JP2015004245A - 浸水予測システム、浸水予測方法およびプログラム - Google Patents

浸水予測システム、浸水予測方法およびプログラム Download PDF

Info

Publication number
JP2015004245A
JP2015004245A JP2013131097A JP2013131097A JP2015004245A JP 2015004245 A JP2015004245 A JP 2015004245A JP 2013131097 A JP2013131097 A JP 2013131097A JP 2013131097 A JP2013131097 A JP 2013131097A JP 2015004245 A JP2015004245 A JP 2015004245A
Authority
JP
Japan
Prior art keywords
water level
pipeline
inundation
rainfall
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013131097A
Other languages
English (en)
Other versions
JP6207889B2 (ja
Inventor
理 山中
Osamu Yamanaka
理 山中
由紀夫 平岡
Yukio Hiraoka
由紀夫 平岡
鉄兵 手島
Teppei Tejima
鉄兵 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013131097A priority Critical patent/JP6207889B2/ja
Publication of JP2015004245A publication Critical patent/JP2015004245A/ja
Application granted granted Critical
Publication of JP6207889B2 publication Critical patent/JP6207889B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】容易に管路からの浸水を予測することができる浸水予測システム、浸水予測方法およびプログラムを提供することである。【解決手段】実施形態の浸水予測システムは、降雨分布取得部と管路流出・水位予測部と浸水予測部を持つ。降雨分布取得部は、管路が設けられた対象地域を分割した領域毎の降雨量を取得する。管路流出・水位予測部は、取得した降雨量を用いて、領域各々の管路の水位を表す値を算出する。浸水予測部は、算出した水位を表す値を用いて、領域各々の管路からの溢水による浸水の有無を判定する。【選択図】図1

Description

本発明の実施形態は、浸水予測システム、浸水予測方法およびプログラムに関する。
都市全体の浸水リスクを総合的に評価した雨水対策を行うためには、下水道管渠、雨水貯留池、排水ポンプ場などの下水道施設(以降、管路という)からの浸水を含む都市全体での浸水リスクを評価するための情報が極めて重要になる。
都市全体での浸水リスクを評価するための技術として、分布型流出解析手法が広く用いられている。分布型流出解析は、ある地域の土地利用形態、標高などの地形情報、下水管路の敷設状況などの土木情報を用いて、水文学的なモデルと水理学的なモデル(サン・ブナン方程式など)を適宜併用した流出解析により降雨の流れを追跡する方法である。分布型流出解析の汎用解析ソフトも広く使われており、代表的なものとして、デンマークのMOUSE、イギリスのInfoworks、アメリカのSWMM、などと呼ばれる商用パッケージソフトが利用されている。
これらのパッケージソフトは、主にオフラインで洪水・浸水対策を行う施設の設計などに用いられることが多く、雨水ポンプや貯留施設の運用制御を主な目的としたものではない。一部、オンライン利用を目的とした機能を持つものもあるが、必ずしも広く用いられているわけではない。その理由として、1)ある都市域全体の解析を行う場合、リアルタイム性の問題がある、2)広い地域を対象とした場合、設定すべき土木情報や地形情報が莫大となり、そのエンジニアリングにかかる時間とコストが膨大となり実際的でない、などの理由がある。加えて、3)国内では、近年国土交通省が全国26か所に高精度な雨量レーダ(降雨レーダ)であるXバンドMPレーダを設置し、配信を行っているが、この雨量レーダ(降雨レーダ)情報と浸水解析とのインターフェースが必ずしも使いやすいものではない、といった問題がある。
これらの問題を意識して、地上雨量計に変えてレーダ雨量計を用いて分布型流出予測を行うものもある(例えば、特許文献1)。
特開2009−008651号公報
本発明が解決しようとする課題は、容易に管路からの浸水を予測することができ、かつオンライン性の高い浸水予測システム、浸水予測方法およびプログラムを提供することである。
実施形態の浸水予測システムは、降雨分布取得部と水位予測部と浸水予測部を持つ。降雨分布取得部は、管路が設けられた対象地域を分割した領域毎の降雨量を取得する。管路流出・水位予測部は、前記取得した降水量を用いて、前記領域各々の前記管路の水位を表す値を算出する。浸水予測部は、前記算出した水位を表す値を用いて、前記領域各々の管路からの溢水による浸水の有無を判定する。
第1の実施形態の浸水予測システム40と外部システムとの接続関係を示す概略ブロック図である。 第1の実施形態の浸水予測システム40が用いるタンクモデルを説明する概念図である。 第1の実施形態の浸水予測システム40の構成を示す概略ブロック図である。 第1の実施形態の結果表示部411による表示例を示す図である。 第1の実施形態の変形例の仮想タンクのモデルを示す概念図である。 第2の実施形態の浸水予測システム40aの構成を示す概略ブロック図である。 第2の実施形態の結合パラメータ適応部412の動作を説明する概念図である。 第3の実施形態の浸水予測システム40bの構成を示す概略ブロック図である。 第3の実施形態の地表面タンクのメッシュに対する流入を説明する図である。 第3の実施形態の地表面タンクのモデルを示す図である。 第4の実施形態の変換前後のメッシュの関係を説明する概念図である。
[第1の実施形態]
以下、図面を参照して、第1の実施形態について説明する。図1は、本実施形態による浸水予測システム40と外部システムとの接続関係を示す概略ブロック図である。本実施形態による浸水予測システム40は、降雨レーダシステム10、下水道管理台帳DB(Data Base)20、GIS情報DB30と接続される。なお、浸水予測システム40は、これらのシステムと専用の通信回線で接続されてもよいし、インターネットなどの汎用の通信回線で接続されてもよい。
降雨レーダシステム10は、例えば、http://mp-radar.bosai.go.jp/mlit.htmlに示されている様に国土交通省が設置しているXバンドMPレーダなどの雨量レーダであり、浸水予測システム40の対象地域をメッシュ状に区切った領域(以降、メッシュという)ごとの降雨量を、浸水予測システム40に入力する。降雨レーダシステム10として、XバンドMPレーダを利用する場合には、250m×250m四方のメッシュ状のデータが得られる。
なお、降雨レーダシステム10は、メッシュ状の降雨量データを出力するものであれば、XバンドMPレーダに限定されることはなく、アメッシュデータ(Xバンドレーダの一つ)を出力するものでもよいし、実用化が試みられている垂直方向の降雨情報を計測することができるフェーズドアレイレーダであってもよい。また、浸水解析の視点からは、XバンドMPレーダの様にできるだけ細かいメッシュサイズのデータが得られることが好ましいが、1km×1km四方のメッシュ状の降雨量が得られるCバンドレーダなどであってもよい。また、各メッシュの降雨量は、降雨レーダで計測したレーダの反射強度からレーダ方程式などを用いて換算するが、対象とする地域に設置された地上雨量計データなどを用いて、あらかじめ補正したものであってもよい。
下水道管理台帳DB20は、浸水予測システム40の対象地域に設置されている下水道管渠、雨水貯留池、排水ポンプ場などの管路の構成を示す情報を記憶する。GIS(Geographic Information System)情報DB30は、浸水予測システム40の対象地域の地形などを表す地図情報データを記憶する。
浸水予測システム40は、降雨レーダシステム10から取得した降雨量、下水道管理台帳DB20が記憶する管路の構成を示す情報、GIS情報DB30が記憶する地図情報データを用いて、メッシュ各々の管路の水位を算出する。浸水予測システム40は、算出した水位を用いて、各メッシュについて管路からの溢水による浸水の有無を予測する。
図2は、浸水予測システム40が用いるタンクモデルを説明する概念図である。本実施形態における浸水予測システム40は、仮想の貯留タンク(以下、仮想タンク)が各メッシュに設けられているとみなして、水位の算出および浸水の有無を予測する。流出現象を表現するために、仮想タンクを用いるという考え方は、水文学では、菅原のタンクモデルとして知られており、単純な構造で現象を良く表現できることが広く知られている。また、貯留関数法と呼ばれる考え方も、同様な概念に基づいている。これらの概念は主に、外水氾濫に関連する様な流出解析手法として用いられている。
本実施形態は、以下のような3つの特徴を有する。1)このようなタンクモデルの考えを降雨レーダシステム10のメッシュ形状と同一の形状のメッシュ毎に適用する。2)内水氾濫に関する管路の流れを簡素化するために仮想タンクを利用して表現している。3)メッシュ間の水の収支をメッシュ間の仮想タンクの水位差を用いて計算しており、内水氾濫で特徴的な管路の下流側の水位が上昇すると、これが上流に伝搬して氾濫が生じるという背水現象を近似的に表現できる。
図2では、説明の簡易のために浸水予測の対象地域を、2つのメッシュM1、M2で表している場合を説明する。メッシュM1、M2の仮想タンクT1、T2の形状は、底面が各メッシュに対応する四角柱のタンクである。メッシュM1、M2は、仮想タンクの底面積A、ある標高基準点H0(例えば、標高0m)からの仮想タンク底面の標高HL、HLと、仮想タンクが満タンになる水位(溢水標高)HU、HU、降雨量のうち、地表面から管路へ流出する雨水の割合である流出係数b、bをパラメータとして持っている。
また、排水ポンプ場などがあるメッシュM2は、排水ポンプ場などによる排水量Voを算出する際に用いる係数である排水パラメータkoutをパラメータとして持っている。また、仮想タンクT1、T2は、これらの仮想タンク間での流れやすさを表す結合パラメータk12を持っており、この結合パラメータは、仮想タンク間の流量V12を算出する際に用いられる。これらのパラメータは、下水道管理台帳DB20、GIS情報DB30が記憶する情報から算出されるが、算出方法の詳細は後述する。
仮想タンクの水位の変化は、地表面から管路に流入する雨水の量、隣接する仮想タンクとの間の流量、排水ポンプ場あるいは対象地域外への流出などによる排水量によって決まる。ここで、i番目の仮想タンクTiにおいて、単位時間に、地表面から管路に流入する雨水の量Raは、以下の式(1)で算出できる。
Ra=A×b×R・・・(1)
上述したように、Rは、降水量であり、Aは、仮想タンクの底面積であり、biは、地表面から管路への雨水の流出係数である。
i番目の仮想タンクTiと、隣接するj番目の仮想タンクTjとの間の単位時間の流量Vijは、以下の式(2)で算出できる。
ij=kij×(H−H ・・・(2)
ここで、H、Hは、標高基準点H0を基準とした仮想タンクTiと仮想タンクTjの水位であり、H=Hd+HL、H=Hd+HLである。kijは、上述した結合パラメータである。nは指数パラメータである。nはベルヌーイの法則に基づくとn=1/2であり、水文学で用いられるダルシー則の場合はn=1となる。本実施形態では、説明を簡易にするためn=1を用いるが、必要に応じてn=1/2を用いてもよい。
(2)式は仮想タンクTiと仮想タンクTjの(標高基準点からの)水位差によって、仮想タンクTiと仮想タンクTj間の水が移動することを表現している。仮想タンクTiと仮想タンクTjの水位差のべき乗が流量に比例することは、仮想タンクではなく本当のタンクの場合は知られている。しかし、水文学のタンクモデルなどの流出現象の表現では、たとえば、標高の高いタンクから標高の低いタンクに一方向に流れるタンク形状を考えており、水位差ではなく、標高の高いタンクのタンク底面からの水位を用いている。
(2)式を用いることで、仮想タンクTiから仮想タンクTjへ水が流れる場合と、仮想タンクTjから仮想タンクTiへ水が流れる場合が、それらの水位によって変化する点である。このような仮想タンクを設けることにより、通常は標高が高い仮想タンクTiから仮想タンクTjに水が流れるが、仮想タンクTjに水が溜って仮想タンクTiの水位よりも高くなった場合には逆流する現象を模擬できる。これによって、管路で実際に生じる背水現象を疑似的に表現することができる。
i番目の仮想タンクTiにおける排水ポンプ場、対象地域外への流出などによる単位時間の排水量Voは、以下の式(3)で算出できる。
Vo=kout×Hd・・・(3)
Hdは、仮想タンク底面からの水位である。koutは、上述した排水パラメータである。
これらから、図2の仮想タンクT1、T2各々が収容している水量の時間変化は、下記の式(4−1)、(4−2)で表される。
A×dH/dt=A×b×R−k12×(H−H) ・・・(4−1)
A×dH/dt=A×b×R−k12×(H−H)−kout×Hd ・・・(4−2)
浸水予測システム40は、これらの式(4−1)、(4−2)を解くことで、各仮想タンクの水位H、Hを算出する。そして、算出した各仮想タンクの水位H、Hが、溢水標高HU、HUを超えているか否かにより、該仮想タンクに対応するメッシュで浸水が発生するか否かを予測する。
図3は、浸水予測システム40の構成を示す概略ブロック図である。浸水予測システム40は、降雨分布取得部401、予測降雨分布計算部402、仮想タンク情報計算部403、仮想タンク情報記憶部404、流出係数計算部405、流出係数記憶部406、管路流出・水位予測部407、水位記憶部408、浸水予測部409、浸水情報記憶部410、結果表示部411を含んで構成される。
降雨分布取得部401は、降雨レーダシステム10からメッシュ状の降雨量の分布を取得する。予測降雨分布計算部402は、降雨分布取得部401が取得した降雨量の分布を用いて、将来の降雨分布を予測する。予測時間は、例えば、30分〜数時間の将来までである。30分〜数時間の将来までの予測を行えば、浸水予測システム40による予測結果を、雨水排水ポンプ制御、河川排水機場ポンプ制御、これらの機場の人員配備計画、一般人への浸水情報提供、交通機関への情報提供、などに利用できる。
予測降雨分布計算部402による予測には、公知の方法である、メッシュ毎の相互相関関数を計算して雨域の移動方向を計算して予測する相互相関関数法などを用いることができる。また、移動物体を追跡する方法として画像処理分野で使われているオプティカルフローを応用して降雨の移動を追跡して予測するようにしてもよい。さらに、移流方程式を使って降雨の発生・消滅も考慮した上で雨の動きを予測するようにしてもよい。他にも多変量AR(Autoregressive;自己回帰)モデル、多変量ARMA(Autoregressive Moving average;自己回帰移動平均)モデルなどの統計的モデリングの手法を使って、予測を行うようにしてもよい。
仮想タンク情報計算部403は、下水道管理台帳DB20を参照して、各メッシュに対応する仮想タンクの底面積A、底面の標高HL、溢水標高HU、結合パラメータkij、排水パラメータkoutを算出し、これらを、仮想タンク情報として、仮想タンク情報記憶部404に記憶させる。以降、各情報の添え字i、jは、i番目、j番目のメッシュ(仮想タンク)の情報であることを表す。仮想タンク情報計算部403は、仮想タンクの底面積Aを、降雨レーダシステム10のメッシュ一つ分の面積とする。降雨レーダシステム10がXバンドMPレーダのときは、A=250m×250mである。
仮想タンク情報計算部403は、各仮想タンク底面の標高HLとして、下水道管理台帳DB20が記憶する情報を用いて、対応するメッシュの代表的な標高を算出する。仮想タンクを用いた流出計算では、各メッシュ間の標高差が同じであれば各メッシュの標高自身が異なっていても同一の計算結果を与えるため、代表標高であれば、どのような方法でも構わない。
仮想タンク情報計算部403は、例えば、ある対象メッシュに設置されている下水道管渠の標高データを、下水道管理台帳DB20から読み出し、その最低標高や平均標高を代表標高としても良い。あるいは、ある対象メッシュに存在する最大の管径の下水管の標高を代表標高としてもよい。下水道管渠のサイズの違いを考慮して、たとえばサイズに対する重みをつけた重みつき平均などで計算してもよい。
仮想タンク情報計算部403は、各仮想タンクの満タンとなる溢水標高HUを、下水道管理台帳DB20から、対象とするメッシュに敷設された下水管渠データの情報を読み出して計算する。まず、仮想タンク情報計算部403は、対象とするメッシュに存在する管路の総容量を下水管の管径や位置情報から計算し、これをSmaxとする。この時Smaxと溢水標高HUには、以下の式(5)の関係がある。
Smax=A×(HU−HL) ・・・(5)
仮想タンク情報計算部403は、総容量Smaxに加えて、上述の仮想タンク底面積Aと、仮想タンク底面の標高HLと、式(5)の関係とを用いて、溢水標高HUを算出する。
仮想タンク情報計算部403は、i番目のメッシュとj番目のメッシュとの結合パラメータkijを、下水道管理台帳DB20を参照して、以下の様に決定する。まず、仮想タンク情報計算部403は、i番目のメッシュから、隣接するj番目のメッシュへの管路の接続の有無を判定し、接続されていない場合にはkij=0とする。接続されている場合には、以下の様にする。まず、仮想タンク情報計算部403は、下水道管理台帳DB20を参照して、i番目のメッシュから隣接するj番目のメッシュへの管路の半径(管径)の平均値Dijと勾配の平均値Iijを求める。そして、流速は管路の断面積(管径の2乗)に比例し、勾配のルート(1/2乗)に比例すると仮定し、以下の式(6)を用いて、結合パラメータkijを算出する。
ij=kmax×(Dij/Dmax)×(Iij/Imax)1/2 ・・・(6)
kmax、Dmax、Imaxは、仮想タンク情報計算部403が予め記憶していた結合パラメータと管径と勾配の組み合わせである。これらの算出方法は、後述する。なお、流速が、管路の断面積に比例するのは、断面積が大きいほど、流速が大きくなることに基づき、勾配のルートに比例することは、マニング式(V=n−12/31/2)に基づく。マニング式において、Vは流速であり、nは粗度であり、Rは径深であり、Iは勾配である。
次に、kmax、Dmax、Imaxを得る方法について説明する。下水管は、通常3m/s程度の流速が最大になる様に計算されているため、最大流速Vmax=3m/sとなる下水管の半径と勾配を予め調査しておき、その半径をDmax、勾配をImaxとして予め記憶しておく。流速が3m/sで、メッシュの大きさが250m×250mであれば、メッシュの中心から隣接するメッシュの中心に到達するまでの流達時間Tは、L/Vmax=250/3[秒]である。そして、時定数Tc=A/kmax=T/2が成り立つと仮定して、kmaxを算出する。なお、流達時間Tに1/2を乗じた値が時定数Tcとなるとしたが、乗じる値は1/2から1の間のその他の値でもよい。
仮想タンク情報計算部403は、下水道管理台帳DB20を参照して、メッシュ毎に排水ポンプ場などの管路からの排水設備があるか否かと、対象地域の端であるか否かを判定する。排水設備がなく、かつ対象地域の端でない場合は、該メッシュの排水パラメータkout=0とする。排水設備がある場合は、仮想タンク情報計算部403は、排水設備の排水能力に応じて、排水パラメータkoutの値を設定する。対象地域の端であるときには、対象地域の外側との関係を結合パラメータと同様にして算出し、排水パラメータkoutに設定する。なお、仮想タンク情報計算部403は、排水能力と、該排水能力のとき排水パラメータkoutがとるべき値との対応関係を、予め記憶しておく。
仮想タンク情報記憶部404は、仮想タンク情報計算部403が計算した各メッシュの仮想タンク情報を記憶する。すなわち、仮想タンク情報記憶部404は、各仮想タンクの底面積A、底面の標高HL、溢水標高HU、結合パラメータkij、排水パラメータkoutを記憶する。なお、結合パラメータについては、各メッシュについて、全ての隣接するメッシュとの値を記憶するのではなく、例えば、上に隣接するメッシュとの値と、左に隣接するメッシュとの値を記憶するようにしてもよい。この場合、当該メッシュと下に隣接するメッシュとの値は、下に隣接するメッシュの上に隣接するメッシュとの値として記憶されている。
流出係数計算部405は、GIS情報DB30に保存された電子的な地図情報データ(GISデータ)を用いて、降雨レーダシステム10から取得した降雨量の分布のメッシュ形状と同じ形状のメッシュ毎の流出係数bを計算する。流出係数計算部405は、たとえば、以下の様な方法で計算する。流出係数計算部405は、まず、GISデータが表す色、色の変化、形状などを用いて、土地利用形態を推定する。たとえば、緑色(数値で定義)の部分は、山、灰色(数値で定義)の道路、所定サイズ以下の四角の部分や屋根、などと定義しておき、各メッシュについて、予め定義した土地利用形態の割合を算出する。そして、流出係数計算部405は、土地利用形態毎に予め定義しておいた流出係数の平均値を、各メッシュの流出係数とする。
たとえば、GISデータを参照すると、あるメッシュにおける山の割合は0.6、道路の割合は0.3、屋根の割合は0.1であったとする。そして、土地利用形態毎に予め定義しておいた流出係数が、山は0.6、道路は0.8、屋根は1であったとするこの場合、このメッシュの流出係数は0.6×0.6+0.3×0.8+0.1×1=0.7である。
また、流出係数計算部405は、細かい土地利用形態の情報が得られない場合には、対象地域をおおまかに山林部、田畑部、都市部などと分類し、これに対して流出係数を与え、それを各メッシュに割り当てるようにしてもよい。
流出係数記憶部406は、流出係数計算部405が計算した各メッシュの流出係数を記憶する。
管路流出・水位予測部407は、降雨分布取得部401が取得した降雨量の分布と、予測降雨分布計算部402が計算した降雨量の分布と、仮想タンク情報記憶部404が記憶する仮想タンク情報と、流出係数記憶部406が記憶する流出係数とを用いて、各時間ステップにおける各仮想タンクの水位を算出する。管路流出・水位予測部407は、算出した各時間ステップにおける各仮想タンクの水位を、水位記憶部408に記憶させる。
管路流出・水位予測部407は、各仮想タンクの水位の算出を、具体的には、上述した式(4−1)、(4−2)を解くことで行う。式(4−1)、(4−2)は微分方程式であるが、これらをルンゲクッタ法などの高次の数値積分を使ったりして解いてもよいが、計算負荷が大きいので、後退オイラー差分を用いて近似することが好ましい。後退オイラー差分を用いると、式(4−1)、(4−2)は、式(7−1)、(7−2)の様に書き改めることができる。なお、Δtは、離散化する時間幅である。
(t+1)= H(t)+(Δt/A)(A×b×R(t)−k12(H(t)−H(t))) ・・・(7−1)
(t+1)= H(t)+(Δt/A)(A×b×R(t)−k12(H(t)−H(t))−kout×Hd(t)) ・・・(7−2)
式(7−1)、(7−2)は、形式的には線形の離散時間モデルと呼ばれるものに対応しており、システム的な扱いが比較的容易なモデルとなっている。管路流出・水位予測部407は、時間ステップtにおける水位、降雨量を用いて、時間ステップt+1における水位を算出し、算出した時間ステップt+1における水位、降雨量を用いて、時間ステップt+2における水位を算出するというようにして、各時間ステップにおける水位を算出する。
なお、管路流出・水位予測部407は、降雨量R(t)として、降雨分布取得部401が取得した値を優先的に用い、降雨分布取得部401によって未だ得られていない将来の時間ステップtの降雨量R(t)については、予測降雨分布計算部402が計算した値を用いる。また、各仮想タンクの水位の初期値H(0)としては、該仮想タンク底面の標高HLを用いてもよい。あるいは、降雨分布取得部401が前回取得した降雨分布を用いて算出した水位を用いてもよい。
なお、ここでは、簡単のために図2と同様に、メッシュが2つの場合、すなわち隣接するメッシュが一つの場合の式を示したが、通常は、縦方向および横方向に配列されており、隣接するメッシュは複数である。その場合、結合パラメータを乗じた項(−k12(H(t)−H(t)))が、隣接するメッシュに応じた数となる。例えば、隣接するメッシュを、上下左右の4つとする場合は、上に隣接するメッシュとの結合パラメータを乗じた項と、下に隣接するメッシュとの結合するパラメータを乗じた項、左に隣接するメッシュとの結合パラメータを乗じた項と、右に隣接するメッシュとの結合パラメータを乗じた項の4つとなる。なお、隣接するメッシュを上下左右だけでなく、角が接する4つを加えて、8つとしてもよい。
水位記憶部408は、管路流出・水位予測部407が算出した各時間ステップにおける各仮想タンクの水位H(t)を記憶する。なお、水位H(t)ではなく、仮想タンク底面からの水面高さHd(t)を記憶するようにしてもよい。
浸水予測部409は、各時間ステップ、各メッシュについて、対応する仮想タンクの水位H(t)が溢水標高HUを超えているか否かを判定し、超えているときは浸水が生じると判定する。浸水予測部409は、判定結果を浸水情報として、浸水情報記憶部410に記憶させる。
なお、浸水予測部409による浸水予測においては、不確実さが伴うので、1つのメッシュに対して、例えばHU1<HU2<HU3を満たす複数の溢水標高HU1、HU2、HU3を設定し、HU1を超えた場合に、浸水の可能性が少しある、HU2を超えた場合に浸水の可能性がある、HU3を超えた場合にほぼ確実に浸水するなど、浸水の発生危険度を決定するようにしてもよい。
この際、HU1〜HU3などのパラメータはSmaxを計算する場合に下水管データから複数算出しておくようにしてもよいし、SmaxやHUは固定した上で、メッシュの流出係数を複数持たせる(例えば、最悪の場合は流出係数1など)として、降雨量が異なるものに対して浸水判断を行い、過小に見積もった降雨に対しても浸水が生じる場合を、上記のHU3に対応させ、過大に見積もった流出係数1の降雨に対して浸水が生じる場合を上記のHU1に対応させる、などの判断にしても良い。
浸水情報記憶部410は、各時間ステップ、各メッシュについて、浸水が生じているか否かの浸水予測部409による判定結果を、浸水情報として記憶する。
結果表示部411は、浸水情報記憶部410が記憶する浸水情報を、メッシュ状の分布として、液晶ディスプレイなどの表示デバイスに表示する。なお、結果表示部411は、最終的な浸水予測結果だけを表示しても良いが、図4に示すように、降雨分布、予測降雨分布、流出係数分布、流出予測分布、浸水予測分布を並列して表示し、対象地域の全体像が一目で把握できるようにしてもよい。また、必要に応じて、仮想タンク底面の標高HLと溢水標高HUも同時に表示させてもよい。
このように、浸水予測システム40は、管路が設けられた対象地域を分割したメッシュ毎の降雨量を取得する降雨分布取得部401と、該降雨量を用いて、メッシュ各々の管路の水位を算出する管路流出・水位予測部407と、該水位を用いて、メッシュ各々の管路からの溢水による浸水の有無を判定する浸水予測部409とを具備する。
これにより、分布型流出解析の様な複雑な土木構造の設定をせずに、容易に管路からの浸水を予測することができ、かつオンライン性を高くすることができる。
さらに、管路流出・水位予測部407は、メッシュ各々の管路の水位を、当該メッシュに隣接するメッシュの管路との間の流量と、当該メッシュの降水量とを用いて算出する。
これにより、分布型流出解析で用いられる様な複雑な水理モデルなどよりも、演算量を抑えることができる。したがって、東京都全域などの大規模なサイズ(東京都のアメッシュであれば約20万個のメッシュ)の浸水予測を、リアルタイムで実行することができる。
さらに、管路流出・水位予測部407は、当該メッシュに隣接するメッシュの管路との間の流量を、当該メッシュの管路の水位と、隣接するメッシュの管路の水位との差を用いて算出する。
これにより、下流側の管路に水が溜まって、上流側よりも水位が高くなったときに逆流する現象を模擬することができる。
また、仮想タンク情報計算部403は、対象地域の下水道施設に関する情報を取得し、該下水道施設に関する情報から、メッシュ各々の管路の標高を表す値(仮想タンク底面の標高)と、メッシュ各々の管路の容量を表す値(溢水標高)とを算出する。そして、管路流出・水位予測部407は、メッシュ各々の管路の水位を算出する際に、メッシュ各々の管路の標高を表す値を用い、浸水予測部409は、浸水の有無を判定する際に、メッシュ各々の管路の容量を表す値を用いる。
これにより、分布型流出解析実行時に手動で設定が必要な詳細な管路情報の設定を省略して、電子化された下水道台帳情報システム(通称SEMIS)などのデータベースから、自動変換でパラメータを設定することができる。そのため、流出解析モデル構築に必要な工数を大幅に削減でき、また、詳細な流出解析の知識を持たないエンジニアでも容易に流出解析をすることができる。
<変形例>
本変変形例では、第1の実施形態に加えて、初期降雨の損失を考慮する。図5は、本変形例における仮想タンクのモデルを示す概念図である。本変形例では、仮想タンク間の結合部が仮想タンク底面HLよりある高さHTだけ高い位置に設置されていることにより、初期降雨の損失を表現する。ここで、初期降雨の損失とは、雨の降り始めにおいて、地表面における蒸発や浸透などにより、管路への流出が少なくなることである。
仮想タンク情報計算部403は、この高さHTを、流出係数の算出と同様に、土地利用形態に応じたとして算出する。また、より簡易的な方法としては、下水道管理台帳DB20の下水道官渠に関する情報の中から、マンホールの位置を検索し、あるメッシュ状に存在するマンホールの数の関数としてHTの値を決定するようにしてもよい。例えば、マンホールの数が0の場合には、HT=∞とすれば、そのメッシュからの流出がなくなることになる。さらに下水道幹線は道路に沿って埋設されていることもあるため、下水道幹線のマンホールが複数あるメッシュのHTを0に近く設定するなどのルールを決めておいても良い。
浸水予測部409は、HdがHTよりも小さいときは、当該仮想タンクから隣接する仮想タンクへの流量が0となるようにしてもよいし、b×Rの初期時間ステップからの合計が、HT×Aよりも大きくなるまで、仮想タンクへの流量が0となるようにしてもよい。
また、流出係数の代わりにHTを定める様にしてもよい。この場合、浸水予測システム40は、流出係数計算部405、流出係数記憶部406を有しない。
[第2の実施形態]
以下、図面を参照して、第2の実施形態について説明する。第1の実施形態では、下水道管理台帳DB20から仮想タンク情報および結合パラメータを計算したが、本実施形態では、これらの計算した仮想タンク情報および結合パラメータを、流量や浸水の実績情報を用いて、更新する。
図6は、本実施形態における浸水予測システム40aの構成を示す概略ブロック図である。図6において、図3の各部に対応する部分には、同一の符号(20、30、401〜407、409〜411)を付し、説明を省略する。浸水予測システム40aは、図3の浸水予測システム40とは、結合パラメータ適応部412、仮想タンク情報適応部413をさらに有する点が異なる。また、浸水予測システム40aは、さらに、降雨・流量実績DB50、浸水実績DB60と接続される。なお、浸水予測システム40aは、これらのシステムと専用の通信回線で接続されてもよいし、インターネットなどの汎用の通信回線で接続されてもよい。
降雨・流量実績DB50は、特定のメッシュにおける流量、排水量、降雨量の実績を時系列データとして記憶している。浸水実績DB60は、メッシュ毎に、浸水の有無の実績を記憶している。結合パラメータ適応部412は、降雨・流量実績DB50が記憶している時系列データに、管路流出・水位予測部407が算出した流量Vij、水位Hが適合する様に、仮想タンク情報記憶部404が記憶する結合パラメータを調整する。
仮想タンク情報適応部413は、浸水実績DB60が記憶している浸水の有無の実績と、浸水予測部409による予測結果Fとの整合性(一致率)を向上させるように、仮想タンク情報記憶部404が記憶する仮想タンク情報(特に、溢水標高HU、仮想タンク底面の標高HLを調整する。
図7は、結合パラメータ適応部412の動作を説明する概念図である。管路流出・水位予測部407が算出した流量Vij、水位Hは、必ずしも実際の値とは一致しない。しかし、流量の実績が蓄積されている箇所は通常ほとんどない。流量の実績値がわかり、降雨・流量実績DB50が記憶しておくことができるのは、いくつかの限られた地点である例えば、雨水ポンプ場や処理場などへの流入量を計測している地点、水位などから流入量が換算可能な地点、幹線水位計などが設置され、流量に換算出来る大型の下水幹線のいくつかの地点などである。
結合パラメータ適応部412は、降雨・流量実績DB50が記憶している、これらの地点の流量と、管路流出・水位予測部407が算出した流量Vijを適合させるように結合パラメータを調整する。前述した仮想タンク情報の中で、結合パラメータが最も不確実性の高いパラメータであるため、このパラメータを調整する。
図7において、上段のメッシュVは、流量Vijの分布であり、下段のメッシュVRは、流量の実績値の分布である。図7では、メッシュVRのうち、流量の実績値が得られているのは、網掛けされた3つのメッシュのみである。結合パラメータ適応部412は、管路流出・水位予測部407が算出した流量Vij、水位Hのうち、流量の実績値が存在するメッシュの予測精度を評価する。評価値としては、例えば、予測誤差の2乗和を用いる。
結合パラメータ適応部412は、この評価値が最小になる様に結合パラメータを調整する。調整方法としては、乱数で各結合パラメータの値を振って評価値を算出することを繰り返す様なシンプルなモンテカルロ法で評価しても良いし、マルコフ連鎖モンテカルロ法を用いることもできる。その他、遺伝的アルゴリズムなどの進化計算を用いてできる限り調整に効くパラメータを集団と残す様な動作を加えても良い。さらに、予測誤差の2乗和を直接評価するのではなく、予測誤差がガウス分布(正規分布)やt分布などに従うという仮定の下で、逐次モンテカルロ(パーティクルフィルタ)の方法を用いて、尤度が最大になる様に結合パラメータパを適応的に同定してもよい。
このような方法を用いると、例えば、新たな幹線水位計の設置や新たなポンプ場の建設、などにより流量を計測できる地点が増えた場合でも、アルゴリズムの変更の必要なく、降雨・流量実績DB50に記憶させる地点を変更するだけで、予測精度を上げることができる。
なお、対応する降雨と流量が適合する様に、流量の実績値が得られているメッシュ近傍の結合パラメータのみを調整するようにしてもよい。
仮想タンク情報適応部413も、結合パラメータ適応部412と同様にして、仮想タンク情報を調整する。浸水被害が起こることはあまりないが、浸水の生じやすい箇所などで浸水が発生した時刻などの実績データが残っていることもある。このような場合、これらの浸水の実績データをデータベース化して、浸水実績DB60に蓄積しておく。仮想タンク情報適応部413は、浸水実績DB60が記憶している浸水の有無の実績と、浸水予測部409による浸水予測の結果が適合する様に、仮想タンク情報を調整する。
仮想タンク情報適応部413が調整する項目を、総容量Smaxなど、仮想タンク情報を算出する情報とし、調整結果を用いて、仮想タンク情報を算出し直すようにしてもよいし、溢水標高HU、仮想タンク底面の標高HLなど、仮想タンク情報の項目を直接調整するようにしてもよい。
この調整は、例えば、浸水の有無を0と1に対応させ、実績と予測の一致率を基準として一致率を向上させるように機械学習の方法を用いて学習させることで行う。基本的には、浸水実績の方が予測よりも早く起こるようであれば総容量Smaxを小さくする、あるいは、溢水標高HUを低くし、その逆の場合は逆の操作を行う様に調整する。ただし、近接する複数のメッシュ間で相反する結果が得られる場合には、相対的なバランスが崩れている可能性があるので、仮想タンク底面の標高HLを調整して標高差を調整する。これらを機械学習の方法で実行することにより、浸水予測の精度を向上させることができる。
このように、浸水予測システム40aは、流量を、実績値と比較し、実績値との差が小さくなるように、メッシュ各々について、隣接するメッシュ各々との間の管路の水の流れやすさを表す結合パラメータを決定する結合パラメータ適応部を具備する。そして、管路流出・水位予測部407は、メッシュと隣接するメッシュの管路との間の流量を算出する際に、この結合パラメータを用いる。
これにより、流量の実績に適合するように予測精度を改善することができる。さらに、流量計測点が増えたり、実績データが蓄積されたりするにつれて、予測精度が改善され続けるシステムとなり、オンラインでの支援情報として、より有用な情報とすることができる。仮想タンク情報適応部413についても、同様に浸水の実績に適合するように予測精度を改善することができる。
[第3の実施形態]
以下、図面を参照して、第3の実施形態について説明する。図8は、本実施形態における浸水予測システム40bの構成を示す概略ブロック図である。同図において、図3の各部に対応する部分には同一の符号(20、30、401〜404、409〜411)を付し、説明を省略する。浸水予測システム40bは、図3の浸水予測システム40と同様の構成であるが、流出係数計算部405、流出係数記憶部406、管路流出・水位予測部407、水位記憶部408に変えて、流出係数計算部405b、流出係数記憶部406b、流出・水位予測部407b、水位記憶部408bを有する点が異なる。
流出係数計算部405bは、流出係数計算部405と同様に、降雨量のうち地表面から管路へ流出する雨水の割合である流出係数を算出するとともに、降雨量のうち地表面に残る雨水の割合である表面流出係数を算出する。算出方法は、流出係数と同様である。なお、あるメッシュの降雨量は、表面流出成分と下水官渠流下成分と浸透成分に分けられ、表面流出成分の割合が表面流出係数、下水官渠流下成分の割合が流出係数である。
流出係数記憶部406b、流出係数記憶部406と同様に、各メッシュの流出係数を記憶するとともに、各メッシュの表面流出係数も記憶する。
流出・水位予測部407bは、管路流出・水位予測部407と同様に、各メッシュの管路内の水位を予測するとともに、各メッシュの地表面の雨水の量についても予測する。流出・水位予測部407bは、地表面の雨水の量についても、タンクモデルを用いる。本実施形態では、管路に関する仮想タンクを、管路タンク、地表面に関する仮想タンクを、地表面タンクという。
図9は、地表面タンクのメッシュに対する流入を説明する図である。図9において、メッシュSは、地表面タンクのメッシュを表し、メッシュVRは、管路タンクのメッシュを表す。メッシュVRのうち、網掛けされたメッシュは、管路の水位が溢水標高を超えて浸水していることを示す。そして、全ての地表面タンクには、降雨による流入があり、水位が溢水標高を超えたメッシュの地表面タンクには、水位と溢水標高との差に応じた水量の管路タンクからの流入がある。
図10は、地表面タンクのモデルを示す図である。図10では、1番目のメッシュM1の地表面タンクTs1の流出口は、2番目のメッシュM2(下流側のメッシュ)の地表面タンクTs2の溢水ラインU2よりも高い位置にある、いわゆる水文学で用いられているタンクモデルであり、管路タンクのように逆流現象は生じない。なお、当該メッシュの土地の標高の代表値(平均値など)よりも、標高の代表値が低い隣接メッシュを、当該メッシュの下流側のメッシュとする。
また、各地表面タンクTs1、Ts2にそれぞれ流入する流入量Rs、Rsは、降雨量の表面流出成分と、当該メッシュの管路タンクからの溢水との合計である。地表面タンクTs1、Ts2の底面積も、管路タンク同様に、メッシュ一つ分の面積Aである。各地表面タンクTs1、Ts2における底面から水面までの高さが、地表面タンクの水位Hs、Hsである。また、地表面タンクについても、溢水が起こるタンク底面から水面までの高さUを有していてもよい。この溢水が起こるタンク底面から水面までの高さUは、地表面タンクの容量パラメータであり、メッシュ毎の保水能力に応じた値を、GISデータなどから該当の土地利用形態から算出し、設定しておく。
また、地表面タンク間の流量Vsij=ksij×Hsを算出する際に用いる地表面結合パラメータksijは、標高の高いメッシュから低いメッシュには、ベルヌーイ則などを用いて設定し、標高の低いメッシュから高いメッシュには設定しないなどの対策をしておく。
このように、流出・水位予測部407bは、は、メッシュ各々について、管路の水位に加えて、地表面の雨水の量についても算出する。
これにより、一旦マンホールから溢水した水が再度別のマンホールから流入する様な現象をより詳細に解析できるため、予測精度が向上する。また、河川系の流出解析なども統合して解析を行い、内水氾濫と外水氾濫を同時に考慮した運用を検討する際に有用な情報を与えることができる。
[第4の実施形態]
以下、図面を参照して、第4の実施形態について説明する。第4の実施形態では、降雨レーダシステム10におけるメッシュサイズよりも細かいサイズのメッシュで、浸水予測を行う。本実施形態における浸水予測システム40は、図3に示す浸水予測システム40と同様の構成であるが、降雨分布取得部401の動作が異なる。降雨分布取得部401は、取得したメッシュ状の降雨量の分布を、さらに細かいメッシュサイズのメッシュ状の降雨量の分布に変換し、変換した降雨量の分布を、予測降雨分布計算部402および管路流出・水位予測部407に入力する。なお、降雨分布取得部401以外の各部は、降雨分布取得部401が変換した細かいサイズのメッシュを、対象のメッシュとするため、メッシュのサイズに依存する部分以外は、第1の実施形態と同様に動作する。メッシュのサイズに依存する部分としては、例えば、演算式中の面積Aの値や、仮想タンク情報や流出係数の個数などがある。
図11は、変換前後のメッシュの関係を説明する概念図である。図11のME0は、降雨分布取得部401が取得した降雨量の分布のメッシュである。図中のRx,yなどは、該メッシュの降雨量である。前述したように、降雨レータシステム10が、XバンドMPレーダであれば、メッシュサイズは250m×250m四方のサイズである。本実施形態では、より細かいメッシュで予測・解析を行う。この際、一つのメッシュを単純に分割するだけでは、降雨レーダの情報が元のメッシュサイズに対して1点しかないため、降雨量のデータを細かく表現することができず、単にメッシュを細かくするだけになってしまう。
そこで、降雨分布取得部401は、図11のME1の様に、破線で示す元のメッシュの格子点(頂点)が新しく定義する1/4サイズ(125m×125mサイズ)のメッシュの中心と一致する様に新しいメッシュを定義する。このように定義した上で、新しい各メッシュに含まれる元のメッシュの降雨データの単純平均をとった降雨量を新しい各メッシュの降雨量とする。
例えば、降雨分布取得部401は、降雨量R’(x−1,y−1)を、以下の式(8)を用いて、降雨量R’(x−1、y)を、式(9)を用いて、降雨量R’(x,y)を、式(10)を用いて算出する。
R’(x−1,y−1)=(R(x−1,y−1)+R(x,y−1)+R(x−1,y)+R(x,y))/4 ・・・(8)
R’(x−1,y)=(R(x−1,y)+R(x,y))/2 ・・・(9)
R’(x,y)=R(x,y) ・・・(10)
なお、この考え方を繰り返し用いれば、さらに62.5m×62.5mのメッシュサイズ、31.25m×31.25mのメッシュサイズの降雨量を複雑な計算を行うことなく容易に計算することができる。
このように、レーダ雨量データのメッシュサイズより細かいサイズの流出解析、浸水予測を実現したい場合に、複雑な補間処理を行うことなく、メッシュの定義を変更するだけで容易にこれを実現できる。
なお、上述の各実施形態において、浸水予測システム40、40a、40bは、予測降雨分布計算部402を備えることが望ましいが、予測降雨分布計算部402を備えず、降雨レーダシステム10から取得した降雨量の分布だけを用いて浸水予測を行ってもよい。
また、上述の各実施形態において、仮想タンクの溢水標高HUを、該メッシュの地面の標高の代表値(平均値、最低値など)とし、底面積Aを、下記式(11)のように、容量Smaxを、溢水標高HUと仮想タンク底面の標高HLとの差で割った値としてもよい。この場合、Smax、HU、HLともに、メッシュによって異なった値となるので、底面積Aもメッシュによって異なった値となる。
A=Smax/(HU−HL) ・・・(11)
また、上述の各実施形態において、結果表示部411は、WEBサーバとして動作し、浸水情報を、メッシュ状の分布として他装置に表示させるようにしてもよいし、図4のように、降雨分布、予測降雨分布、流出係数分布、流出予測分布、浸水予測分布を並列して、他装置に表示させるようにしてもよい。
また、上述の各実施形態において、メッシュは、全て同じ大きさの矩形であるが、同じ大きさでなくてもよいし、矩形でなくてもよい。
また、図3における浸水予測システム40、図6における浸水予測システム40a、図8における浸水予測システム40b、の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより浸水予測システムを実現してもよい。なお、ここでいう「コンピュータシステム」とは、複数のコンピュータを含んでいてもよく、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上述べた少なくともひとつの実施形態の浸水予測システムによれば、対象地域を分割したメッシュ毎の降雨量を取得する降雨分布取得部と、該降雨量を用いて、メッシュ毎に、該メッシュの管路の水位を算出する管路流出・水位予測部と、該水位を用いて、メッシュ毎に、管路からの溢水による浸水の有無を判定する浸水予測部とを持つことにより、複雑な土木構造の設定をせずに、容易に管路からの浸水を予測することができ、かつオンライン性を高くすることができる。
以上述べた少なくともひとつの実施形態の浸水予測システムによれば、さらに、管路流出・水位予測部が、メッシュ各々の管路の水位を、当該メッシュに隣接するメッシュの管路との間の流量と、当該メッシュの降水量とを用いて算出することにより、分布型流出解析で用いられる様な複雑な水理モデルなどよりも、演算量を抑えることができる。したがって、東京都全域などの大規模なサイズ(東京都のアメッシュであれば約20万個のメッシュ)の浸水予測を、リアルタイムで実行することができる。
以上述べた少なくともひとつの実施形態の浸水予測システムによれば、さらに、管路流出・水位予測部が、当該メッシュに隣接するメッシュの管路との間の流量を、当該メッシュの管路の水位と、隣接するメッシュの管路の水位との差を用いて算出することにより、下流側の管路に水が溜まって、上流側よりも水位が高くなったときに逆流する現象を模擬することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである
10…降雨レーダシステム
20…下水道管理台帳DB
30…GIS情報DB
40、40a、40b…浸水予測システム
50…降雨・流量実績DB
60…浸水実績DB
401…降雨分布取得部
402…予測降雨分布計算部
403…仮想タンク情報計算部
404…仮想タンク情報記憶部
405、405b…流出係数計算部
406、406b…流出係数記憶部
407、407b…管路流出・水位予測部
408、408b…水位記憶部
409…浸水予測部
410…浸水情報記憶部
411…結果表示部
412…結合パラメータ適応部
413…仮想タンク情報適応部

Claims (15)

  1. 管路が設けられた対象地域を分割した領域毎の降雨量を取得する降雨分布取得部と、
    前記取得した降雨量を用いて、前記領域各々の前記管路の水位を表す値を算出する管路流出・水位予測部と、
    前記算出した水位を表す値を用いて、前記領域各々の前記管路からの溢水による浸水の有無を判定する浸水予測部と
    を有することを特徴とする浸水予測システム。
  2. 前記管路流出・水位予測部は、前記領域各々の前記管路の水位を表す値を、前記領域に隣接する領域の管路との間の流量と、前記領域の降雨量とを用いて算出することを特徴とする請求項1に記載の浸水予測システム。
  3. 前記管路流出・水位予測部は、第1の領域の管路と、第2の領域の管路との間の前記流量を、前記第1の領域の管路の水位と、前記第2の領域の管路の水位との差を用いて算出すること
    を特徴とする請求項2に記載の浸水予測システム。
  4. 前記流量を、実績値と比較し、前記実績値との差が小さくなるように、前記領域各々について、隣接する領域各々との間の管路の水の流れやすさを表す結合パラメータを決定する結合パラメータ適応部を有し、
    前記管路流出・水位予測部は、前記流量を算出する際に、前記結合パラメータを用いる、
    請求項2に記載の浸水予測システム。
  5. 前記管路流出・水位予測部は、第1の領域の管路から隣接する領域の管路への流量を、前記第1の領域の水位が所定の高さよりも小さいときは、ゼロとする、請求項2に記載の浸水予測システム。
  6. 前記対象地域の管路に関する情報を取得し、前記管路に関する情報から、前記領域各々の管路の標高を表す値と、前記領域各々の管路の容量を表す値とを算出する仮想タンク情報計算部を有し、
    前記管路流出・水位予測部は、前記領域各々の管路の水位を表す値を算出する際に、前記領域各々の管路の標高を表す値を用い、
    前記浸水予測部は、前記算出した水位を表す値と、前記領域各々の管路の容量を表す値とを用いて、前記浸水の有無の判定を行う、
    請求項1に記載の浸水予測システム。
  7. 前記浸水予測部は、前記領域各々の管路の容量を表す値を用いて、前記領域各々に対して、複数の閾値を算出し、前記算出した水位を表す値と、前記複数の閾値とを比較し、前記領域各々の浸水の発生危険度を決定する、請求項6に記載の浸水予測システム。
  8. 前記浸水の有無の判定結果を、浸水の実績と比較し、前記実績との差が小さくなるように、前記領域各々について、前記仮想タンク情報計算部が算出した前記標高を表す値と、前記容量を表す値とを更新する仮想タンク情報適応部を有する、請求項6に記載の浸水予測システム。
  9. 前記領域各々について、前記領域の土地利用形態を用いて、前記降雨量のうち、前記管路に流出する割合を示す値を算出する流出係数計算部を有し、
    前記管路流出・水位予測部は、前記領域各々について水位を算出する際に、前記領域の管路に流出する雨水の量を、前記取得した降雨量と、前記管路に流出する割合を示す値とを用いて算出する、
    請求項1に記載の浸水予測システム。
  10. 前記降雨分布取得部が取得した降雨量を用いて、降雨量が取得できている時刻よりも将来の降雨量を算出する予測降雨分布取得部を有し、
    前記管路流出・水位予測部は、前記算出した将来の降雨量を用いて、前記水位を表す値を算出する、
    請求項1に記載の浸水予測システム。
  11. 前記水位予測部は、前記領域各々について、前記管路の水位に加えて、地表面の雨水の量についても算出する、請求項1に記載の浸水予測システム。
  12. 前記降雨量の分布と、前記管路の水位の分布と、前記浸水の有無の判定結果の分布とを並列に表示する結果表示部を有する、請求項1に記載の浸水予測システム。
  13. 前記降雨量分布取得部は、所定の大きさの矩形領域毎の降雨量を、nを正の整数として、前記矩形領域の1/4の面積の矩形領域毎の降雨量に変換し、
    前記所定の大きさの矩形領域の頂点が、前記変換した矩形領域のうちのいずれかの中心と一致し、
    前記領域は、前記変換した矩形領域である、
    請求項1に記載の浸水予測システム。
  14. 管路が設けられた対象地域を分割した領域毎の降雨量を取得する第1の過程と、
    前記取得した降雨量を用いて、前記領域各々の前記管路の水位を表す値を算出する第2の過程と、
    前記算出した水位を表す値を用いて、前記領域各々の前記管路からの溢水による浸水の有無を判定する第3の過程と
    を有する浸水予測方法。
  15. コンピュータを、
    管路が設けられた対象地域を分割した領域毎の降雨量を取得する降雨分布取得部、
    前記取得した降雨量を用いて、前記領域各々の前記管路の水位を表す値を算出する管路流出・水位予測部、
    前記算出した水位を表す値を用いて、前記領域各々の前記管路からの溢水による浸水の有無を判定する浸水予測部
    として機能させるためのプログラム。
JP2013131097A 2013-06-21 2013-06-21 浸水予測システム、浸水予測方法およびプログラム Active JP6207889B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131097A JP6207889B2 (ja) 2013-06-21 2013-06-21 浸水予測システム、浸水予測方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131097A JP6207889B2 (ja) 2013-06-21 2013-06-21 浸水予測システム、浸水予測方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2015004245A true JP2015004245A (ja) 2015-01-08
JP6207889B2 JP6207889B2 (ja) 2017-10-04

Family

ID=52300343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131097A Active JP6207889B2 (ja) 2013-06-21 2013-06-21 浸水予測システム、浸水予測方法およびプログラム

Country Status (1)

Country Link
JP (1) JP6207889B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130930A (ja) * 2015-01-14 2016-07-21 綜合警備保障株式会社 アンダーパス監視システム、アンダーパス監視装置及びアンダーパス監視方法
KR101670903B1 (ko) * 2015-10-29 2016-10-31 대한민국 레이더 강우자료를 이용하여 지표유출을 해석하는 방법
JP2017020787A (ja) * 2015-07-07 2017-01-26 日立Geニュークリア・エナジー株式会社 流入量評価式導出方法及び流入量評価式導出装置、流入量導出方法及び流入量導出装置、機器のフラジリティ評価方法及び機器のフラジリティ評価装置、津波の確率論的リスク評価方法及び津波の確率論的リスク評価装置
JP1571067S (ja) * 2015-12-22 2017-03-06
JP2017133910A (ja) * 2016-01-27 2017-08-03 沖電気工業株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
JP2017194344A (ja) * 2016-04-20 2017-10-26 株式会社東芝 浸水リスク診断装置、浸水リスク診断方法、制御装置及びコンピュータプログラム
KR101816184B1 (ko) * 2016-04-28 2018-01-08 강원대학교산학협력단 침수 지역 추적 시스템, 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
JP2018003473A (ja) * 2016-07-04 2018-01-11 株式会社明電舎 下水道監視システム及び下水道監視プログラム
JP2018111977A (ja) * 2017-01-11 2018-07-19 株式会社日立製作所 下水道設備の監視制御装置及び下水ポンプ場の運転制御方法
JP2019138742A (ja) * 2018-02-08 2019-08-22 株式会社東芝 流出解析装置及び流出解析パラメータ調整方法
JP2019194424A (ja) * 2018-02-16 2019-11-07 エンリケ・メノッティ・ペスカルモーナ 河川流域に関する水文解析および管理のためのプロセスおよびシステム
CN111460744A (zh) * 2020-04-17 2020-07-28 兰州大学 一种内陆河上游地区的土地利用规划方法及规划系统
KR20200127091A (ko) * 2019-04-30 2020-11-10 경북대학교 산학협력단 실시간 침수 예측 장치 및 방법
KR20210075264A (ko) * 2019-12-12 2021-06-23 부경대학교 산학협력단 과거 극한 강우 사상 기반 강우량 예측 프로그램
CN113110200A (zh) * 2021-04-26 2021-07-13 成都环极科技有限公司 一种基于气象和雨洪模型的城市内涝预警系统
KR20210123974A (ko) * 2020-04-03 2021-10-14 한국과학기술정보연구원 침수 예측 장치 및 그 방법
JP7220276B1 (ja) 2021-12-27 2023-02-09 アドソル日進株式会社 浸水シミュレーション装置、浸水シミュレーション方法およびプログラム
CN116128466A (zh) * 2022-11-21 2023-05-16 深圳大学 一种地下综合管廊水灾风险内外联动管控方法及系统
JP7490914B2 (ja) 2021-02-10 2024-05-28 日本国土開発株式会社 解析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106726A1 (ja) * 2017-11-28 2019-06-06 富士通株式会社 計測制御プログラム、計測制御方法、計測制御装置、および計測制御システム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217876A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Drainage area rainfall calculator
JPH09198145A (ja) * 1996-01-16 1997-07-31 Toshiba Corp ポンプ場流入予測支援装置
JP2000276235A (ja) * 1999-03-26 2000-10-06 Toshiba Corp 広域雨水排水システム支援装置
JP2000292553A (ja) * 1999-03-30 2000-10-20 Earth Kensetsu Consultant Kk 降雨量予測方法
US20020170350A1 (en) * 2001-05-18 2002-11-21 Schutzbach James S. Method and system for analyzing the effect of inflow and infiltration on a sewer system
JP2003014868A (ja) * 2001-06-28 2003-01-15 Foundation Of River & Basin Integrated Communications Japan 洪水予測情報提供システム
JP2006010393A (ja) * 2004-06-23 2006-01-12 East Japan Railway Co 土中水分解析装置、土中水分解析方法、土中水分解析プログラム及びタンクモデル生成方法
JP2007146423A (ja) * 2005-11-25 2007-06-14 Toshiba Corp 雨水貯留施設運用システム
WO2007116996A1 (ja) * 2006-04-10 2007-10-18 Yamatake Corporation 溢水発生推定装置および方法
JP2008050903A (ja) * 2006-08-28 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> 洪水予測方法および洪水予測システム
JP2009281993A (ja) * 2008-05-26 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> 水害観測支援方法及び装置
JP2011075386A (ja) * 2009-09-30 2011-04-14 Fujitsu Fip Corp 災害予測システム及び災害予測方法
WO2013001600A1 (ja) * 2011-06-28 2013-01-03 中国電力株式会社 流入量予測装置、流入量予測方法及びプログラム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217876A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Drainage area rainfall calculator
JPH09198145A (ja) * 1996-01-16 1997-07-31 Toshiba Corp ポンプ場流入予測支援装置
JP2000276235A (ja) * 1999-03-26 2000-10-06 Toshiba Corp 広域雨水排水システム支援装置
JP2000292553A (ja) * 1999-03-30 2000-10-20 Earth Kensetsu Consultant Kk 降雨量予測方法
US20020170350A1 (en) * 2001-05-18 2002-11-21 Schutzbach James S. Method and system for analyzing the effect of inflow and infiltration on a sewer system
JP2003014868A (ja) * 2001-06-28 2003-01-15 Foundation Of River & Basin Integrated Communications Japan 洪水予測情報提供システム
JP2006010393A (ja) * 2004-06-23 2006-01-12 East Japan Railway Co 土中水分解析装置、土中水分解析方法、土中水分解析プログラム及びタンクモデル生成方法
JP2007146423A (ja) * 2005-11-25 2007-06-14 Toshiba Corp 雨水貯留施設運用システム
WO2007116996A1 (ja) * 2006-04-10 2007-10-18 Yamatake Corporation 溢水発生推定装置および方法
JP2008050903A (ja) * 2006-08-28 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> 洪水予測方法および洪水予測システム
JP2009281993A (ja) * 2008-05-26 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> 水害観測支援方法及び装置
JP2011075386A (ja) * 2009-09-30 2011-04-14 Fujitsu Fip Corp 災害予測システム及び災害予測方法
WO2013001600A1 (ja) * 2011-06-28 2013-01-03 中国電力株式会社 流入量予測装置、流入量予測方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
市川温、外3名: ""長短期流出に対応する水田モデルの構築と構造的モデル化法によるその要素モデル化"", 京都大学防災研究所年報, vol. 第40号 B−2, JPN6017000229, 1 April 1997 (1997-04-01), JP, pages 145 - 158, ISSN: 0003476903 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130930A (ja) * 2015-01-14 2016-07-21 綜合警備保障株式会社 アンダーパス監視システム、アンダーパス監視装置及びアンダーパス監視方法
JP2017020787A (ja) * 2015-07-07 2017-01-26 日立Geニュークリア・エナジー株式会社 流入量評価式導出方法及び流入量評価式導出装置、流入量導出方法及び流入量導出装置、機器のフラジリティ評価方法及び機器のフラジリティ評価装置、津波の確率論的リスク評価方法及び津波の確率論的リスク評価装置
KR101670903B1 (ko) * 2015-10-29 2016-10-31 대한민국 레이더 강우자료를 이용하여 지표유출을 해석하는 방법
JP1571067S (ja) * 2015-12-22 2017-03-06
JP2017133910A (ja) * 2016-01-27 2017-08-03 沖電気工業株式会社 情報処理装置、情報処理システム、情報処理方法及びプログラム
JP2017194344A (ja) * 2016-04-20 2017-10-26 株式会社東芝 浸水リスク診断装置、浸水リスク診断方法、制御装置及びコンピュータプログラム
KR101816184B1 (ko) * 2016-04-28 2018-01-08 강원대학교산학협력단 침수 지역 추적 시스템, 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
JP2018003473A (ja) * 2016-07-04 2018-01-11 株式会社明電舎 下水道監視システム及び下水道監視プログラム
JP2018111977A (ja) * 2017-01-11 2018-07-19 株式会社日立製作所 下水道設備の監視制御装置及び下水ポンプ場の運転制御方法
WO2018131303A1 (ja) * 2017-01-11 2018-07-19 株式会社日立製作所 下水道設備の監視制御装置及び下水ポンプ場の運転制御方法
JP7055654B2 (ja) 2018-02-08 2022-04-18 株式会社東芝 流出解析装置及び流出解析パラメータ調整方法
JP2019138742A (ja) * 2018-02-08 2019-08-22 株式会社東芝 流出解析装置及び流出解析パラメータ調整方法
JP7001626B2 (ja) 2018-02-16 2022-01-19 エンリケ・メノッティ・ペスカルモーナ 河川流域に関する水文解析および管理のためのプロセスおよびシステム
US11348014B2 (en) 2018-02-16 2022-05-31 Lucas Pescarmona System method and apparatus for AI-based adaptive control of hydrology management for basin rivers
JP2019194424A (ja) * 2018-02-16 2019-11-07 エンリケ・メノッティ・ペスカルモーナ 河川流域に関する水文解析および管理のためのプロセスおよびシステム
US11295214B2 (en) 2018-02-16 2022-04-05 Lucas Pescarmona Analysis system and hydrology management for basin rivers
KR20200127091A (ko) * 2019-04-30 2020-11-10 경북대학교 산학협력단 실시간 침수 예측 장치 및 방법
KR102225241B1 (ko) 2019-04-30 2021-03-11 경북대학교 산학협력단 실시간 침수 예측 장치 및 방법
KR20210075264A (ko) * 2019-12-12 2021-06-23 부경대학교 산학협력단 과거 극한 강우 사상 기반 강우량 예측 프로그램
KR102389183B1 (ko) 2019-12-12 2022-04-21 부경대학교 산학협력단 과거 극한 강우 사상 기반 강우량 예측 프로그램
KR102365591B1 (ko) * 2020-04-03 2022-02-22 한국과학기술정보연구원(Kisti) 침수 예측 장치 및 그 방법
KR20210123974A (ko) * 2020-04-03 2021-10-14 한국과학기술정보연구원 침수 예측 장치 및 그 방법
CN111460744A (zh) * 2020-04-17 2020-07-28 兰州大学 一种内陆河上游地区的土地利用规划方法及规划系统
CN111460744B (zh) * 2020-04-17 2023-05-23 兰州大学 一种内陆河上游地区的土地利用规划方法及规划系统
JP7490914B2 (ja) 2021-02-10 2024-05-28 日本国土開発株式会社 解析方法
CN113110200A (zh) * 2021-04-26 2021-07-13 成都环极科技有限公司 一种基于气象和雨洪模型的城市内涝预警系统
JP7220276B1 (ja) 2021-12-27 2023-02-09 アドソル日進株式会社 浸水シミュレーション装置、浸水シミュレーション方法およびプログラム
JP2023096271A (ja) * 2021-12-27 2023-07-07 アドソル日進株式会社 浸水シミュレーション装置、浸水シミュレーション方法およびプログラム
CN116128466A (zh) * 2022-11-21 2023-05-16 深圳大学 一种地下综合管廊水灾风险内外联动管控方法及系统

Also Published As

Publication number Publication date
JP6207889B2 (ja) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6207889B2 (ja) 浸水予測システム、浸水予測方法およびプログラム
US11348014B2 (en) System method and apparatus for AI-based adaptive control of hydrology management for basin rivers
Gül et al. A combined hydrologic and hydraulic modeling approach for testing efficiency of structural flood control measures
Barco et al. Automatic calibration of the US EPA SWMM model for a large urban catchment
Gallegos et al. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California
Russo et al. Analysis of extreme flooding events through a calibrated 1D/2D coupled model: the case of Barcelona (Spain)
CN104851360B (zh) 一种洪水风险图的生成方法和系统
Amaguchi et al. Development and testing of a distributed urban storm runoff event model with a vector-based catchment delineation
Cantone et al. Improved understanding and prediction of the hydrologic response of highly urbanized catchments through development of the Illinois Urban Hydrologic Model
KR100828968B1 (ko) 지리정보시스템과 연계된 하수관거 유지관리방법 및 그기능을 탑재한 하수관거 유지관리시스템
JP6716328B2 (ja) 浸水リスク診断装置、浸水リスク診断方法、制御装置及びコンピュータプログラム
JP7055654B2 (ja) 流出解析装置及び流出解析パラメータ調整方法
Liu et al. GIS-based dynamic modelling and analysis of flash floods considering land-use planning
Batchabani et al. Potential impacts of projected climate change on flooding in the Riviere des Prairies basin, Quebec, Canada: One-dimensional and two-dimensional simulation-based approach
Yang et al. Study on urban flood simulation based on a novel model of SWTM coupling D8 flow direction and backflow effect
Zamani et al. Developing sustainable strategies by LID optimization in response to annual climate change impacts
KR102050487B1 (ko) 분류식 오수관로 유지관리 시스템의 시뮬레이션 방법
JP2004339752A (ja) 水害解析システム
Saleh et al. An integrated weather–hydrologic–coastal–stormwater framework to model urban‐coastal interactions: City of Hoboken application
Abbasizadeh et al. Development of a coupled model for simulation of urban drainage process based on cellular automata approach
Pariartha et al. The prediction of flood damage in coastal urban areas
JP2016130435A (ja) 下水道網のセンシング箇所決定方法、プログラム及び装置
Zaifoğlu Implementation of a flood management system for Nicosia
Xie et al. Courtyard-level sewer data-enhanced two-dimensional hydraulic model for urban flood hazard assessment in Kunming, China
CN115130264B (zh) 一种基于径流耦合仿真的城市内涝预测方法及系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R151 Written notification of patent or utility model registration

Ref document number: 6207889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151