JP2015011940A - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
JP2015011940A
JP2015011940A JP2013138634A JP2013138634A JP2015011940A JP 2015011940 A JP2015011940 A JP 2015011940A JP 2013138634 A JP2013138634 A JP 2013138634A JP 2013138634 A JP2013138634 A JP 2013138634A JP 2015011940 A JP2015011940 A JP 2015011940A
Authority
JP
Japan
Prior art keywords
pressure
output
fuel cell
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2013138634A
Other languages
English (en)
Inventor
石坂 整
Hitoshi Ishizaka
整 石坂
加藤 大典
Daisuke Kato
大典 加藤
一寛 巽
Kazuhiro Tatsumi
一寛 巽
木村 剛
Takeshi Kimura
剛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquafairy Corp
Original Assignee
Aquafairy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquafairy Corp filed Critical Aquafairy Corp
Priority to JP2013138634A priority Critical patent/JP2015011940A/ja
Publication of JP2015011940A publication Critical patent/JP2015011940A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】水素を発生させる反応容器内の圧力変動幅を小さくすることができ、しかも外部への安定した電力が出力可能な発電装置を提供する。
【解決手段】反応液1aを加圧して排出する加圧容器1と、反応液1aと反応して水素を発生させる水素発生剤2aを気密状態で収容する反応容器2と、アノード3aに供給された水素で発電を行う燃料電池3と、出力制御部の制御により燃料電池3からの出力が変動した際に、外部への出力を補うことが可能な蓄電手段31と、前記出力制御部を制御する制御手段21と、を備えている。制御手段21は、反応容器圧検出器22aで検出された圧力から加圧容器圧検出器22bで検出された圧力を減じた圧力差などに基づいて、燃料電池3からの出力が変化するように出力制御部を制御する。
【選択図】図1

Description

本発明は、反応液を加圧して排出する加圧容器から反応液を供給しつつ、その反応液と水素発生剤との反応で発生させた水素を燃料電池に供給して発電を行う発電装置に関する。
水素発生剤と反応液との反応で発生させた水素を燃料電池に供給して発電を行う発電装置としては、例えば、下記特許文献1に開示されている。特許文献1の発電装置は、一方の表面から燃料ガスが供給され、他方の表面から酸素が供給されることで発電を行なう複数の発電セルと、その複数の発電セルを前記一方の表面を内部に向けて保持することで、前記複数の発電セルと共に内部空間を形成するセル保持体と、そのセル保持体の前記内部空間に配置され、燃料ガスを発生させる燃料発生部と、を備えるものである。
この発電装置では、燃料発生部において最初に反応液を水素発生剤に供給した後、一定の速度で水素を発生させることで発電を行う方式を採用しており、電力消費量に応じで水素発生量を制御する方式は採用されていなかった。
一方、電力消費量に応じた水素発生を簡易な装置構成で行える技術として、例えば、下記特許文献2に開示された発電装置が挙げられる。特許文献2の発電装置は、反応液を加圧して排出する加圧容器と、加圧容器から供給される反応液と反応して水素を発生させる水素発生剤を収容する反応容器と、発生した水素をアノード側供給部から供給して発電を行う燃料電池とを備えている。この発電装置では、燃料電池により水素が消費されると、反応容器内の圧力が下がることで、自然に反応液が反応容器に供給される。また、反応容器から排出される水素を加圧容器に供給することで、加圧容器内の圧力を一定以上に保つ方式が採用されている。
国際特開WO2009/122910号公報 国際特開WO2006/101214号公報
しかしながら、特許文献2の発電装置では、加圧容器内の圧力と反応容器内の圧力との関係を積極的に調節する機構が存在しないため、両者の圧力の関係に応じて、反応液の供給量が自然に変動するので、反応容器内の圧力変動幅が大きくなる傾向がある。その結果、水素の供給圧力が極端に小さくなることで、十分な水素が供給されずに燃料電池からの出力が停止するという問題があった。また、水素の供給圧力が極端に大きくなることで、安全弁を介して水素を大気放出せざるを得ない状況が生じる場合があった。
そこで、本発明の目的は、水素を発生させる反応容器内の圧力変動幅を小さくすることができ、しかも外部への安定した電力が出力可能な発電装置を提供することにある。
上記目的は、以下の如き本発明により達成できる。
即ち、本発明の発電装置は、
内部空間の圧力により反応液を加圧して排出する加圧容器と、
前記加圧容器から反応液が供給され、その反応液と反応して水素を発生させる水素発生剤を気密状態で収容する反応容器と、
その反応容器内の圧力を検出する反応容器圧検出器と、
水素が供給されるアノード側供給部を有し、アノードに供給された水素で発電を行う燃料電池と、
前記反応容器に接続され前記アノード側供給部に水素を供給する水素供給経路と、
前記反応容器に連通し、水素の流入を許容する逆止弁を介して前記加圧容器に接続された加圧用経路と、
前記燃料電池からの出力を制御する出力制御部と、
前記反応容器圧検出器で検出された反応容器圧力と関連付けて、前記出力制御部を制御する制御手段と、
前記出力制御部の制御により前記燃料電池からの出力が変動した際に、外部への出力を補うことが可能な蓄電手段と、
を備えることを特徴とする。
本発明の発電装置によると、加圧容器内の圧力と反応容器内の圧力との差により、加圧容器から反応液が供給されて、反応容器内で水素が発生し、水素を燃料とする燃料電池により発電が行われる。その際、制御手段による制御として、反応容器圧検出器で検出された反応容器圧力と関連付けて、前記出力制御部を制御することにより、反応容器圧力を維持する方向で発電装置の制御を行なうことができる。つまり、反応容器圧力が低下傾向にある場合には、水素の消費量が比較的大きい状態となるが、燃料電池からの出力を低下させる制御により、反応容器圧力がより低下するのを抑制することができる。その結果、水素を発生させる反応容器内の圧力変動幅を小さく抑制することができる。そして、燃料電池からの出力が変化した際に、外部への出力を補うことが可能な蓄電手段を備えるため、外部への安定した電力が出力可能となる。
更に、前記反応容器に連通し、水素の流入を許容する逆止弁を介して前記加圧容器に接続された加圧用経路を備えることで、加圧容器内の圧力より反応容器内の圧力が大きくなった際に、加圧容器に水素を供給することができ、加圧容器内の圧力が一方的に減少して加圧できなくなる状態を防止することができる。
上記において、前記制御手段は、前記反応容器圧力が特定の低い値又は特定の減少傾向である場合に、前記燃料電池からの出力が低下するように前記出力制御部を制御するものであることが好ましい。
このような制御において、反応容器圧力が特定の低い値又は特定の減少傾向の場合には、水素の消費量が比較的大きい状態となるが、燃料電池からの出力を低下させる制御により、反応容器圧力がより低下するのを抑制することができる。特に、反応容器圧力の変動が特定の減少傾向である場合に、前記制御を行なうようにすると、より早いタイミングで反応容器圧力の低下を抑制できるため、制御の応答性がより良好になる。
あるいは、前記加圧容器内の圧力を検出する加圧容器圧検出器を更に備えると共に、前記制御手段は、前記反応容器圧力から前記加圧容器圧検出器で検出された圧力を減じた圧力差に基づいて、前記圧力差が特定の低い値又は特定の減少傾向である場合に、前記燃料電池からの出力が低下するように前記出力制御部を制御するものであることが好ましい。このような制御において、前記圧力差が特定の低い値又は特定の減少傾向の場合には、水素の消費量が比較的大きい状態となるが、燃料電池からの出力を低下させる制御により、反応容器圧力がより低下するのを抑制することができる。特に、圧力差の変動が特定の減少傾向である場合に、前記制御を行なうようにすると、より早いタイミングで反応容器圧力の低下を抑制できるため、制御の応答性がより良好になる。
上記において、前記制御手段は、前記圧力差の変動に基づいて、その変動が特定の減少傾向である場合に、前記燃料電池からの出力が低下するように前記出力制御部を制御し、前記変動が特定の増加傾向である場合に、前記燃料電池からの出力が増加するように前記出力制御部を制御することが好ましい。変動が特定の減少傾向の場合には、水素の消費量が比較的大きい状態となるが、燃料電池からの出力を低下させる制御により、変動の減少傾向を抑制することができる。また、逆の場合にも、変動の増加傾向を抑制することができ、その結果、水素を発生させる反応容器内の圧力変動幅を小さく抑制することができる。また、圧力差等の変動に基づいて制御を行うことで、圧力差の値を用いる場合と比較して、より早いタイミングで反応容器圧力又は圧力差の絶対値が小さくなるような制御が可能となるため、水素を発生させる反応容器内の圧力変動幅を小さくして、より安定した発電装置の運転が可能となる。また、外部出力の負荷の変動が大きい場合でも、圧力差の変動幅を小さく抑制することができる。
また、前記加圧容器内の圧力を検出する加圧容器圧検出器を更に備えると共に、前記制御手段は、前記加圧容器圧検出器で検出された圧力が設定した下限値以下となった場合に前記燃料電池からの出力を停止又は50%以下まで減少させ、前記加圧容器圧検出器で検出された圧力が設定した上限値以上となった場合に前記燃料電池からの出力を回復するように前記出力制御部を制御することが好ましい。このような制御を行って、燃料電池からの出力を一時的に停止又は50%以下まで減少させることで、反応容器内の圧力を積極的に増加させることができ、その結果、加圧容器内の圧力をより確実に上限値以上まで回復することができる。
また、前記出力制御部は、前記燃料電池の出力が入力されて定電流出力が可能な直流電圧変換器を有し、その直流電圧変換器の設定電流値を変化させることで、前記燃料電池からの出力を制御することが好ましい。このように設定電流値を変化させることで、より確実に水素の消費量を制御することができる。また、定電流出力が可能な直流電圧変換器を用いることで、内部二次電池や内蔵負荷そして外部出力とバランスを可変にすることが可能となり、燃料電池の活性状態や二次電池の残容量など様々な状況に応じて、出力比率選択が可能となる。
上記において、前記直流電圧変換器は出力側の負荷に応じて出力電圧が変動するものであり、前記直流電圧変換器からの出力電圧と前記蓄電手段の出力電圧との関係を利用して前記蓄電手段の充放電が行われることが好ましい。このように、直流電圧変換器からの出力電圧が変動する場合、直流電圧変換器からの出力電圧と前記蓄電手段の出力電圧との差が一定範囲内の場合には燃料電池と蓄電手段との両者から外部への出力が行われ、蓄電手段からの出力電圧がその範囲を超えて大きい場合には、蓄電手段から外部への出力が優先的に行われ、蓄電手段からの出力電圧がその範囲を超えて小さい場合には、蓄電手段への充電と燃料電池からの出力が行われる。
また、発電装置の使用開始時において、前記反応容器に反応液を供給可能な別の反応液供給器を更に備えることが好ましい。このような反応液供給器により、発電装置の使用開始時に反応容器に反応液を供給することで水素発生と発電が行えるようになるため、簡易な方法で発電装置を起動させることができる。
本発明の発電装置の一例を示す概略構成図 本発明の発電装置における燃料電池の一例を示す断面図 本発明の第1実施形態の発電装置における制御(運転ルーチン)の一例を示すフローチャート 本発明の第2実施形態の発電装置における制御(運転ルーチン)の一例を示すフローチャート 本発明の第3実施形態の発電装置における制御(運転ルーチン)の一例を示すフローチャート 本発明の第4実施形態の発電装置における制御(運転ルーチン)の一例を示すフローチャート 本発明の発電装置における制御(起動ルーチン)の一例を示すフローチャート 実験例1における結果を示すグラフ 実験例2における結果を示すグラフ 実験例3における結果を示すグラフ
本発明の発電装置には、制御の形態が異なる第1実施形態〜第4実施形態が存在する。第1実施形態では、反応容器圧検出器で検出された圧力から前記加圧容器圧検出器で検出された圧力を減じた圧力差の変動傾向に基づいて制御を行うのに対して、第2実施形態では、圧力差の値そのものに基づいて制御を行う点が相違している。第3実施形態では、反応容器圧検出器で検出された圧力の変動傾向に基づいて制御を行うのに対して、第2実施形態では、当該圧力の値そのものに基づいて制御を行う点が相違している。以下、各実施形態を分けて説明する。
(第1実施形態)
本発明の発電装置は、図1に示すように、内部空間の圧力により反応液1aを加圧して排出する加圧容器1と、加圧容器1から反応液1aが供給され、反応液1aと反応して水素を発生させる水素発生剤2aを気密状態で収容する反応容器2と、水素を供給するアノード側供給部3dを有し、アノード3aに供給された水素で発電を行う燃料電池3とを備えている。
また、本発明の発電装置は、加圧容器1から排出される反応液1aを反応容器2に供給する反応液供給路4と、反応容器2に接続され反応容器2から排出される水素をアノード側供給部3dに供給する水素供給路5とを備えている。本実施形態では、水素供給経路5から分岐し、水素の流入を許容する逆止弁6aを介して加圧容器1に接続された加圧用経路6を更に備える例を示す。
加圧容器1は、内部に収容した反応液1aを加圧して排出する構造であればよく、密閉容器内に、直接反応液1aを収容する形態でも、内部に設けた別の容器を介して反応液1aを収容する形態でもよい。反応液としては、水素発生剤2aと反応して水素を発生させるものであればよく、中性の水、酸水溶液、アルカリ水溶液などが用いられる。
膨張可能又は変形可能な内部容器を用いる場合、ゴム製や樹脂製などの袋、蛇腹部を有する容器、シリンジ型容器などが挙げられる。また、これらにバネ、弾性体などの付勢手段を組み合わせたものでもよい。
加圧容器1内の圧力は、大気圧以上であればよいが、好ましくはゲージ圧として、500kPa以下の一定範囲、より好ましくは300kPa以下の一定範囲で制御されていることが望ましい。このような圧力の制御は、系内に設ける安全弁の圧力設定によって制御することができる。また、本実施形態のように、圧力レギュレータ5aを設けて、圧力制御を、二次側の圧力に応じた弁の開閉によって、二次側の圧力一定以下に制御する圧力レギュレータ5aを用いて行ってもよい。圧力レギュレータ5aの二次側の設定圧力としては、例えば100〜200kPa(特に120kPa)が挙げられる。
反応液供給路4は、加圧容器1から排出される反応液1aを反応容器2に供給するものであるが、反応液供給路4には、反応液1aの流量を制限する流量制限部を有することが好ましい。これにより、圧力差により供給される反応液1aの流量を適度に調整することができる。
流量制限部としては、反応液1aの流量を制限できるものであればよく、開度調整が可能なものでもよいが、流量制限の性能の再現性を高める観点から、開度が固定されているものが好ましい。
流量制限部としては、具体的には、直径又は断面が一定の細管を用いることが好ましく、細管の内径又は内面積と長さによって、流動抵抗(圧力損失)を調節することができる。なお、反応液供給路4の配管を長さや太さを調整することにより、同様の流量制限を行うことが可能である。
流量制限部によって制限される反応液1aの流量は、発電量や使用する水素発生剤などに応じて決定される。
反応容器2は、反応液1aと反応して水素を発生させる水素発生剤2aを収容するものである。反応容器2としては、密閉容器が用いられるが、水素発生剤2aを収容する際に、開閉可能なものが好ましい。なお、反応容器2としては、水素発生剤2aの反応でアルカリが生じる場合があるため、耐アルカリ性を有する材料を用いるのが好ましい。
反応容器2の容積は、反応時の水素発生剤2aの膨張を考慮しつつ、初期の空気の量を減らす観点から、水素発生剤2aの体積の1.2〜3倍が好ましく、1.5〜2倍がより好ましい。
水素発生剤2aとしては、粒状等の水素発生物質を単独で使用する(樹脂包埋せずに使用する)ことも可能であるが、反応液との反応速度を制御する観点から、樹脂の母材中に粒状の水素発生物質を含有するものが好ましい。その際、使用する樹脂としては、反応を適度に調整する観点から、水溶性樹脂以外のものが好ましい。
水素発生物質としては、水素化カルシウム、水素化リチウム、水素化カリウム、水素化リチウムアルミニウム、水素化アルミニウムナトリウム、又は水素化マグネシウムなどの水素化金属、アルミニウム、鉄、マグネシウム、カルシウム等の金属、水素化ホウ素化合物等の金属水素錯化合物などが挙げられる。中でも、水素化金属が好ましく、特に水素化カルシウムが好ましい。水素化金属化合物、金属、金属水素錯化合物は、何れかを複数組み合わせて使用することもでき、また、それぞれを組み合わせて使用することも可能である。
即ち、水素発生剤としては、水溶性樹脂を除く樹脂の母材中に、粒状の水素化カルシウム(CaH)を含有するものが特に好ましい。この水素発生剤では、粒状の水素化カルシウムが樹脂のマトリックス中に分散又は埋設された状態となり、これにより、水素化カルシウムの反応性が抑制され、水との反応の際の取り扱い性が改善される。また、水素発生物質として水素化カルシウムを使用することで、水等との反応性が高くなり、水等と反応した際に生成する反応物(水酸化カルシウム)の体積膨張率が高くなるため、樹脂母材を崩壊させる作用が大きくなり、水等との反応が自然に内部まで進行し易くなる。
水素発生物質の含有量は、好ましくは水素発生剤中60重量%以上であるが、保形性を維持しつつ反応の際に樹脂母材を崩壊させる観点から、水素発生剤中、60〜90重量%であることが好ましく、70〜85重量%がより好ましい。
粒状の水素発生物質の平均粒径は、樹脂中への分散性や反応を適度に制御する観点から、1〜100μmが好ましく、6〜30μmがより好ましく、8〜10μmが更に好ましい。
水素化カルシウムに他の水素発生物質を添加する場合、その水素発生物質の含有量は、水素発生剤中、0〜20重量%が好ましく、0〜10重量%がより好ましく、0〜5重量%が更に好ましい。
樹脂としては、好ましくは水溶性樹脂以外のものが使用され、熱硬化性樹脂、熱可塑性樹脂、耐熱性樹脂などが挙げられるが、熱硬化性樹脂が好ましい。熱硬化性樹脂を使用することで、一般的に樹脂母材がもろくなり易く、反応の際に樹脂母材がより容易に崩壊して、反応が自然に進行し易くなる。
なお、熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、フッ素樹脂、ポリエステル、ポリアミドなどが挙げられる。また、耐熱性樹脂としては、芳香族系のポリイミド、ポリアミド、ポリエステルなどが挙げられる。
熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、アミノ樹脂、ポリウレタン樹脂、シリコーン樹脂、または熱硬化性ポリイミド樹脂等が挙げられる。なかでも、水素発生反応中に樹脂母材が適度な崩壊性を有する観点から、エポキシ樹脂が好ましい。熱硬化性樹脂を硬化させる際には、必要に応じて硬化剤や硬化促進剤などが適宜併用される。
樹脂の含有量は、好ましくは40重量%未満であるが、保形性を維持しつつ反応の際に樹脂母材を崩壊させる観点から、水素発生剤中、5〜35重量%が好ましく、10〜30重量%がより好ましい。
用いられる水素発生剤には、上記の成分以外の任意成分として、触媒、充填材、などのその他の成分を含有してもよい。触媒としては、水素発生剤用の金属触媒の他、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ化合物も有効である。
水素発生剤2aは、多孔質化された構造でもよいが、実質的に中実の構造が好ましい。つまり、本発明の水素発生剤は、空孔率(%)=空孔体積/全体積×100が5%以下が好ましく、2%以下がより好ましく、1%以下が更に好ましい。用いられる水素発生剤は、シート状、粒状(粉砕物)、塊状(成形品)など何れの形状でもよいが、粉砕を行う場合、その粒径は、1〜10mmが好ましく、2〜5mmがより好ましい。
水素供給路5は、反応容器2から排出される水素を燃料電池3のアノード側供給部3dに供給するものであり、水素供給路5には反応容器2内の圧力を検出する反応容器圧検出器22aが設けられている。本発明において、反応容器圧検出器22aは、反応容器2内の圧力を検出可能であればよく、反応容器2内においてその圧力を測定する場合の他、反応容器2に連通する経路などにおいて圧力を測定する場合を含んでいる。
反応容器圧検出器22aとしては、気体の圧力をダイヤフラム(ステンレスダイヤフラム、シリコンダイヤフラム、など)を介して、感圧素子で計測し、電気信号に変換し出力する圧力センサ等が使用できる。代表的な、圧力センサとしては、半導体ピエゾ抵抗拡散圧力センサ、静電容量形圧力センサなどが挙げられる。
本実施形態では、更に水素供給路5に、前述した圧力レギュレータ5aと、一定以上の圧力でガスを開放する安全弁5bと、より低圧に設定される圧力レギュレータ5cと第1電磁弁23cとを有する例を示す。
本発明では、発生した水素から、不純物であるアンモニアを除去するために、水素供給路5にアンモニア除去剤を設けてもよい。具体的には、シート状のアンモニア除去剤を容器内に充填したものを使用することができる。このようなアンモニア除去剤は、シート状に形成されたものが市販されているが、粒状の吸着剤等を通気性の袋に収容したものを使用することも可能である。
アンモニア除去剤としては、例えば、水素中のアンモニアを吸着除去する吸着剤(吸着・分解や反応吸着などの化学吸着を含む)、アンモニアを溶解除去する吸収剤、アンモニアを反応により除去する反応剤、アンモニアを分解(加熱分解・触媒反応分解等)により除去する分解手段、などが挙げられるが、アンモニアを物理吸着又は化学吸着により除去する吸着剤を備えることが好ましい。
中でも吸着剤が、物理吸着又は化学吸着によりアンモニアを除去するものであることがより好ましく、固体酸、活性炭(固体酸に相当するものを除く)、ゼオライト(固体酸に相当するものを除く)、及びモレキュラーシーブからなる群から選ばれる1種以上であることが更に好ましい。中でも、アンモニアの吸着除去能力やより高温で吸着可能な観点から、固体酸を用いることが好ましい。
固体酸としては、固体酸自体が粒状であるものや、粒状体に固体酸や液体酸を担持させたものなどがあるが、活性炭に金属塩を担持したものがコストや製造性などの観点からより好ましい。金属塩としては、硫酸塩、リン酸塩、塩化物塩、硝酸塩が挙げられ、塩を形成する金属としては、金属塩として酸性を示す金属が好適に使用できる。
活性炭(固体酸に相当するものも含む)としては、GW48/100、GW−H48/100、GG10/20、2GG、GLC10/32、2GS、GW10/32、GW20/40、KLY10/32、KW10/32、KW20/42(以上、クラレケミカル(株)製)、SWWB剤(アルカリ用)、WB剤、S剤(酸用)(以上、アニコジャパン(株)製)、4T−B、4T−C、4G−H、4SA、2GS、GW20/4042(以上、クラレケミカル(株)製)などが挙げられ、好ましくは4T−B、SWWB剤(アルカリ用)、WB剤である。
ゼオライトとしては、BX、HISIV、R−3(以上、ユニオン昭和(株)製)などが挙げられ、好ましくはBXである。
モレキュラーシーブとしては、ゼオラムA−3、ゼオラムA−4(以上、東ソー(株)製)などが挙げられ、好ましくはゼオラムA−4である。
安全弁5bは、一定以上の圧力でガスを開放するものであれば何れのものも使用可能である。小型化及び軽量化を図る観点から、安全弁5bとしては、アンブレラ型、ダックビル型、金属製のボールバルブ型などの弁を用いることが好ましい。なお、安全弁5bの設定圧力は、系の耐圧性に応じて決定されるが、例えば30〜500kPa(特に220kPa)程度に設定される。
より低圧の圧力レギュレータ5cは、二次側の圧力に応じた弁の開閉によって、二次側の圧力一定以下に制御するものであり、その設定圧力としては、例えば10〜100kPa(特に30kPa)が挙げられる。
燃料電池3は、アノード3aに供給された水素で発電を行うものであり、水素を供給するアノード側供給部3dを有している。燃料電池3には、ガスを排出するアノード側排出部3eを設けるのが好ましい。燃料電池3としては、水素を供給して発電を行うものが何れも使用できる。本発明では、スタック型の燃料電池を使用することも可能であるが、装置の小型化・軽量化の観点から、単位セルを平面状に配置したものが好ましい。なお、燃料電池3は、複数の単位セルを備えるものでよく、その場合、単位セル同士は接続部により直列又は並列に電気的に接続される。本実施形態では、単位セルが27個直列に接続されたものが2系統並列接続されることで、電圧15.5〜25.5V、電力200Wを可能にしている。
燃料電池3を構成する単位セルは、例えば、固体高分子電解質層3bと、この固体高分子電解質層3bの両側に設けられた第1電極層3a及び第2電極層3cと、これら電極層3a,3cの更に外側に各々配置された第1導電層及び第2導電層とを有する。本実施形態では、図2に示すように、第1導電層及び第2導電層が、第1電極層3a及び第2電極層3cを部分的に露出させる露出部を有する第1金属層14及び第2金属層15とからなる例を示す。これらの各層は、インサート成形により樹脂で一体化されていることが好ましい。インサート成形により単位セルを製造する方法は、国際公開WO2009/145090号公報に詳述されている。
本実施形態の燃料電池3では、図2に示すように、単数又は複数の単位セルのアノード側を覆うように、空間形成部3gが単位セルと一体的に設けられ、空間形成部3gの内部にアノードに水素を供給するための空間3fが設けられている。空間形成部3gの両側の側壁には、水素を供給するアノード側供給部3d及びガスを排出するアノード側排出部3eが形成されている。
固体高分子電解質層3bとしては、従来の固体高分子膜型の燃料電池に用いられるものであれば何れでもよいが、化学的安定性及び導電性の点から、超強酸であるスルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜が好適に用いられる。このような陽イオン交換膜としては、ナフィオン(登録商標)が好適に用いられる。その他、例えば、ポリテトラフルオロエチレン等のフッ素樹脂からなる多孔質膜に上記ナフィオンや他のイオン伝導性物質を含浸させたものや、ポリエチレンやポリプロピレン等のポリオレフィン樹脂からなる多孔質膜や不織布に上記ナフィオンや他のイオン伝導性物質を担持させたものでもよい。
固体高分子電解質層3bの厚みは、薄くするほど全体の薄型化及び高出力化に有効であるが、イオン伝導機能、強度、ハンドリング性などを考慮すると、10〜300μmが使用可能であるが、15〜50μmが好ましい。
電極層3a,3cは、固体高分子電解質層3bの表面付近でアノード側およびカソード側の電極反応を生じさせるものであれば何れでもよい。なかでも、ガス拡散層としての機能を発揮して、燃料ガス、燃料液、酸化ガス及び水蒸気の供給・排出を行なうと同時に、集電の機能を発揮するものが好適に使用できる。電極層3a,3cとしては、同一又は異なるものが使用でき、その基材には電極触媒作用を有する触媒を担持させることが好ましい。触媒は、固体高分子電解質層3bと接する内面側に少なくとも担持させるのが好ましい。
電極層3a,3cの電極基材としては、例えば、カーボンペーパー、カーボン繊維不織布などの繊維質カーボン、導電性高分子繊維の集合体などの電導性多孔質材が使用できる。また、固体高分子電解質層3bに触媒を直接付着させたり、カーボンブラックなどの導電性粒子に担持させて固体高分子電解質層3bに付着させた電極層3a,3cを用いることも可能である。
一般に、電極層3a,3cは、このような電導性多孔質材にフッ素樹脂等の撥水性物質を添加して作製されるものであって、触媒を担持させる場合、白金微粒子などの触媒とフッ素樹脂等の撥水性物質とを混合し、これに溶媒を混合して、ペースト状或いはインク状とした後、これを固体高分子電解質膜と対向すべき電極基材の片面に塗布して形成される。
一般に、電極層3a,3cや固体高分子電解質層3bは、燃料電池に供給される還元ガスと酸化ガスに応じた設計がなされる。本発明では、酸化ガスとして空気が用いられると共に、還元ガスとして水素ガスを用いる。
空気が自然供給される側のカソード側の第2電極層3c(本明細書では、アノード側を第1電極層、カソード側を第2電極層と仮定する)では、酸素と水素イオンの反応が生じて水が生成するため、かかる電極反応に応じた設計をするのが好ましい。
触媒としては、白金、パラジウム、ルテニウム、ロジウム、銀、ニッケル、鉄、銅、コバルト及びモリブデンから選ばれる少なくとも1種の金属か、又はその酸化物が使用でき、これらの触媒をカーボンブラック等に予め担持させたものも使用できる。
電極層3a,3cの厚みは、薄くするほど全体の薄型化に有効であるが、電極反応、強度、ハンドリング性などを考慮すると、1〜500μmが好ましく、100〜300μmがより好ましい。電極層3a,3cと固体高分子電解質層3bとは、予め接着、融着、又は塗布形成等を行って積層一体化しておいてもよいが、単に積層配置されているだけでもよい。このような積層体は、膜/電極接合体(Membrane Electrode Assembly:MEA)として入手することもでき、これを使用してもよい。
アノード側電極層3aの表面にはアノード側の第1金属層14が配置され、カソード側電極層3cの表面にはカソード側の第2金属層15が配置される(本明細書では、アノード側を第1金属層、カソード側を第2金属層と仮定する)。第1金属層14は、第1電極層3aを部分的に露出させる露出部を有するが、本実施形態では、アノード側金属層14には燃料ガス等を供給するための開孔が設けられている例を示す。
第1金属層14の露出部は、アノード側電極層3aが露出可能であれば、その個数、形状、大きさ、形成位置などは何れでもよい。アノード側金属層14の開孔14aは、例えば、規則的又はランダムに複数の円孔やスリット等を設けたり、または金属メッシュによって開孔を設けてもよい。開孔部分の面積が締める割合(開孔率)は、電極との接触面積とガスの供給面積のバランスなどの観点から、10〜50%が好ましく、15〜30%がより好ましい。
また、カソード側の第2金属層15は、第2電極層3cを部分的に露出させる露出部を有するが、本実施形態では、カソード側金属層15には、空気中の酸素を供給(自然吸気)するための多数の開孔15aが設けられている例を示す。開孔の形状、大きさ、開孔率等は、アノード側の第1金属層と同様である。
金属層としては、電極反応に悪影響がないものであれば何れの金属も使用でき、例えばステンレス板、ニッケル、銅、銅合金などが挙げられる。但し、導電性、コスト、形状付与性、加圧のための強度などの観点から、銅、銅合金、ステンレス板などが好ましい。また、上記の金属に金メッキなどの金属メッキを施したものでもよい。
なお、金属層の厚みは、薄くするほど全体の薄型化に有効であるが、導電性、コスト、重量、形状付与性、加圧のための強度などを考慮すると、10〜1000μmが好ましく、50〜200μmがより好ましい。
第1金属層14及び第2金属層15は、少なくとも一部が樹脂から露出することにより、その部分を電極として電気を外部に取り出すことができる。このため、樹脂成形体に対して、第1金属層14及び第2金属層15を一部露出させた端子部を設けてもよい。金属層の形成や開孔の形成は、プレス加工(プレス打ち抜き加工)を利用して行うことができる。
本実施形態において、燃料電池3のアノード側排出部3eには、ガス排出経路が接続されており、ガス排出経路には検知セル26と、排出制御弁である第2電磁弁23bとが設けられている。検知セル26は、単数又は少数の単位セルからなる燃料電池であり、ガス排出経路に十分な水素が存在するかを検知するための水素検知器である。
加圧用経路6は、圧力レギュレータ5aと圧力レギュレータ5cとの間に介在する水素供給経路5から分岐しており、水素の流入を許容する逆止弁6aを介して加圧容器1に接続される。本実施形態においては、加圧容器1内の圧力を検出する加圧容器圧検出器22bが設けられるが、図示した例では、これが加圧用経路6に設けられている。本実施形態において、加圧容器圧検出器22bは、加圧容器1内の圧力を検出可能であればよく、加圧容器1内においてその圧力を測定する場合の他、加圧容器1に連通する経路などにおいて圧力を測定する場合を含んでいる。
加圧容器圧検出器22bは、反応容器圧検出器22aと同様に、気体の圧力をダイヤフラム(ステンレスダイヤフラム、シリコンダイヤフラム、など)を介して、感圧素子で計測し、電気信号に変換し出力する圧力センサ等が使用できる。代表的な、圧力センサとしては、半導体ピエゾ抵抗拡散圧力センサ、静電容量形圧力センサなどが挙げられる。
本実施形態では、加圧用経路6に第3電磁弁23cが設けられており、起動時に加圧用経路6内の空気を排出できる例が示されている。第1電磁弁23a〜第3電磁弁23cを用いた起動ルーチンについては、後に詳述する。
逆止弁6aとしては、気体の一方向の流動のみを許容する弁であれば何れのものも使用可能である。ただし、装置全体の小型化を図る上で、一次側が二次側の圧力より大のときに開口し、小のときには閉口するくちばし状の弾性部材を備える逆止弁が好ましい。このような逆止弁6aは、ダックビルと呼ばれており、各種のものが市販されている。ボールバルブを用いた小型の逆止弁もシステムの小型化には有効である。
本発明では、図1に示すように、燃料電池3からの出力を制御する出力制御部を備えている。本実施形態では、出力制御部が、燃料電池3の出力が入力されて定電流出力が可能な直流電圧変換器28を有し、その直流電圧変換器28の設定電流値を変化させることで、燃料電池3からの出力を制御する例を示す。このような直流電圧変換器28としては、例えば市販のチップと推奨回路によって構成された、DC/DC昇圧回路が採用できる。
本発明の発電装置は、前記出力制御部を制御する制御手段21と、出力制御部の制御により燃料電池3からの出力が変動した際に、外部への出力を補うことが可能な蓄電手段31とを備えている。また、本実施形態では、蓄電手段31の出力電圧に応じて、燃料電池3からの出力と蓄電手段31からの出力とのバランスや、蓄電手段31の充放電の制御を行う例を示す。
本発明における制御手段21は、反応容器圧検出器22aで検出された反応容器圧力Pと関連付けて、前記出力制御部を制御するものである。「反応容器圧力Pと関連付けて」とは、制御の因子として反応容器圧力Pが含まれていることを意味し、例えば、反応容器圧力Pそのものの値若しくはその微分値、または、圧力Pから加圧容器圧検出器22bで検出された圧力Pを減じた圧力差ΔP(=P−P)そのものの値若しくはその微分値を利用した制御が含まれる。
例えば、本発明における制御には、反応容器圧力Pが特定の低い値又は特定の減少傾向である場合に、燃料電池3からの出力が低下するように前記出力制御部を制御する場合(第3〜第4実施形態)と、反応容器圧検出器22aで検出された圧力Pから加圧容器圧検出器22bで検出された圧力Pを減じた圧力差ΔP(=P−P)に基づいて、その圧力差ΔPが特定の低い値又は特定の減少傾向である場合に、燃料電池3からの出力が低下するように前記出力制御部を制御する場合(第1〜第2実施形態)とが存在する。
第1実施形態では、図3Aに示すように、圧力差ΔP(=P−P)の変動に基づいて、その変動が特定の減少傾向である場合に、燃料電池3からの出力が低下するように出力制御部を制御し、前記変動が特定の増加傾向である場合に、燃料電池3からの出力が増加するように前記出力制御部を制御する。
本実施形態において、「特定の減少傾向」とは、減少傾向(即ち、dΔP/dt<0、tは時間を示す)を示す状態のうち、ある状態より顕著な減少傾向を示す状態を指し、例えばdΔP/dt<−0.1kPa/秒(勿論、dΔP/dt<0としてもよい)と定義することができる。同様に、「特定の増加傾向」とは、増加傾向(即ち、dΔP/dt>0)を示す状態のうち、ある状態より顕著な増加傾向を示す状態を指し、例えばdΔP/dt>0.1kPa/秒(勿論、dΔP/dt>0としてもよい)と定義することができる。勿論、「特定の減少傾向」と「特定の増加傾向」を多段階に分けて、各々の状態に応じた制御を行ったり、「特定の減少傾向」と「特定の増加傾向」を関数化して、関数による制御を行うことも可能である。
また、本実施形態では、制御手段21が、圧力Pが設定した下限値以下となった場合に燃料電池3からの出力を停止又は50%以下まで減少させ、圧力Pが設定した上限値以上となった場合に燃料電池3からの出力を回復するように前記出力制御部を制御する例を示す。圧力Pの下限値としては、例えば10〜80kPaが挙げられ、圧力Pの上限値としては、例えば100〜300kPaが挙げられる。
制御手段としては、上記の制御に関する演算と操作信号が出力可能であればよく、例えばマイコンユニット、プログラムシーケンサー、パソコン等が使用できる。以下、本実施形態の制御フローを図3Aに基づいて説明する。
起動ルーチンで定義されたステップS20を抜けた状態において、まず、ステップS1では、データのサンプリングが行われる。その対象としては、圧力P、圧力P、時刻、などが挙げられ、短時間で多数回(例えば20回/秒)のサンプリングを行うことも可能である。また、多数回のサンプリングを行って平均値を算出して、ある時刻における圧力P、圧力Pのデータとすることも可能である。
ステップS2では、圧力差ΔPの変動が、特定の減少傾向であるか、又は特定の増加傾向であるかが判断される。本実施形態では、dΔP/dt<0を満たす場合に特定の減少傾向であると判断し、dΔP/dt>0を満たす場合に特定の増加傾向であると判断する例を示す。
圧力差ΔPの変動は、ステップS1の一定のサンプリング時間内において、圧力差ΔPの変動を算出する方法でもよく、また、繰り返しルーチンの中でステップS1を繰り返す際に、先のステップS1での圧力差ΔPを記録しておき、先の圧力差ΔPと新たなサンプリングによる圧力差ΔPとからの変動を算出する方法の何れでもよい。前者の場合には、例えば5〜10秒の間のサンプリングを行って、最初の1秒間の平均の圧力差ΔPと、最後の1秒間の平均の圧力差ΔPとの差から、圧力差ΔPの変動が、特定の減少傾向であるか、又は特定の増加傾向であるかを判断することができる。後者の場合には、例えば先の圧力差ΔPと、サンプリングによる圧力差ΔPとの差から、圧力差ΔPの変動が、特定の減少傾向であるか、又は特定の増加傾向であるかを判断することかできる。
ステップS3は、ステップS2における判断が、特定の減少傾向である場合に実行され、出力制御部に対して、出力低下させる操作信号を出力する処理である。一方、ステップS4は、ステップS2における判断が、特定の増加傾向である場合に実行され、出力制御部に対して、出力増加させる操作信号を出力する処理である。
出力を低下又は増加させるときの操作信号としては、プロセス制御で一般的に行われる微分制御と同様の制御の他、dΔP/dtの値に応じて、段階的に決定した出力の設定値の変動幅を利用する制御、dΔP/dtの値を変数とする関数を利用する制御などが挙げられる。
何れのステップS3、S4においても、その後にステップS5が実行される。ステップS5は、反応容器圧検出器22aで検出された圧力Pが40kPa以下であるか否かを判断する処理である。圧力Pが40kPa以下である場合、ステップS6が実行される。
ステップS6は、燃料電池3の出力を停止する処理である。本発明では、この処理に代えて、燃料電池3からの出力を50%以下の設定値まで減少させる処理を行うことも可能である。
ステップS7では、圧力Pが120kPa以上であるか否かを判断する処理である。圧力Pが120kPa以上である場合、ステップS8が実行され、120kPa未満である場合、ステップS9が実行される。
ステップS9は、反応容器圧検出器22aで検出された圧力Pのサンプリングを行う処理であり、必要に応じて待機時間を経た後に、再度、ステップS7からの処理が繰り返される。図示した例では、ステップS6で一旦、出力が停止されると、ステップS8で出力が開始されるまで、停止状態が継続するが、本発明では、例えば圧力Pのサンプリング後に、回復した圧力Pに応じて、燃料電池3からの出力を段階的に戻す処理を実行してもよい。ステップS7とステップS9とを繰り返す間に、一定時間が経過しても圧力Pが120kPa以上にならない場合には、水素発生による圧力回復機能なし(タイムアウト)と判断して、ステップS10の停止ルーチンが実行される(図示省略)。
ステップS8では、燃料電池3からの出力が開始される。ステップS6で、出力を50%以下の設定値まで減少させる処理を行っていた場合には、ステップS8では、燃料電池3からの出力が元の状態に回復される。
一方、ステップS5において、圧力Pが40kPaを超えると判断した場合、ステップS11の充放電制御ルーチンが実行される。充放電制御ルーチンでは、蓄電手段31の出力電圧に応じて、燃料電池3からの出力と蓄電手段31からの出力とのバランスや、蓄電手段31の充放電の制御を行うことができる。このような制御としては、例えば、蓄電手段31の出力電圧が上限設定値(例えば26.4V)以上の場合には、蓄電手段31からの出力(放電)を優先的に行ない、蓄電手段31の出力電圧が下限設定値(例えば23.8V)以上で上限設定値(例えば26.4V)以下の場合には、燃料電池3からの出力を優先的に行ない、蓄電手段31の出力電圧が下限設定値(例えば23.8V)以下の場合には、燃料電池3からの出力と蓄電手段31の充電を行なうことが可能である。
蓄電手段31からの出力(放電)を優先的に行なうモードでは、蓄電池充放電ユニット29に対して、蓄電手段31からの出力が最大設定値までは、抑制されない状態とすることで、蓄電手段31からの放電が優先的に行われる。燃料電池3からの出力を優先的に行なうモードでは、蓄電池充放電ユニット29に対して、蓄電手段31からの出力が抑制される状態とすることで、燃料電池3からの出力が最大設定値までは、優先的に行われる。燃料電池3からの出力と蓄電手段31の充電を行なうモードでは、直流電圧変換器28が出力側の負荷に応じて直流電圧変換器28の出力電圧が変動するものを使用し、直流電圧変換器28からの出力電圧と蓄電手段31の出力電圧との関係を利用して、蓄電手段31の充放電が充放電ユニット29により行われる。
また、上記の充放電制御ルーチンにおいて、蓄電手段31の出力電圧が所定の電圧(例えば22V)以下になった場合に、外部出力を停止する制御を行うことも可能である。また、これと同様に、圧力Pが10kPa以下になった場合に、外部出力を停止する制御を行うことも可能である。
充放電制御ルーチンのステップS11の後には、ステップS1からの処理が繰り返し実行される。その繰り返しルーチンにおいて、停止操作が入力された場合には、ステップS10の停止ルーチンが実行される。外部負荷が無くなった場合(OFF状態)にも、停止ルーチンが実行される。停止ルーチンでは、第3電磁弁23cなどを利用して、反応容器2への反応液1aの導入を停止すると共に、発生した水素を、燃料電池3で消費する処理が実行される。
次ぎに、図4に基づいて、ステップS20の起動ルーチンについて説明する。この起動ルーチンによる処理を実行するために、燃料電池3のガス排出経路に接続された電圧検出のための検知セル26と、燃料電池3の出力電圧を検出する回路が利用される。
本実施形態では、初期の起動時に、必要に応じて弁を設けた反応液導入路7を経由して、シリンジ等の反応液供給器を用いて、水等の反応液1aを反応容器2内に導入する。反応液1aの導入後には、反応容器2は密閉された状態となる。つまり、本発明では、発電装置の使用開始時において、反応容器2に反応液1aを供給可能な別の反応液供給器を更に備えることが好ましい。
ステップS21では、第1電磁弁23aの開操作と、第2電磁弁23bの開操作と、第3電磁弁23cの閉操作の信号を出力する処理が実行される。なお、操作信号のない状態(ノーマル)において、第1電磁弁23aは閉状態、第2電磁弁23bは閉状態、第3電磁弁23cは開状態であるものを使用するのが好ましい。
ステップS22では、データのサンプリングが行われるが、このようなサンプリングは、判断を行う各処理の直前に各々行うことも可能である。サンプリングの対象としては、検知セル26の電圧、圧力P、圧力P、燃料電池3の出力電圧などが挙げられる。
ステップS23では、検知セル26の電圧が200mV以上であるか否かが判断される。電圧が200mV以上である場合、ステップS24が実行され、200mV未満である場合、ステップS25が実行される。
ステップS24では、第2電磁弁23bの閉操作の信号の出力が行われ、ステップS25では、第2電磁弁23bの開操作の信号の出力が行われる。何れの場合も、次のステップS26に進む。
ステップS26は、反応容器圧検出器22aで検出された圧力Pが40kPa以下であるか否かを判断する処理である。圧力Pが40kPa以下である場合、ステップS27が実行され、第2電磁弁23bの閉操作の信号の出力が行われる。圧力Pが40kPaを超える場合、ステップS28が実行される。
ステップS28は、圧力差ΔPが15kPa以上であるか否かを判断する処理である。圧力差ΔPが15kPa以上である場合、ステップS29が実行され、第2電磁弁23bの開操作の信号の出力が行われる。圧力差ΔPが15kPa未満の場合、ステップS30が実行される。
ステップS30は、燃料電池3の出力電圧が22V以上であるか否かを判断する処理である。出力電圧が22V以上である場合、ステップS31が実行され、通常の運転ルーチンがスタートする。出力電圧が22V未満の場合、ステップS22移行の処理が繰り返して実行される。
なお、運転ルーチンがスタートする際には、発電状態を安定させるための待機時間(例えば30秒程度)を設けてもよい。また、運転ルーチンがスタートする際の第1電磁弁23a〜第3電磁弁23cの状態は、第1電磁弁23aは開状態、第2電磁弁23bは閉状態、第3電磁弁23cは閉状態である。
制御手段21によるその他の制御としては、反応容器2内の温度を検知する温度センサ25aを用いて、急激な反応時に反応液1aの供給を停止したり、冷却ファン24aにより反応容器2を冷却する制御が可能である。また、燃料電池3の温度を検知する温度センサ25bを用いて、燃料電池3の異常時に発電を停止したり、冷却ファン24bにより燃料電池3を冷却する制御が可能である。
なお、制御手段21には、DC/DC降圧回路27を介して、燃料電池3から電力が供給される。初期には、蓄電手段31からの電力を供給することが可能である。
本実施形態では、燃料電池3から、出力電圧15.5〜25.5V、出力200Wで出力しながら、出力端子32から出力電圧22〜28.8Vで外部に出力することができる。
(第2実施形態)
本発明の第2実施形態の発電装置には、第1実施形態と比較して、制御の形態のみが異なるものであり、第1実施形態では、反応容器圧検出器22aで検出された圧力Pから加圧容器圧検出器22bで検出された圧力Pを減じた圧力差ΔP(=P−P)の変動傾向に基づいて制御を行うのに対して、第2実施形態では、圧力差の値そのものに基づいて制御を行う点が相違している。つまり、第2実施形態では、圧力差ΔPが特定の低い値である場合に、燃料電池3からの出力が低下するように前記出力制御部を制御する制御手段21を備えている。
具体的な制御の例としては、特定の圧力差ΔPの閾値(設定値)を境にして、オンオフ制御、PID制御などのフィードバック制御を行う方法の他、特定の圧力差ΔPの下限値が検出された場合に、特定の圧力差ΔPの上限値が検出されるまで、燃料電池3からの出力を低下させる制御を行う方法などが挙げられる。勿論、「特定の低い値」を多段階に分けて、各々の状態に応じた制御を行ったり、「特定の低い値」の程度を関数化して、関数による制御を行うことも可能である。
第2実施形態における制御では、図3Bに示すように、ステップS12からステップS16が、図3AにおけるステップS2からステップS4の代わりに実行される。ステップS1でサンプリングが行われた後、ステップS12が実行される。
ステップS12は、圧力差ΔPが−25kPa以下であるか否かを判断する処理である。圧力差ΔPが−25kPa以下である場合、ステップS14が実行される。圧力差ΔPが−25kPaを超える場合、ステップS5が実行される。ステップS5以降のフローは、図3Aに示す第1実施形態と同様である。
ステップS14は、燃料電池3の出力を低下させる操作信号を出力する処理である。出力を低下させる操作信号としては、例えば、燃料電池3からの出力を70〜95%の何れかの設定値まで減少させる処理を行うことが可能である。その後、ステップS15が実行される。
ステップS15は、圧力差ΔPが−10kPa以上であるか否かを判断する処理である。圧力差ΔPが−10kPa以上である場合、ステップS13が実行され、−10kPa未満である場合、ステップS16が実行される。
ステップS16は、反応容器圧検出器22aで検出された圧力Pと加圧容器圧検出器22bで検出された圧力Pとのサンプリングを行う処理であり、必要に応じて待機時間を経た後に、再度、ステップS15からの処理理が繰り返される。
ステップS13では、燃料電池3からの出力を増加させる操作信号の出力により、燃料電池3からの出力が回復される。その後、ステップS5が実行される。
(第3実施形態)
本発明の第3実施形態の発電装置には、第1実施形態と比較して、制御の形態が異なるものであり、第1実施形態では、反応容器圧検出器22aで検出された圧力Pから加圧容器圧検出器22bで検出された圧力Pを減じた圧力差ΔP(=P−P)の変動傾向に基づいて制御を行うのに対して、第3実施形態では、反応容器圧検出器22aで検出された圧力Pの変動傾向に基づいて制御を行う点が相違している。つまり、第3実施形態では、反応容器圧検出器22aで検出された圧力Pが特定の減少傾向である場合に、燃料電池3からの出力が低下するように前記出力制御部を制御する制御手段21を備えている。
第1実施形態では、図3Cに示すように、水素圧Pの変動dP/dtが特定の減少傾向である場合に、燃料電池3からの出力が低下するように出力制御部を制御し、前記変動が特定の増加傾向である場合に、燃料電池3からの出力が増加するように前記出力制御部を制御する。
本実施形態において、「特定の減少傾向」とは、減少傾向(即ち、dP/dt<0、tは時間を示す)を示す状態のうち、ある状態より顕著な減少傾向を示す状態を指し、例えばdP/dt<0と定義することができる。同様に、「特定の増加傾向」とは、増加傾向(即ち、dP/dt>0)を示す状態のうち、ある状態より顕著な増加傾向を示す状態を指し、例えばdP/dt>0と定義することができる。勿論、「特定の減少傾向」と「特定の増加傾向」を多段階に分けて、各々の状態に応じた制御を行ったり、「特定の減少傾向」と「特定の増加傾向」を関数化して、関数による制御を行うことも可能である。
また、本実施形態では、制御手段21が、圧力Pが設定した下限値以下となった場合に燃料電池3からの出力を停止又は50%以下まで減少させ、圧力Pが設定した上限値以上となった場合に燃料電池3からの出力を回復するように前記出力制御部を制御する例を示す。圧力Pの下限値としては、例えば10〜80kPaが挙げられ、圧力Pの上限値としては、例えば100〜300kPaが挙げられる。
以下、本実施形態の制御フローを図3Cに基づいて説明する。
起動ルーチンで定義されたステップS20を抜けた状態において、まず、ステップS1では、データのサンプリングが行われる。その対象としては、圧力P、時刻、などが挙げられ、短時間で多数回(例えば20回/秒)のサンプリングを行うことも可能である。また、多数回のサンプリングを行って平均値を算出して、ある時刻における圧力Pのデータとすることも可能である。
ステップS2では、水素圧Pの変動が、特定の減少傾向であるか、又は特定の増加傾向であるかが判断される。本実施形態では、dP/dt<0を満たす場合に特定の減少傾向であると判断し、dP/dt>0を満たす場合に特定の増加傾向であると判断する例を示す。
圧力Pの変動は、ステップS1の一定のサンプリング時間内において、Pの変動を算出する方法でもよく、また、繰り返しルーチンの中でステップS1を繰り返す際に、先のステップS1でのPを記録しておき、先のPと新たなサンプリングによるPとからの変動を算出する方法の何れでもよい。前者の場合には、例えば5〜10秒の間のサンプリングを行って、最初の1秒間の平均のPと、最後の1秒間の平均のPとの差から、Pの変動が、特定の減少傾向であるか、又は特定の増加傾向であるかを判断することかできる。後者の場合には、例えば先のPと、サンプリングによるPとの差から、Pの変動が、特定の減少傾向であるか、又は特定の増加傾向であるかを判断することかできる。
ステップS3は、ステップS2における判断が、特定の減少傾向である場合に実行され、出力制御部に対して、出力低下させる操作信号を出力する処理である。一方、ステップS4は、ステップS2における判断が、特定の増加傾向である場合に実行され、出力制御部に対して、出力増加させる操作信号を出力する処理である。
出力を低下又は増加させるときの操作信号としては、プロセス制御で一般的に行われる微分制御と同様の制御の他、dP/dtの値に応じて、段階的に決定した出力の設定値の変動幅を利用する制御、dP/dtの値を変数とする関数を利用する制御などが挙げられる。
何れのステップS3、S4においても、その後にステップS5が実行される。ステップS5は、反応容器圧検出器22aで検出された圧力Pが40kPa以下であるか否かを判断する処理である。圧力Pが40kPa以下である場合、ステップS6が実行される。ステップS5以降のフローは、第1実施形態と同様に行なうことが可能である。
(第4実施形態)
本発明の第4実施形態の発電装置には、第1実施形態と比較して、制御の形態が異なるものであり、第1実施形態では、反応容器圧検出器22aで検出された圧力Pから加圧容器圧検出器22bで検出された圧力Pを減じた圧力差ΔP(=P−P)の変動傾向に基づいて制御を行うのに対して、第4実施形態では、反応容器圧検出器22aで検出された圧力Pの値に基づいて制御を行う点が相違している。つまり、第4実施形態では、反応容器圧検出器22aで検出された圧力Pが特定の低い値である場合に、燃料電池3からの出力が低下するように前記出力制御部を制御する制御手段21を備えている。
具体的な制御の例としては、特定の圧力Pの閾値(設定値)を境にして、オンオフ制御、PID制御などのフィードバック制御を行う方法の他、特定の圧力Pの下限値が検出された場合に、特定の圧力Pの上限値が検出されるまで、燃料電池3からの出力を低下させる制御を行う方法などが挙げられる。勿論、「特定の低い値」を多段階に分けて、各々の状態に応じた制御を行ったり、「特定の低い値」の程度を関数化して、関数による制御を行うことも可能である。
第4実施形態における制御では、図3Dに示すように、ステップS12からステップS16が、図3CにおけるステップS2からステップS4の代わりに実行される。ステップS1でサンプリングが行われた後、ステップS12が実行される。
ステップS12は、圧力Pが80kPa以下であるか否かを判断する処理である。圧力Pが80kPa以下である場合、ステップS14が実行される。圧力Pが80kPaを超える場合、ステップS5が実行される。ステップS5以降のフローは、図3Aに示す第1実施形態と同様である。
ステップS14は、燃料電池3の出力を低下させる操作信号を出力する処理である。出力を低下させる操作信号としては、例えば、燃料電池3からの出力を70〜95%の何れかの設定値まで減少させる処理を行うことが可能である。その後、ステップS15が実行される。
ステップS15は、圧力Pが100kPa以上であるか否かを判断する処理である。圧力Pが100kPa以上である場合、ステップS13が実行され、100kPa未満である場合、ステップS16が実行される。
ステップS16は、反応容器圧検出器22aで検出された圧力Pのサンプリングを行う処理であり、必要に応じて待機時間を経た後に、再度、ステップS15からの処理理が繰り返される。ステップS15とステップS16とを繰り返す間に、一定時間が経過しても圧力Pが100kPa以上にならない場合には、水素発生による圧力回復機能なし(タイムアウト)と判断して、ステップS10の停止ルーチンが実行される(図示省略)。
ステップS13では、燃料電池3からの出力を増加させる操作信号の出力により、燃料電池3からの出力が回復される。その後、ステップS5が実行される。
(他の実施形態)
(1)前述の実施形態では、初期の起動時に反応液導入路7を経由して、反応液1aを反応容器2内に導入する例を示したが、加圧容器内を初期に加圧することも可能である。その場合、空気、窒素ガス、水素ガスなどを用いて加圧することができる。
(2)前述の実施形態では、燃料電池を検知セル26として用いて、ガス排出経路に十分な水素ガスが存在するかを検知する例を示したが、初期における水素ガスの検知は、ガスセンサ等によっても行うことが可能である。また、初期において水素ガスを検知する代わりに、燃料電池3の出力電圧等によっても、水素ガスの供給状態を知ることができる。
(3)前述の実施形態では、単位セルのアノード側を覆うように、空間形成部が単位セルと一体的に設けられ、その内部にアノードに水素を供給するための空間が設けられている例を示したが、水素を供給するためのガス流路が、燃料電池に予め形成されたものを用いてもよい。
また、このような燃料電池としては、少なくとも一方の側に、燃料等を供給するための流路を設けた単位セルが独立して構成された構成燃料電池、又はセパレータを介在させたスタックタイプの燃料電池などを使用することが可能である。
(4)前述の実施形態では、直流電圧変換器28からの出力電圧と蓄電手段31の出力電圧との関係を利用して、蓄電手段31の充放電が充放電ユニット29により行われる例を示したが、本発明では、充放電の状態の切り替えを、段階的に切り替えるようにしてもよい。その場合、蓄電手段31の出力電圧に応じた切り替えを行うことができる。
(5)前述の実施形態では、出力電圧22〜28.8V、電力200Wで外部に出力する例を示したが、外部への出力電圧と電力は、燃料電池のユニット数、容量と、蓄電手段の電圧、容量などによって、適宜調整することができる。
以下、実験例に基づいて、本発明の効果について説明する。
実験例1(水素圧のみによる制御、100W級)
燃料電池として、図2に示す構造を有し、次の材料でインサート成形した平面型セル(単位セル4枚分を直列接続したもの)を、空間形成部と一体化することにより製造したものを用いた。即ち、金属板として金メッキした複数の開口を有するニッケル板、固体高分子電解質層としてのナフィオンフィルム(デュポン社製ナフィオン112、33mm×12mm、厚み15μm)、触媒層としての白金担持カーボン触媒、電極層としてのカーボンペーパー(厚み370μm、33mm×12mm)、成形用樹脂として樹脂((株)プライムポリマー製、ポリプロピレン樹脂、J−700GP)を用いた。
水素発生剤として、次のようして製造した成形体を用いた。即ち、未硬化のエポキシ樹脂(ジャパンエポキシレジン(株)製、jER828)11.7gノメチルフェノール)0.12gを添加して撹拌した。フラットな金属板上にアルミニウムシートを置き、更にその表面に金属枠材を置き、前記の混合物を金属枠材の内側(30mm×46mm)に塗布して、金属枠材の上面にフラットな金属板を置いた状態(圧力2MPa相当)で、乾燥機(120℃設定)にて約60分間乾燥硬化させた。得られた硬化物は、厚みが0.6mm、CaにCaH(和光純薬社製、平均粒径10μm)37.5gを添加して撹拌後、更にジシアンジアミド系硬化剤(ジャパンエポキシレジン(株)製、DICY7)0.7g、変性脂肪族(3級アミン)硬化促進剤(ジャパンエポキシレジン(株)製、3010、トリスジメチルアミHの含有量が75重量%であり、実質的に中実の成形体であった。
図1及び図2に示す装置において、反応液である水300gを加圧容器(容積400mL)に収容し、水素発生剤160gを反応容器(容積400mL)に収容し、電圧15.5〜25.5V、電力0〜200Wとした燃料電池を用い、反応液供給路の流量制限部を内径0.175mm長さ10mmのPEEK樹脂チューブとし、初期に水の供給を行って、発電を開始した。発電は、出力電力が一定になるように、電子負荷機で出力電流を制御しつつ、反応容器内の水素圧が50kPa未満では負荷をゼロにする制御を行ないながら、行った。発電を約40分間行った際の水素圧(材料圧)と、加圧容器における圧力(水圧)と、出力電力とを、図5に示す。
この制御では、加圧容器内の圧力と反応容器内の圧力との関係を強制的に制御しないため、両者の圧力の関係に応じて、反応液の供給量が自然に変動するので、反応容器内の圧力変動幅が大きくなり、極端に水素圧が高い状態と低い状態とを繰り返した。但し、圧力変動幅が大きい分、加圧容器内の圧力を一定以上に維持するのが容易になった。。
実験例2(水素圧と水圧との差圧による制御、100W級)
実験例1において、水素圧のみによる制御を行う代わりに、次のように条件を設定して水素圧と水圧との差圧による制御を行ったこと以外は、実験例1と全く同じ条件で発電を行った。つまり、差圧(水素圧−水圧)が−25kPa未満となったときに、差圧が−10kPaを超えるまで、燃料電池の出力を通常の出力の80%まで低下させる制御を行った。また、加圧容器の圧力(水圧)を回復させるために、圧力Pが40kPa以下となったとき、圧力Pが120kPa以上となるまで、燃料電池の出力をゼロにする制御を行った。このようにして、発電を約60分間行った際の水素圧(材料圧)と、加圧容器における圧力(水圧)と、出力電力とを、図6に示す。
この制御では、加圧容器内の圧力と反応容器内の圧力との差圧の値そのものによる制御を行っているため、反応容器内の圧力変動幅は小さくなり、極端に水素圧が高い状態(オーバーシュート)と低い状態を回避することができた。また、圧力Pが一定以下となったとき、圧力Pがより高い設定値となるまで、燃料電池の出力をゼロにする制御を行うことにより、加圧容器の圧力(水圧)を急速に回復させることができた。なお、50分以降に水素圧が大幅に変動しているのは、水素発生剤がほぼ消費されたためであり、制御上の問題が生じた訳ではない。
実験例3(水素圧と水圧との差圧、水素圧の変動による制御、100W級)
実験例2において、水素圧と水圧との差圧による制御と次のように条件を設定して水素圧の変動による制御を行ったこと以外は、実験例1と全く同じ条件で発電を行った。つまり、ΔPとdP/dtの値に応じて、段階的に決定した出力の設定値の変動幅を利用する制御を行った。具体的には、ΔP<0かつΔP>−20kPaのとき、1秒間隔でサンプリングした水素圧PのdP/dtがマイナスの場合、燃料電池の出力を50W下限としてdP/dtが0になるまで燃料電池の出力を段階的に低下させる。dP/dtがプラスの場合、燃料電池の出力を100W上限としてdP/dtが0になるまで燃料電池の出力を段階的に増加させた。また、ΔP>0のとき、dP/dtがマイナスの場合、燃料電池の出力を100W下限としてdP/dtが0になるまで燃料電池の出力を段階的に低下させる。dP/dtがプラスの場合、燃料電池の出力を150W上限としてdP/dtが0になるまで燃料電池の出力を段階的に増加させた。このようにして、発電を約120分間行った際の水素圧(材料圧)と、加圧容器における圧力(水圧)と、出力電力とを、図7に示す。
この制御では、加圧容器内の圧力と反応容器内の圧力との差圧と、反応容器内の圧力の変動に基づく制御を行っているため、反応容器内の圧力変動幅は小さくなり、極端に水素圧が高い状態(オーバーシュート)と低い状態を回避することができた。また、圧力Pが一定以下となったとき、圧力Pがより高い設定値となるまで、燃料電池の出力をゼロにする制御を行うことにより、加圧容器の圧力(水圧)を急速に回復させることができた。なお、100分以降に水素圧が大幅に変動しているのは、水素発生剤がほぼ消費されたためであり、制御上の問題が生じた訳ではない。
1 加圧容器
1a 反応液
2 反応容器
2a 水素発生剤
3 燃料電池
3a 電極層(アノード)
3b 固体高分子電解質層
3c 電極層(カソード)
3d アノード側供給部
3e アノード側排出部
4 反応液供給路
5 水素供給路
5a 圧力レギュレータ
5b 安全弁
5c 圧力レギュレータ
6 加圧用経路
6a 逆止弁
7 初期加圧用経路
14 金属層(アノード側)
14a 開孔
15 金属層(カソード側)
15a 開孔
21 制御手段
28 直流電圧変換器(出力制御部)

Claims (8)

  1. 内部空間の圧力により反応液を加圧して排出する加圧容器と、
    前記加圧容器から反応液が供給され、その反応液と反応して水素を発生させる水素発生剤を気密状態で収容する反応容器と、
    その反応容器内の圧力を検出する反応容器圧検出器と、
    水素が供給されるアノード側供給部を有し、アノードに供給された水素で発電を行う燃料電池と、
    前記反応容器に接続され前記アノード側供給部に水素を供給する水素供給経路と、
    前記反応容器に連通し、水素の流入を許容する逆止弁を介して前記加圧容器に接続された加圧用経路と、
    前記燃料電池からの出力を制御する出力制御部と、
    前記反応容器圧検出器で検出された反応容器圧力と関連付けて、前記出力制御部を制御する制御手段と、
    前記出力制御部の制御により前記燃料電池からの出力が変動した際に、外部への出力を補うことが可能な蓄電手段と、
    を備える発電装置。
  2. 前記制御手段は、前記反応容器圧力が特定の低い値又は特定の減少傾向である場合に、前記燃料電池からの出力が低下するように前記出力制御部を制御するものである請求項1に記載の発電装置。
  3. 前記加圧容器内の圧力を検出する加圧容器圧検出器を更に備えると共に、
    前記制御手段は、前記反応容器圧力から前記加圧容器圧検出器で検出された圧力を減じた圧力差に基づいて、前記圧力差が特定の低い値又は特定の減少傾向である場合に、前記燃料電池からの出力が低下するように前記出力制御部を制御するものである請求項1に記載の発電装置。
  4. 前記制御手段は、前記圧力差の変動に基づいて、その変動が特定の減少傾向である場合に、前記燃料電池からの出力が低下するように前記出力制御部を制御し、前記変動が特定の増加傾向である場合に、前記燃料電池からの出力が増加するように前記出力制御部を制御する請求項3に記載の発電装置。
  5. 前記加圧容器内の圧力を検出する加圧容器圧検出器を更に備えると共に、
    前記制御手段は、前記加圧容器圧検出器で検出された圧力が設定した下限値以下となった場合に前記燃料電池からの出力を停止又は50%以下まで減少させ、前記加圧容器圧検出器で検出された圧力が設定した上限値以上となった場合に前記燃料電池からの出力を回復するように前記出力制御部を制御する請求項1〜4いずれかに記載の発電装置。
  6. 前記出力制御部は、前記燃料電池の出力が入力されて定電流出力が可能な直流電圧変換器を有し、その直流電圧変換器の設定電流値を変化させることで、前記燃料電池からの出力を制御する請求項1〜5いずれかに記載の発電装置。
  7. 前記直流電圧変換器は出力側の負荷に応じて出力電圧が変動するものであり、前記直流電圧変換器からの出力電圧と前記蓄電手段の出力電圧との関係を利用して前記蓄電手段の充放電が行われる請求項6に記載の発電装置。
  8. 発電装置の使用開始時において、前記反応容器に反応液を供給可能な別の反応液供給器を更に備える請求項1〜7いずれかに記載の発電装置。
JP2013138634A 2013-07-02 2013-07-02 発電装置 Ceased JP2015011940A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138634A JP2015011940A (ja) 2013-07-02 2013-07-02 発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138634A JP2015011940A (ja) 2013-07-02 2013-07-02 発電装置

Publications (1)

Publication Number Publication Date
JP2015011940A true JP2015011940A (ja) 2015-01-19

Family

ID=52304922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138634A Ceased JP2015011940A (ja) 2013-07-02 2013-07-02 発電装置

Country Status (1)

Country Link
JP (1) JP2015011940A (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126677A (ja) * 2001-10-24 2003-05-07 Toyota Motor Corp ガス発生装置
JP2004099434A (ja) * 2002-09-06 2004-04-02 Hewlett-Packard Development Co Lp 水素発生装置
US20040072041A1 (en) * 2000-12-29 2004-04-15 Arthur Koschany Fuel cell arrangement and method for operation thereof
JP2004315310A (ja) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd 水素供給装置
WO2006101214A1 (ja) * 2005-03-25 2006-09-28 Seiko Instruments Inc. 水素発生方法及び水素発生装置及び燃料電池設備
JP2006296106A (ja) * 2005-04-12 2006-10-26 Toyota Motor Corp 燃料電池車両
JP2007122888A (ja) * 2005-10-25 2007-05-17 Atsuhiro Yoshizaki 燃料電池システム
JP2007265840A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 燃料電池システム
JP2008501225A (ja) * 2004-05-28 2008-01-17 アイダテック, エル.エル.シー. 利用ベースの燃料電池のモニタリング及び制御
JP2009099534A (ja) * 2007-09-28 2009-05-07 Bio Coke Lab Co Ltd 発電装置、発電方法及び水素化マグネシウム粒子の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072041A1 (en) * 2000-12-29 2004-04-15 Arthur Koschany Fuel cell arrangement and method for operation thereof
JP2003126677A (ja) * 2001-10-24 2003-05-07 Toyota Motor Corp ガス発生装置
JP2004099434A (ja) * 2002-09-06 2004-04-02 Hewlett-Packard Development Co Lp 水素発生装置
JP2004315310A (ja) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd 水素供給装置
JP2008501225A (ja) * 2004-05-28 2008-01-17 アイダテック, エル.エル.シー. 利用ベースの燃料電池のモニタリング及び制御
WO2006101214A1 (ja) * 2005-03-25 2006-09-28 Seiko Instruments Inc. 水素発生方法及び水素発生装置及び燃料電池設備
JP2006296106A (ja) * 2005-04-12 2006-10-26 Toyota Motor Corp 燃料電池車両
JP2007122888A (ja) * 2005-10-25 2007-05-17 Atsuhiro Yoshizaki 燃料電池システム
JP2007265840A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 燃料電池システム
JP2009099534A (ja) * 2007-09-28 2009-05-07 Bio Coke Lab Co Ltd 発電装置、発電方法及び水素化マグネシウム粒子の製造方法

Similar Documents

Publication Publication Date Title
JP6979626B2 (ja) 水素供給システム
JP2019210205A (ja) 水素供給システムおよび水素供給システムの運転方法
US8685223B2 (en) Method for operating water electrolysis system
US9194048B2 (en) Electrochemical device
JP5519858B2 (ja) 直接酸化型燃料電池システム
CN114540830B (zh) 氢-氧制造系统的控制方法及氢-氧制造系统
JP6035797B2 (ja) 燃料電池システム
US20130048507A1 (en) Water electrolysis system and method for operating the same
WO2008134328A2 (en) Power generator with additional hydrogen storage
US20220042192A1 (en) Water electrolysis system
JP2009117282A (ja) 固体高分子電解質型燃料電池発電システム
JP2023134515A (ja) 電気化学セルおよび水素含有ガス気流を処理する方法
JP5872431B2 (ja) 高圧水電解システム及びその起動方法
JP6667151B1 (ja) 水素昇圧システム
JP2015153560A (ja) 燃料電池システム
JP2016115531A (ja) 燃料電池システム、固体水素源の炭化防止方法および燃料電池セル活性化方法
JP2005129518A (ja) 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法並びにビジネス方法
JP6019300B2 (ja) 発電装置
JP2015011940A (ja) 発電装置
JP5835463B2 (ja) 燃料電池システム
JP6354031B2 (ja) 発電装置
JP2016115533A (ja) 燃料電池システムおよびその動作方法、燃料容器および不活性ガス排出方法
JP5631806B2 (ja) 発電装置及び発電方法
JP5990798B2 (ja) 発電装置
JP2017105674A (ja) 水素発生装置および発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20170824