の部材をさらに含むものであってもよい。本発明のガスバリア性フィルムは、例えば、基材といずれかのガスバリア層との間に、いずれかのガスバリア層の上に、またはガスバリア層が形成されていない基材の他方の面に、他の部材を有していてもよい。ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材が同様にしてあるいは適宜修飾して使用できる。具体的には、蒸着法により形成されるガスバリア層、平滑層、アンカーコート層、ブリードアウト防止層、中間層、保護層、デシカント層(吸湿層)や帯電防止層の機能化層などが挙げられる。上記他の部材は、単独でもまたは2種以上組み合わせて使用してもよい。また、上記他の部材は、単層として存在してもまたは2層以上の積層構造を有していてもよい。
さらに、本発明では、ガスバリア層は、基材の少なくとも一方の、同一の面に形成されていればよい。このため、本発明のガスバリア性フィルムは、基材の一方の面に複数のガスバリア層が形成される形態、および基材の両面に複数のガスバリア層が形成される形態の双方を包含する。
〔基材〕
本発明のガスバリア性フィルムの基材としては、ガスバリア層を保持することができるものであれば特に限定されるものではない。
例えば、ポリ(メタ)アクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、シクロオレフィンポリマー、シクロオレフィンコポリマー等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila−DEC、チッソ株式会社製)、さらには前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等が好ましく用いられ、低リタデーションの観点からシクロオレフィンポリマー、シクロオレフィンコポリマーおよびポリカーボネート(PC)が好ましい。また、光学的透明性、耐熱性、ガスバリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムを好ましく用いることができる。その他にも、耐熱基材としてポリイミド等を用いることも好ましい。これは、耐熱基材(ex.Tg>200℃)を用いることにより、デバイス作製工程で200℃以上の温度での加熱が可能となり、デバイスの大面積化やデバイスの動作効率向上のために必要な透明導電層もしくは金属ナノ粒子によるパターン層の低抵抗化が達成可能となる。すなわちデバイスの初期特性が大幅に改善することが可能となるからである。また、基材の厚さは、特に制限されないが、5〜500μm程度が好ましく、15〜250μmであることがより好ましい。該基材は、透明導電層、プライマー層、クリアハードコート層等の機能層を有していてもよい。機能層については、上述したもののほか、特開2006−289627号公報の段落番号「0036」〜「0038」に記載されているものを好ましく採用できる。
また、本発明に係る基材は、透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともガスバリア層を設ける側を研摩し、平滑性を向上させておいてもよい。
また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
本発明に用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。
基材の少なくとも本発明に係るガスバリア層を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述する平滑層の積層等を行ってもよく、必要に応じて上記処理を組み合わせて行うことが好ましい。
〔ガスバリア層〕
本発明に係るガスバリア層は、基材上に、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得た後、前記基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行うことにより得られる層であり、本発明のガスバリア性フィルムは、当該ガスバリア層を複数(2層以上)有する。そして、前記ガスバリア層の少なくとも1層は、添加元素を含有する。
当該ガスバリア層は、2層以上あればその層数は特に制限されないが、ガスバリア性の観点から、好ましくは3層〜10層であり、より好ましくは3層〜6層である。
添加元素を含有するガスバリア層の積層方向の位置は、特に制限されないが、少なくとも基材から最も離れた最外層に存在することが好ましい。この形態であれば、改質処理前の添加元素を含む塗膜層が最外層に存在することになり、当該最外層の側から真空紫外線を照射することにより、その下部の層の改質が同様に行われることになる。よって、膜厚方向にほぼ均一に改質され、高温高湿条件下で保存した後でも、層間密着力や屈曲耐性に優れるガスバリア性フィルムとなる。
より好ましい形態は、添加元素を含有するガスバリア層と添加元素を含有しないガスバリア層とが交互に積層されている形態である。この形態であれば、膜厚方向の改質の均一性がさらに向上し、高温高湿条件下で保存した後の層間密着力や屈曲耐性がさらに向上したガスバリア性フィルムとなる。さらに好ましい形態は、基材から最も離れた最外層に添加元素を含有するガスバリア層が存在し、かつ添加元素を含有するガスバリア層と添加元素を含有しないガスバリア層とが交互に積層されている形態である。
添加元素を含有するガスバリア層を2層以上有する場合、各添加元素を含有するガスバリア層は、同じ組成であってもよいし異なる組成であってもよい。
添加元素を含有しないガスバリア層は、添加元素を含有しない塗膜層に対して真空紫外線照射による改質処理を行うことにより形成される。添加元素を含有するガスバリア層は、添加元素を含む化合物(以下、単に添加化合物とも称する)を含有する塗膜層に対して真空紫外線照射による改質処理を行うことにより形成される。
添加元素の例としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)が挙げられる。これらの中でも、ガスバリア性、あるいは形成されたガスバリア層間の密着性等の観点から、アルミニウム、インジウム、ガリウム、マグネシウム、カルシウム、ゲルマニウム、およびホウ素からなる群より選択される少なくとも1種が好ましい。これら添加元素は、1種単独であってもよいし、2種以上組み合わせてもよい。
本発明のガスバリア性フィルムにおける添加元素の含有量は、ガスバリア層全体の質量に対して0.001〜50質量%であることが好ましく、0.1〜40質量%であることがより好ましい。なお、本発明のガスバリア性フィルムが添加元素を含有するガスバリア層を2層以上有する場合は、それぞれの層の添加元素の含有量を合計したものをガスバリア性フィルムにおける添加元素の含有量とする。
以下、塗膜層形成に用いられる塗布液に含まれるポリシラザン、および添加化合物について説明する。
<ポリシラザン>
ポリシラザンとは、ケイ素−窒素結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO2、Si34、および両方の中間固溶体SiOxy等のセラミック前駆体無機ポリマーである。
具体的には、ポリシラザンは、好ましくは下記の構造を有する。
上記一般式(I)において、R1、R2およびR3は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1、R2およびR3は、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1〜8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6〜30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1〜8のアルコキシ基で置換されたシリル基を有する炭素原子数1〜8のアルキル基が挙げられる。より具体的には、3−(トリエトキシシリル)プロピル基、3−(トリメトキシシリル)プロピル基などが挙げられる。上記R1〜R3に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(−OH)、メルカプト基(−SH)、シアノ基(−CN)、スルホ基(−SO3H)、カルボキシル基(−COOH)、ニトロ基(−NO2)などがある。なお、場合によって存在する置換基は、置換するR1〜R3と同じとなることはない。例えば、R1〜R3がアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R1、R2およびR3は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、ビニル基、3−(トリエトキシシリル)プロピル基または3−(トリメトキシシリルプロピル)基である。
また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。
上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R1、R2およびR3のすべてが水素原子であるパーヒドロポリシラザン(PHPS)である。
または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
上記一般式(II)において、R1'、R2'、R3'、R4'、R5'およびR6'は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1'、R2'、R3'、R4'、R5'およびR6'は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
また、上記一般式(II)において、n'およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n'およびpは、同じであってもあるいは異なるものであってもよい。
上記一般式(II)のポリシラザンのうち、R1'、R3'およびR6'が各々水素原子を表し、R2'、R4'およびR5'が各々メチル基を表す化合物;R1'、R3'およびR6'が各々水素原子を表し、R2'、R4'が各々メチル基を表し、R5'がビニル基を表す化合物;R1'、R3'、R4'およびR6'が各々水素原子を表し、R2'およびR5'が各々メチル基を表す化合物が好ましい。
または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
上記一般式(III)において、R1"、R2"、R3"、R4"、R5"、R6"、R7"、R8"およびR9"は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1"、R2"、R3"、R4"、R5"、R6"、R7"、R8"およびR9"は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
また、上記一般式(III)において、n"、p"およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n"、p"およびqは、同じであってもあるいは異なるものであってもよい。
上記一般式(III)のポリシラザンのうち、R1"、R3"およびR6"が各々水素原子を表し、R2"、R4"、R5"およびR8"が各々メチル基を表し、R9"が(トリエトキシシリル)プロピル基を表し、R7"がアルキル基または水素原子を表す化合物が好ましい。
一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
パーヒドロポリシラザンは、直鎖構造と6員環および/または8員環を中心とする環構造とが共存する構造を有していると推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。
これらのポリシラザンは、有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま、添加元素を含有しないガスバリア層の形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。
本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
改質処理前の塗膜層中におけるポリシラザンの含有量としては、塗膜層の全質量を100質量%としたとき、100質量%でありうる。また、塗膜層がポリシラザン以外のものを含む場合には、塗膜層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。
ポリシラザンを含有する塗布液には、ポリシラザン以外に、無機前駆体化合物を含有させることができる。ポリシラザン以外の無機前駆体化合物としては、塗布液を調製することが可能であれば、その種類は特に限定されない。
具体的には、例えば、ポリシロキサン、ポリシルセスキオキサン、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1−ジメチル−1−シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル−3,3,3−トリフルオロプロピルシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N−メチル−N−トリメチルシリルアセトアミド、3−アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3−トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル−3−ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3−アクリロキシプロピルジメトキシメチルシラン、3−アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2−アリールオキシエチルチオメトキシトリメチルシラン、3−グリシドキシプロピルトリメトキシシラン、3−アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3−メタクリロキシプロピルジメトキシメチルシラン、3−メタクリロキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ−3−グリシドキシプロピルシラン、ジブトキシジメチルシラン、3−ブチルアミノプロピルトリメチルシラン、3−ジメチルアミノプロピルジエトキシメチルシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル−p−トリルビニルシラン、p−スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ−3−グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、1,4−ビス(ジメチルビニルシリル)ベンゼン、1,3−ビス(3−アセトキシプロピル)テトラメチルジシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン、1,3,5−トリス(3,3,3−トリフルオロプロピル)−1,3,5−トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7−テトラエトキシ−1,3,5,7−テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のケイ素化合物を挙げることができる。
ポリシロキサンとしては、反応性の高いSi−Hを有するものが好ましく、メチル・ハイドロジェンポリシロキサンが好ましい。メチル・ハイドロジェンポリシロキサンとしては、モメンティブ社製のTSF484を挙げることができる。
ポリシルセスキオキサンとしては、かご状、ラダー状、ランダム状のいずれの構造のものも好ましく用いることができる。かご状のポリシルセスキオキサンとしては、例えば、Mayaterials社製Q8シリーズのOctakis(tetramethylammonium)pentacyclo−octasiloxane−octakis(yloxide)hydrate;Octa(tetramethylammonium)silsesquioxane、Octakis(dimethylsiloxy)octasilsesquioxane、Octa[[3−[(3−ethyl−3−oxetanyl)methoxy]propyl]dimethylsiloxy]octasilsesquioxane;Octaallyloxetane silsesquioxane、Octa[(3−Propylglycidylether)dimethylsiloxy]silsesquioxane;Octakis[[3−(2,3−epoxypropoxy)propyl]dimethylsiloxy]octasilsesquioxane、Octakis[[2−(3,4−epoxycyclohexyl)ethyl]dimethylsiloxy]octasilsesquioxane、Octakis[2−(vinyl)dimethylsiloxy]silsesquioxane;Octakis(dimethylvinylsiloxy)octasilsesquioxane、Octakis[(3−hydroxypropyl)dimethylsiloxy]octasilsesquioxane、Octa[(methacryloylpropyl)dimethylsilyloxy]silsesquioxane、Octakis[(3−methacryloxypropyl)dimethylsiloxy]octasilsesquioxaneを挙げることができる。かご状・ラダー状・ランダム状の構造が混合して存在すると考えられるポリシルセスキオキサンとしては、小西化学工業株式会社製のポリフェニルシルセスキオキサンである、SR−20、SR−21、SR−23、ポリメチルシルセスキオキサンである、SR−13、ポリメチル・フェニルシルセスキオキサンである、SR−33を挙げることができる。また、スピンオングラス材料として市販されているポリハイドロジェンシルセスキオキサン溶液である東レ・ダウコーニング株式会社製のFoxシリーズも好ましく用いることができる。
上記に示した化合物の中でも、常温で固体である無機ケイ素化合物が好ましく、水素化シルセスキオキサンがより好ましく用いられる。
<添加化合物>
添加元素を含むガスバリア層を形成する場合は、添加化合物を添加した塗膜層形成用塗布液を塗布乾燥した塗膜層を形成すればよい。添加化合物の例としては、金属アルコキシド化合物が挙げられる。
金属アルコキシド化合物のさらに具体的な例としては、例えば、ベリリウムアセチルアセトネート、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn−プロピル、ホウ酸トリイソプロピル、ホウ酸トリn−ブチル、ホウ酸トリtert−ブチル、マグネシウムエトキシド、マグネシウムエトキシエトキシド、マグネシウムメトキシエトキシド、マグネシウムアセチルアセトネート、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn−プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn−ブトキシド、アルミニウムトリsec−ブトキシド、アルミニウムトリtert−ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn−ブチレート、アルミニウムジエチルアセトアセテートモノn−ブチレート、アルミニウムジイソプロピレートモノsec−ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4−ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー、カルシウムメトキシド、カルシウムエトキシド、カルシウムイソプロポキシド、カルシウムアセチルアセトネート、ガリウムメトキシド、ガリウムエトキシド、ガリウムイソプロポキシド、ガリウムアセチルアセトナート、ゲルマニウムメトキシド、ゲルマニウムエトキシド、ゲルマニウムイソプロポキシド、ゲルマニウムn−ブトキシド、ゲルマニウムtert−ブトキシド、エチルトリエトキシゲルマニウム、ストロンチウムイソプロポキシド、トリス(2,4−ペンタンジオナト)インジウム、インジウムイソプロポキシド、インジウムn−ブトキシド、インジウムメトキシエトキシド、スズn−ブトキシド、スズtert−ブトキシド、スズアセチルアセトネート、バリウムジイソプロポキシド、バリウムtert−ブトキシド、バリウムアセチルアセトネート、タリウムエトキシド、タリウムアセチルアセトネート、鉛アセチルアセトネートなどが挙げられる。
これら金属アルコキシド化合物の中でも、反応性、溶解性等の観点から分岐状のアルコキシ基を有する化合物が好ましく、2−プロポキシ基、またはsec−ブトキシ基を有する化合物がより好ましい。また、ガスバリア性能、密着性等の観点から、エトキシ基を有する化合物が好ましい。
さらに、アセチルアセトナート基を有する金属アルコキシド化合物もまた好ましい。アセチルアセトナート基は、カルボニル構造によりアルコキシド化合物の中心元素と相互作用を有するため、取り扱い性が容易になり好ましい。さらに好ましくは上記のアルコキシド基、またはアセチルアセトナート基を複数種有する化合物が反応性や膜組成の観点からより好ましい。
また、金属アルコキシド化合物の中心元素としては、ポリシラザン中の窒素原子と配位結合を形成しやすい元素が好ましく、ルイス酸性が高いAlまたはBがより好ましい。
さらに好ましい金属アルコキシド化合物は、具体的には、マグネシウムエトキシド、ホウ酸トリイソプロピル、アルミニウムトリsec−ブトキシド、アルミニウムエチルアセトアセテート・ジイソプロピレート、カルシウムイソプロポキシド、インジウムイソプロポキシド、ガリウムイソプロポキシド、アルミニウムジイソプロピレートモノsec−ブチレート、アルミニウムエチルアセトアセテートジn−ブチレート、またはアルミニウムジエチルアセトアセテートモノn−ブチレートである。
金属アルコキシド化合物は、市販品を用いてもよいし合成品を用いてもよい。市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec−ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH−TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL−M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。
なお、金属アルコキシド化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。金属アルコキシド化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。
また、金属アルコキシド化合物以外では、下記に示すような化合物を使用することができる。
・アルミニウム化合物
アノーソクレース、アルミナ、アルミノケイ酸塩、アルミン酸、アルミン酸ナトリウム、アレキサンドライト、アンモニウム白榴石、イットリウム・アルミニウム・ガーネット、黄長石、尾去沢石、オンファス輝石、輝石、絹雲母、ギブス石、サニディン、サファイア、酸化アルミニウム、水酸化酸化アルミニウム、臭化アルミニウム、十二ホウ化アルミニウム、硝酸アルミニウム、白雲母、水酸化アルミニウム、水素化アルミニウムリチウム、杉石、スピネル、ダイアスポア、ヒ化アルミニウム、ピーコック (顔料)、微斜長石、ヒスイ輝石、氷晶石、普通角閃石、フッ化アルミニウム、沸石、ブラジル石、ベスブ石、Βアルミナ固体電解質、ペツォッタイト、方ソーダ石、有機アルミニウム化合物、リシア輝石、リチア雲母、硫酸アルミニウム、緑柱石、緑泥石、緑簾石、リン化アルミニウム、リン酸アルミニウム等。
・マグネシウム化合物
亜鉛緑礬、亜硫酸マグネシウム、安息香酸マグネシウム、カーナライト、過塩素酸マグネシウム、過酸化マグネシウム、滑石、頑火輝石、カンラン石、酢酸マグネシウム、酸化マグネシウム、蛇紋石、臭化マグネシウム、硝酸マグネシウム、水酸化マグネシウム、スピネル、普通角閃石、普通輝石、フッ化マグネシウム、硫化マグネシウム、硫酸マグネシウム、菱苦土鉱等。
・カルシウム化合物
アラレ石、亜硫酸カルシウム、安息香酸カルシウム、エジプシャンブルー、塩化カルシウム、塩化水酸化カルシウム、塩素酸カルシウム、灰クロム柘榴石、灰重石、灰鉄輝石、灰簾石、過酸化カルシウム、過リン酸石灰、カルシウムシアナミド、次亜塩素酸カルシウム、シアン化カルシウム、臭化カルシウム、重過リン酸石灰、シュウ酸カルシウム、臭素酸カルシウム、硝酸カルシウム、水酸化カルシウム、普通角閃石、普通輝石、フッ化カルシウム、フッ素燐灰石、ヨウ化カルシウム、ヨウ素酸カルシウム 、ヨハンセン輝石、硫化カルシウム、硫酸カルシウム、緑閃石、緑簾石、緑簾石、燐灰ウラン石 、燐灰石、リン酸カルシウム等。
・ガリウム化合物
酸化ガリウム(III)、水酸化ガリウム(III)、窒化ガリウム、ヒ化ガリウム、ヨウ化ガリウム(III)、リン酸ガリウム等。
・ホウ素化合物
酸化ホウ素、三臭化ホウ素、三フッ化ホウ素、三ヨウ化ホウ素、シアノ水素化ホウ素ナトリウム、ジボラン、ホウ酸、ホウ酸トリメチル、ホウ砂、ボラジン、ボラン、ボロン酸等。
・ゲルマニウム化合物
有機ゲルマニウム化合物、無機ゲルマニウム化合物、酸化ゲルマニウム等。
・インジウム化合物
酸化インジウム、塩化インジウム等。
<塗膜層形成用塗布液>
塗膜層形成用塗布液を調製するための溶剤としては、ポリシラザンおよび添加化合物を溶解または分散できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
塗膜層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、ガスバリア層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.2〜35質量%程度である。
また、添加化合物を用いる場合の塗膜層形成用塗布液における添加化合物の使用量は、特に制限されないが、ポリシラザンの固形分質量に対して、0.01〜10倍の質量であることが好ましく、0.06〜6倍の質量であることがより好ましい。
塗膜層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N',N'−テトラメチル−1,3−ジアミノプロパン、N,N,N',N'−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンに対して、0.01〜2質量%が好ましい。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。
また、塗膜層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
<塗膜層形成用塗布液を塗布する方法>
塗膜層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
塗布厚さは、目的に応じて適切に設定され得る。例えば、ガスバリア層1層当たりの塗布厚さは、乾燥後の厚さが50nm以上であることが好ましく、100nm〜2μmであることがより好ましく、150nm〜1μmであることがさらに好ましい。なお、複数の塗膜層の各塗布厚さは、同じであってもよいし異なっていてもよい。
塗布液を塗布した後は、塗膜を乾燥させる。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なガスバリア層が得られうる。なお、残存する溶媒は後に除去されうる。
塗膜層の乾燥温度は、適用する基材によっても異なるが、50〜200℃であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
ポリシラザンを含む塗布液を塗布して得られた塗膜層は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は−5℃(温度25℃/湿度10%)以下であり、維持される時間はガスバリア層の膜厚によって適宜設定することが好ましい。ガスバリア層の膜厚が1.0μm以下の条件においては、露点温度は−5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、−50℃以上であり、−40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化したガスバリア層の脱水反応を促進する観点から好ましい形態である。
<塗膜層の改質処理>
本発明における塗膜層の改質処理とは、上記で得られた塗膜層に含まれるポリシラザンの一部または全部が、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等へ転化する反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性を発現するに貢献できるレベルの無機薄膜を形成する反応を指す。
本発明における改質処理は、基材から最も離れた塗膜層側から真空紫外線を照射することにより行われる。真空紫外線(真空紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜、窒化ケイ素膜、酸窒化ケイ素膜等を形成することが可能である。
この真空紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するO2、H2Oや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるガスバリア層が一層緻密になる。また、改質処理前の塗膜層の少なくとも1層には、添加元素が含まれているため、複数存在する塗膜層の最外層から真空紫外線を1回照射するだけで、基材から最も離れた塗膜層表面から内部、その下部の層の改質も同様に均一に行われ、さらにその下部の層、またさらにその下部の層というように、膜厚方向に改質が均一に行われる。したがって、高温高湿条件下で保存した後でも、クラックの発生がほとんどなく、層間密着力や屈曲耐性に優れ、ガスバリア性がほとんど劣化しないガスバリア性フィルムとなる。
真空紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。なお、本発明でいう真空紫外線とは、一般には10〜200nmの波長を有する電磁波を含む紫外光をいう。
真空紫外線の照射は、照射される塗膜層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。
基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm2、好ましくは50〜200mW/cm2になるように基材−紫外線照射ランプ間の距離を設定し、0.1秒〜10分間の照射を行うことができる。
一般に、真空紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はない。
真空紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、塗膜層を表面に有する積層体を上記のような真空紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、塗膜層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材やガスバリア層の組成、濃度にもよるが、一般に0.1秒〜10分であり、好ましくは0.5秒〜3分である。
真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい、好ましくは100〜200nm、より好ましくは100〜180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、無機薄膜の形成を行う方法である。
このような真空紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた真空紫外線を改質前のポリシラザン塗膜層に照射する際には、効率向上と均一な照射とを達成する観点から、発生源からの真空紫外線を反射板で反射させてから改質前のポリシラザン塗膜層に当てることが望ましい。本発明においての真空紫外線源は、希ガスエキシマランプが好ましく用いられる。
なお、Xe、Kr、Ar、Ne等の希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
e+Xe→e+Xe*
Xe*+Xe+Xe→Xe2 *+Xe
となり、励起されたエキシマ分子であるXe2 *が基底状態に遷移するときに172nmのエキシマ光(真空紫外光)を発光する。
エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
エキシマ発光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる雷に似た非常に細いmicro dischargeと呼ばれる放電である。
また、効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外には無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、別名RF放電とも呼ばれる。ランプと電極およびその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られる。
そして、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板、樹脂フィルム等への照射を可能としている。
また、エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート等の樹脂フィルムを基材とするガスバリア性フィルムへの照射に適している。
真空紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、300〜10,000体積ppm(1体積%)とすることが好ましく、500〜5,000体積ppmとすることがより好ましい。また、転化プロセスの間の水蒸気濃度は、好ましくは1000〜4000体積ppmの範囲である。
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
真空紫外線照射において、塗膜層の最外層が受ける塗膜面での該真空紫外線の照度は1mW/cm2〜10W/cm2であると好ましく、30mW/cm2〜200mW/cm2であることがより好ましく、50mW/cm2〜160mW/cm2であるとさらに好ましい。1mW/cm2未満では、改質効率が大きく低下する懸念があり、10W/cm2を超えると、塗膜にアブレーションを生じたり、基材にダメージを与えたりする懸念が出てくる。
塗膜層の最外層面における真空紫外線の照射エネルギー量(照射量、積算光量)は、10〜30000mJ/cm2であることが好ましく、100〜15000mJ/cm2であることがより好ましく、200〜12000mJ/cm2であることがさらに好ましい。照射エネルギー量が10mJ/cm2未満では、改質が不十分となる懸念があり、30000mJ/cm2超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。
また、真空紫外線照射と同時に塗膜層を加熱することも、改質処理を促進するために好ましく用いられる。加熱の方法は、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜層を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に制限されない。塗膜層の平滑性を維持できる方法を適宜選択してよい。真空紫外線の照射条件は、適用する基材によっても異なり、当業者により適宜決定されうる。例えば、真空紫外線の照射温度(加熱温度)は、50〜200℃であることが好ましく、80〜150℃であることがより好ましい。照射条件が上記範囲内であると、基材の変形や強度の劣化が生じにくく、基材の特性が損なわれないことから好ましい。照射時間(加熱時間)としては、1秒〜10時間の範囲が好ましく、10秒〜1時間の範囲がより好ましい。
また、改質に用いられる真空紫外光は、CO、CO2およびCH4の少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、CO2およびCH4の少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはH2を主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
次に、好適な形態であるポリシラザンがパーヒドロポリシラザンである場合に、真空紫外線照射でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
(I)脱水素、それに伴うSi−N結合の形成
パーヒドロポリシラザン中のSi−H結合やN−H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi−Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiNy組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si−H結合やN−H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはH2として膜外に放出される。
(II)加水分解・脱水縮合によるSi−O−Si結合の形成
パーヒドロポリシラザン中のSi−N結合は水により加水分解され、ポリマー主鎖が切断されてSi−OHを形成する。二つのSi−OHが脱水縮合してSi−O−Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi−OHが残存し、SiO2.1〜SiO2.3の組成で示されるガスバリア性の低い硬化膜となる。
(III)一重項酸素による直接酸化、Si−O−Si結合の形成
真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi−O−Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
(IV)真空紫外線照射・励起によるSi−N結合切断を伴う酸化
真空紫外線のエネルギーはパーヒドロポリシラザン中のSi−Nの結合エネルギーよりも高いため、Si−N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi−O−Si結合やSi−O−N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
ポリシラザンを含有する塗膜層に真空紫外線照射を施したガスバリア層の酸窒化ケイ素の組成の調整は、上述の(I)〜(IV)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
ここで、ポリシラザンにおける場合、シリカ転化(改質処理)では、Si−H、N−H結合の切断と、Si−O結合の生成が起こり、シリカ等のセラミックスに転化するが、この転化の度合はIR測定によって、以下に定義する式(1)により、SiO/SiN比で半定量的に評価することができる。
ここで、SiO吸光度は約1160cm-1、SiN吸光度は約840cm-1での吸収(吸光度)により算出する。SiO/SiN比が大きいほど、シリカ組成に近いセラミックスへの転化が進んでいることを示す。
ここで、セラミックスへの転化度合の指標となるSiO/SiN比は0.3以上、好ましくは0.5以上とすることが好ましい。0.3未満では、期待するガスバリア性が得られないことがある。また、シリカ転化率(SiOxにおけるx)の測定方法としては、例えば、XPS法を用いて測定することができる。
ガスバリア層における化学組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、ガスバリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。
ガスバリア層における化学組成は、ガスバリア層を形成する際に用いるポリシラザン、添加化合物等の種類および量、ならびに塗膜層を改質する際の条件等により、制御することができる。
当該ガスバリア層1層当たりの厚さは、ガスバリア性、フレキシブル性を両立する必要があるが、薄すぎるとガスバリア性が低下する虞があり、厚すぎるとフレキシブル性の低下や、膜のひび割れが発生する虞がある。ガスバリア層1層当たりの厚さは、乾燥後の厚さが50nm以上であることが好ましく、100nm〜2μmであることがより好ましく、150nm〜1μmであることがさらに好ましい。ガスバリア層1層当たりの厚さは、例えば、透過型電子顕微鏡により測定することができる。
〔蒸着法により形成されるガスバリア層〕
本発明のガスバリア性フィルムは、蒸着法により形成されるガスバリア層(以下、単に蒸着ガスバリア層とも称する)をさらに有していてもよい。
ここで述べる、蒸着バリア層の膜厚は、特に制限されないが、50〜600nmであること好ましく、100〜500nmであることがより好ましい。このような範囲であれば、ガスバリア性能、折り曲げ耐性、断裁加工適性等に優れる。
また、蒸着ガスバリア層の弾性率は、15〜45GPaであることが好ましく、20〜40GPaであることがより好ましい。この範囲であれば、ガスバリア性能、折り曲げ耐性、断裁加工適性が得られる。なお、該弾性率は、ナノインデンテーション法により測定することができる。
蒸着法としては、特に限定されず、公知の薄膜堆積技術を利用することが出来る。例えば、蒸着法、反応性蒸着法、スパッタ法、反応性スパッタ法、化学気相堆積法などが挙げられる。
反応性蒸着法
反応性蒸着法は、真空容器内に反応性ガスを導入し、蒸発源から蒸発した原子・分子を反応させて堆積させる方法であり、反応を促進させるためにプラズマ等の励起源を導入することもできる。代表的な原料として、蒸着源としては、珪素、窒化珪素、酸化珪素、酸窒化珪素など、反応性ガスとしては、窒素、水素、アンモニア、酸素などが用いられる。
スパッタ法
スパッタ法は、電界加速した高エネルギーイオンをターゲットに入射させターゲットの構成原子をたたきだすスパッタリング現象を利用し、スパッタされたターゲットの構成原子を基材に堆積させる方法である。反応性スパッタ法は、真空容器内に反応性ガスを導入し、スパッタされたターゲットの構成原子と反応させて基材に堆積させる方法である。代表的な原料として、ターゲット材には、珪素、窒化珪素、酸化珪素、酸窒化珪素など、反応性ガスとしては、窒素、水素、アンモニア、酸素などが用いられる。
化学気相堆積法
化学気相堆積法は、真空容器内に膜の構成元素を含む材料ガスを導入し、特定の励起源により材料ガスを励起することで、化学反応により励起種を形成し、基材に堆積させる方法である。代表的な原料として、モノシラン、ヘキサメチルジシラザン、アンモニア、窒素、水素、酸素などが用いられる。
化学気相堆積法は、高速製膜が可能であり、スパッタ法等に比べ基材に対する被覆性が良好である事からより有望な手法である。特に、非常に高温の触媒体を励起源とした触媒化学気相堆積(Cat−CVD)法や、プラズマを励起源としたプラズマ化学気相堆積(PECVD)法が好ましい方法である。以下、これらの手法について詳しく説明する。
Cat−CVD法
Cat−CVD法は、タングステン等ならなるワイヤを内部に配した真空容器に材料ガスを流入させ、電源により通電加熱されたワイヤで材料ガス接触分解反応させ、生成された反応種を基材に堆積させる方法である。
例えば、窒化シリコンを堆積させる場合、材料ガスとしては、モノシラン、アンモニア、水素が使われる。酸窒化シリコンを堆積させる場合は、上記の材料ガスに加え、酸素を添加する。条件例としては、触媒体であるタングステンワイヤ(例:Φ0.5、長さ2.8m)を1800℃に通電加熱させ、材料ガスとして、モノシラン、アンモニア、水素(4/200/200sccm)を流通させ、圧力を10Paに維持して、100℃に温調した基材上に膜を堆積させる。触媒体上での分解反応で生成される反応種のうち、主な堆積種はSiH3 *とNH2 *であり、H*は膜表面での反応補助種である。特に水素を添加することで、多量のH*を生成でき、堆積速度は減少するものの、膜中のSi−H結合やN−H結合に由来するHを除去する反応を促進すると考えられている。
PECVD法
PECVD法は、プラズマ源を搭載した真空容器に材料ガスを流入させ、電源からプラズマ源に電力供給する事で真空容器内に放電プラズマを発生させ、プラズマで材料ガスを分解反応させ、生成された反応種を基材に堆積させる方法である。プラズマ源の方式としては、平行平板電極を用いた容量結合プラズマ、誘導結合プラズマ、表面波を利用したマイクロ波励起プラズマ等が使われる。
真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られる蒸着ガスバリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。
例えば、ケイ素化合物を原料化合物として用い、分解ガスに酸素を用いれば、ケイ素酸化物が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
原料化合物としては、ケイ素化合物、チタン化合物、およびアルミニウム化合物を用いることが好ましい。これら原料化合物は、単独でもまたは2種以上組み合わせても用いることができる。
これらのうち、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4−ビストリメチルシリル−1,3−ブタジイン、ジ−t−ブチルシラン、1,3−ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1−(トリメチルシリル)−1−プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。
チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn−ブトキシド、チタンジイソプロポキシド(ビス−2,4−ペンタンジオネート)、チタンジイソプロポキシド(ビス−2,4−エチルアセトアセテート)、チタンジ−n−ブトキシド(ビス−2,4−ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。
アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn−ブトキシド、アルミニウムs−ブトキシド、アルミニウムt−ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ−s−ブトキシド等が挙げられる。
また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガス、放電ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気などが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。
原料化合物を含む原料ガスと、分解ガスを適宜選択することで所望の蒸着ガスバリア層を得ることができる。PECVD法により形成される蒸着ガスバリア層は、酸化物、窒化物、酸窒化物または酸炭化物を含む層である。
図1は、本発明に係る蒸着ガスバリア層を形成する際に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
図1に記載の対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置においては、ロール回転電極に対し、固定電極群に傾斜を持たせて電極間の間隙を変化させる方法、あるいは供給する膜形成原料の種類および供給量、あるいはプラズマ放電時の出力条件を適宜選択することにより、蒸着ガスバリア層を得ることができる。
図1の大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。そして、ロール回転電極(第1電極)35と角筒型固定電極(群)(第2電極)36との対向電極間(放電空間)32で、基材Fをプラズマ放電処理して薄膜を形成するものである。図2においては、1対の角筒型固定電極群(第2電極)36とロール回転電極(第1電極)35とで、1つの電界を形成し、この1ユニットで、例えば、低密度層の形成を行う。図2においては、この様な構成からなるユニットを、計5カ所備えた構成例を示しあり、それぞれのユニットで、供給する原材料の種類、出力電圧等を任意に独立して制御することにより、蒸着ガスバリア層を連続して形成することができる。
ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω1、電界強度V1、電流I1の第1の高周波電界を、また角筒型固定電極群(第2電極)36にはそれぞれに対応する各第2電源42から周波数ω2、電界強度V2、電流I2の第2の高周波電界をかけるようになっている。
ロール回転電極(第1電極)35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、角筒型固定電極群(第2電極)36と第2電源42との間には、それぞれ第2フィルタ44が設置されており、第2フィルタ44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。
なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ、第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源V1は第2電源V2より高い高周波電界強度(V1>V2)を印加することが好ましい。また、周波数はω1<ω2となる能力を有している。
また、電流はI1<I2となることが好ましい。第1の高周波電界の電流I1は、好ましくは0.3mA/cm2〜20mA/cm2、さらに好ましくは1.0mA/cm2〜20mA/cm2である。また、第2の高周波電界の電流I2は、好ましくは10mA/cm2〜100mA/cm2、さらに好ましくは20mA/cm2〜100mA/cm2である。
ガス供給手段50のガス発生装置51で発生させたガスGは、流量を制御して給気口よりプラズマ放電処理容器31内に導入する。
基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送し、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材F(ここでいう、基材には、基材が処理された、または基材上に中間層を有する形態も含む)はロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。
放電処理済みの処理排ガスG'は排気口53より排出する。
薄膜形成中、ロール回転電極(第1電極)35および角筒型固定電極群(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68および69はプラズマ放電処理容器31と外界とを仕切る仕切板である。
前記ガス発生装置51から対向電極間(放電空間)32に供給される成膜ガス(原料ガス等)としては、原料ガス、分解ガス、放電ガスを単独または2種以上を混合して用いることができる。この際に用いられる原料ガス、分解ガス、放電ガスは、上記に記載した原料化合物、分解ガス、放電ガスを適宜用いることができる。
プラズマ放電処理容器31はパイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い、絶縁性をとってもよい。図2において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。
大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3−4500
A2 神鋼電機 5kHz SPG5−4500
A3 春日電機 15kHz AGI−023
A4 神鋼電機 50kHz SPG50−4500
A5 ハイデン研究所 100kHz* PHF−6k
A6 パール工業 200kHz CF−2000−200k
A7 パール工業 400kHz CF−2000−400k
等の市販のものを挙げることができ、何れも使用することができる。
また、第2電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF−2000−800k
B2 パール工業 2MHz CF−2000−2M
B3 パール工業 13.56MHz CF−5000−13M
B4 パール工業 27MHz CF−2000−27M
B5 パール工業 150MHz CF−2000−150M
等の市販のものを挙げることができ、何れも使用することができる。
なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。このような電界を印加して、均一で安定な放電状態を保つことが出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。
対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm2、より好ましくは20W/cm2である。下限値は、好ましくは1.2W/cm2である。なお、放電面積(cm2)は、電極において放電が起こる範囲の面積のことを指す。
また、第1電極(第1の高周波電界)にも、1W/cm2以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の向上と膜質の向上が両立出来る。好ましくは5W/cm2以上である。第1電極に供給する電力の上限値は、好ましくは50W/cm2以下である。
ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。
また、膜質をコントロールする際には、第2電源側の電力を制御することによっても達成できる。
このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。
<蒸着ガスバリア層の改質処理>
蒸着ガスバリア層においては、成膜された膜にエキシマ処理(改質処理)を施してもよい。エキシマ処理(真空紫外線処理)は、公知の方法を用いることができるが、前述した「<塗膜層の改質処理>」の項で述べたような真空紫外線処理が好ましく、さらには100〜180nmの波長の光のエネルギーによる真空紫外線処理が好ましい。
蒸着ガスバリア層に施すエキシマ処理において、真空紫外線(VUV)を照射する際の、酸素濃度は300〜50,000体積ppm(5体積%)とすることが好ましく、500〜10,000体積ppmとすることがより好ましい。このような酸素濃度の範囲に調整することにより、蒸着ガスバリア層が受ける真空紫外線量を著しく損なわず、かつ雰囲気中の酸素を活性化して、オゾンや酸素ラジカルを適度に発生させることができる。なお、真空紫外線照射時に、これら酸素以外のガスとして乾燥不活性ガスを用いることが好ましく、特にコストの観点から乾燥窒素ガスを用いることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
蒸着ガスバリア層表面に有機物等の異物が存在した場合、ガスバリア性の低下につながったり、このガスバリア性フィルムを有機EL素子の基材に用いた場合には、その異物の突起に起因した電極の短絡が発生したりすることにより、ダークスポットと呼ばれる非発光点が頻繁に発生する懸念がある。そこで、エキシマ処理を行うことで、その真空紫外線エネルギーと、そのエネルギーによって生成されたオゾン、活性酸素等とにより異物が分解、酸化除去される。これにより、ガスバリア層としての欠陥を補修したり、表面平滑性を高めたりすることができ、ポリシラザンを含有する塗布液の塗布均一性を向上させることができ、結果的にガスバリア性の向上につながる。
真空紫外線の照度や、真空紫外線の照射エネルギー量は、特に制限されないが、ポリシラザンを含有する塗膜層における真空紫外線照射処理と同様の範囲が好ましい。なお、本発明では、基材から最も離れたポリシラザンを含む塗膜層の側から真空紫外線照射を行うが、この真空紫外線照射により、上記の蒸着ガスバリア層の改質処理も行うことができるため、蒸着ガスバリア層を形成した直後に真空紫外線照射を行わなくてもよい。
また、本発明のガスバリア性フィルムにおける蒸着ガスバリア層の積層方向の位置は、特に制限されない。
〔後処理〕
改質処理して形成されたガスバリア層は、その前段階である塗布液を塗布した後または改質処理した後、特には改質処理した後、後処理を施すことが好ましい。ここで述べる後処理とは、温度10℃以上800℃未満の温度処理(熱処理)、あるいは相対湿度0%RH以上100%RH以下、または水浴に浸漬した湿度処理も含み、処理時間は、5秒から48日の範囲より選択される範囲と定義する。温度と湿度との両方の処理を施してもよく、どちらか一方だけでもよい。ガスバリア性向上、密着性向上等の観点から、好ましくは温度処理である。
温度処理を施す際は、ホットプレート上に置く等の接触方式、オーブンにつるして放置する非接触方式等特に方式は問わず、併用でも、単式でも良い。
生産性と装置上の負荷、樹脂基材を用いたときの樹脂基材の耐性も考えると、好ましい条件は、温度40〜120℃、相対湿度30〜85%RH、処理時間は30秒〜100時間である。
〔中間層〕
本発明のガスバリア性フィルムは、各ガスバリア層の間に中間層を有していてもよい。該中間層を形成する方法としては、ポリシロキサン改質層を形成する方法を適用することができる。この方法は、ポリシロキサンを含有した塗布液を湿式塗布法によりガスバリア層上に塗布して乾燥した後、得られた塗膜に真空紫外線を照射することによってポリシロキサン改質層とした中間層を形成する方法である。なお、本発明では、基材から最も離れたポリシラザンを含む塗膜層の側から真空紫外線照射を行うが、この真空紫外線照射によりポリシロキサン改質層も形成することができるため、中間層となる塗膜を形成した直後に真空紫外線照射を行わなくてもよい。
本発明における中間層を形成するために用いる塗布液は、主には、ポリシロキサンおよび有機溶媒を含有する。
中間層の形成に適用可能なポリシロキサンとしては、特に制限はないが、下記一般式(4)で表されるオルガノポリシロキサンが、特に好ましい。
上記一般式(4)において、R8〜R13は、それぞれ独立して、同一のまたは異なる炭素数1〜8の有機基を表し、この際、R8〜R13の少なくとも1つは、アルコキシ基および水酸基のいずれかを含む基であり、mは1以上である。
8〜R13で表される炭素数1〜8の有機基としては、例えば、γ−クロロプロピル基、3,3,3−トリフロロプロピル基等のハロゲン化アルキル基、ビニル基、フェニル基、γ−メタクリルオキシプロピル基等の(メタ)アクリル酸エステル基、γ−グリシドキシプロピル基等のエポキシ含有アルキル基、γ−メルカプトプロピル基等のメルカプト含有アルキル基、γ−アミノプロピル基等のアミノアルキル基、γ−イソシアネートプロピル基等のイソシアネート含有アルキル基、メチル基、エチル基、n−プロピル基、イソプロピル基等の直鎖状もしくは分岐状アルキル基、シクロヘキシル基、シクロペンチル基等の脂環状アルキル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等の直鎖状もしくは分岐状アルコキシ基、またはアセチル基、プロピオニル基、ブチリル基、バレリル基、カプロイル基等のアシル基等が挙げられる。
さらに本発明では、上記一般式(4)において、mが1以上で、かつ、ポリスチレン換算の重量平均分子量が1,000〜20,000であるオルガノポリシロキサンが特に好ましい。該オルガノポリシロキサンのポリスチレン換算の重量平均分子量が、1000以上であれば、形成する保護層に亀裂が生じ難く、水蒸気バリア性を維持することができ、20,000以下であれば、形成される中間層の硬化が充分となり、そのため得られる保護層として十分な硬度が得られる。
また、中間層形成に適用可能な有機溶媒としては、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、非プロトン系溶媒等が挙げられる。
ここで、アルコール系溶媒としては、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール、tert−ブタノール、n−ペンタノール、iso−ペンタノール、2−メチルブタノール、sec−ペンタノール、tert−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどが好ましい。
ケトン系溶媒としては、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、2−ヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、アセトフェノン、フェンチョンなどのほか、アセチルアセトン、2,4−ヘキサンジオン、2,4−ヘプタンジオン、3,5−ヘプタンジオン、2,4−オクタンジオン、3,5−オクタンジオン、2,4−ノナンジオン、3,5−ノナンジオン、5−メチル−2,4−ヘキサンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1,5,5,5−ヘキサフルオロ−2,4−ヘプタンジオンなどのβ−ジケトン類などが挙げられる。これらのケトン系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
アミド系溶媒としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン、N−ホルミルモルホリン、N−ホルミルピペリジン、N−ホルミルピロリジン、N−アセチルモルホリン、N−アセチルピペリジン、N−アセチルピロリジンなどが挙げられる。これらアミド系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
エステル系溶媒としては、ジエチルカーボネート、炭酸エチレン、炭酸プロピレン、炭酸ジエチル、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸iso−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。これらエステル系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
非プロトン系溶媒としては、アセトニトリル、ジメチルスルホキシド、N,N,N',N'−テトラエチルスルファミド、ヘキサメチルリン酸トリアミド、N−メチルモルホロン、N−メチルピロール、N−エチルピロール、N−メチルピペリジン、N−エチルピペリジン、N,N−ジメチルピペラジン、N−メチルイミダゾール、N−メチル−4−ピペリドン、N−メチル−2−ピペリドン、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチルテトラヒドロ−2(1H)−ピリミジノンなどを挙げることができる。以上の有機溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。
本発明において、中間層の形成に用いる有機溶媒としては、上記の有機溶媒のなかではアルコール系溶媒が好ましい。
中間層形成用の塗布液の塗布方法としては、スピンコート法、ディッピング法、ローラーブレード法、スプレー法などが挙げられる。
中間層形成用の塗布液により形成する中間層の厚さとしては、100nm〜10μmの範囲が好ましい。中間層の膜厚が100nm以上であれば、高湿下でのガスバリア性を確保することができる。また、中間層の膜厚が10μm以下であれば、中間層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
また、中間層は、その膜密度が通常0.35〜1.2g/cm3であり、好ましくは0.4〜1.1g/cm3、より好ましくは0.5〜1.0g/cm3である。膜密度が0.35g/cm3以上であれば、十分な塗膜の機械的強度を得ることができる。
この中間層の形成に用いる真空紫外光としては、前述のガスバリア層の形成で説明したものと同様の真空紫外光照射処理による真空紫外光を適用することができる。
また、本発明においては、ポリシロキサン膜を改質して中間層を形成する際の真空紫外光の積算光量としては、500mJ/cm2以上10,000mJ/cm2以下であることが好ましい。真空紫外光の積算光量が500mJ/cm2以上であれば十分なバリア性能を得ることができ、10,000mJ/cm2以下であれば、基材に変形を与えることなく平滑性の高い中間層を形成することができる。
また、本発明における中間層は、加熱温度が50℃以上200℃以下の加熱工程を経て形成されることが好ましい。加熱温度が50℃以上であれば十分なバリア性を得ることができ、200℃以下であれば、基材に変形を与えることなく平滑性の高い中間層を形成することができる。この加熱工程には、ホットプレート、オーブン、ファーネスなどを使用する加熱方法を適用することができる。また、その加熱雰囲気としては、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸素濃度をコントロールした減圧下など、いずれの条件でもよい。
なお、中間層は、ガスバリア層を覆い、ガスバリア性フィルムにおけるガスバリア層が損傷することを防ぐ機能を有しているが、ガスバリア性フィルムの製造過程でガスバリア層が損傷することを防ぐこともできる。
例えば、ガスバリア層の形成に際して成膜した改質前のポリシラザンを含む塗膜層上にポリシロキサン塗膜層を成膜し、ポリシラザン塗膜層とポリシロキサン塗膜層に同時に真空紫外光を照射した後、100℃以上250℃以下の加熱処理を施すことで、ガスバリア層と中間層とを形成するようにしてもよい。また、真空紫外光照射処理が施されたポリシラザン塗膜層上にポリシロキサン塗膜層を成膜し、ポリシロキサン塗膜層に真空紫外光照射処理を施した後、100℃以上250℃以下の加熱処理を施して、ポリシラザン化合物を含有する溶液を塗布して形成されたガスバリア層と中間層とを形成するようにしてもよい。
このように、ポリシラザン化合物を含有する溶液を塗布して形成された塗膜層を中間層(ポリシロキサン塗膜)で覆った状態で、100℃以上の加熱処理を施す場合には、加熱処理による熱応力によってガスバリア層に微小なひび割れが発生することを防ぐことができ、ガスバリア層の水蒸気バリア性能を安定させることができる。
〔保護層〕
本発明に係るガスバリア性フィルムは、塗布によって形成されたガスバリア層、または蒸着法によって形成されたガスバリア層の上部に、有機化合物を含む保護層を設けてもよい。保護層に用いられる有機化合物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。これらの有機樹脂もしくは有機無機複合樹脂は重合性基や架橋性基を有することが好ましく、これらの有機樹脂もしくは有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。ここで「架橋性基」とは、光照射処理や熱処理で起こる化学反応によりバインダーポリマーを架橋することができる基のことである。このような機能を有する基であれば特にその化学構造は限定されないが、例えば、付加重合し得る官能基としてエチレン性不飽和基、エポキシ基/オキセタニル基等の環状エーテル基が挙げられる。また光照射によりラジカルになり得る官能基であってもよく、そのような架橋性基としては、例えば、チオール基、ハロゲン原子、オニウム塩構造等が挙げられる。中でも、エチレン性不飽和基が好ましく、特開2007−17948号公報の段落0130〜0139に記載された官能基が含まれる。
有機無機複合樹脂としては、例えば米国特許6503634号公報に「ORMOCER(登録商標)」として記載されている有機無機複合樹脂も好ましく用いることができる。
有機樹脂の構造や重合性基の密度、架橋性基の密度、架橋剤の比率、および硬化条件等を適宜調整することで、保護層の弾性率を所望の値に調整することができる。
具体的な有機樹脂組成物としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
当該光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。
上記感光性樹脂の組成物は、光重合開始剤を含有する。光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
保護層には、無機材料を含有させることができる。無機材料を含有させることは一般的に保護層の弾性率増加につながる。無機材料の含有比率を適宜調整することでも保護層の弾性率を所望の値に調整することができる。
無機材料としては、数平均粒径が1〜200nmの無機微粒子が好ましく、数平均粒径が3〜100nmの無機微粒子がより好ましい。無機微粒子としては、透明性の観点より金属酸化物が好ましい。
金属酸化物として特に制約はないが、SiO2、Al23、TiO2、ZrO2、ZnO、SnO2、In23、BaO、SrO、CaO、MgO、VO2、V25、CrO2、MoO2、MoO3、MnO2、Mn23、WO3、LiMn24、Cd2SnO4、CdIn24、Zn2SnO4、ZnSnO3、Zn2In25、Cd2SnO4、CdIn24、Zn2SnO4、ZnSnO3、Zn2In25などが挙げられる。これらは、単体の使用でも二種類以上の併用でも良い。
無機微粒子の分散物を得るには、近年の学術論文に倣って調整しても良いが、市販の無機微粒子分散物も好ましく用いることができる。
具体的には、日産化学工業株式会社製のスノーテックス(登録商標)シリーズやオルガノシリカゾル、ビックケミー・ジャパン株式会社製のNANOBYK(登録商標)シリーズ、Nanophase Technologies社製のNanoDur(登録商標)などの各種金属酸化物の分散物を挙げることができる。
これら無機微粒子は、表面処理を行って用いることもできる。
無機材料としては、天然雲母、合成雲母等の雲母群、式3MgO・4SiO・H2Oで表されるタルク、テニオライト、モンモリロナイト、サポナイト、ヘクトライト、リン酸ジルコニウムなどの平板状微粒子を用いることもできる。
具体的には、上記天然雲母としては白雲母、ソーダ雲母、金雲母、黒雲母および鱗雲母が挙げられる。また、合成雲母としては、フッ素金雲母KMg3(AlSi310)F2、カリ四珪素雲母KMg2.5Si410)F2等の非膨潤性雲母、およびNaテトラシリリックマイカNaMg2.5(Si410)F2、NaまたはLiテニオライト(Na,Li)Mg2Li(Si410)F2、モンモリロナイト系のNaまたはLiヘクトライト(Na,Li)1/8Mg2/5Li1/8(Si410)F2等の膨潤性雲母等が挙げられる。また合成スメクタイトも有用である。
保護層中の無機材料の比率としては、保護層全体に対して、10〜95質量%の範囲であることが好ましく、20〜90質量%の範囲であることがより好ましい。
保護層には、いわゆるカップリング剤を単独でもしくは他材料と混合して用いることができる。カップリング剤としては、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等、特に制限はないが、塗布液の安定性の観点からシランカップリング剤が好ましい。
具体的なシランカップリング剤としては、例えば、ハロゲン含有シランカップリング剤(2−クロロエチルトリメトキシシラン、2−クロロエチルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシランなど)、エポキシ基含有シランカップリング剤[2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、2−グリシジルオキシエチルトリメトキシシラン、2−グリシジルオキシエチルトリエトキシシラン、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリエトキシシランなど]、アミノ基含有シランカップリング剤(2−アミノエチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−[N−(2−アミノエチル)アミノ]エチルトリメトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピルトリメトキシシラン、3−(2−アミノエチル)アミノ]プロピルトリエトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピル メチル ジメトキシシランなど)、メルカプト基含有シランカップリング剤(2−メルカプトエチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなど)、ビニル基含有シランカップリング剤(ビニルトリメトキシシラン、ビニルトリエトキシシランなど)、(メタ)アクリロイル基含有シランカップリング剤(2−メタクリロイルオキシエチルトリメトキシシラン、2−メタクリロイルオキシエチルトリエトキシシラン、2−アクリロイルオキシエチルトリメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリエトキシシラン、3−アクリロイルオキシプロピルトリメトキシシランなど)などが挙げられる。これらのシランカップリング剤は単独でも、または2種以上組み合わせても使用することができる。
保護層は、前記有機樹脂や無機材料、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を基材表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することが好ましい。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプなどから発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する。または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
また、保護層は上述のエキシマランプによる真空紫外線照射で硬化させることもできる。ガスバリア層と保護層とを同一ラインで塗布形成する場合には、保護層の硬化もエキシマランプによる真空紫外線照射で行うことが好ましい。
加えて、ポリシラザン化合物を含有する溶液を塗布して形成されたガスバリア層の改質処理前に、塗布液から得られる塗膜層上にアルコキシ変性ポリシロキサン塗膜を成膜し、その上から真空紫外線を照射した場合、アルコキシ変性ポリシロキサン塗膜は保護層となり、さらに下層のポリシラザン塗膜層の改質も行うことができ、高温高湿下の保存安定性により優れたバリア層を得ることができる。
また、保護層の形成方法として、前記中間層のポリシロキサン改質層を形成する方法を適用することができる。
〔デシカント性層〕
本発明のガスバリア性フィルムは、デシカント性層(吸湿層)を有してもよい。デシカント性層として用いられる材料としては、例えば、酸化カルシウムや有機金属酸化物などが挙げられる。酸化カルシウムとしては、バインダー樹脂などに分散されたものが好ましく、市販品としては、例えば、サエスゲッター社のAqvaDryシリーズなどを好ましく用いることができる。また、有機金属酸化物としては、双葉電子工業株式会社製のOleDry(登録商標)シリーズなどを用いることができる。
〔平滑層(下地層、プライマー層、ハードコート層)〕
本発明のガスバリア性フィルムは、基材のガスバリア層を有する面、好ましくは基材と第1層目のガスバリア層との間に平滑層(下地層、プライマー層、ハードコート層)を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、基材に存在する突起により、ガスバリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、いずれの材料で形成されてもよいが、炭素含有ポリマーを含むことが好ましく、炭素含有ポリマーから構成されることがより好ましい。すなわち、本発明のガスバリア性フィルムは、基材と第1層目のガスバリア層との間に、炭素含有ポリマーを含む平滑層をさらに有することが好ましい。
また、平滑層は、炭素含有ポリマー、好ましくは硬化性樹脂を含む。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。
平滑層の形成に用いられる活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製の紫外線硬化性材料である有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。
光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性ペンタエリスリトールトリアクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。
活性エネルギー線硬化性材料を含む組成物は、光重合開始剤を含有することが好ましい。
光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
熱硬化性材料としては、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V−8000シリーズ、EPICLON(登録商標) EXA−4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコン樹脂 X−12−2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン−エピクロルヒドリン樹脂等が挙げられる。
平滑層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、または蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射および/または加熱により、前記塗膜を硬化させて形成する方法が好ましい。活性エネルギー線を照射する方法としては、例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い好ましくは100〜400nm、より好ましくは200〜400nmの波長領域の紫外線を照射する、または、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する方法が挙げられる。
硬化性材料を溶媒に溶解または分散させた塗布液を用いて平滑層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。
平滑層は、上述の材料に加えて、必要に応じて、熱可塑性樹脂や酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を含有することができる。また、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。
表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
平滑層の膜厚としては、特に制限されないが、0.1〜10μmの範囲が好ましい。
〔アンカーコート層〕
基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレン・ビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化性ポリマー溶液(信越化学工業株式会社製、「X−12−2400」の3%イソプロピルアルコール溶液)を用いることができる。
これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5g/m2(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。
または、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008−142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。
また、アンカーコート層の厚さは、特に制限されないが、0.5〜10.0μm程度が好ましい。
〔ブリードアウト防止層〕
本発明のガスバリア性フィルムは、ガスバリア層を設ける面とは反対側の基材面にブリードアウト防止層を有してもよい。
ブリードアウト防止層は、フィルムを加熱した際に、フィルム中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で、設けられる。ブリードアウト防止層は、この機能を有していれば基本的に平滑層と同じ構成をとっても構わない。
ブリードアウト防止層に、ハードコート剤として含ませることが可能な重合性不飽和基を有する不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物または分子中に一個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。
ここで、多価不飽和有機化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
その他の添加剤として、マット剤を含有してもよい。マット剤としては平均粒子径が0.1〜5μm程度の無機粒子が好ましい。このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
ここで無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。
また、ブリードアウト防止層は、ハードコート剤およびマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
また、電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。
また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。
以上のようなブリードアウト防止層は、ハードコート剤、マット剤、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を支持体フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。
なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
ブリードアウト防止層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にし、かつ、ガスバリア性フィルムのカールを調整する観点から、1.0〜10μmの範囲が好ましく、さらに好ましくは、2μm〜7μmの範囲にすることが好ましい。
《ガスバリア性フィルムの包装形態》
本発明のガスバリア性フィルムは、連続生産しロール形態に巻き取ることができる(いわゆるロール・トゥ・ロール生産)。その際、バリア層を形成した面に保護シートを貼合して巻き取ることが好ましい。特に、本発明のガスバリア性フィルムを有機薄膜デバイスの封止材として用いる場合、表面に付着したゴミ(例えば、パーティクル)が原因で欠陥となる場合が多く、クリーン度の高い場所で保護シートを貼合してゴミの付着を防止することは非常に有効である。併せて、巻取り時に入るバリア層表面への傷の防止に有効である。
保護シートとしては、特に限定するものではないが、膜厚100μm程度の樹脂基板に弱粘着性の接着層を付与した構成の一般的な「保護シート」、「剥離シート」を用いることができる。
《ガスバリア性フィルムの水蒸気透過率》
本発明のガスバリア性フィルムの水蒸気透過率は、低いほど好ましいが、例えば、0.001〜0.00001g/m2・24hであることが好ましく、0.0001〜0.00001g/m2・24hであることがより好ましい。
本発明のガスバリア性フィルムにおいては、水蒸気透過率の測定方法は特に制限されないが、本発明では、水蒸気透過率測定方法として、下記Ca法による測定を行った。
〈本発明で用いたCa法〉
蒸着装置:日本電子株式会社製 真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
水蒸気バリア性評価用セルの作製
ガスバリア性フィルム試料のガスバリア層面に、真空蒸着装置(日本電子株式会社製 真空蒸着装置JEE−400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス株式会社製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、後述の実施例に示すように、屈曲前後のガスバリア性の変化を確認するために、屈曲の処理を行ったガスバリア性フィルムと、屈曲の処理を行わなかったガスバリア性フィルムについて、同様の水蒸気バリア性評価用セルを作製した。
得られた両面を封止した試料を85℃、95%RHの高温高湿下で保存し、特開2005−283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。
なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な85℃、95%RHの高温高湿下保存を行い、200時間経過後でも金属カルシウム腐食が発生しないことを確認した。
〔電子デバイス〕
本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。すなわち、本発明は、電子デバイス本体と、本発明のガスバリア性フィルムまたは本発明に係る製造方法により得られるガスバリア性フィルムと、を有する電子デバイスを提供する。
前記デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。
本発明のガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。すなわち、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける方法である。ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。
本発明のガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。
<有機EL素子>
ガスバリア性フィルムを用いた有機EL素子の例は、特開2007−30387号公報に詳しく記載されている。
<液晶表示素子>
反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリア性フィルムは、前記透明電極基板および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板および偏光膜からなる構成を有する。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。液晶セルの種類は特に限定されないが、より好ましくはTN型(Twisted Nematic)、STN型(Super Twisted Nematic)またはHAN型(Hybrid Aligned Nematic)、VA型(Vertically Alignment)、ECB型(Electrically Controlled Birefringence)、OCB型(Optically Compensated Bend)、IPS型(In−Plane Switching)、CPA型(Continuous Pinwheel Alignment)であることが好ましい。
<太陽電池>
本発明のガスバリア性フィルムは、太陽電池素子の封止フィルムとしても用いることができる。ここで、本発明のガスバリア性フィルムは、バリア層が太陽電池素子に近い側となるように封止することが好ましい。本発明のガスバリア性フィルムが好ましく用いられる太陽電池素子としては、特に制限はないが、例えば、単結晶シリコン系太陽電池素子、多結晶シリコン系太陽電池素子、シングル接合型、またはタンデム構造型等で構成されるアモルファスシリコン系太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII−V族化合物半導体太陽電池素子、カドミウムテルル(CdTe)等のII−VI族化合物半導体太陽電池素子、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池素子、色素増感型太陽電池素子、有機太陽電池素子等が挙げられる。中でも、本発明においては、上記太陽電池素子が、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池素子であることが好ましい。
<その他>
その他の適用例としては、特表平10−512104号公報に記載の薄膜トランジスタ、特開平5−127822号公報、特開2002−48913号公報等に記載のタッチパネル、特開2000−98326号公報に記載の電子ペーパー等が挙げられる。
<光学部材>
本発明のガスバリア性フィルムは、光学部材としても用いることができる。光学部材の例としては円偏光板等が挙げられる。
(円偏光板)
本発明におけるガスバリア性フィルムを基板としλ/4板と偏光板とを積層し、円偏光板を作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とのなす角が45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002−865554号公報に記載のものを好適に用いることができる。
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「重量部」あるいは「重量%」を表す。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で行う。
(比較例1)
〔第1のガスバリア層の形成(蒸着法)〕
図1に示すようなロールツーロール形態の大気圧プラズマ製膜装置を用いて、大気圧プラズマ法により第1のガスバリア層(蒸着ガスバリア層)を形成した。具体的には、210mm×350mmの大きさのハードコート層(中間層)付き透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、ハードコート層はアクリル樹脂を主成分としたUV硬化樹脂より構成、PETの厚さ125μm、CHCの厚さ6μm)上に、下記表1に示す薄膜形成条件で酸炭化珪素(SiOC)からなる第1のガスバリア層(厚さ100nm)を形成した。第1のガスバリア層の弾性率E1をナノインデンテーション法により測定したところ、膜厚方向で一様に30GPaであった。
〔第2のガスバリア層(ポリシラザン塗膜層)の形成〕
<ポリシラザン含有塗布液の調製>
無触媒のパーヒドロポリシラザン(PHPS)を20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120−20)と、1質量%のアミン触媒(N,N,N',N'−テトラメチル−1,6−ジアミノヘキサン)および19質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120−20)とを、4:1の割合で混合し、さらにジブチルエーテル溶媒で、塗布液の固形分が5質量%になるように希釈調製した。
(製膜)
得られたポリシラザン含有塗布液を用い、スピンコーターにて基材上に、厚さが150nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間追加加熱処理を行い、ポリシラザン塗膜層を形成した。
〔第3のガスバリア層(ポリシラザン塗膜層)の形成〕
第2のガスバリア層となるポリシラザン塗膜層の上に、上記第2のガスバリア層の形成と同様の方法で、第3のガスバリア層となるポリシラザン塗膜層を形成した。
第3のガスバリア層となるポリシラザン塗膜層を形成した後、下記の装置および方法により、第3のガスバリア層となるポリシラザン塗膜層の側から真空紫外線照射処理を施して、ガスバリア性フィルム(サンプルNo.1)を作製した。
紫外線照射装置
エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200
波長172nm、ステージ温度100℃
積算光量6000mJ/cm2、酸素濃度0.1体積%。
〈真空紫外線照射条件・照射エネルギーの測定〉
真空紫外線照射は、図2に断面模式図で示した装置を用いて行った。
図2において、11は装置チャンバであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバ内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。12は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、13は外部電極を兼ねるエキシマランプのホルダーである。14は試料ステージである。試料ステージ14は、図示しない移動手段により装置チャンバ11内を水平に所定の速度で往復移動することができる。また、試料ステージ14は図示しない加熱手段により、所定の温度に維持することができる。15はポリシラザン塗膜層が形成された試料である。試料ステージが水平移動する際、試料の塗布層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。16は遮光板であり、Xeエキシマランプ12のエージング中に試料の塗布層に真空紫外光が照射されないようにしている。
真空紫外線照射工程で塗膜表面に照射されるエネルギーは、浜松ホトニクス株式会社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ14中央に設置し、かつ、装置チャンバ11内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ14を0.5m/minの速度(図3のV)で移動させて測定を行った。測定に先立ち、Xeエキシマランプ12の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。
この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで6000mJ/cm2の照射エネルギーとなるように調整した。尚、真空紫外線照射に際しては、照射エネルギー測定時と同様に、10分間のエージング後に行った。
(比較例2)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、比較例1と同様にしてガスバリア性フィルム(サンプルNo.2)を作製した。
(実施例1)
下記の方法で調製したアルミニウム含有塗布液を用いて、第3のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例1と同様にして、ガスバリア性フィルム(サンプルNo.3)を作製した。
<アルミニウム含有塗布液の調製>
無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120−20)と、アミン触媒(N,N,N',N'−テトラメチル−1,6−ジアミノヘキサン)を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120−20)とを、4:1の割合で混合したもの 2.318g、ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.306g、およびジブチルエーテル 12.776gを混合したものを塗布液とした。
(実施例2)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、実施例1と同様にしてガスバリア性フィルム(サンプルNo.4)を作製した。
(実施例3)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第2のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例1と同様にして、ガスバリア性フィルム(サンプルNo.5)を作製した。
(実施例4)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、実施例3と同様にしてガスバリア性フィルム(サンプルNo.6)を作製した。
(比較例3)
第3のガスバリア層となるポリシラザン塗膜層の上に、さらに上記「第2のガスバリア層(ポリシラザン塗膜層)の形成」と同様の方法で、第4のガスバリア層となるポリシラザン塗膜層を形成し、その後積算光量9000mJ/cm2で第4のガスバリア層となるポリシラザン塗膜層の側から真空紫外線照射を行ったこと以外は、比較例1と同様にして、ガスバリア性フィルム(サンプルNo.7)を作製した。
(比較例4)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、比較例3と同様にしてガスバリア性フィルム(サンプルNo.8)を作製した。
(実施例5)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第4のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例3と同様にして、ガスバリア性フィルム(サンプルNo.9)を作製した。
(実施例6)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、実施例5と同様にしてガスバリア性フィルム(サンプルNo.10)を作製した。
(実施例7)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第3のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例3と同様にして、ガスバリア性フィルム(サンプルNo.11)を作製した。
(実施例8)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第2のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例3と同様にして、ガスバリア性フィルム(サンプルNo.12)を作製した。
(比較例5)
基材上に、上記「第2のガスバリア層(ポリシラザン塗膜層)の形成」と同様の方法で、第1のガスバリア層となるポリシラザン塗膜層を形成し、その後積算光量12000mJ/cm2で真空紫外線照射を行ったこと以外は、比較例3と同様にして、ガスバリア性フィルム(サンプルNo.13)を作製した。
(比較例6)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、比較例5と同様にしてガスバリア性フィルム(サンプルNo.14)を作製した。
(実施例9)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第4のガスバリア層となるポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.15)を作製した。
(実施例10)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、実施例9と同様にしてガスバリア性フィルム(サンプルNo.16)を作製した。
(実施例11)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第3のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.17)を作製した。
(実施例12)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第2のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.18)を作製した。
(実施例13)
上記実施例1で調製したアルミニウム含有塗布液を用いて、第2のガスバリア層となるアルミニウム含有ポリシラザン塗膜層および第4のガスバリア層となるアルミニウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.19)を作製した。
(実施例14)
真空紫外線照射の後、さらに80℃で24時間、温度処理を施したこと以外は、実施例13と同様にしてガスバリア性フィルム(サンプルNo.20)を作製した。
(実施例15)
上記実施例1で調製したアルミニウム含有塗布液中のALCHの代わりに、同量のガリルム(III)イソプロポキシド(和光純薬工業株式会社製)を添加し、ガリウム含有塗布液を調製した。このガリウム含有塗布液を用いて、第2のガスバリア層となるガリウム含有ポリシラザン塗膜層および第4のガスバリア層となるガリウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.21)を作製した。
(実施例16)
上記実施例1で調製したアルミニウム含有塗布液中のALCHの代わりに、同量のインジウム(III)イソプロポキシド(和光純薬工業株式会社製)を添加し、インジウム含有塗布液を調製した。このインジウム含有塗布液を用いて、第2のガスバリア層となるインジウム含有ポリシラザン塗膜層および第4のガスバリア層となるインジウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.22)を作製した。
(実施例17)
上記実施例1で調製したアルミニウム含有塗布液中のALCHの代わりに、同量のマグネシウムエトキシド(和光純薬工業株式会社製)を添加し、マグネシウム含有塗布液を調製した。このマグネシウム含有塗布液を用いて、第2のガスバリア層となるマグネシウム含有ポリシラザン塗膜層および第4のガスバリア層となるマグネシウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.23)を作製した。
(実施例18)
上記実施例1で調製したアルミニウム含有塗布液中のALCHの代わりに、同量のカルシウムイソプロポキシド(和光純薬工業株式会社製)を添加し、カルシウム含有塗布液を調製した。このカルシウム含有塗布液を用いて、第2のガスバリア層となるカルシウム含有ポリシラザン塗膜層および第4のガスバリア層となるカルシウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.24)を作製した。
(実施例19)
上記実施例1で調製したアルミニウム含有塗布液中のALCHの代わりに、同量のホウ酸トリイソプロピル(和光純薬工業株式会社製)を添加し、ホウ素含有塗布液を調製した。このホウ素含有塗布液を用いて、第2のガスバリア層となるホウ素含有ポリシラザン塗膜層および第4のガスバリア層となるホウ素含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.25)を作製した。
(比較例7)
上記実施例1で調製したアルミニウム含有塗布液中のALCHの代わりに、同量のトリス(ジブチルスルフィド)ロジウムクロライド[Tris(dibutylsulfide)RhCl3、Gelest,Inc.製]を添加し、ロジウム含有塗布液を調製した。このロジウム含有塗布液を用いて、第2のガスバリア層となるロジウム含有ポリシラザン塗膜層および第4のガスバリア層となるロジウム含有ポリシラザン塗膜層の形成を行ったこと以外は、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.26)を作製した。
《ガスバリア性フィルムの特性値の測定方法》
《水蒸気バリア性の評価》
上記で作製したガスバリア性フィルムについて、85℃95%RHの高温高湿下に200時間曝したサンプル(DH200hr後)を各々準備した。
水蒸気バリア性の評価は、80nm厚の金属カルシウムをガスバリア性フィルム上に蒸着製膜し、製膜したカルシウムが50%の面積になる時間を50%面積時間として評価することで行った(下記参照)。200時間曝す前後の50%面積時間を評価し、曝した後の50%面積時間/曝す前の50%面積時間を保持率(%)として算出し、表3に示した。保持率の指標としては70%以上あれば許容とし、70%未満は不適合と判断した。
(金属カルシウム製膜装置)
蒸着装置:日本電子株式会社製、真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
(原材料)
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
(水蒸気バリア性評価試料の作製)
真空蒸着装置(日本電子製真空蒸着装置 JEE−400)を用い、作製したガスバリア性フィルムの最外層のガスバリア層表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。この際、蒸着膜厚は80nmとなるようにした。
その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス株式会社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリア性評価試料を作製した。
得られた試料を、85℃95%RHの高温高湿下で保存し、保存時間に対して金属カルシウムが腐食して行く様子を観察した。観察は、12mm×12mmの金属カルシウム蒸着面積に対する金属カルシウムが腐食した面積が50%になる時間を観察結果から直線で内挿して求めた。
《密着力評価》
JIS K 5400:1900に準じて、100マスのクロスカット試験を実施した。100マス中、剥離がないマス目の数の多い方が、密着力が良いことになる。
この試験を、85℃95%RHの高温高湿下に200時間曝す前のサンプル(即)と、85℃95%RHの高温高湿下に200時間曝した後のサンプル(DH200hr後)との両方で行った。
《折り曲げ耐性評価》
各ガスバリア性フィルムを、半径が2mmの曲率になるように、180°の角度で150回の屈曲を繰り返した。その後、上記と同様の方法で水蒸気透過率(水蒸気バリア性)を測定し、屈曲前後での水蒸気透過率の変化より、下式に従って耐劣化度を算出し、下記の基準に従って折り曲げ耐性を評価した。
耐劣化度=(屈曲試験後の水蒸気透過度/屈曲試験前の水蒸気透過度)×100(%)
5:耐劣化度が95%以上である
4:耐劣化度が85%以上95%未満である
3:耐劣化度が50%以上85%未満である
2:耐劣化度が10%以上50%未満である
1:耐劣化度が10%未満である。
この試験を、85℃95%RHの高温高湿下に200時間曝す前のサンプル(即)と、85℃95%RHの高温高湿下に200時間曝した後のサンプル(DH200hr後)との両方で行った。
《クラックの評価》
上記で作製したガスバリア性フィルムの100mm×100mmサイズについて、85℃、95%RHの高温高湿下で100時間保存した。保存後、パナソニック株式会社製のスタジオスポットライト・NQSシリーズ NQS−50を用いて膜面クラックを目視にて本数の評価を行い、下記のようにランク付けした。クラックの本数が少ないほど良好な試料である。
5:0本
4:1〜4本
3:5〜9本
2:10〜19本
1:20本以上。
《有機薄膜電子デバイスの作製》
上記で作製したガスバリア性フィルムを用いて、有機薄膜電子デバイスである有機EL素子を作製した。
〔有機EL素子の作製〕
(第1電極層の形成)
各ガスバリア性フィルムの最外層のガスバリア層上に、厚さ150nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
(正孔輸送層の形成)
第1電極層が形成されたガスバリア性フィルムの第1電極層の上に、以下に示す正孔輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し、正孔輸送層を形成した。正孔輸送層形成用塗布液は、乾燥後の厚みが50nmになるように塗布した。
正孔輸送層形成用塗布液を塗布する前に、ガスバリア性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm2、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用した。
〈塗布条件〉
塗布工程は大気中、25℃、相対湿度50%RHの環境で行った。
〈正孔輸送層形成用塗布液の準備〉
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Baytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
〈乾燥および加熱処理条件〉
正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
(発光層の形成)
引き続き、正孔輸送層まで形成したガスバリア性フィルムの正孔輸送層上に、以下に示す白色発光層形成用塗布液を押出し塗布機で塗布した後、乾燥し発光層を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
〈白色発光層形成用塗布液〉
ホスト材の下記H−Aを1.0gと、ドーパント材の下記D−Aを100mgと、ドーパント材の下記D−Bを0.2mgと、ドーパント材の下記D−Cを0.2mgと、を100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
〈塗布条件〉
塗布工程を窒素ガス濃度99体積%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
〈乾燥および加熱処理条件〉
白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した。次いで、温度130℃で加熱処理を行い、発光層を形成した。
(電子輸送層の形成)
次に、以下に示す電子輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。電子輸送層形成用塗布液は乾燥後の厚みが30nmになるように塗布した。
〈塗布条件〉
塗布工程は、窒素ガス濃度99体積%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
〈電子輸送層形成用塗布液〉
電子輸送層は、下記E−Aを2,2,3,3−テトラフルオロ−1−プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
〈乾燥および加熱処理条件〉
電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した。次いで、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
(電子注入層の形成)
次に、形成された電子輸送層上に電子注入層を形成した。まず、基板を減圧チャンバに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(第2電極の形成)
第1電極の上に取り出し電極になる部分を除き、形成された電子注入層の上に5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法で、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(裁断)
第2電極まで形成したガスバリア性フィルムを、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断した。
(電極リード接続)
作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
圧着条件:温度170℃(別途熱電対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
(封止)
電極リード(フレキシブルプリント基板)を接続した有機EL素子を、市販のロールラミネート装置を用いて封止部材を接着し、有機EL素子を製作した。
なお、封止部材としては、ドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いて、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をラミネートしたもの(接着剤層の厚み1.5μm)を用いた。
ディスペンサを使用して、アルミニウム面に熱硬化性接着剤をアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。
熱硬化接着剤としては以下のエポキシ系接着剤を用いた。
ビスフェノールAジグリシジルエーテル(DGEBA)
ジシアンジアミド(DICY)
エポキシアダクト系硬化促進剤。
しかる後、封止基板を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて圧着条件:圧着ロール温度120度、圧力0.5MPa、装置速度0.3m/minで密着封止した。
《有機EL素子の評価》
上記作製した有機EL素子について、下記の方法に従って、耐久性の評価を行った。
〔耐久性の評価〕
(加速劣化処理)
上記作製した各有機EL素子を、85℃、95%RHの環境下で200時間の加速劣化処理を施した後、加速劣化処理を施していない有機EL素子と共に、下記の黒点に関する評価を行った。
(黒点の評価)
加速劣化処理を施した有機EL素子および加速劣化処理を施していない有機EL素子に対し、それぞれ1mA/cm2の電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方に切り抜き、黒点の発生面積比率を求め、下式に従って素子劣化耐性率を算出し、下記の基準に従って耐久性を評価した。評価ランクが、◎であれば、実用上好ましい特性であると判定した。
素子劣化耐性率=(加速劣化処理を施していない素子で発生した黒点の面積/加速劣化処理を施した素子で発生した黒点の面積)×100(%)
◎:素子劣化耐性率が、90%以上である
○:素子劣化耐性率が、60%以上90%未満である
△:素子劣化耐性率が、20%以上60%未満である
×:素子劣化耐性率が、20%未満である
この評価を、85℃95%RHの高温高湿下に200時間曝す前のサンプル(即)と、85℃95%RHの高温高湿下に200時間曝した後のサンプル(DH200hr後)との両方で行った。
各実施例および各比較例のガスバリア性フィルムの構成を下記表2に、評価結果を下記表3に、それぞれ示す。なお、表2における「改質処理」および「温度処理」の欄には、その欄が記載されている層(塗膜層)の作製直後に上記処理を行ったか否かを示した。
上記表3から明らかなように、実施例により作製した本発明のガスバリア性フィルムは、高いガスバリア性を有し、高温高湿条件下で保存した後でも、層間密着力や屈曲耐性に優れ、クラックの発生も少ない。また、有機EL素子の封止フィルムとして用いることでダークスポットの発生を低減させる効果を有する。
11 装置チャンバ、
12 Xeエキシマランプ
13 外部電極を兼ねるエキシマランプのホルダー、
14 試料ステージ、
15 層が形成された試料、
16 遮光板、
30 プラズマ放電処理装置、
31 プラズマ放電処理容器、
32 対向電極間(放電空間)、
35 ロール回転電極(第1電極)、
36 角筒型固定電極(第2電極)、
40 二つの電源を有する電界印加手段、
41 第1電源、
42 第2電源、
43 第1フィルタ、
44 第2フィルタ、
50 ガス供給手段、
51 ガス発生装置、
53 排気口、
60 電極温度調節手段、
61 配管、
64、67 ガイドロール、
65、66 ニップロール、
68、69 仕切板、
F 基材、
P 送液ポンプ、
G ガス、
G' 放電処理済みの処理排ガス。

Claims (6)

  1. 基材上に、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得た後、前記基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行うことにより得られる、複数のガスバリア層を有するガスバリア性フィルムであって、
    前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルム。
  2. 前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素が、アルミニウム、インジウム、ガリウム、マグネシウム、カルシウム、ゲルマニウム、およびホウ素からなる群より選択される少なくとも1種である、請求項1に記載のガスバリア性フィルム。
  3. 蒸着法により形成されるガスバリア層をさらに有する、請求項1または2に記載のガスバリア性フィルム。
  4. 前記改質処理の後に、さらに温度処理されて形成される、請求項1〜3のいずれか1項に記載のガスバリア性フィルム。
  5. 基材上に、ポリシラザン化合物を含有する塗布液を順次塗布乾燥して複数の塗膜層を得る工程と、
    前記基材から最も離れた前記塗膜層の側から真空紫外線を照射し改質処理を行う工程と、
    を含む、複数のガスバリア層を有するガスバリア性フィルムの製造方法であって、
    前記塗膜層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)の化合物を含有する、ガスバリア性フィルムの製造方法。
  6. 電子デバイス本体と、
    請求項1〜4のいずれか1項に記載のガスバリア性フィルムまたは請求項5に記載の製造方法により得られるガスバリア性フィルムと、
    を有する、電子デバイス。
JP2013164202A 2013-08-07 2013-08-07 ガスバリア性フィルム Expired - Fee Related JP6060848B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013164202A JP6060848B2 (ja) 2013-08-07 2013-08-07 ガスバリア性フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013164202A JP6060848B2 (ja) 2013-08-07 2013-08-07 ガスバリア性フィルム

Publications (2)

Publication Number Publication Date
JP2015033764A true JP2015033764A (ja) 2015-02-19
JP6060848B2 JP6060848B2 (ja) 2017-01-18

Family

ID=52542667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013164202A Expired - Fee Related JP6060848B2 (ja) 2013-08-07 2013-08-07 ガスバリア性フィルム

Country Status (1)

Country Link
JP (1) JP6060848B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014246A1 (ja) * 2015-07-23 2017-01-26 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法
US9953827B2 (en) 2015-09-23 2018-04-24 Samsung Electronics Co., Ltd. Method of forming semiconductor device having dielectric layer and related system
KR20190041822A (ko) * 2017-10-13 2019-04-23 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막
JP2020098304A (ja) * 2018-12-19 2020-06-25 エルジー ディスプレイ カンパニー リミテッド 表示装置および表示装置の製造方法
WO2023112843A1 (ja) * 2021-12-15 2023-06-22 株式会社東海理化電機製作所 有機el素子の封止方法、有機el素子、有機el装置、及び車両用装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166157A (ja) * 1997-12-04 1999-06-22 Tonen Corp コーティング組成物及びシリカ系セラミックス膜の製造方法
JP2008520773A (ja) * 2004-11-23 2008-06-19 クラリアント・インターナシヨナル・リミテッド ポリシラザンに基づく被覆剤及びフィルム、特にポリマーフィルムを被覆するためのこれの使用
WO2012026362A1 (ja) * 2010-08-25 2012-03-01 コニカミノルタホールディングス株式会社 ガスバリア性フィルムの製造方法及び有機光電変換素子
JP2012106421A (ja) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
JP2012250181A (ja) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc バリアーフィルムの製造方法及び電子機器
JP2013123893A (ja) * 2011-12-16 2013-06-24 Konica Minolta Inc 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166157A (ja) * 1997-12-04 1999-06-22 Tonen Corp コーティング組成物及びシリカ系セラミックス膜の製造方法
JP2008520773A (ja) * 2004-11-23 2008-06-19 クラリアント・インターナシヨナル・リミテッド ポリシラザンに基づく被覆剤及びフィルム、特にポリマーフィルムを被覆するためのこれの使用
WO2012026362A1 (ja) * 2010-08-25 2012-03-01 コニカミノルタホールディングス株式会社 ガスバリア性フィルムの製造方法及び有機光電変換素子
JP2012106421A (ja) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
JP2012250181A (ja) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc バリアーフィルムの製造方法及び電子機器
JP2013123893A (ja) * 2011-12-16 2013-06-24 Konica Minolta Inc 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014246A1 (ja) * 2015-07-23 2017-01-26 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法
JPWO2017014246A1 (ja) * 2015-07-23 2018-05-10 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法
US9953827B2 (en) 2015-09-23 2018-04-24 Samsung Electronics Co., Ltd. Method of forming semiconductor device having dielectric layer and related system
KR20190041822A (ko) * 2017-10-13 2019-04-23 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막
KR102194975B1 (ko) 2017-10-13 2020-12-24 삼성에스디아이 주식회사 실리카 막 형성용 조성물, 실리카 막의 제조방법 및 실리카 막
US11518909B2 (en) 2017-10-13 2022-12-06 Samsung Sdi Co., Ltd. Composition for forming silica layer, manufacturing method for silica layer, and silica layer
JP2020098304A (ja) * 2018-12-19 2020-06-25 エルジー ディスプレイ カンパニー リミテッド 表示装置および表示装置の製造方法
JP7423184B2 (ja) 2018-12-19 2024-01-29 エルジー ディスプレイ カンパニー リミテッド 表示装置および表示装置の製造方法
WO2023112843A1 (ja) * 2021-12-15 2023-06-22 株式会社東海理化電機製作所 有機el素子の封止方法、有機el素子、有機el装置、及び車両用装置

Also Published As

Publication number Publication date
JP6060848B2 (ja) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6274213B2 (ja) ガスバリア性フィルム
WO2014119750A1 (ja) ガスバリア性フィルム
JP6504284B2 (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP5761203B2 (ja) ガスバリア性フィルム及び電子デバイス
JP6252493B2 (ja) ガスバリア性フィルム
US20150125679A1 (en) Gas barrier film, manufacturing method for gas barrier film, and electronic device
WO2015002156A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
JPWO2014192700A1 (ja) ガスバリア性フィルムおよびその製造方法
JP6319316B2 (ja) ガスバリア性フィルムの製造方法
JP6060848B2 (ja) ガスバリア性フィルム
WO2015182623A1 (ja) ガスバリア性フィルムおよびそれを用いた電子デバイス
JP6354756B2 (ja) ガスバリア性フィルムおよび電子デバイス
WO2014119754A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015119260A1 (ja) 変性ポリシラザン、当該変性ポリシラザンを含む塗布液および当該塗布液を用いて製造されるガスバリア性フィルム
JP6295864B2 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015146886A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015029795A1 (ja) ガスバリア性フィルムの製造方法
JPWO2015146886A6 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015029732A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6060848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees