JP2005129518A - 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法並びにビジネス方法 - Google Patents

燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法並びにビジネス方法 Download PDF

Info

Publication number
JP2005129518A
JP2005129518A JP2004289598A JP2004289598A JP2005129518A JP 2005129518 A JP2005129518 A JP 2005129518A JP 2004289598 A JP2004289598 A JP 2004289598A JP 2004289598 A JP2004289598 A JP 2004289598A JP 2005129518 A JP2005129518 A JP 2005129518A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
liquid fuel
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004289598A
Other languages
English (en)
Other versions
JP4727199B2 (ja
Inventor
Toru Koyama
小山  徹
Shigeo Suzuki
重雄 鈴木
Akira Mogi
亮 茂木
Kenichi Soma
憲一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2004289598A priority Critical patent/JP4727199B2/ja
Publication of JP2005129518A publication Critical patent/JP2005129518A/ja
Application granted granted Critical
Publication of JP4727199B2 publication Critical patent/JP4727199B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】
本発明の目的は、燃料電池本体において液体燃料中の不純物イオンを低濃度に保ち、長時間稼動できる燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法並びにビジネス方法を提供することにある。
【解決手段】
本発明は、液体燃料の供給源と燃料電池本体との経路内の液体燃料を発電後の所定の時期に、液体燃料の供給源の交換及び燃料電池本体内の液体燃料を抜き取りの少なくとも一方を行うことによって新しい液体燃料を供給するものである。具体的には、燃料電池本体に所定の濃度の液体燃料を供給すると共に、排出された液体燃料を回収して収納する循環容器を交換可能に設置する。
【選択図】図1

Description

本発明は、特に燃料としてメタノールの液体燃料を用いた小型の携帯用電子機器の電源としての新規な燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法並びにビジネス方法に関する。
最近の電子技術の進歩によって、携帯用電話器、ブックタイプパーソナルコンピュータ、オーデイオ・ビジュアル機器、或いはモバイル用情報端末機器などが小型化され、携帯用電子機器として急速な普及が進んでいる。従来こうした携帯用電子機器は二次電池によって駆動するシステムであり、シール鉛バッテリーからNi/Cd電池、Ni/水素電池、更にはLiイオン電池へと新型二次電池の出現、小型化/軽量化及び高エネルギー密度化技術によって発展してきた。いずれの二次電池においてもエネルギー密度を高めるための電池活物質開発や高容量電池構造の開発が行われ、より一充電での使用時間の長い電源を実現する努力が払われている。
しかしながら、二次電池は一定量の電力使用後には充電することが必須であり、充電設備と比較的長い充電時間が必要となるために携帯用電子機器の長時間連続駆動には多くの問題が残されている。今後、携帯用電子機器は増加する情報量とその高速化に対応してより高出力密度で高エネルギー密度の電源、即ち連続使用時間の長い電源を必要とする方向に向かっており、充電を必要としない小型発電機(マイクロ発電機)の必要性が高まっている。
こうした要請に対応するものとして燃料電池電源が考えられる。燃料電池は燃料の持つ化学エネルギーを電気化学的に直接電気エネルギーに変換するもので、通常のエンジン発電機などの内燃機関を用いた発電機のような動力部を必要としないため、小型発電デバイスとしての実現性は高い。また、燃料電池は燃料のみを交換、或いは補充すれば連続して発電でき、二次電池の場合に見られるような充電のために一時的に携帯用電子機器の動作を停止するということが不要となる。
そこで、メタノール、エタノール、プロパノール、ジメチルエーテルやエチレングリコール等の液体燃料を用いた燃料電池が小型で長時間作動が可能な小型装置用の電源として期待が高まりつつある。そして、特許文献1には、負荷電流の経時変化から液体燃料の供給量を制御する方法により高出力を得ることが提案されている。
特開2003−22830号公報
特許文献1のように液体燃料を用いるパソコン用の燃料電池は液体燃料を所定の濃度に保たせることにより所定の出力を保証することができる。しかし、燃料電池を長時間稼動させるに伴い、液体燃料中にイオン性の不純物が蓄積して液体燃料の電気伝導が上昇し、短絡電流が流れて出力の低下、最後には絶縁破壊が起こり、電池としての機能が果たせなくなるという課題がある。また、液体燃料中のイオン性不純物が電解質膜とイオン結合し、プロトン伝導能力が減じる、或いは電極中の触媒を被毒するという課題もある。
これらの課題を解決するため、液体水溶液燃料循環経路にフィルタやイオン交換樹脂を設置し、液体燃料中の不純物を取り除く方法が考えられるが、この方法を用いても長期間に渡り液体燃料中の不純物を除去しつづけることができなかった。
本発明の目的は、燃料電池本体において液体燃料中の不純物イオンを低濃度に保ち、長時間稼動できる燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法並びにビジネス方法を提供することにある。
本発明は、液体燃料の供給源と燃料電池本体との経路内の液体燃料中の不純物イオンを低濃度に保つために、発電後の所定の時期に、好ましくは液体燃料の濃度及び燃料電池の出力の少なくとも一方の低下と、液体燃料中の金属イオン濃度が所定の濃度より多くなったときの少なくとも一方、或いは燃料チャージ時に、前記液体燃料の供給源の交換及び燃料電池本体内の液体燃料を抜き取りの少なくとも一方を行うことによって新しい液体燃料を供給するようにしたものである。又、燃料電池内のフィルタやイオン交換樹脂を交換し、燃料電池中の液体燃料中の不純物イオンを低濃度に保つようにしたものである。
本発明の一実施形態としての具体例は、所定の濃度の液体燃料を燃料電池本体に供給し燃料電池本体から排出された液体燃料を回収して収納する循環容器を有し、循環容器が交換可能に設置されていること、又、液体燃料を収納し循環容器に供給する燃料容器を有し、循環容器と、燃料容器との少なくとも一方が交換可能に設置されていることを特徴とする燃料電池システムにある。
循環容器や燃料容器を交換用に持ち運ぶことにより、性能が低下した燃料電池の出力を短時間の内に回復することができる。
更には、液体燃料を燃料電池本体に供給すると共に燃料電池本体より出た液体燃料を回収して収納する循環容器を有し、燃料電池本体に供給される液体燃料の濃度、その中の不純物イオン濃度が所定濃度を越えた時及び発電出力が所定出力に満たない時の少なくとも一方において、循環容器内の液体燃料を抜き取り新たな液体燃料を循環容器に供給することを特徴とする燃料電池システムにある。
本発明の燃料電池システムは、少なくとも燃料電池本体及び燃料容器を備えており、その他に、循環容器、燃料濃度制御装置、生成水容器、濃度センサを備えていても良い。燃料電池本体は、アノード、固体高分子電解質膜、カソード、拡散層から構成され、アノードで液体燃料が酸化され、カソードで酸素が還元されるように共に触媒層及び集電体を有し、発電するものである。
本発明の好ましい燃料電池システムは、液体燃料として、メタノールを用いた直接型メタノール燃料電池DMFC(Direct Methanol Fuel Cell)であるが、メタノール、ジメチルエーテルやエチレングリコール等の液体燃料であれば特に制限は無いし、供給する燃料の濃度も特に限定されるものではない。しかし、液体燃料の濃度は100%に近いほどエネルギー密度が上がり、燃料の体積が同じなら長時間にわたり電池を駆動するエネルギを蓄えることができる。特に、液体燃料として10〜30重量%を有する水溶液を用い、燃料電池本体に供給されるその濃度を所定の濃度に制御する。
又、前述の所定の出力が、例えば燃料電池の発電出力が規定出力(所定濃度における予め設計された出力)の8割の出力であるとする。この出力の元で、メタノール水溶液燃料のイオン性成分を分析した結果、Crイオンが0.05〜0.1%、Feイオンが0.02〜0.06%、Niイオンが0.0003〜0.002%、その他に微量のNaイオン、Caイオン等が検出された。これにより少なくとも金属イオン成分が0.1%を越えると出力が規定出力の8割以下に低下することを見出した。
従って、金属イオン成分の含有量の合計量が、0.1%以上、好ましくは0.05%以上、より好ましくは0.01%以上になった時点で液体燃料を抜き取り、新しい液体燃料を供給するとよい。
燃料電池の運転方法は、イオン性不純物等が存在しており、劣化した、即ち性能の劣る液体燃料を抜き取り、新しい燃料を供給するリフレッシュ作業を行うものである。リフレッシュ作業は燃料電池の出力が低下した時、または燃料チャージ時に行うことが好ましい。特に、燃料チャージ時に古い燃料を一部抜きながら新しい燃料を供給することは好ましい。燃料電池の出力低下の判断方法は特に限定されないが、燃料濃度を所定の濃度にしたとき、燃料電池の出力電圧が規定値に対して8割以下に低下することをもって行うことが好ましい。リフレッシュする燃料電池内の燃料は循環容器内だけでも有効である。循環容器が着脱可能となっているとリフレッシュ作業は循環容器を交換するだけで済むので好都合である。
燃料チャージをするための燃料チャージャー内部が燃料不透過性の可撓性膜で区切られ、燃料供給と共に使用済み燃料が回収できる構造の燃料カートリッジとすることにより、持ち運び可能となり、一つのカートリッジで家庭或いは外出時に気軽に燃料の回収・供給ができるので好都合である。燃料不透過性の可撓性膜の隔膜は、燃料を透過せずに可撓性または伸縮性を有している膜であれば特に制限はなく、可撓性の隔壁そのものが自在変形あるいは伸縮することで、分割された燃料カートリッジ内の第1室の内容積が燃料の消費に応じて変化し、燃料を供給する第1室が漸次内容積を減じていくのに対して、使用済み燃料を収容する第2室は漸次内容積を増していく構成とすることができる。スチレン/ブタジエンゴム、ブタジエンゴム、エチレン/プロピレンゴム、クロロプレンゴム、アクリロニトリル/ブタジエンゴム、ウレタンゴム、シリコーンゴム、ブチルゴム、ふっ素ゴム、オレフィン系熱可塑性エラストマー、スチレン系エラストマー、塩ビ系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ふっ素系エラストマー等がある。このうち、スチレン/ブタジエンゴム、ブタジエンゴム、エチレン/プロピレンゴム、シリコーンゴム、ブチルゴム、ふっ素ゴム、オレフィン系熱可塑性エラストマー、ふっ素系エラストマーが燃料不透過性で耐久性があるので好ましい。
更に、リフレッシュ時に同時に循環経路内のイオン或いは不純物を浄化するフィルタを交換することも有効である。不純物イオンは、配管や触媒からの溶出によって生じるものであり、金属イオンが主である。
循環容器又は燃料容器に供給する液体燃料は最初から燃料電池に供給するのに適した濃度の燃料を供給しても良いが、95%以上の高濃度の液体燃料をチャージし、回収水と混合して所定の濃度にして供給することは単位体積当りの出力-時間積分値が増加することから好ましい。
燃料電池本体に用いられる固体高分子電解質膜としてはイオン伝導性を有する電解質膜であれば特に制限は無い。そのような材料としては例えば、ふっ素系電解質膜、部分ふっ素系電解質膜、炭化水素系電解質膜等がある。本実施の形態に用いられるふっ素系電解質膜としては、重合体が広く採用される。一般式CF2=CF-(OCF2CFX)m-Oq-(CF2)n-A(式中m=0〜3、n=0〜12、q=0又は1、X=F又はCF3、A=スルホン酸型官能基)で表されるフロロビニル化合物とテトラフロロエチレン、ヘキサフロロプロピレン、クロロトリフロロエチレン、又はパーフロロアルコキシビニルエーテルの如きパーフロロレフィンとの共重合体が例示される。
フロロビニル化合物の好ましい例としては、
CF2=CFO(CF2)1-8SO2
CF2=CFOCF2CF(CF3)O(CF2)1-8SO2
CF2=CF(CF2)0-8SO2
CF2=CF(OCF2CF(CF3))1-5O(CF2)2SO2
などが挙げられる。
前述の炭化水素系電解質膜として、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリスルフィッド、スルホン化ポリフェニレン等のスルホン化エンジニアプラスチック系電解質膜、スルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィッド、スルホアルキル化ポリフェニレン等のスルホアルキル化エンジニアプラスチック系電解質膜等がある。
このうち、燃料の透過性とイオン伝導度の両立の観点からスルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィッド、スルホアルキル化ポリフェニレン等のスルホアルキル化エンジニアプラスチック系電解質膜が好ましい。
タングステン酸化物水和物、ジルコニウム酸化物水和物、スズ酸化物水和物、ケイタングステン酸、ケイモリブデン酸、タングストリン酸、モリブドリン酸などの水素イオン導電性無機物を耐熱性樹脂にミクロ分散した複合電解質膜等を用いることによって、より高温域まで運転できる燃料電池とすることもできる。
前述の水和型酸性電解質膜は一般に乾燥時と湿潤時とでは膨潤によって膜の変形が発生し、十分にイオン導電性の高い膜では機械強度が十分でない場合が生じる。このような場合には、機械強度、耐久性、耐熱性に優れた繊維を不織布或いは織布状で芯材として用い、電解質膜製造時にこれらの繊維をフィラーとして添加、補強することは電池性能の信頼性を高める上で有効な方法である。又、電解質膜の燃料透過性を低減するためにポリベンズイミダゾール類に硫酸、リン酸、スルホン酸類やフォスフォン酸類をドープした膜を使用することもできる。
かかる固体高分子電解質膜のスルホン酸当量としては、0.5〜2.0ミリ当量/g乾燥樹脂が好ましく、より0.7〜1.6ミリ当量/g乾燥樹脂の範囲が好ましい。スルホン酸当量がこの範囲より低い場合には膜のイオン伝導抵抗が大きくなり、一方、高い場合には水に溶解しやすくなり好ましくない。
燃料電池本体の電解質膜/電極接合体に使用されるガス拡散電極は、触媒金属の微粒子を担持した導電材により構成されるものであり、必要に応じて撥水剤や結着剤が含まれていてもよい。また、触媒を担持していない導電材と必要に応じて含まれる撥水剤や結着剤とからなる層を、触媒層の外側に形成してもよい。
このガス拡散電極に使用される触媒金属としては、水素の酸化反応および酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、あるいはそれらの合金が挙げられる。このような触媒の中で、特に白金が多くの場合用いられる。触媒となる金属の粒径は、通常は10〜300Åである。これらの触媒はカーボン等の担体に付着させた方が触媒の使用量が少なくコスト的に有利である。触媒の担持量は電極が成形された状態で0.01〜10mg/cm2が好ましい。
導電材としては、電子導伝性物質であればいずれのものでも良く、例えば各種金属や炭素材料などが挙げられる。炭素材料としては、例えば、ファーネスブラック、チャンネルブラック、及びアセチレンブラック等のカーボンブラック、活性炭、黒鉛等が挙げられ、これらが単独あるいは混合して使用される。
撥水剤として、例えばふっ素化カーボン等が使用される。バインダーとしては本実施の形態の電解質複合膜の溶液をそのまま用いることが接着性の観点から好ましいが、他の各種樹脂を用いても差し支えない。また、撥水性を有する含ふっ素樹脂、例えばポリテトラフロロエチレン、テトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体、およびテトラフロロエチレン−ヘキサフロロプロピレン共重合体を加えてもよい。
燃料電池本体の電解質複合膜と電極接合法についても特に制限はなく、例えば、カーボンに担持させたPt触媒粉をポリテトラフロロエチレン懸濁液と混ぜ、カーボンペーパーに塗布、熱処理して触媒層を形成する。次いで、電解質複合膜と同一の電解質溶液を触媒層に塗布し、電解質膜とホットプレスで一体化する方法がある。この他、電解質複合膜と同一の電解質溶液を予めPt触媒粉にコーテイングする方法、触媒ペーストを電解質複合膜の方に塗布する方法、電解質複合膜に電極を無電解鍍金する方法、電解質複合膜に白金族の金属錯イオンを吸着させた後、還元する方法等がある。
本発明の循環容器は電気化学的に不活性で、使用環境下において耐久性、耐食性を持った薄型で十分な強度を持つ材料であれば特に制限はない。例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、塩化ビニル、ポリアクリル系樹脂その他のエンジニアリング樹脂やこれらを各種のフィラー等で強度補強した電気絶縁性の材料又は電池作動雰囲気での耐食性に優れた炭素材料、ステンレス系鋼、或いは通常の鉄、ニッケル、銅、アルミニウム及びそれらの合金の表面を耐食化及び電気絶縁化処理した材料をあげることができる。いずれにしても形状を形成する強度、耐食性と電気化学的に不活性な材料であれば特に限定されるものではない。
又、本発明は、コンビニエンストア、駅売店、ホテル、喫茶店、電気店、スーパーマケット、ガソリンスタンド、郵便局、銀行等の店舗に、燃料電池用液体燃料の回収兼供給装置を置き、使用者の依頼により燃料電池発電装置内の使用済み液体燃料を回収すると共に、新しい液体燃料を供給するビジネス方法にある。
燃料電池用液体燃料の回収供給装置は、ノートパソコン、PDA(Personal Digital Assistant;携帯情報端末)、携帯電話等の燃料電池に付いているタグ等を読み取り、自動的に燃料電池発電装置の液体燃料の種類、濃度を感知して必要濃度の液体燃料を調合し、燃料電池用液体燃料の回収供給装置のクレードルに燃料電池を置くことにより自動的に燃料電池用液体燃料の回収供給装置と接続が開始され、接続完了を感知したら必要濃度の液体燃料の供給及び古い液体燃料の回収を始め、作業終了と共に自動的に接続を解除することが望ましい。燃料供給部と燃料回収部は一つの容器に収納されていても、別々であっても特に制限は無い。また、燃料供給部は予め所定の濃度の燃料のみを収納していても構わない。
又、その具体的な回収供給装置として、液体燃料を収納する燃料容器と、燃料電池のカソードで精製される生成水(生成された時点では純水である)を収納する生成水容器と、所定の燃料濃度の水溶液燃料を収納する循環容器と、水溶液燃料の燃料濃度を制御する燃料濃度制御装置と、制御装置に基づいて液体燃料及び生成水を循環容器に送液する送液ポンプと、循環容器内の水溶液燃料を燃料電池に供給する燃料供給パイプラインと、制御装置に基づいて水溶液燃料容器より水溶液燃料を回収する燃料回収パイプラインと、前記制御装置に基づいて循環容器より水溶液燃料を送液する送液ポンプと、送液ポンプより回収された水溶液燃料を収納する回収燃料容器とを有することが好ましい。
前述の店舗にこの回収供給装置を設置することにより、前記水溶液燃料容器より前記水溶液燃料を回収すると共に供給することができる。又、前記店舗で燃料電池内のフィルタやイオン交換樹脂を交換し、燃料電池中の液体燃料中の不純物イオンを低濃度に保つようにしたものである。
本発明の別の形態の燃料電池システムとして、液体燃料を収納する燃料容器、或いは液体燃料を供給する燃料容器を備えた送液ポンプレスのパッシブ型燃料電池に対して、液体燃料供給時に燃料電池本体内の液体燃料を抜き取り、新しい液体燃料を供給することにある。
本発明によれば、特性の劣化した液体燃料を抜き取り、新しい液体燃料を供給することにより燃料電池本体及び液体燃料の供給源の経路中の液体燃料中の不純物イオンを低濃度に保つことにより長時間稼動でき、又、燃料電池の発電性能を燃料チャージ後に短時間で回復できる燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法並びにビジネス方法を提供することができる。
以下、本発明を実施するための最良の形態を具体的な実施例によって説明する。
図1は、本実施例の液体燃料としてメタノール燃料を用いたパソコン用の直接型メタノール燃料電池(DMEC)である燃料電池電源システムを示す構成図である。燃料電池本体1は、固体高分子電解質膜2の両面にアノード触媒層3及びカソード触媒層4が一体化接合した電解質膜/電極接合体(MEA;Membrane Electrode Assembly)を有し、そのアノード側にアノード集電体5、カソード側にカソード集電体6が密着されている。空気流路板7はカソード集電体6側に配置され、空気供給口8と空気排出口9とを有する空気流路10が形成されている。
空気流路10は酸素を含む空気11からなる酸化剤を供給するブロアや送気ポンプ等の酸化剤供給手段12に接続されている。空気排出口9からはカソードにおける酸素の還元反応により生成された生成水が同時に排出されるが、水回収パイプライン47を通して回収され生成水容器21に収納される。一方、燃料流路板13はアノード集電体5側に配置されている。
燃料流路板13には燃料供給口14から燃料排出口15を有する燃料流路16が形成され、イオン交換樹脂又はフィルタ46が接続された燃料回収パイプライン48を通り、液体燃料のメタノール水溶液が循環容器17に回収される。イオン交換樹脂又はフィルタ46は前者によりメタノール水溶液中の金属イオンの除去及び後者により不純物粒子が除去される。
循環容器17は、燃料供給パイプライン49を通して送液ポンプ18を介して燃料供給口14に接続され、メタノール水溶液が循環している。送液ポンプ18により循環容器17から送られたメタノール水溶液は燃料流路板13の燃料供給口14を通して燃料流路板13の溝の部分(燃料流路16)を流れる。燃料流路板13の凸の部分はカーボンペーパーのようなアノード集電体5に接しており、燃料流路16を流れるメタノール水溶液がアノード集電体5に浸み込むことにより、アノード触媒層3にメタノール水溶液が供給される。
アノード触媒層3に供給されたメタノール水溶液が(1)式に従って反応して炭酸ガスと水素イオンと電子に解離する。
CH3OH+H2O → CO2+6H+6e……(1)
生成された水素イオンは固体高分子電解質膜2中をアノードからカソード側に移動し、カソード触媒層4上で空気中から拡散してきた酸素ガスとカソード触媒層4上の電子と(2)式に従って反応して水を生成する。
6H+3/2O2+6e → 3H2O ……(2)
従って発電に伴う全化学反応は(3)式に示すようにメタノールが酸素によって酸化されて炭酸ガス(CO2)と水を生成し、化学反応式は形式上メタノールの火炎燃焼と同じになる。
CH3OH+3/2O2 → CO2+3H2O ……(3)
メタノール水溶液を燃料とする燃料電池では上述の電気化学反応でメタノールの有する化学エネルギーが直接電気エネルギーに変換される形で発電される。
しかしながら、燃料流路板13を流れるすべてのメタノール水溶液がアノード集電体5に浸み込むことは殆ど無く、一部は燃料流路板13の燃料排出口15から排出される。このため、循環容器17中のメタノール水溶液の利用効率は、一般には低い。この効率を高めるために、流路板の構造を改良するなどの試みもなされているが、利用効率を大きく高めるまでには至っていないのが現状である。
本実施例においては、燃料流路板13の燃料排出口15からから排出されたメタノール水溶液を循環容器17に戻す仕組みを有するものである。アノード触媒層3中でメタノールと水はモル比で1対1で消費されるため、燃料流路板13から排出されたメタノール水溶液を循環容器17内に戻す循環経路が形成され、循環容器17内のメタノール水溶液の濃度が次第に薄くなるので、使用時間の経過につれて電池内部でメタノール不足を生じ、起電力が急激に減少する。
そこで、メタノール水溶液の濃度をメタノール濃度センサ19で検出し、その情報をメタノール濃度制御装置20に送り、メタノール濃度制御装置20がメタノール水溶液を所定の濃度にするように水容器21に直結した送液ポンプ22及び新しいメタノール水溶液を貯蔵する燃料容器23に直結した送液ポンプ24を制御している。水容器21には空気排出口9から空気と共に排出される生成水を一部回収して使用される。燃料容器23には高濃度のメタノールが収納されたカートリッジ等により必要に応じて逐次循環容器17内に供給される。又、前述の(3)式によって生成されるCO2は燃料回収パイプライン48に設けられた気液分離装置(図示せず)によって除去される。
前記(1)式で発生した電子は集電体を通ってDC-DCコンバータ(直流/直流変換器)25で昇圧され、リチウムイオン二次電池又はスーパーキャパシタ26を経て外部回路27に接続される。また、リチウムイオン二次電池又はスーパーキャパシタ26は制御機器20や送液ポンプ22、24、送風ポンプ12等の電源28を作動させている。効率上、発電した電力の一部はアノード、カソード集電体を通って燃料濃度制御装置20や送液ポンプ22、24、送風ポンプ12等の電源28を作動させることもある。
アノード触媒層3は炭素担体上に白金とルテニウムの原子比が1/1の白金/ルテニウム合金微粒子を50wt%分散担持した触媒粉末と30wt%パーフロロカーボンスルホン酸(商品名:Nafion117、DuPont社製)電解質をバインダーとして水/アルコール混合溶媒(水、イソプロパノール、ノルマルプロパノールが重量比で20:40:40の混合溶媒)のスラリーを調整してスクリーン印刷法でポリイミドフィルム上に厚さ約20μmの多孔質膜に形成した。カソード触媒層4は炭素担体上に30wt%の白金微粒子を担持した触媒粉末と電解質をバインダーとして水/アルコール混合溶媒のスラリーを調整してスクリーン印刷法でポリイミドフィルム上に厚さ約25μmの多孔質膜に形成した。こうして調整したアノード多孔質膜及びカソード多孔質膜をそれぞれ10mm幅×20mm長さに切り出してアノード触媒層3及びカソード触媒層4とした。
アノード触媒層の表面に5重量%のナフィオン117アルコール水溶液(水、イソプロパノール、ノルマルプロパノールが重量比で20:40:40の混合溶媒:Fluka Chemika社製)を約0.5ml浸透させた後に上記した固体高分子電解質膜(厚さ50μmのナフィオン117)2の発電部に接合し約1kgの荷重をかけて80℃で3時間乾燥する。次にカソード触媒層表面に5重量%のナフィオン117アルコール水溶液(水、イソプロパノール、ノルマルプロパノールが重量比で20:40:40の混合溶媒:Fluka Chemika社製)を約0.5ml浸透させた後に固体高分子電解質膜2に先に接合したアノード触媒層と重なるように接合して約1kgの荷重をかけて80℃で3時間乾燥することによって膜電極接合体(MEA)を調整した。
次に炭素粉末に焼成後の重量で40wt%となるように撥水剤ポリテトラフロロエチレン微粒子の水性分散液(デイスパージョンD−1:ダイキン工業製)を添加して混練し、ペースト状になったものを厚さ約350μm、空隙率87%の炭素繊維織布上の片面に厚さ約20μmとなるように塗布し、室温で乾燥した後270℃で3時間焼成して炭素シートを形成した。得られたシートを上記したMEAの電極サイズと同じ形状に切り出して拡散層を調整した。これらの部品を用い、図1に示す燃料電池本体1を作製した。
最初に、燃料電池本体1は循環容器を兼ねた循環容器17中のメタノール水溶液の濃度をメタノール濃度センサ19でモニタし、濃度の低下、或いはその量の不足に伴って、メタノール濃度制御装置20の指示によって回収水の入っている水容器21中の生成水と、高濃度のメタノールを保管している燃料容器23中のメタノールとを送液ポンプ22、24により所定量送り込み、燃料電池に供給するメタノール溶液の濃度を10〜30wt%の所定範囲内にコントロールしている。このようなコントロールを行っても約50時間で出力が低下し、使用不能となった。更に、燃料容器23中のメタノールを新たにチャージしても出力が規定値に達せず、燃料電池は使用不能となった。
そのため、本実施例においては、図1に示す燃料電池本体1において、循環容器17中のメタノール水溶液の濃度をメタノール濃度センサ19により検出すると共に、所定範囲内にコントロールして、発電出力が規定出力の8割に低下したとき、循環容器17中のメタノール水溶液を抜き取りながら、新たに水容器21中の純水及び高濃度のメタノールを保管している燃料容器23中のメタノールを送液ポンプ22、24により供給し、所定の濃度の新しいメタノール溶液と置き換えた。これにより燃料電池本体1の出力が回復した。これを繰り返すことにより燃料電池が1000時間以上使用することができた。又、本実施例においては、発電出力が規定出力の8割に低下したとき、循環容器17を所定の濃度の新しいメタノール溶液が充填されている循環容器と交換を繰り返すことにより同様に燃料電池が1000時間以上使用することができた。
従来、液体燃料を用いる燃料電池は長時間稼動させるのに伴いイオン性不純物が燃料溶液中に蓄積し、出力が低下し短時間で使用不可となる問題があったが、本実施例により燃料電池の出力が低下した時、或いは燃料チャージ時に燃料電池内の液体燃料を抜き取り、新しい液体燃料の供給、新しい液体燃料が入った循環容器と交換することにより燃料電池の使用時間が格段に向上することがわかる。
又、新しい液体燃料の供給と同時に、燃料チャージ時液体水溶液燃料循環経路に設置したフィルタやイオン交換樹脂の交換、或いは再生により更に長時間燃料電池を稼動させることが可能となった。
更に、本実施例に係る燃料電池システムを二次電池搭載の携帯電話器、携帯用パーソナルコンピュータ、携帯用オーデイオ、ビジュアル機器、その他の携帯用情報端末に付設するバッテリーチャージャーとして用いること、或いは二次電池を搭載することなく直接内蔵電源とすることによってこれらの電子機器の長時間使用が可能となる。又、後述する燃料回収供給装置によって燃料の回収補給が容易に行うことができ、それによって容易に連続使用が可能となる。
図2は、本発明に関わる燃料電池システムを装着したノートパソコンの外観図である。本実施例はノートパソコンの液晶表示部にパネル型の燃料電池の発電部29が収納されている実施例である。本実施例における発電部29は、図1に示す燃料電池電源システムのうち循環タンク30と新しいメタノール水溶液を貯蔵する燃料タンク31を除く全体を有するものである。図2の発電部29の表面に示されるスリットは空気取り入れ口45を示したものである。ヒンジ部に点線で示してあるように所定の濃度のメタノール水溶液が循環しながら貯蔵する循環タンク30と新しいメタノール水溶液を貯蔵する燃料タンク31が保持手段44に収納されている。循環タンク30には燃料タンク31からメタノール燃料が逐次供給される。本実施例におけるン燃料電池システムは、燃料電池本体を24個有するものである。
又、燃料タンク31に燃料チャージャーにより燃料を供給する際、出力が規定出力の8割以下に低下した時、それまで使用していたメタノール水溶液燃料の入っている循環タンク30を新しい所定の濃度のメタノール水溶液燃料が入っている循環タンクと繰り返し交換することにより、燃料電池を1000時間以上使用することができた。また、循環タンク30だけでなく燃料タンク31も交換可能であり、逐次交換することにより長時間の使用が可能となる。
尚、燃料タンク31に燃料チャージャーにより燃料を供給する際、それまで使用していたメタノール水溶液燃料が入っている循環タンク30を新しい所定濃度のメタノール水溶液燃料が入っている循環タンクと交換しない場合、約50時間で出力が低下し、燃料電池は使用不能となった。しかし、本実施例においては、燃料電池の出力が低下したことを表示する表示手段により、或いは燃料チャージ時に燃料電池本体内の液体燃料を抜き取り、新しい液体燃料を供給することにより燃料電池の可使時間が格段に向上することが分かる。また、全体を循環タンク30にすることができる。
図3は本発明に関わる燃料電池システムを装着したノートパソコンの外観図である。本実施例はノートパソコンの液晶表示部にパネル型の燃料電池の発電部29が収納されている実施例である。本実施例は実施例2よりメタノール水溶液燃料が循環する循環タンク30がメタノール水溶液の入っている燃料タンク31よりかなり小さくし、又、循環タンク30だけでなく燃料タンク31も交換可能とした以外は実施例3と同じ構造を有するものである。ヒンジ部に点線で示してある様に所定の濃度の循環タンク30と燃料タンク31が保持手段44に収納されている。燃料タンク31に燃料チャージャーにより燃料を供給する際、出力が規定出力の8割以下に低下した時、それまで使用していたメタノール水溶液燃料が循環する循環タンク30を新しい所定濃度のメタノール水溶液燃料が入った循環タンク30と繰り返し交換することにより、燃料電池を1000時間以上使用することができた。
本実施例の燃料タンク31は循環タンク30より約4倍と大きく、1回のチャージで実施例2より約4倍使用時間が長く好都合である。本実施例により燃料電池の出力が低下した時、或いは燃料チャージ時に燃料電池本体内の液体燃料を抜き取り、新しい液体燃料を供給することにより燃料電池の可使時間が格段に向上したことが分かる。
尚、燃料タンク31に燃料チャージャーにより燃料を供給する際、それまで使用していた燃料の入っている循環タンク30を新しい所定濃度のメタノール水溶液燃料が入った循環タンク30と交換しない場合、約50時間で出力が低下し、燃料電池は使用不能となったが、本実施例により実施例2と同様に燃料電池の可使時間が格段に向上したことが分かる。
図4は本実施例に関わる燃料電池システムを装着したノートパソコンの外観図である。本実施例はノートパソコンのヒンジ部に燃料電池電源32を装着し、Li電池との互換性を有する実施例である。本実施例においても、メタノール水溶液燃料が循環する循環タンク30及びメタノール水溶液燃料が入った燃料タンク31が交換可能である。燃料電池電源32には循環タンク30及び燃料タンク31の他に、積層型の燃料電池本体、送液ポンプ、送風ポンプ等の補機、制御部等が配置されている。又、図1に示すDC−DCコンバータ、リチウムイオン二次電池やスーパーキャパシタは燃料電池電源32或いはノートパソコン本体のどちらにあっても良い。
本実施例においては、燃料タンク31に燃料チャージャーにより燃料を供給する際、出力が規定出力の8割以下に低下した時、それまで使用していた燃料の入っている循環タンク30を新しい所定濃度の燃料の入った循環タンク30と繰り返し交換することにより、燃料電池を1000時間以上使用することができた。
尚、燃料タンク31に燃料チャージャーにより燃料を供給する際、それまで使用していた燃料の入っている循環タンク30を新しい所定濃度のメタノール水溶液燃料が入った循環タンク30と交換しない場合、約50時間で出力が低下し、燃料電池は使用不能となったが、本実施例により実施例2と同様に燃料電池の可使時間が格段に向上したことが分かる。
図5は本実施例に関わる燃料電池システムを装着したノートパソコンの外観図である。本実施例はノートパソコンのヒンジ部に燃料電池電源32を装着し、Li電池と互換性を持たせた実施例である。本実施例においても、メタノール水溶液燃料が循環する循環タンク30及びメタノール水溶液燃料が入った燃料タンク31が交換可能である。燃料電池電源32には積層型の燃料電池本体、送液ポンプ、送風ポンプ等の補機、制御部等が配置されている。DC−DCコンバータ、リチウムイオン二次電池やスーパーキャパシタは燃料電池電源32或いはノートパソコン本体のどちらにあっても良い。循環タンク30及び燃料タンク31はノートパソコン本体に設置されている。燃料の供給においては、出力が規定出力の8割以下に低下した時、循環タンク30中のそれまで使用していた液体燃料を抜き取り、燃料タンク31に燃料チャージャーにより新しい所定濃度の液体燃料を注入した。これにより、燃料電池を1000時間以上使用することができた。
尚、燃料タンク31に燃料チャージャーにより燃料を供給する際、循環タンク30中の燃料を新しい燃料と交換しない場合、約50時間で出力が低下し、燃料電池は使用不能となったが、本実施例により実施例2と同様に燃料電池の可使時間が格段に向上したことが分かる。
図6は本実施例に関わる燃料電池システムを装着したノートパソコンの外観図である。本実施例はノートパソコンのヒンジ部にメタノール水溶液燃料が入った燃料タンク31を装着した実施例である。循環タンク30及び燃料電池電源32はノートパソコン本体中に装着してある。燃料電池電源32には積層型の燃料電池本体、送液ポンプ、送風ポンプ等の補機、制御部等が配置されている。DC−DCコンバータ、リチウムイオン二次電池やスーパーキャパシタは燃料電池電源32或いはノートパソコン本体のどちらにあっても良い。本実施例においても、メタノール水溶液燃料が循環する循環タンク及び燃料タンク31が交換可能である。燃料タンク31に燃料チャージャーにより燃料を供給する際、出力が規定出力の8割以下に低下した時、循環タンク30中のそれまで使用していた液体燃料を抜き取り、新しい所定濃度の液体燃料を注入した。これにより、燃料電池を1000時間以上使用することができた。
尚、燃料タンク31に燃料チャージャーにより燃料を供給する際、循環タンク30中の燃料を新しい燃料と交換しない場合、約50時間で出力が低下し、燃料電池は使用不能となったが、本実施例により実施例2と同様に燃料電池の可使時間が格段に向上したことが分かる。
図7は本実施例に関わる燃料カートリッジの外観図である。実施例6でメタノール水溶液燃料循環タンク30中のそれまで使用していた燃料を抜き取り、メタノール水溶液燃料が入った燃料タンク31に新しい所定濃度の燃料を注入する際、図7に示すカートリッジを用い、一つのカートリッジで燃料供給と回収を同時に行うことができるものである。即ち、燃料カートリッジチャージャーの中を可撓性のメタノール不透過性高分子膜33で区切り、片方に燃料吸収材36を、もう片方に燃料を入れてある。
図5のメタノール水溶液燃料が循環する循環タンク30に燃料吸収材36を充填している燃料吸入口を繋ぐことにより循環タンク30中の燃料を毛細管現象により燃料吸収材36迄輸送し、そこで、燃料吸収材36が膨張する。その力で燃料供給口35よりメタノールを燃料タンク31に供給した。本実施例においても、実施例2〜6に示すように、燃料電池を1000時間以上使用することができる。
図8は本実施例に関わる燃料カートリッジの外観図である。実施例6でメタノール水溶液燃料が循環する循環タンク30中のそれまで使用していた燃料抜き取り、燃料タンク31に新しい所定濃度のメタノール水溶液燃料を注入する際、図8に示すカートリッジを用い、一つのカートリッジで同時に燃料供給と回収を同時に行った。即ち、図5の循環タンク30に燃料吸入口34を繋ぎ、燃料タンク31に燃料供給口35を繋ぎ、ピストン37の力により新しい燃料を加圧して燃料タンク30に供給し、逆に回収燃料側を負圧にしその力により古い燃料を回収した。これにより、実施例2〜6に示すように、燃料電池を1000時間以上使用することができる。
図9及び図10は本実施例に関わる燃料電池システムを装着したノートパソコンの外観図である。図9及び図10はノートパソコン本体の下に燃料電池電源32を置いた例である。燃料電池電源32には図1に示す構成が含まれ、積層型の燃料電池本体、送液ポンプ、送風ポンプ等の補機、制御部等が配置されている。DC−DCコンバータ、リチウムイオン二次電池やスーパーキャパシタは燃料電池電源32或いはノートパソコン本体のどちらにあっても良い。メタノール水溶液燃料が入った燃料タンクに燃料チャージャーにより燃料を供給する際、出力が規定出力の8割以下に低下した時、循環タンク中のそれまで使用していた燃料を抜き取り、新しい所定濃度の燃料を注入した。この繰り返しにより、燃料電池を1000時間以上使用することができた。
一方、燃料タンクに燃料チャージャーにより燃料を供給する際、メタノール水溶液燃料が循環する循環タンク中の燃料を新しい燃料と交換しない場合は、約50時間で出力が低下し、燃料電池は使用不能となったが、本実施例により実施例2と同様に燃料電池の可使時間が格段に向上したことが分かる。
図11は、本発明に係る燃料チャージをするための燃料供給と共に使用済み燃料が回収できる構造を有する燃料カートリッジの断面図である。燃料カートリッジは、新しい燃料が収納される供給用燃料収納室である第1室49と、イオン成分濃度の高くなった使用済み燃料回収室である第2室52とを可撓性のエチレン・プロピレン・ジエン三元共重合体のエチレン/プロピレンゴムからなる燃料不透過性の可撓性膜76で隔てている。燃料電池本体内の液体燃料が消費されるのに応じて第1室49から燃料が燃料電池内に燃料供給口50を通して供給され、第1室49の内容積が減じる。それに伴い、使用済み燃料を収納する第2室52に使用済み燃料回収口51を通って使用済み燃料が回収される。燃料カートリッジは燃料供給と共に使用済み燃料が回収される構造であるので、燃料カートリッジを一つ持ち運べば室内、或いは外出時に簡単に燃料の供給・回収ができ好都合である。本実施例においても、前述の実施例に示すように、燃料電池を1000時間以上使用することができる。
図12は、本発明に係る燃料電池電源システムの構成図である。燃料電池電源システムは、燃料電池本体53、燃料カートリッジタンク54、電力端子55、燃料室排ガス排気口56、DC-DCコンバータ57、制御器58から構成されている。燃料カートリッジタンク54は、高圧液化ガス、高圧ガス又はバネなどの圧力によって液体燃料を送り出す方式のものであり、液体燃料を後述する図14に開示する燃料室61に供給するとともに、燃料室内を液体燃料で大気圧よりも高い圧力に維持するシステムになっている。発電に伴って、燃料室の燃料が消費されると燃料カートリッジタンク54から燃料が補給される。
電池出力はDC-DCコンバータ57を介して負荷機器に電力を供給する方式をとっており、燃料電池本体53、燃料カートリッジタンク54の燃料残量、DC-DCコンバータ57などの運転時及び停止時の状況に関る信号を得て、DC-DCコンバータ57を制御し、必要に応じて警告信号を出力するように設定された制御器58を有する。
制御器58は、必要によっては電池電圧、出力電流、電池温度などの電源の運転状態を負荷機器に表示することができ、燃料カートリッジタンク54の残量が所定値を下回る状況になった場合、或いは空気拡散量などが所定の範囲から外れた場合には、DC-DCコンバータ57から負荷への電力供給を停止するとともに音響、音声、パイロットランプ又は文字表示などの異常警報を駆動する。正常運転時においても燃料カートリッジタンク54の燃料残量信号を受けて、負荷機器に燃料残量表示が出来る。
図13は燃料電池本体の部品構成を示す斜視図である。燃料電池本体53は、燃料カートリッジホルダー59を備えた燃料室61とその片方の面に、アノード端板62、ガスケット64、拡散層付きのMEA(膜/電極接合体)60、ガスケット64、カソード端板63の順に積層し、燃料室61のもう一方の面にも、アノード端板62、ガスケット64、拡散層付きのMEA60、ガスケット64、カソード端板63の順に積層し、積層体を面内の加圧力が略均一になるようにネジ65で一体化、固定して、構成される。
図14は、積層、固定された燃料室の両面に発電部を有する燃料電池の斜視図である。燃料電池本体53は、燃料室61の両面に複数の単電池が直列接続され、両面の直列単電池群はさらに接続端子66で直列接続され、出力端子55から電力を取り出す構造になっている。液体燃料は、燃料カートリッジタンク54から高圧液化ガス、高圧ガス又はバネなどによって加圧供給され、アノードで生成した炭酸ガスは、図14には図示されないが、図15にその一実施例として示す排ガスモジュールを介して燃料室排ガス排出口56から排出される。この排ガスモジュールは、気液分離機能を持ち、排ガスを捕集する機能を持っている。一方、酸化剤である空気はスリット67からの拡散で供給され、カソードで生成した水はこのスリット67を通して拡散、排気される。電池を一体化するための締め付け方法は本実施例ではネジによる締め付けを用いたが、これに限定されることなく、この電池を筐体内に挿入して筐体からの圧縮力によって達成することやその他の方法で達成することが出来る。
図15は、燃料室の構造を示す平面図である。燃料室61には燃料を分配するための複数のリブ66が設けられ、リブ支持板68の支持を受けて両面貫通のスリット67を形成しており、リブ支持板68は、燃料室61の厚さよりは十分に薄く、この部分にも燃料分配のための溝部が形成され、且つ、リブ支持板68には、気液分離管72を支持する孔69が設けられている。また、燃料室61には、燃料室排ガス排気口56、電池締め付け用ネジ孔70、燃料カートリッジ受け口71、及び燃料カートリッジホルダー59が設けられている。
燃料室61の材料はMEA装着時に面圧が均一にかかるように平滑であり、面内に設置される複数の電池が相互に短絡しないように絶縁された構造となれば特に限定は無い。絶縁材料として、高密度塩化ビニル、高密度ポリエチレン、高密度ポリプロピレン、エポキシ樹脂、ポリエーテルエーテルケトン類、ポリエーテルスルフォン類、ポリ−カーボネート或いはこれらをガラス繊維強化したものを用いると良い。また、炭素板や鋼、ニッケル、その他軽量なアルミニウム、マグネシウムなどの合金材料、或いは、銅-アルミニウムなどに代表される金属間化合物や各種のステンレススチールを用い、表面を不導体化する方法や樹脂を塗布して絶縁化する方法を用いることが出来る。
燃料や酸化剤ガスなど流体を分配するスリット67は、図15では平行溝構造をとっているが、その他の構造などを選択することも可能で、流体が面内で均一に分配される構造であれば特に限定されるものではない。また、図14では電池構成部材をネジによって均一に締め付けて、電気的接触と液体燃料のシールを図っているが、これも本実施例に限定されることなく、例えば、電池部材をそれぞれ接着性高分子フィルムで張り合わせて、該電池を筐体などで加圧、締め付けする方法などは。電源を軽量、薄型化を図る上で有効な方法である。
燃料室61には使用済み燃料を抜き取り接続口75があり、通常は閉じられている。出力が規定出力の8割以下に低下した時、燃料カートリッジタンク54を新しい燃料カートリッジタンク54に付け代える際、使用済み燃料を抜き取り接続口75から燃料電池本体内の液体燃料を抜き取った。燃料電池本他内の燃料を抜き取らない場合、約300時間で出力が低下し、使用不可能となったが、燃料を抜き取ることにより、燃料電池を3000時間以上安定に使用することができた。
本実施例においても、実施例1と同様に、新しい液体燃料の供給、液体水溶液燃料の循環経路に設置したフィルタやイオン交換樹脂の交換、或いは再生により長時間稼動させることが可能となり、携帯電話器、携帯用パーソナルコンピュータ、携帯用オーデイオ、ビジュアル機器、その他の携帯用情報端末に付設するバッテリーチャージャーとして直接内蔵電源とすることによってこれらの電子機器の長時間使用が可能となり、燃料回収供給装置による燃料の補給によって連続使用が可能となる。
図16は、本発明の使用済み液体燃料の回収と新しい液体燃料の供給とを同時に行う燃料回収供給装置の構成図である。図16に示すように、ノートパソコン、PDA、携帯電話等の燃料電池内の使用によりイオン性不純物等が蓄積して寿命になった液体燃料を回収する燃料回収部と、新しい液体燃料を供給する燃料供給部とを有する燃料回収供給装置を、コンビニエンストア、駅売店、ホテル、喫茶店、電気店、スーパーマケット、ガソリンスタンド、郵便局、銀行等の店舗に置き、使用者の依頼により燃料電池発電装置内の使用済み液体燃料を回収すると共に、新しい液体燃料を供給することができる。
即ち、実施例1に示すように、循環容器17内のメタノール水溶液は燃料電池との間で循環しながら発電が行われため、長時間の使用後にはイオン性不純物等が循環経路内に蓄積して発電出力が低下し寿命となる。イオン性不純物濃度は、メタノール水溶液中の不純物イオン濃度が所定濃度を越えた時、その液体燃料を図16に示す燃料回収供給装置によって回収し、新しい液体燃料に取り替えることにより、循環容器17中のメタノール水溶液の濃度が所定範囲内にコントロールすることができる。
出力が著しく低下したメタノール水溶液の不純物イオンは、金属イオンが主であり、本実施例においては、Crイオンが0.05〜0.1%、Feイオンが0.02〜0.06%、Niイオンが0.0003〜0.002%、その他に微量のNaイオン、Caイオン等が検出された。少なくとも金属イオン成分が0.1%を越えると出力が低下することを見出した。従って、本実施例においては、金属イオン成分の全含有量が0.01%になった時点で液体燃料を抜き取り、新しい液体燃料を以下のように供給した。
先ず、燃料回収部43において、燃料電池(図示せず)の古い液体燃料を燃料排出口15の燃料回収パイプライン41に接続し、その信号を受けてメタノール濃度制御装置20の指示で送液ポンプ40を稼動させ、古い液体燃料を吸引して回収燃料容器39に回収する。
次に、燃料供給部42において、顧客の使用している燃料電池の液体燃料の種類、濃度を事前に入力し、その情報をメタノール濃度制御装置20に送り、メタノール濃度制御装置20がメタノール水溶液を所定の濃度になるように純水容器21に直結した送液ポンプ22及びメタノール溶液容器23に直結した送液ポンプ24を制御して必要な濃度の液体燃料濃度に調合する。液体燃料供給パイプライン38に液体燃料供給口14を接続した後、送液ポンプ18を稼動させ、液体燃料供給パイプライン38を通じて燃料電池(図示せず)に供給する。
特に、ノートパソコン、携帯電話、PDA等を燃料電池内の使用済み液体燃料を回収後、新しい液体燃料を供給する燃料回収供給装置上のクレードルにおくことにより、自動的に燃料回収パイプライン41が循環容器17に接続して使用済み液体燃料の回収が始まるとともに、燃料供給パイプライン38がメタノール溶液容器23に接続して新しい液体燃料の供給が開始され、作業終了と共に自動的に接続が切られ、液体燃料の取り替えが完了する。
以上のように、所定の燃料濃度を有し、不純物の金属イオンが全く無い新しいメタノール溶液と置き換えることにより燃料電池の出力が回復し、これを繰り返すことにより燃料電池が1000時間以上使用することができ、燃料電池の可使時間が格段に向上する。また、出力が規定出力以下になったときの液体燃料に対しても、本実施例と同様に対応することができる。
本発明に係る燃料電池発電装置の構成図である。 本発明に係る燃料電池を装着したノートパソコンの斜視図である。 本発明に係る燃料電池を装着したノートパソコンの斜視図である。 本発明に係る燃料電池を装着したノートパソコンの斜視図である。 本発明に係る燃料電池を装着したノートパソコンの斜視図である。 本発明に係る燃料電池を装着したノートパソコンの斜視図である。 本発明に係るカートリッジの斜視図である。 本発明に係るカートリッジの斜視図である。 本発明に係る燃料電池を装着したノートパソコンの斜視図である。 本発明に係る燃料電池を装着したノートパソコンの斜視図である。 本発明に係るカートリッジの断面図である。 本発明に係る燃料電池電源システムの構成を示す正面図である。 本発明に係る燃料電池の部品構成の斜視図である。 本発明に係る燃料電池の斜視図である。 本発明に係る燃料室の構造を示す平面図である。 本発明に係る使用済み液体燃料の回収部及び新しい液体燃料の供給部を有する液体燃料回収供給装置の構成図である。
符号の説明
1、53…燃料電池本体、2…固体高分子電解質膜、3…アノード触媒層、4…カソード触媒層、5…アノード集電体、6…カソード集電体、7…空気流路板、8…空気供給口、9…空気排出口、10…空気流路、11…空気、12…酸化剤供給手段、13…燃料流路板、14…液体燃料供給口、15…燃料排出口、16…燃料流路、17…循環容器、18、22,24,40…送液ポンプ、19…メタノール濃度センサ、20…メタノール濃度制御装置、21…純水容器、23…燃料容器、25…DC−DCコンバータ、26…リチウムイオン二次電池又はスーパーキャパシタ、27…外部回路、28…補機の電源、29…発電部、30…循環タンク、31…燃料タンク、32…燃料電池電源、33…燃料不透過性可撓性高分子膜、34…燃料吸入口、35…燃料供給口、36…燃料吸入材、37…ピストン、38、49…燃料供給パイプライン、39…回収燃料容器、41、48…燃料回収パイプライン、42…燃料供給部、43…燃料回収部、44…保持手段、45…空気取り入口、46…イオン交換樹脂又はフィルタ、47…水回収パイプライン、49…第1室、50…燃料供給口、51…使用済み燃料回収口、52…第2室、54…燃料カートリッジタンク、55…電力端子、56…燃料室排ガス排気口、57…DC-DCコンバータ、58…制御器、59…燃料カートリッジホルダー、60…拡散層付きのMEA(膜/電極接合体)、61…燃料室、62…アノード端板、63…カソード端板、64…ガスケット、65…ネジ、66…リブ、67…スリット、68…リブ支持板、69…支持する孔、70…電池締め付け用ネジ孔、71…燃料カートリッジ受け口、72…排ガスモジュール、73…気液分離管、74…モジュール基板、75…使用済み燃料を抜き取り接続口、76…燃料不透過性の可撓性膜。

Claims (20)

  1. 燃料電池本体と、該燃料電池本体に所定の濃度の液体燃料を供給し前記燃料電池本体から排出された前記液体燃料を回収して収納する循環容器とを有し、該循環容器が交換可能に設置されていることを特徴とする燃料電池システム。
  2. 燃料電池本体と、該燃料電池本体に所定の濃度の液体燃料を供給し前記燃料電池本体から排出された前記液体燃料を回収して収納する循環容器と、該循環容器に前記液体燃料を供給する燃料容器とを有し、前記循環容器と前記燃料容器との少なくとも一方が交換可能に設置されていることを特徴とする燃料電池システム。
  3. 請求項1又は2において、前記燃料電池本体に供給される前記液体燃料の濃度を検出する検出器を有することを特徴とする燃料電池システム。
  4. 請求項1又は2において、前記燃料電池本体に供給される前記液体燃料の濃度が所定濃度に制御する制御装置を有することを特徴とする燃料電池システム。
  5. 請求項1又は2において、前記燃料電池本体に供給される前記液体燃料中の不純物イオン濃度を検出する検出器を有することを特徴とする燃料電池システム。
  6. 請求項1又は2において、前記燃料電池本体は、燃料極と、前記燃料極に対向して配置された酸化剤極と、前記燃料極及び酸化剤極に狭持された電解質膜層とを有することを特徴とする燃料電池システム。
  7. 請求項1又は2において、前記液体燃料がメタノール、ジメチルエーテル及びエチレングリコールのいずれかであることを特徴とする燃料電池システム。
  8. 請求項1又は2において、前記燃料電池本体より出た前記燃料中の金属イオン又は不純物粒子を除去するイオン交換樹脂又はフィルタを有することを特徴とする燃料電池システム。
  9. 請求項2において、前記循環容器及び燃料容器を保持する保持手段を有することを特徴とする燃料電池システム。
  10. 請求項2において、前記循環容器と燃料容器とが液体燃料不透過性高分子膜を介して形成された一体構造を有することを特徴とする燃料電池システム。
  11. 請求項1又は2において、前記循環容器は該容器内を往復運動するピストンを有し、該ピストンの運動により前記液体燃料を前記燃料電池本体に供給すると共に、前記循環容器に前記使用済み液体燃料を回収する構造を有することを特徴とする燃料電池システム。
  12. 燃料電池システムが組み込まれた電子装置を有する電子機器において、前記燃料電池システムは請求項1又は2に記載の燃料電池システムからなることを特徴とする電子機器。
  13. 燃料電池本体に所定の濃度の液体燃料を供給し発電する燃料電池の運転方法において、前記発電後の所定の時期に、前記燃料電池本体と前記液体燃料の供給源との経路内の前記液体燃料を新しい液体燃料に交換することを特徴とする燃料電池の運転方法。
  14. 請求項13において、前記所定の時期に、前記燃料電池本体と前記液体燃料の供給源との経路内の金属イオン及び不純物粒子の少なくとも一方を除去することを特徴とする燃料電池の運転方法。
  15. 請求項13において、前記発電後の所定の時期に、前記液体燃料の供給源の交換を行うことを特徴とする燃料電池の運転方法。
  16. 請求項13において、前記発電後の所定の時期に前記燃料電池本体内の前記液体燃料を抜き取ることを特徴とする燃料電池の運転方法。
  17. 請求項13において、前記液体燃料の濃度、前記発電出力及び前記液体燃料中の金属イオン濃度の少なくとも一方に基づいて前記新しい液体燃料に交換することを特徴とする燃料電池の運転方法。
  18. 請求項15において、前記液体燃料の濃度、前記発電出力及び前記液体燃料中の金属イオン濃度の少なくとも一方に基づいて前記液体燃料の供給源の交換を行うことを特徴とする燃料電池の運転方法。
  19. 請求項16において、前記液体燃料の濃度、前記発電出力及び前記液体燃料中の金属イオン濃度の少なくとも一方に基づいて前記燃料電池本体内の前記液体燃料を抜き取ることを特徴とする燃料電池の運転方法。
  20. 店舗に、燃料電池発電装置に所定の濃度の液体燃料を供給する燃料供給部と、前記液体燃料を回収する燃料回収部とを有する液体燃料回収供給装置を設置し、前記液体燃料を回収すると共に供給することを特徴とするビジネス方法。
JP2004289598A 2003-10-03 2004-10-01 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法 Expired - Fee Related JP4727199B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289598A JP4727199B2 (ja) 2003-10-03 2004-10-01 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003345500 2003-10-03
JP2003345500 2003-10-03
JP2004289598A JP4727199B2 (ja) 2003-10-03 2004-10-01 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法

Publications (2)

Publication Number Publication Date
JP2005129518A true JP2005129518A (ja) 2005-05-19
JP4727199B2 JP4727199B2 (ja) 2011-07-20

Family

ID=34655857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289598A Expired - Fee Related JP4727199B2 (ja) 2003-10-03 2004-10-01 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法

Country Status (1)

Country Link
JP (1) JP4727199B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134975A1 (ja) * 2005-06-17 2006-12-21 Kabushiki Kaisha Toshiba 燃料電池用燃料、燃料電池用燃料カートリッジ及び燃料電池
JP2007005282A (ja) * 2005-06-24 2007-01-11 Samsung Sdi Co Ltd 燃料混合タンク及びこれを具備した燃料電池システム
WO2007055301A1 (ja) * 2005-11-11 2007-05-18 Mitsubishi Pencil Co., Ltd. 燃料電池
JP2007220680A (ja) * 2006-02-16 2007-08-30 Samsung Sdi Co Ltd 燃料電池用膜−電極アセンブリおよび燃料電池システム
JP2007227198A (ja) * 2006-02-24 2007-09-06 Hitachi Ltd 燃料電池、その燃料補給装置、これらを搭載した電子機器、及び燃料電池システム
JP2007265865A (ja) * 2006-03-29 2007-10-11 Casio Comput Co Ltd 燃料供給装置、電子機器、及び、その燃料供給システム
JP2008045021A (ja) * 2006-08-15 2008-02-28 Toyo Seikan Kaisha Ltd 液体燃料精製方法及び液体燃料精製システム
JP2008117745A (ja) * 2006-11-07 2008-05-22 Nan Ya Printed Circuit Board Corp 濃度検知装置を不要とする直接メタノール型燃料電池システム
JP2011159298A (ja) * 2011-02-18 2011-08-18 Casio Computer Co Ltd 燃料供給装置、電子機器、及び、その燃料供給システム
JP2011210733A (ja) * 2011-06-03 2011-10-20 Casio Computer Co Ltd 燃料供給装置、電子機器、及び、その燃料供給システム
US8257877B2 (en) 2006-02-20 2012-09-04 Samsung Sdi Co., Ltd. Stack for mixed reactant fuel cell and mixed reactant fuel cell system including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148660A (ja) * 1988-11-30 1990-06-07 Shin Kobe Electric Mach Co Ltd 液体燃料電池
JPH11283648A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 燃料電池装置
JP2003036879A (ja) * 2001-07-19 2003-02-07 Casio Comput Co Ltd 電源システム
JP2003045468A (ja) * 2001-08-01 2003-02-14 Matsushita Electric Ind Co Ltd 燃料電池装置および同装置に使用する燃料容器ならびに同燃料容器への燃料補給機
JP2003142135A (ja) * 2001-10-29 2003-05-16 Hewlett Packard Co <Hp> 燃料電池用燃料供給源
WO2003058235A1 (en) * 2001-12-28 2003-07-17 Abb Research Ltd. Ultrasound sensing of concentration of methanol's aqueous solution
WO2003061047A1 (en) * 2002-01-08 2003-07-24 Mti Microfuel Cells Inc. Fuel container and delivery apparatus for a liquid feed fuel cell system
JP2003217634A (ja) * 2002-01-11 2003-07-31 Hewlett Packard Co <Hp> 燃料電池のための染料ベース燃料表示器システム
JP2003257466A (ja) * 2001-12-28 2003-09-12 Matsushita Electric Ind Co Ltd 燃料電池システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148660A (ja) * 1988-11-30 1990-06-07 Shin Kobe Electric Mach Co Ltd 液体燃料電池
JPH11283648A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 燃料電池装置
JP2003036879A (ja) * 2001-07-19 2003-02-07 Casio Comput Co Ltd 電源システム
JP2003045468A (ja) * 2001-08-01 2003-02-14 Matsushita Electric Ind Co Ltd 燃料電池装置および同装置に使用する燃料容器ならびに同燃料容器への燃料補給機
JP2003142135A (ja) * 2001-10-29 2003-05-16 Hewlett Packard Co <Hp> 燃料電池用燃料供給源
WO2003058235A1 (en) * 2001-12-28 2003-07-17 Abb Research Ltd. Ultrasound sensing of concentration of methanol's aqueous solution
JP2003257466A (ja) * 2001-12-28 2003-09-12 Matsushita Electric Ind Co Ltd 燃料電池システム
WO2003061047A1 (en) * 2002-01-08 2003-07-24 Mti Microfuel Cells Inc. Fuel container and delivery apparatus for a liquid feed fuel cell system
JP2003217634A (ja) * 2002-01-11 2003-07-31 Hewlett Packard Co <Hp> 燃料電池のための染料ベース燃料表示器システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197560B2 (en) 2005-06-17 2012-06-12 Kabushiki Kaisha Toshiba Fuel for fuel cell, fuel cartridge for fuel cell and fuel cell
WO2006134975A1 (ja) * 2005-06-17 2006-12-21 Kabushiki Kaisha Toshiba 燃料電池用燃料、燃料電池用燃料カートリッジ及び燃料電池
JP2007005282A (ja) * 2005-06-24 2007-01-11 Samsung Sdi Co Ltd 燃料混合タンク及びこれを具備した燃料電池システム
WO2007055301A1 (ja) * 2005-11-11 2007-05-18 Mitsubishi Pencil Co., Ltd. 燃料電池
JP2007220680A (ja) * 2006-02-16 2007-08-30 Samsung Sdi Co Ltd 燃料電池用膜−電極アセンブリおよび燃料電池システム
US8318379B2 (en) 2006-02-16 2012-11-27 Samsung Sdi Co., Ltd. Membrane-electrode assembly for mixed reactant fuel cell and mixed reactant fuel cell system including same
US8257877B2 (en) 2006-02-20 2012-09-04 Samsung Sdi Co., Ltd. Stack for mixed reactant fuel cell and mixed reactant fuel cell system including the same
JP2007227198A (ja) * 2006-02-24 2007-09-06 Hitachi Ltd 燃料電池、その燃料補給装置、これらを搭載した電子機器、及び燃料電池システム
JP2007265865A (ja) * 2006-03-29 2007-10-11 Casio Comput Co Ltd 燃料供給装置、電子機器、及び、その燃料供給システム
JP2008045021A (ja) * 2006-08-15 2008-02-28 Toyo Seikan Kaisha Ltd 液体燃料精製方法及び液体燃料精製システム
JP2008117745A (ja) * 2006-11-07 2008-05-22 Nan Ya Printed Circuit Board Corp 濃度検知装置を不要とする直接メタノール型燃料電池システム
JP2011159298A (ja) * 2011-02-18 2011-08-18 Casio Computer Co Ltd 燃料供給装置、電子機器、及び、その燃料供給システム
JP2011210733A (ja) * 2011-06-03 2011-10-20 Casio Computer Co Ltd 燃料供給装置、電子機器、及び、その燃料供給システム

Also Published As

Publication number Publication date
JP4727199B2 (ja) 2011-07-20

Similar Documents

Publication Publication Date Title
CN100438175C (zh) 燃料电池、燃料电池设备和电子设备
JP5519858B2 (ja) 直接酸化型燃料電池システム
US7704629B2 (en) Direct oxidation fuel cells with improved cathode gas diffusion media for low air stoichiometry operation
EP1238438A2 (en) Direct methanol cell with circulating elecrolyte
EP1829144A1 (en) Direct oxidation fuel cell and system operating on concentrated fuel using low oxidant stoichiometry
JP2004536419A (ja) 燃料電池膜および一体化されたガス分離を有するシステム
JP4672627B2 (ja) 燃料電池システム及び燃料電池周辺装置の駆動方法
KR100571821B1 (ko) 직접메탄올 연료전지 및 이를 장착한 휴대용 컴퓨터
JP4727199B2 (ja) 燃料電池システムとそれを用いた電子機器及び燃料電池の運転方法
JP4768236B2 (ja) 燃料電池、その燃料供給システム、燃料カートリッジ並びに電子機器
JP2003323902A (ja) 燃料電池発電装置及びこれを用いた携帯機器
JP4824455B2 (ja) 直接メタノール型燃料電池システム,および直接メタノール型燃料電池システムの運転方法
JP5093640B2 (ja) 固体電解質型燃料電池及びその製造方法
WO2013027501A1 (ja) 制御装置および燃料電池システム
EP2469632A2 (en) Membrane electrode assembly, fuel cell with the same, and fuel cell generating system
JP2006216447A (ja) 燃料電池電源システム及びその運転方法
JP2011171301A (ja) 直接酸化型燃料電池
WO2004032270A1 (ja) 燃料電池および燃料電池の駆動方法
WO2013080415A1 (ja) 燃料電池システム
JP2006024401A (ja) 燃料電池
US20120148928A1 (en) Direct oxidation fuel cell system
KR100533008B1 (ko) 물포집장치를 가지는 연료전지 시스템
KR100859457B1 (ko) B화합물을 연료로 하는 연료전지의 스택구조
JP2012113876A (ja) 燃料電池システム
JP2006059778A (ja) 燃料電池、その燃料供給システム及び燃料電池を使用する電子機器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees