JP2015005595A - 熱電変換モジュール、及び、熱電変換モジュールの製造方法 - Google Patents

熱電変換モジュール、及び、熱電変換モジュールの製造方法 Download PDF

Info

Publication number
JP2015005595A
JP2015005595A JP2013129431A JP2013129431A JP2015005595A JP 2015005595 A JP2015005595 A JP 2015005595A JP 2013129431 A JP2013129431 A JP 2013129431A JP 2013129431 A JP2013129431 A JP 2013129431A JP 2015005595 A JP2015005595 A JP 2015005595A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
conductive
layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013129431A
Other languages
English (en)
Inventor
高倉 雅博
Masahiro Takakura
雅博 高倉
恒嗣 大森
Tsunetsugu Omori
恒嗣 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013129431A priority Critical patent/JP2015005595A/ja
Publication of JP2015005595A publication Critical patent/JP2015005595A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】導電接触部の半導体層からの剥離を抑制し、熱電変換モジュールの耐久性を向上させることのできる技術を提供する。【解決手段】熱電変換モジュールは、同一の極性を有する複数の半導体層と、複数の半導体層の間に配置された絶縁層と、絶縁層の内部に設けられ、絶縁層の両側に配置された半導体層を電気的に接続する導電部とを備える。導電部は、絶縁層の一端から他端に向けて延びる導電層と、導電層の端部近傍から突出し、半導体層と接触する導電接触部とを有する。導電接触部のうちの少なくとも一部は、半導体層に形成された切り欠き部に埋め込まれている。【選択図】図2

Description

本発明は、熱電変換モジュール、及び、熱電変換モジュールの製造方法に関する。
従来から、ゼーベック効果を利用して発電を行う熱電変換モジュールが知られている。また、近年では、半導体層と絶縁層とを交互に積層した積層型の熱電変換モジュールが提案されている(例えば、特許文献1参照)。このような積層型の熱電変換モジュールでは、その積層方向に対して垂直な方向の一方側を熱源に接触させることによって、他方側との間で温度差を生じさせ、当該温度差を熱起電力に変換する。
特開2009−246296号公報 特開昭60−127770号公報
特許文献1に記載された技術では、絶縁層の両側に配置された半導体層を電気的に接続する導電部が設けられており、この導電部は、半導体層と平面で接している。導電部は、半導体層とは異なる材料によって形成されており、熱膨張係数が異なる。したがって、熱電変換モジュールに熱源を接触させた際には、導電部と半導体層との膨張率の相違に起因して、導電部が半導体層から剥離するおそれがあり、耐久性が不十分であるという課題があった。
また、特許文献1に記載された技術では、導電部の一部が、モジュールの外表面から露出しているため、導電部を形成する材料が、大気中に存在する腐食成分や酸素と反応して劣化し、電気特性の低下や、導電部の剥離が生じるおそれがあった。
さらに、特許文献1に記載された技術では、半導体層の抵抗率に異方性が存在し、熱電変換モジュールの高温側と低温側とを結ぶ方向に前記抵抗率の低い方向が一致する場合、半導体層を流れる電流が抵抗率の高い方向にも流れる必要が生じ、発電効率の低下を招くおそれがあった。そのほか、従来の熱電変換モジュールにおいては、その小型化や、低コスト化、省資源化、製造の容易化、使い勝手の向上等が望まれていた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、熱電変換モジュールが提供される。この熱電変換モジュールは、同一の極性を有する複数の半導体層と;前記複数の半導体層の間に配置された絶縁層と;前記絶縁層の内部に設けられ、前記絶縁層の両側に配置された前記半導体層を電気的に接続する導電部とを備える。前記導電部は、前記絶縁層の一端から他端に向けて延びる導電層と;前記導電層の端部近傍から突出し、前記半導体層と接触する導電接触部とを有し、前記導電接触部のうちの少なくとも一部は、前記半導体層に形成された切り欠き部に埋め込まれていてもよい。
この形態の熱電変換モジュールによれば、導電接触部のうちの少なくとも一部が半導体層の切り欠き部に埋め込まれているので、導電接触部と半導体層とが強固に接続される。したがって、導電接触部の半導体層からの剥離を抑制し、熱電変換モジュールの耐久性を向上させることができる。
(2)上記形態の熱電変換モジュールにおいて、前記導電接触部は、前記導電層の端部近傍に複数形成されていてもよい。
この形態の熱電変換モジュールによれば、導電接触部が複数形成されているので、導電接触部の半導体層からの剥離を効果的に抑制することができる。
(3)上記形態の熱電変換モジュールにおいて、前記導電層は、前記絶縁層の内部に埋設されていてもよい。
この形態の熱電変換モジュールによれば、導電層は、絶縁層の内部に埋設されており、大気に触れない。したがって、導電層が大気中の腐食成分や酸素等と反応して劣化することを抑制することができる。
(4)上記形態の熱電変換モジュールにおいて、前記導電接触部は、前記半導体層の内部に埋設されていてもよい。
この形態の熱電変換モジュールによれば、導電接触部は、半導体層の内部に埋設されており、大気に触れない。したがって、導電接触部が大気中の腐食成分や酸素等と反応して劣化することを抑制することができる。
(5)上記形態の熱電変換モジュールにおいて、前記導電接触部の形状は、円柱または楕円柱であってもよい。
この形態の熱電変換モジュールによれば、熱膨張時において導電接触部にかかる応力を緩和することができるので、導電接触部の耐久性を向上させることができる。
(6)上記形態の熱電変換モジュールにおいて、前記半導体層は、主成分として、抵抗率に関して異方性を有する半導体材料を含んでおり;前記熱電変換モジュールにおける高温側と低温側とを結ぶ方向と、前記半導体材料における前記抵抗率の低い方向とが一致していてもよい。
この形態の熱電変換モジュールによれば、半導体層の内部を流れる電流の方向における抵抗が小さくなるので、発電効率を向上させることができる。
(7)上記形態の熱電変換モジュールにおいて、前記半導体材料は、CoO2層を結晶構造内に有していてもよい。
この形態の熱電変換モジュールによれば、抵抗率に関して異方性を有する半導体層を作製することができる。
(8)上記形態の熱電変換モジュールにおいて、前記導電層は、同一の平面上において分散して配置されていてもよい。
この形態の熱電変換モジュールによれば、導電層を媒介とする熱の移動が抑制されるので、熱電変換モジュールにおける高温側と低温側との温度差を大きくすることができ、熱電変換モジュールの発電効率を向上させることができる。
(9)上記形態の熱電変換モジュールにおいて、前記導電部は、前記半導体層を構成する成分と、前記絶縁層を構成する成分とのうちの少なくとも一方の成分を含有してもよい。
この形態の熱電変換モジュールによれば、導電部は、半導体層と絶縁層とのうちの少なくとも一方と接着しやすくなる。したがって、各層の剥離をさらに抑制し、熱電変換モジュールの耐久性をさらに向上させることができる。
(10)本発明の他の形態によれば、熱電変換モジュールの製造方法が提供される。この製造方法は、(a)半導体材料を主成分とする半導体層を形成する工程と;(b)前記半導体層の表面に絶縁層を形成する工程と;(c)前記半導体層の端部近傍に、前記絶縁層と前記半導体層とを貫通する切り欠き部を形成する工程と;(d)前記切り欠き部に導電性の導電接触部を形成する工程と;(e)前記絶縁層の表面に、前記導電接触部と電気的に接続される導電層を形成する工程と;(f)前記半導体層の前記切り欠き部が形成された端部とは反対側の端部の近傍に、第2の切り欠き部を形成する工程と;(g)前記第2の切り欠き部に導電性の第2の導電接触部を形成する工程と;(h)前記工程(a)から前記工程(g)までの工程によって作製された積層体を複数重ね合わせる工程とを備える。
この形態の製造方法によれば、導電接触部と半導体層とが剥離しにくい熱電変換モジュールを、効率よく製造することができる。
(11)上記形態の熱電変換モジュールの製造方法は、さらに、(i)前記工程(a)によって作製された半導体層と、前記工程(a)から前記工程(e)までの工程によって作製された積層体と、前記工程(a)から前記工程(g)までの工程によって作製された積層体と、前記工程(h)によって作製された積層体とを重ね合わせる工程を備えてもよい。
この形態の製造方法によれば、導電接触部と半導体層とが剥離しにくい熱電変換モジュールを、効率よく製造することができる。
(12)上記形態の熱電変換モジュールの製造方法は、さらに、(j)前記重ね合わされた積層体を同時に焼成する工程を備えてもよい。
この形態の製造方法によれば、全ての部材が一体的に形成される。したがって、層間剥離を抑制した耐久性の高い熱電変換モジュールを、効率よく製造することができる。
本発明は、熱電変換モジュールやその製造方法以外の種々の形態で実現することも可能である。例えば、熱電変換モジュールの製造装置等の形態で実現することができる。
本発明の一実施形態としての熱電変換モジュールの構成を示す説明図である。 熱電変換モジュールの断面を示す説明図である。 熱電変換モジュールを分解して示す説明図である。 導電部を示す説明図である。 熱電変換モジュールの製造工程の流れの一例を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 熱電変換モジュールの製造工程の様子を示す説明図である。 第2実施形態としての導電部の構成を示す説明図である。 第3実施形態としての導電部の構成を示す説明図である。 その他の製造工程の様子を示す説明図である。 その他の製造工程の様子を示す説明図である。 その他の製造工程の様子を示す説明図である。 その他の製造工程の様子を示す説明図である。 積層体を示す説明図である。 積層体を示す説明図である。 2種類の積層体を交互に積層した状態を示す説明図である。
次に、本発明の実施形態を以下の順序で説明する。
A.第1実施形態:
A−1.熱電変換モジュールの構成:
A−2.熱電変換モジュールの製造方法:
B.第2実施形態:
C.第3実施形態:
D.製造方法の他の実施形態1:
E.製造方法の他の実施形態2:
F.製造方法の他の実施形態3:
G.変形例:
A.第1実施形態:
A−1.熱電変換モジュール100の構成:
図1は、本発明の一実施形態としての熱電変換モジュール100の構成を示す説明図である。図1には、相互に直交するXYZ軸が示されている。この図1に示されたXYZ軸は、他の図面にも示されたXYZ軸に対応している。また、図1に示された熱電変換モジュール100の6つの面のうち、Y軸に直交する面であって、熱源に接触させる側の面を、高温面F1と定義し、Y軸に直交する面であって、熱源から離れた側の面を、低温面F2と定義する。また、図1に示されたX軸方向を、積層方向と定義する。
熱電変換モジュール100は、半導体のゼーベック効果を利用することによって、熱源から得られた熱エネルギーを電気エネルギーに変換する。熱電変換モジュール100は、複数の半導体層10と、複数の絶縁層20とを備えており、半導体層10と絶縁層20とが交互に積層された構造を有している。複数の半導体層10のうち、最も外側に配置された半導体層10の表面には、電気を取り出すための外部電極11、12が設けられている。
半導体層10は、全て同一の極性を有している。本実施形態では、半導体層10の極性は、全てP型である。ただし、半導体層10の極性は、全てN型であってもよい。絶縁層20は、各半導体層10の間に設けられており、隣接する半導体層10を絶縁している。絶縁層20の内部には、当該絶縁層20の両側に配置された2つの半導体層10を電気的に接続する導電部(後述)が埋設されている。
図2は、熱電変換モジュール100の断面を示す説明図である。導電部30は、絶縁層20の内部に埋設された導電性の部材であり、当該絶縁層20の一方の側に配置された半導体層10の高温面F1に近い側(高温側)と、当該絶縁層20の他方の側に配置された半導体層10の低温面F2に近い側(低温側)とを電気的に接続する。なお、最も外側に配置された2つの導電部30の形状は、内側に配置された3つの導電部30と異なっている。
導電部30は、導電層32と、導電接触部34とを有している。導電層32は、絶縁層20の一端から他端、すなわち、熱電変換モジュール100の高温面F1側から、低温面F2側に向けて延びる層である。導電接触部34は、導電層32の端部近傍から積層方向に突出し、半導体層10と接触する部位である。
熱電変換モジュール100の高温面F1が、熱源によって温められると、高温面F1と低温面F2との間に温度勾配が生じる。そうすると、半導体層10のうち、高温面F1に近い側(高温側)と、低温面F2に近い側(低温側)との間に、電位差が生じる。
本実施形態では、半導体層10の極性は、全て同一であり、絶縁層20の一方の側に配置された半導体層10の高温側と、当該絶縁層20の他方の側に配置された半導体層10の低温側とが導電部30によって電気的に接続されるので、半導体層10の高電位側と低電位側とが直列に接続される。したがって、本実施形態によれば、同一の極性の半導体層10を用いた積層型の熱電変換モジュール100を実現することができる。
さらに、本実施形態では、導電接触部34のうちの少なくとも一部は、半導体層10に形成された切り欠き部としての孔部40に埋め込まれている。したがって、導電接触部34と半導体層10とが強固に接続されるので、導電接触部34と半導体層10との剥離を抑制し、熱電変換モジュール100の耐久性を向上させることができる。
さらに、本実施形態では、半導体層10は、主成分として、抵抗率に関して異方性を有する半導体材料を含んでいる。そして、熱電変換モジュール100における高温側と低温側とを結ぶ方向(すなわち、Y軸方向)と、半導体材料における抵抗率の低い方向とが一致している。したがって、本実施形態の熱電変換モジュール100によれば、異方性により、半導体層10の内部を流れる電流の方向における抵抗が小さくなるので、発電効率を向上させることができる。さらに、本実施形態では、上述したように、導電接触部34のうちの少なくとも一部が、半導体層10に形成された孔部40に埋め込まれている。したがって、電流は、半導体層10の内部において、抵抗の小さいY軸方向に流れれば導電接触部34に達するため、抵抗の大きいX軸方向に流れる必要がない。したがって、本実施形態の熱電変換モジュール100によれば、発電効率をさらに向上させることができる。
なお、異方性を有する半導体材料としては、例えば、CoO2層を結晶構造内に有する材料を用いることが好ましい。このようにすれば、抵抗率に関して異方性を有する半導体層10を作製することができる。
図3は、熱電変換モジュール100を分解して示す説明図である。図4は、導電部30を示す説明図である。導電接触部34は、導電層32の端部近傍に複数形成されており(図4)、絶縁層20の表面からは、複数の導電接触部34が突出している(図3)。複数の導電接触部34は、半導体層10に形成された複数の孔部40に埋め込まれている。したがって、本実施形態によれば、複数の導電接触部34によって、導電部30と半導体層10とが強固に接続されるので、導電接触部34を含む導電部30と半導体層10との剥離を効果的に抑制することができる。
さらに、本実施形態では、導電層32は、絶縁層20の内部に埋設されており、熱電変換モジュール100の外表面から露出していない(図1から図3)。したがって、本実施形態によれば、導電層32は、大気に触れないので、導電層32が大気中の腐食成分や酸素等と反応して劣化することを抑制することができる。
さらに、本実施形態では、導電接触部34は、半導体層10の内部に埋設されており、熱電変換モジュール100の外表面から露出していない(図1から図3)。したがって、本実施形態によれば、導電接触部34は、大気に触れないので、導電接触部34が大気中の腐食成分や酸素等と反応して劣化することを抑制することができる。
さらに、本実施形態では、導電接触部34の形状は、円柱である(図3、図4)。そして、孔部40の形状は、導電接触部34の形状に合わせて、円柱状である(図3)。したがって、本実施形態によれば、導電接触部34に角がないので、熱膨張時において導電接触部34にかかる応力を緩和することができ、導電接触部34の耐久性を向上させることができる。なお、導電接触部34及び孔部40の形状は、楕円柱であってもよい。
A−2.熱電変換モジュール100の製造方法:
図5は、熱電変換モジュール100の製造工程の流れの一例を示す説明図である。図6から図16は、熱電変換モジュール100の製造工程の様子を示す説明図である。図6から図16において、各図面における(A)欄は、製造工程における部材の断面図であり、(B)欄は、当該部材を(A)欄の矢印方向から示した図である。
工程S100(図5)では、熱電変換材料としての半導体粉末が分散した分散混合液を作製する。工程S102では、作製した分散混合液に対してワニスを添加することによって、スラリーを作製する。工程S104では、作製したスラリーを用いて、半導体層10aを作製する(図6)。半導体層10aの製造方法は、特に限定されないが、シート成形法や押出し成形法等によって実現することができる。
工程S106では、作製した半導体層10aの表面に、絶縁層20aを形成する(図7)。工程S108では、表面に絶縁層20aが形成された半導体層10aの所定の個所に、貫通切り欠き40aを形成する(図8)。工程S110では、形成した貫通切り欠き40aに、導電接触部34aを形成する(図9)。工程S112では、絶縁層20aの表面の所定の個所に、導電層32aを形成する(図10)。工程S114では、絶縁層20aの表面のうち、導電接触部34a及び導電層32aが形成されていない個所に、高抵抗層20bを形成することによって、積層体50Aを作製する(図11)。
工程S116では、半導体層10aのうち、絶縁層20aが形成されている面とは反対側の面に、切り欠き40bを形成する(図12)。工程S118では、形成した切り欠き40bに、導電接触部34bを形成することによって、積層体50Bを作製する(図13)。工程S120では、作製された各積層体50A、50B等を張り合わせてモジュールを作製する(図14、図15)。
工程S122では、作製されたモジュールに対して、脱脂処理を行なう。工程S124では、脱脂処理が行なわれたモジュールに対して、焼成処理を行なう。工程S126では、モジュールの最も外側に位置する半導体層10の表面に、外部電極11、12を形成する(図1)。以下では、各工程の詳細について説明する。
<分散混合液の作製>
まず、熱電変換材料としての半導体粉末が分散した溶液である分散混合液を作製する。具体的には、熱電変換材料としての半導体粉末と、所定量の有機溶剤と、所定量の分散材と、これらを混合するための所定量の玉石とを樹脂ポットに封入し、ポットミル混合を行う。この混合によって、熱電変換材料としての半導体粉末を有機溶剤中に分散させる。
熱電変換材料としての半導体粉末は、特に限定されないが、結晶方位による電気的な異方性を有する材料を用いることが特に好ましく、例えば、酸化物熱電材料であるCa3Co49等を用いることが好ましい。有機溶剤は、特に限定されないが、例えば、エチルアルコール、トルエン、キシレン等の比較的揮発性の高い溶剤を用いることが好ましい。
本実施形態では、以下の条件に従って、分散混合液を作製した。
半導体粉末(Ca3Co49): 63質量%
分散材: 2質量%
有機溶剤(トルエン、エチルアルコール):35質量%
混合時間: 8時間
なお、分散混合液は、以下の範囲内の条件に従って、作製してもよい。
半導体粉末: 40〜75質量%
分散剤: 0.5〜5質量%
有機溶剤: 20〜60質量%
混合時間: 0.5〜30時間
<スラリーの作製>
次に、半導体層を作製するためのスラリーを作製する。具体的には、上記の分散混合液に対して、所定量のワニスを添加してポットミル混合を行うことによって、スラリーを作製する。ワニスは、バインダと、可塑剤と、有機溶剤とを混合することによって作製する。ワニスに含まれるバインダは、特に限定されず、例えば、ブチラール系、セルロース系等、種々の材料を用いることができる。可塑剤は、特に限定されず、例えば、フタル酸系化合物等を用いることができる。フタル酸系化合物としては、例えば、フタル酸ジオクチル(DOP)、フタル酸ジブチル(DBP)、フタル酸ジイソオクチル(DIOP)等を用いることができる。
本実施形態では、以下の条件に従って、半導体層を作製するためのスラリーを作製した。
混合比:分散混合液 対 ワニス = 81質量% 対 19質量%
ワニス中に含まれるバインダ:ブチラール系(商品名BM−2):21.8質量%
(スラリー含有量換算:4.0質量%)
ワニス中に含まれる可塑剤:フタル酸ジオクチル(DOP): 8.7質量%
(スラリー含有量換算:1.6質量%)
ワニス中に含まれる有機溶剤:トルエン、エタノール混合: 69.5質量%
ワニスの添加混合時間: 5時間
なお、半導体層を作製するためのスラリーは、以下の範囲内の条件に従って、作製してもよい。
混合比:分散混合液 対 ワニス = 70〜90質量% 対 10〜30質量%
スラリーに含まれるバインダ: 1〜15質量%
スラリーに含まれる可塑剤: 0.3〜8質量%
ワニスの添加混合時間: 0.5〜30時間
<半導体層の作製>
次に、上記のようにして作製されたスラリーを用いて、半導体層10aを作製する(図6)。具体的には、ドクターブレード法を用いてシートキャスティングを行なって、シート状の半導体層10aを作製する。なお、半導体層10aを作製する方法としては、種々の方法を採用することができ、例えば、押出し成形等を採用してもよい。
本実施形態では、ドクターブレード法によって、厚さ0.1mm(100μm)の半導体層10aを作製した。なお、半導体層10aは、熱電変換モジュール100の完成時には、図1から図3に示す半導体層10の一部となる。
次に、作製した半導体層10aを、後工程での印刷が行える所定の大きさに切り出す。
<絶縁層の形成>
次に、半導体層10aの表面に絶縁層20aを形成する(図7)。絶縁層20aを形成する方法としては、種々の方法を採用することができ、例えば、スクリーン印刷や、メタルマスク印刷等を採用することができる。さらに、絶縁層20aを形成する方法としては、印刷ではなく、絶縁層20aをシート状に作製し、シート状の絶縁層20aを半導体層10aの表面に積層する方法を採用してもよい。
絶縁層20aの厚さは、特に限定されないが、電気絶縁性及び印刷性を考慮すると、0.1〜100μmであることが好ましく、特に1〜30μmであることが好ましい。
絶縁層20aの材料は、特に限定されないが、例えば、一般的なシリカ系のガラス等を用いることができる。この場合には、ガラスに、所定量の溶剤及びバインダを混合し、混練することによって、印刷用の絶縁性ペーストを作製する。
本実施形態では、半導体層10aに対して、スクリーン印刷を行なうことによって、厚さ0.05mmの絶縁層20aを形成した。また、本実施形態では、絶縁層20aの材料として、シリカ系ガラスを用いた。なお、絶縁層20aは、熱電変換モジュール100の完成時には、図1から図3に示す絶縁層20の一部となる。
<貫通切り欠きの形成>
次に、貫通切り欠き40aを形成する(図8)。具体的には、絶縁層20aが形成された半導体層10aの所定の位置に、ドリル加工やレーザー加工を行なって、絶縁層20a及び半導体層10aを貫通する貫通切り欠き40aを形成する。加工に用いるレーザーとしては、例えば、YAGレーザーやCO2レーザー等を挙げることができる。
貫通切り欠き40aの径は、特に限定されないが、導電接触部34aを形成した場合に、導電接触部34aが十分な導電性を有する大きさであればよい。なお、貫通切り欠き40aを形成する位置、すなわち、後述する導電接触部34aの位置は、特に限定されないが、熱電変換モジュールの発電特性の観点から、なるべく、熱電変換モジュール100の完成時における高温面F1または低温面F2に近い位置であることが好ましい。
本実施形態では、ドリル加工によって、φ0.3mmの貫通切り欠き40aを10個形成した。なお、貫通切り欠き40aは、図2及び図3に示す孔部40の一部に相当する。
なお、他の実施形態として、絶縁層20aをシート状に作製し、シート状の絶縁層20aを半導体層10aの表面に積層する方法を採用する場合には、半導体層10aとシート状の絶縁層20aとのそれぞれに貫通切り欠き40aを形成した後に、シート状の絶縁層20aを半導体層10aの表面に積層してもよい。
<導電接触部の形成>
次に、貫通切り欠き40aに導電接触部34aを形成する(図9)。具体的には、貫通切り欠き40aに対して、導電材料を含む導電ペーストを用いて、穴埋め印刷を実行する。穴埋め印刷は、例えば、スクリーン印刷やメタルマスク印刷等によって実行することができる。
導電接触部34aを構成する導電材料は、特に限定されないが、電気抵抗の低い材料を用いることが好ましく、例えば、Ag、Au、Pt、Cu、Pd、Ni等の金属材料を主成分として用いることが好ましい。
本実施形態では、導電材料としてのAg粉末に、所定量の溶剤及びバインダを混合することによって導電ペーストを作製した。そして、作製した導電ペーストを用いたスクリーン印刷によって、穴埋め印刷を実行した。
<導電層の形成>
次に、導電層32aを形成する(図10)。導電層32aは、例えば、スクリーン印刷やメタルマスク印刷等によって形成することできる。
本実施形態では、導電接触部34aを形成する際に用いられた導電ペーストをスクリーン印刷することによって、0.005mm(5μm)の導電層32aを形成した。また、本実施形態では、熱電変換モジュール100を完成させた際に、導電層32が絶縁層20の外部に露出しないように、絶縁層20aの外縁よりも内側の領域に対して、導電ペーストを印刷した。
<高抵抗層の形成>
次に、高抵抗層20bを形成する(図11)。具体的には、絶縁層20aの表面のうち、導電層32aが形成されていない箇所に対して、高抵抗層20bを形成する。高抵抗層20bは、例えば、スクリーン印刷やメタルマスク印刷等によって形成することができる。
高抵抗層20bの材料は、特に限定されないが、絶縁層20aを構成する成分の少なくとも一つを含有することが好ましい。このようにすれば、絶縁層20aと高抵抗層20bの密着性を向上させることができる。
本実施形態では、高抵抗層20bの材料として、絶縁層20aに用いられたものと同様のシリカ系ガラスをペースト化した材料を用いた。なお、以下では、高抵抗層20bが形成された図11に示す状態の積層体を、「積層体50A」とも呼ぶ。ただし、高抵抗層20bを形成する工程は、省略してもよい。
<切り欠きの形成>
次に、半導体層10aに切り欠き40bを形成する(図12)。切り欠き40bは、例えば、ドリル加工やレーザー加工によって形成することができる。
本実施形態では、切り欠き40bは、CO2レーザー加工によって、半導体層10aのみを除去することによって形成した。なお、切り欠き40bは、図2及び図3に示す孔部40の一部に相当する。
<導電接触部の形成>
次に、切り欠き40bに導電接触部34bを形成する(図13)。具体的には、切り欠き40bに対して、導電材料を含む導電ペーストを用いて、穴埋め印刷を実行する。穴埋め印刷は、例えば、スクリーン印刷やメタルマスク印刷等によって実行することができる。
本実施形態では、上記の導電接触部34aの形成と同様に、Ag粉末を含む導電ペーストをスクリーン印刷することによって、穴埋め印刷を実行した。なお、以下では、導電接触部34bが形成された図13に示す状態の積層体を、「積層体50B」とも呼ぶ。
<モジュールの組み立て>
次に、2つの積層体50Bを張り合わせる(図14)。具体的には、2つの積層体50Bを、それぞれの導電層32aが向かい合う状態で張り合わせて、積層体60Bを作製する。
次に、各積層体を張り合わせてモジュールを作製する(図15)。具体的には、複数の積層体60Bを張り合わせ、その両側に、積層体50Bと、積層体50Bの上下を反転させたものとを配置し、さらにその両側に、積層体50Aの上下を反転させたものと、積層体50Aとを配置し、さらにその両側に、半導体層10aを配置し、これらを同時に圧着させて、積層型の熱電変換モジュール100を作製する。
<脱脂処理>
次に、脱脂処理を行う。脱脂処理の条件は、バインダの量及び分散材の量に応じて適宜設定すればよい。
本実施形態では、以下の条件に従って、脱脂処理を行なった。
脱脂温度:250℃
脱脂時間:10時間
なお、脱脂処理は、以下の範囲内の条件に従って、行なってもよい。
脱脂温度:200〜600℃
脱脂時間:1〜100時間
<焼成処理>
次に、焼成処理を行う。焼成温度・時間の条件は、使用する半導体層の材料、絶縁層の材料、高抵抗層の材料、導電部の材料に応じて決定される。
本実施形態では、以下の条件に従って、焼成を行なった。
焼成温度:900℃
焼成時間:5時間
なお、焼成は、以下の範囲内の条件に従って、行なってもよい。
焼成温度:800〜950℃
焼成時間:1〜50時間
<外部電極の形成>
次に、外部電極11、12を形成する(図1)。具体的には、熱電変換モジュール100の最も外側における半導体層10に、外部電極11、12を形成する。外部電極11、12の形成方法は、特に限定されないが、印刷や、塗布法等によって実施することができる。外部電極11、12に用いられる電極材料は、特に限定されないが、耐食性の優れた材料を用いることが好ましく、例えば、Pt、Au、Ag、Ag−Pdや導電性酸化物などを用いることができる。なお、外部電極11、12の形成は、モジュールの作製工程において、印刷工程より後であれば、どの段階で行なってもよい。
本実施形態では、Auをペースト化した導電ペーストを塗布した後、800℃で10分間焼成した。
<複数の熱電変換モジュールを同時に作製する場合の一例>
図16は、複数の熱電変換モジュール100を同時に作製する場合の一例を示す説明図である。熱電変換モジュール100を作製する際には、図16に示すように、半導体層10aに対して複数のパターン(図16では9つのパターンを例示)を形成して積層体を作製してもよい。そして、各積層体を圧着した後、1つのパターン毎に切断して細分化してもよい。
本実施形態では、50mm×50mmの大きさの半導体層10aを作製した。そして、焼成後に8mm×8mm×8mmのブロック体となるように、シートの積層及びパターンの印刷を行い、125kNの荷重で10分間、圧着を行った。圧着後、ブロック体の切断を行なった。この切断は、焼成後に8mm×8mmの大きさとなるように行なわれた。切断後、ブロック体の焼成を行い、8mm×8mm×8mmの熱電変換モジュールを得た。このようにすれば、複数の熱電変換モジュール100を効率良く作製することができる。
このように、本実施形態によれば、導電接触部34のうちの少なくとも一部は、半導体層10に形成された切り欠き部としての孔部40に埋め込まれているので、導電接触部34と半導体層10との剥離を抑制し、熱電変換モジュール100の耐久性を向上させることができる。
B.第2実施形態:
図17は、第2実施形態としての導電部30bの構成を示す説明図である。図4に示した第1実施形態との違いは、導電層37が、同一の平面上において分散して配置されているという点であり、他の構成は第1実施形態と同じである。具体的には、導電層37は、同一の平面上において複数に分割された状態(ストライプ形状)となっている。したがって、本実施形態では、上記第1実施形態に比べて、導電層37の容積が小さくなっており、導電層37を媒介とする熱の移動が抑制される。この結果、熱電変換モジュール100における高温側と低温側との温度差を大きくすることができ、熱電変換モジュール100の発電効率を向上させることができる。
このように、本実施形態によれば、第1実施形態と同様の効果を奏することができるとともに、熱電変換モジュール100の発電効率を向上させることができる。なお、本実施形態の導電部30bが熱電変換モジュール100に組み込まれた場合には、複数に分割された導電層37の隙間には、高抵抗層が形成される。
C.第3実施形態:
図18は、第3実施形態としての導電部30cの構成を示す説明図である。本実施形態においても、図17に示した第2実施形態と同様に、導電層38が、同一の平面上において分散して配置されている。ただし、本実施形態の導電層38では、隣接する端部同士が繋がっており、導電層38の面内に複数の開口部39が設けられた構成となっている。導電部30cをこのような形状としても、導電層38を媒介とする熱の移動が抑制されるので、熱電変換モジュール100における高温側と低温側との温度差を大きくすることができ、熱電変換モジュールの発電効率を向上させることができる。
このように、本実施形態によれば、第1実施形態と同様の効果を奏することができるとともに、熱電変換モジュール100の発電効率を向上させることができる。なお、本実施形態の導電部30cが熱電変換モジュール100に組み込まれた場合には、複数の開口部39の内部には、高抵抗層が形成される。
D.製造方法の他の実施形態1:
図19及び図20は、その他の製造工程の様子を示す説明図である。図19に示すように、本製造工程では、上記第1実施形態における積層体50Aを作製する。次に、2つの積層体50Aを、互いの導電層32aが向き合う状態で圧着し、積層体60Aを作製する。
次に、図20に示すように、複数の積層体60Aを、2つの半導体層10aによって挟み込んだ状態で圧着し、熱電変換モジュール100Bを作製する。熱電変換モジュール100Bにおける導電接触部34は、半導体層10の厚さの半分程度の深さまで存在した状態となる。すなわち、この製造方法によっても、半導体層に形成された切り欠き部に導電接触部が埋め込まれた構造を有する熱電変換モジュール100Bを製造することができる。また、この製造方法によれば、上記第1実施形態における積層体50B、60Bを作製しなくてもよいため、上記第1実施形態に比べて、製造工程を簡略化することができる。
E.製造方法の他の実施形態2:
図21及び図22は、その他の製造工程の様子を示す説明図である。図21に示すように、本製造工程では、半導体層10aを作製した後、半導体層10aの端部の近傍に、貫通切り欠き40aを形成する(図21(A))。次に、形成した貫通切り欠き40aに、導電性の導電接触部34cを形成する(図21(B))。
次に、半導体層10aの表面に、絶縁層20aを形成する(図21(C))。次に、導電接触部34cの上に、さらに、導電性の導電接触部34dを形成する(図21(D))。次に、形成した絶縁層20aの表面に、導電層32aを形成する(図21(E))。次に、絶縁層20aの表面のうち、導電層32aが形成されていない領域に、高抵抗層20bを形成する(図21(F))。
次に、導電層32a及び高抵抗層20bの表面に、絶縁層20cを形成する(図21(G))。次に、導電層32aの表面のうち、導電接触部34dが形成された端部とは反対側の端部の近傍に、導電接触部34eを形成して、積層体50Cを作製する(図21(H))。次に、複数の積層体50Cを重ねて圧着する(図22)。この圧着により、導電接触部34cと導電接触部34eとが電気的に接続される。このような製造方法によっても、半導体層に形成された切り欠き部に導電接触部が埋め込まれた構造を有する熱電変換モジュール100Cを製造することができる。
F.製造方法の他の実施形態3:
本製造工程では、2種類の積層体70A、70Bを作製し、これらを交互に積層することによって、熱電変換モジュールを作製する。
図23は、積層体70Aを示す説明図である。図23(A)は、積層体70Aの平面図であり、図23(B)は、図23(A)におけるB−B断面図であり、図23(C)は、図23(A)におけるC−C断面図である。後述する図24及び図25においても同様である。
積層体70Aは、絶縁層21と、半導体層14と、絶縁層22とをこの順番で備えている。絶縁層22の上には、導電層35aと、絶縁層23とが形成されている。導電層35aは、積層体70Aの一方の端部から他方の端部に向けて延びた層である。絶縁層23は、絶縁層22の表面のうち、導電層35aが形成されていない領域に形成されている。
導電層35aの一方の端部の直下には、導電層35aに電気的に接続された導電接触部36aが形成されている(図23(A)、(B))。導電接触部36aは、絶縁層22と、半導体層14と、絶縁層21とを貫通して形成されたビア導体である(図23(B))。積層体70Aの他方の端部の近傍のうち、導電層35aが形成されていない個所には、導電接触部37aが形成されている(図23(A)、(C)。導電接触部37aは、絶縁層23と、絶縁層22と、半導体層14と、絶縁層21とを貫通して形成されたビア導体である(図23(C))。
図24は、積層体70Bを示す説明図である。積層体70Bは、積層体70Aと同様の構成を有しているが、導電層35b、導電接触部36b及び導電接触部37bの形成されている位置が、積層体70Aとは異なっている。
具体的には、導電層35bは、積層体70Aと積層体70Bとが交互に積層された場合に、積層体70Aの導電接触部37aと接触する位置に形成されている。導電接触部36bは、積層体70Aと積層体70Bとが交互に積層された場合に、積層体70Aの導電層35aとは接触しない位置に形成されている。導電接触部37bは、積層体70Aと積層体70Bとが交互に積層された場合に、積層体70Aの導電層35aと接触する位置に形成されている。
図25は、2種類の積層体70A、70Bを交互に積層した状態を示す説明図である。図25(B)、(C)に示すように、積層体70Aと積層体70Bとが交互に積層されると、導電接触部37bと導電層35aと導電接触部36aとが電気的に接続され、導電接触部37aと導電層35bと導電接触部36bとが電気的に接続される。これによって、各半導体層14が電気的に接続されることになる。このような製造方法によっても、半導体層に形成された切り欠き部に導電接触部が埋め込まれた構造を有する熱電変換モジュールを製造することができる。
G.変形例:
なお、この発明は上記の実施形態や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・変形例1:
上記実施形態の熱電変換モジュールにおいて、導電接触部34は、導電層32の両側の面にそれぞれ1つずつだけ設けられていてもよい。また、導電層32及び導電接触部34は、熱電変換モジュール100の外表面から露出していてもよい。また、導電接触部34の形状は、円柱や楕円柱以外であってもよい。例えば、導電接触部34の形状は、四角柱であってもよい。また、半導体層10は、異方性を有さない半導体材料によって形成されていてもよい。
・変形例2:
上記実施形態の熱電変換モジュールにおいて、絶縁層と高抵抗層とは、異なる材料によって形成されていてもよい。ただし、上述したように、絶縁層と高抵抗層とは、少なくとも1種類の同一成分を含むことが好ましい。このようにすれば、絶縁層と高抵抗層との接着性を高めることができる。例えば、絶縁層の材料として、SiO2−CaO−BaOを用い、高抵抗層の材料として、SiO2−B23−Al23を用いてもよい。
・変形例3:
上記実施形態の熱電変換モジュールにおいて、導電部30は、半導体層10を構成する成分と、絶縁層20を構成する成分とのうちの少なくとも一方の成分を含有することが好ましい。このようにすれば、導電部30は、半導体層10と絶縁層20とのうちの少なくとも一方と接着しやすくなる。この結果、各層の剥離をさらに抑制し、熱電変換モジュールの耐久性をさらに向上させることができる。例えば、導電接触部34に、Ca3Co49を5質量%添加すれば、半導体層10との接着性をさらに向上させることができる。
・変形例4:
上記実施形態の熱電変換モジュールにおいて、絶縁層20のうち、熱源と導電接触部34との間の領域には、絶縁層20よりも熱伝導率の低い絶縁部材が設けられていてもよい。このようにすれば、高温面F1から低温面F2に向けての熱の移動が抑制されるため、熱電変換モジュール100における高温側と低温側の温度差を大きくすることができ、熱電変換モジュール100の発電効率を向上させることができる。
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…半導体層
10a…半導体層
11…外部電極
12…外部電極
14…半導体層
20…絶縁層
20a…絶縁層
20b…高抵抗層
20c…絶縁層
21…絶縁層
22…絶縁層
23…絶縁層
30…導電部
30b…導電部
30c…導電部
32…導電層
32a…導電層
34…導電接触部
34a…導電接触部
34b…導電接触部
34c…導電接触部
34d…導電接触部
34e…導電接触部
35a…導電層
35b…導電層
36a…導電接触部
36b…導電接触部
37…導電層
37a…導電接触部
37b…導電接触部
38…導電層
39…開口部
40…孔部
40a…貫通切り欠き
40b…切り欠き
50A…積層体
50B…積層体
50C…積層体
60A…積層体
60B…積層体
70A…積層体
70B…積層体
100…熱電変換モジュール
100B…熱電変換モジュール
100C…熱電変換モジュール
F1…高温面
F2…低温面

Claims (12)

  1. 同一の極性を有する複数の半導体層と、
    前記複数の半導体層の間に配置された絶縁層と、
    前記絶縁層の内部に設けられ、前記絶縁層の両側に配置された前記半導体層を電気的に接続する導電部と
    を備える熱電変換モジュールであって、
    前記導電部は、
    前記絶縁層の一端から他端に向けて延びる導電層と、
    前記導電層の端部近傍から突出し、前記半導体層と接触する導電接触部と
    を有し、
    前記導電接触部のうちの少なくとも一部は、前記半導体層に形成された切り欠き部に埋め込まれていることを特徴とする、熱電変換モジュール。
  2. 請求項1に記載の熱電変換モジュールであって、
    前記導電接触部は、前記導電層の端部近傍に複数形成されていることを特徴とする、熱電変換モジュール。
  3. 請求項1または請求項2に記載の熱電変換モジュールであって、
    前記導電層は、前記絶縁層の内部に埋設されていることを特徴とする、熱電変換モジュール。
  4. 請求項1から請求項3のいずれか一項に記載の熱電変換モジュールであって、
    前記導電接触部は、前記半導体層の内部に埋設されていることを特徴とする、熱電変換モジュール。
  5. 請求項1から請求項4のいずれか一項に記載の熱電変換モジュールであって、
    前記導電接触部の形状は、円柱または楕円柱であることを特徴とする、熱電変換モジュール。
  6. 請求項1から請求項5のいずれか一項に記載の熱電変換モジュールであって、
    前記半導体層は、主成分として、抵抗率に関して異方性を有する半導体材料を含んでおり、
    前記熱電変換モジュールにおける高温側と低温側とを結ぶ方向と、前記半導体材料における前記抵抗率の低い方向とが一致していることを特徴とする、熱電変換モジュール。
  7. 請求項6に記載の熱電変換モジュールであって、
    前記半導体材料は、CoO2層を結晶構造内に有することを特徴とする、熱電変換モジュール。
  8. 請求項1から請求項7のいずれか一項に記載の熱電変換モジュールであって、
    前記導電層は、同一の平面上において分散して配置されていることを特徴とする、熱電変換モジュール。
  9. 請求項1から請求項8のいずれか一項に記載の熱電変換モジュールであって、
    前記導電部は、前記半導体層を構成する成分と、前記絶縁層を構成する成分とのうちの少なくとも一方の成分を含有することを特徴とする、熱電変換モジュール。
  10. 熱電変換モジュールの製造方法であって、
    (a)半導体材料を主成分とする半導体層を形成する工程と、
    (b)前記半導体層の表面に絶縁層を形成する工程と、
    (c)前記半導体層の端部近傍に、前記絶縁層と前記半導体層とを貫通する切り欠き部を形成する工程と、
    (d)前記切り欠き部に導電性の導電接触部を形成する工程と、
    (e)前記絶縁層の表面に、前記導電接触部と電気的に接続される導電層を形成する工程と、
    (f)前記半導体層の前記切り欠き部が形成された端部とは反対側の端部の近傍に、第2の切り欠き部を形成する工程と、
    (g)前記第2の切り欠き部に導電性の第2の導電接触部を形成する工程と、
    (h)前記工程(a)から前記工程(g)までの工程によって作製された積層体を複数重ね合わせる工程と
    を備えることを特徴とする、熱電変換モジュールの製造方法。
  11. 請求項10に記載の熱電変換モジュールの製造方法であって、さらに、
    (i)前記工程(a)によって作製された半導体層と、前記工程(a)から前記工程(e)までの工程によって作製された積層体と、前記工程(a)から前記工程(g)までの工程によって作製された積層体と、前記工程(h)によって作製された積層体とを重ね合わせる工程を備えることを特徴とする、熱電変換モジュールの製造方法。
  12. 請求項10または請求項11に記載の熱電変換モジュールの製造方法であって、さらに、
    (j)前記重ね合わされた積層体を同時に焼成する工程を備えることを特徴とする、熱電変換モジュールの製造方法。
JP2013129431A 2013-06-20 2013-06-20 熱電変換モジュール、及び、熱電変換モジュールの製造方法 Pending JP2015005595A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129431A JP2015005595A (ja) 2013-06-20 2013-06-20 熱電変換モジュール、及び、熱電変換モジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129431A JP2015005595A (ja) 2013-06-20 2013-06-20 熱電変換モジュール、及び、熱電変換モジュールの製造方法

Publications (1)

Publication Number Publication Date
JP2015005595A true JP2015005595A (ja) 2015-01-08

Family

ID=52301269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129431A Pending JP2015005595A (ja) 2013-06-20 2013-06-20 熱電変換モジュール、及び、熱電変換モジュールの製造方法

Country Status (1)

Country Link
JP (1) JP2015005595A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168968A1 (ja) * 2016-03-31 2017-10-05 株式会社村田製作所 熱電変換素子および熱電変換素子の製造方法
JP2018018916A (ja) * 2016-07-27 2018-02-01 小島プレス工業株式会社 熱電変換モジュール及びその製造方法
AT520418A1 (de) * 2017-09-08 2019-03-15 Avl List Gmbh Thermoelektrischer Generator mit Heuslerscher Legierung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168968A1 (ja) * 2016-03-31 2017-10-05 株式会社村田製作所 熱電変換素子および熱電変換素子の製造方法
JP6399251B2 (ja) * 2016-03-31 2018-10-03 株式会社村田製作所 熱電変換素子および熱電変換素子の製造方法
JPWO2017168968A1 (ja) * 2016-03-31 2018-11-08 株式会社村田製作所 熱電変換素子および熱電変換素子の製造方法
CN108886083A (zh) * 2016-03-31 2018-11-23 株式会社村田制作所 热电转换元件以及热电转换元件的制造方法
US10680153B2 (en) 2016-03-31 2020-06-09 Murata Manufacturing Co., Ltd. Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
CN108886083B (zh) * 2016-03-31 2022-05-10 株式会社村田制作所 热电转换元件以及热电转换元件的制造方法
JP2018018916A (ja) * 2016-07-27 2018-02-01 小島プレス工業株式会社 熱電変換モジュール及びその製造方法
AT520418A1 (de) * 2017-09-08 2019-03-15 Avl List Gmbh Thermoelektrischer Generator mit Heuslerscher Legierung
AT520418B1 (de) * 2017-09-08 2022-03-15 Avl List Gmbh Thermoelektrischer Generator mit Heuslerscher Legierung

Similar Documents

Publication Publication Date Title
US8575469B2 (en) Thermoelectric conversion module and method for manufacturing the same
EP2237336A1 (en) Thermoelectric device
JP2012243750A (ja) セラミック発熱体の製造方法
TW201611359A (zh) 熱電轉換元件薄片及其製造方法、熱電轉換裝置之製造方法
JP2014165188A (ja) 熱電変換素子
JP2008262909A (ja) 燃料電池及びその製造方法
JP2008270527A (ja) 電力用半導体モジュール
JP2008147323A (ja) 熱電変換モジュールおよびその製造方法
JP2015005595A (ja) 熱電変換モジュール、及び、熱電変換モジュールの製造方法
US7932807B2 (en) Varistor
JP2015005596A (ja) 熱電変換モジュール、及び、熱電変換モジュールの製造方法
JPWO2009011430A1 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
JP5537202B2 (ja) 熱電変換モジュール
JP2009049165A (ja) 熱電変換モジュールおよび熱電変換モジュールアセンブリ
WO2015133340A1 (ja) 電気化学デバイス
JP5126518B2 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
JP2011187477A (ja) 金属ベース回路基板の製造方法及び金属ベース回路基板
CN102811554A (zh) 大功率电子器件模组用基板及其制备方法
WO2021230055A1 (ja) 全固体電池および組電池
JP2019079774A (ja) ヒータ及びヒータシステム
JPH0992891A (ja) 熱電素子及び熱電モジュール
JP4882855B2 (ja) 熱電変換モジュールとその製造方法
TW201637249A (zh) 熱電產生器
WO2011086796A1 (ja) コンデンサ内蔵基板の製造方法
CN108886084A (zh) 热电转换模块以及热电转换模块的制造方法