JP2014510993A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2014510993A5 JP2014510993A5 JP2013552262A JP2013552262A JP2014510993A5 JP 2014510993 A5 JP2014510993 A5 JP 2014510993A5 JP 2013552262 A JP2013552262 A JP 2013552262A JP 2013552262 A JP2013552262 A JP 2013552262A JP 2014510993 A5 JP2014510993 A5 JP 2014510993A5
- Authority
- JP
- Japan
- Prior art keywords
- catalyst layer
- catalyst
- layer according
- membrane
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 claims 22
- 239000000463 material Substances 0.000 claims 10
- 239000012528 membrane Substances 0.000 claims 6
- 239000000446 fuel Substances 0.000 claims 5
- 229910052751 metal Inorganic materials 0.000 claims 5
- 239000002184 metal Substances 0.000 claims 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 2
- 229910052741 iridium Inorganic materials 0.000 claims 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims 2
- 150000002739 metals Chemical class 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 239000010953 base metal Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 claims 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 239000010419 fine particle Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052735 hafnium Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 229910000457 iridium oxide Inorganic materials 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 229910052762 osmium Inorganic materials 0.000 claims 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 229920005597 polymer membrane Polymers 0.000 claims 1
- 229910052703 rhodium Inorganic materials 0.000 claims 1
- 239000010948 rhodium Substances 0.000 claims 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims 1
- 229910052707 ruthenium Inorganic materials 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- 229910052718 tin Inorganic materials 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 229910052723 transition metal Inorganic materials 0.000 claims 1
- 150000003624 transition metals Chemical class 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1102138.3 | 2011-02-08 | ||
| GB1102138.3A GB2490300A (en) | 2011-02-08 | 2011-02-08 | Catalyst for fuel cells |
| PCT/GB2012/050168 WO2012107738A1 (en) | 2011-02-08 | 2012-01-27 | Catalyst for fuel cells |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2014510993A JP2014510993A (ja) | 2014-05-01 |
| JP2014510993A5 true JP2014510993A5 (enExample) | 2015-03-19 |
| JP5948350B2 JP5948350B2 (ja) | 2016-07-06 |
Family
ID=43836366
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2013552262A Active JP5948350B2 (ja) | 2011-02-08 | 2012-01-27 | 燃料電池用触媒 |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20130330650A1 (enExample) |
| EP (3) | EP3187262B1 (enExample) |
| JP (1) | JP5948350B2 (enExample) |
| KR (1) | KR101856277B1 (enExample) |
| CN (2) | CN103501896A (enExample) |
| GB (1) | GB2490300A (enExample) |
| WO (1) | WO2012107738A1 (enExample) |
Families Citing this family (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB201302014D0 (en) * | 2013-02-05 | 2013-03-20 | Johnson Matthey Fuel Cells Ltd | Use of an anode catalyst layer |
| US10294129B2 (en) | 2013-12-09 | 2019-05-21 | General Electric Company | Polymeric-metal composite electrode-based electrochemical device for generating oxidants |
| GB201322494D0 (en) | 2013-12-19 | 2014-02-05 | Johnson Matthey Fuel Cells Ltd | Catalyst layer |
| US9468909B2 (en) | 2014-06-27 | 2016-10-18 | Ford Global Technologies, Llc | Metal oxide stabilized platinum-based ORR catalyst |
| GB201415846D0 (en) | 2014-09-08 | 2014-10-22 | Johnson Matthey Fuel Cells Ltd | Catalyst |
| JP6290056B2 (ja) | 2014-09-22 | 2018-03-07 | 株式会社東芝 | 触媒層、その製造方法、膜電極接合体および電気化学セル |
| US20170062851A1 (en) * | 2015-04-24 | 2017-03-02 | GM Global Technology Operations LLC | Fuel cell stack end cells with improved diagnostic capabilities |
| KR101884642B1 (ko) * | 2016-11-11 | 2018-08-30 | 한국과학기술연구원 | 재생 연료전지용 산소 전극, 이를 포함하는 재생 연료전지 및 상기 산소 전극의 제조 방법 |
| GB201719463D0 (en) * | 2017-11-23 | 2018-01-10 | Johnson Matthey Fuel Cells Ltd | Catalyst |
| CN112243541A (zh) | 2018-04-04 | 2021-01-19 | 3M创新有限公司 | 催化剂 |
| WO2019193461A1 (en) | 2018-04-04 | 2019-10-10 | 3M Innovative Properties Company | Catalyst comprising pt, ni, and cr |
| EP3776703B1 (en) | 2018-04-13 | 2024-02-21 | 3M Innovative Properties Company | Catalyst |
| CN118738423A (zh) | 2018-04-13 | 2024-10-01 | 3M创新有限公司 | 催化剂 |
| CN112042023B (zh) | 2018-04-13 | 2024-12-31 | 3M创新有限公司 | 催化剂 |
| DE102018116508A1 (de) * | 2018-07-09 | 2020-01-09 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Katalysatorsystem, Elektrode, sowie Brennstoffzelle oder Elektrolyseur |
| EP3856411B1 (en) * | 2018-09-26 | 2024-09-11 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | A hydrogen reduction photo/electrochemical cell comprising an electrode comprising a hydrogen reduction photo/electrochemical cell comprising an electrode comprising electrocatalysts with delafossite oxides abo2 and the use of said compounds as catalyst for hydrogen evolution reactions (her) |
| CN111029599B (zh) * | 2019-08-28 | 2021-10-15 | 深圳市通用氢能科技有限公司 | 燃料电池抗反极催化剂及其制备方法 |
| JP7131535B2 (ja) | 2019-12-02 | 2022-09-06 | トヨタ自動車株式会社 | 燃料電池用触媒層 |
| CN113497235B (zh) * | 2020-03-18 | 2023-04-07 | 广州汽车集团股份有限公司 | 一种燃料电池膜电极及其制备方法、燃料电池 |
| KR102732266B1 (ko) * | 2020-10-15 | 2024-11-19 | 코오롱인더스트리 주식회사 | 우수한 성능과 높은 내구성의 두 가지 요구들을 모두 만족시킬 수 있는 막-전극 어셈블리 및 그것을 포함하는 연료전지 |
| US11721826B2 (en) | 2021-07-14 | 2023-08-08 | Saudi Arabian Oil Company | Solid oxide fuel cell using zeolite-templated carbon as electrocatalyst |
| US12100845B2 (en) | 2021-07-14 | 2024-09-24 | Saudi Arabian Oil Company | Polymer electrolyte membrane (PEM) fuel cells using zeolite-templated carbon (ZTC) as electrocatalyst |
| US12385147B2 (en) | 2021-07-14 | 2025-08-12 | Saudi Arabian Oil Company | Polymer electrolyte membrane (PEM) electrolytic cells using zeolite-templated carbon (ZTC) as electrocatalyst |
| GB202113634D0 (en) | 2021-09-24 | 2021-11-10 | Johnson Matthey Plc | Iridium-based oxygen evolution reaction catalyst |
| CN116005185B (zh) * | 2021-09-24 | 2025-10-10 | 中国石油化工股份有限公司 | 一种铱与氧化铱的复合催化剂及其制备方法和应用 |
| US12018392B2 (en) | 2022-01-03 | 2024-06-25 | Saudi Arabian Oil Company | Methods for producing syngas from H2S and CO2 in an electrochemical cell |
| CN115896856B (zh) * | 2022-12-13 | 2025-06-10 | 中山市中山火炬南方钛金有限公司 | 一种贵金属基薄膜/碳复合催化电极及其制备方法 |
| GB202302253D0 (en) | 2023-02-17 | 2023-04-05 | Johnson Matthey Hydrogen Technologies Ltd | Catalyst and process |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9504713D0 (en) | 1995-03-09 | 1995-04-26 | Johnson Matthey Plc | Improved electrocatalytic material |
| IT1302581B1 (it) * | 1998-10-01 | 2000-09-29 | Nora De | Anodo con migliorato rivestimento per la reazione di evoluzione diossigeno in elettroliti contenenti manganese. |
| AU6677900A (en) * | 1999-08-23 | 2001-03-19 | Ballard Power Systems Inc. | Fuel cell anode structure for voltage reversal tolerance |
| US6936370B1 (en) * | 1999-08-23 | 2005-08-30 | Ballard Power Systems Inc. | Solid polymer fuel cell with improved voltage reversal tolerance |
| GB0002764D0 (en) | 2000-02-08 | 2000-03-29 | Johnson Matthey Plc | Electromechanical cell |
| US6838205B2 (en) * | 2001-10-10 | 2005-01-04 | Lynntech, Inc. | Bifunctional catalytic electrode |
| GB0319780D0 (en) | 2003-08-22 | 2003-09-24 | Johnson Matthey Plc | Membrane electrode assembly |
| JP2007203177A (ja) * | 2006-02-01 | 2007-08-16 | Hitachi Ltd | 触媒材料及びその製造方法とそれを用いた燃料電池 |
| CN101087022B (zh) * | 2006-06-05 | 2010-08-18 | 上海攀业氢能源科技有限公司 | 再生式燃料电池双功能催化剂的制备方法 |
| KR101350865B1 (ko) * | 2006-07-24 | 2014-01-13 | 주식회사 동진쎄미켐 | 연료전지용 담지 촉매 및 그 제조방법, 상기 담지 촉매를포함하는 연료전지용 전극, 상기 전극을 포함하는 막전극접합체 및 상기 막전극 접합체를 포함하는 연료전지 |
| US7608358B2 (en) | 2006-08-25 | 2009-10-27 | Bdf Ip Holdings Ltd. | Fuel cell anode structure for voltage reversal tolerance |
| US20090018624A1 (en) * | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Limiting use of disposable system patient protection devices |
| JP5045911B2 (ja) * | 2007-08-07 | 2012-10-10 | トヨタ自動車株式会社 | 膜電極接合体の製造方法 |
| CN101773825B (zh) * | 2009-01-14 | 2012-06-27 | 中国科学院大连化学物理研究所 | 一种燃料电池双效氧电极催化剂浆料及制备和应用 |
| CN101773826B (zh) * | 2009-01-14 | 2013-01-30 | 中国科学院大连化学物理研究所 | 一种以金属氧化物为载体的燃料电池用催化剂及其应用 |
| GB0914562D0 (en) * | 2009-08-20 | 2009-09-30 | Johnson Matthey Plc | Catalyst layer |
-
2011
- 2011-02-08 GB GB1102138.3A patent/GB2490300A/en not_active Withdrawn
-
2012
- 2012-01-27 JP JP2013552262A patent/JP5948350B2/ja active Active
- 2012-01-27 EP EP17153353.2A patent/EP3187262B1/en active Active
- 2012-01-27 EP EP21198894.4A patent/EP3960288B1/en active Active
- 2012-01-27 EP EP12703567.3A patent/EP2673083A1/en not_active Withdrawn
- 2012-01-27 KR KR1020137023405A patent/KR101856277B1/ko active Active
- 2012-01-27 CN CN201280008255.1A patent/CN103501896A/zh active Pending
- 2012-01-27 CN CN202010680615.9A patent/CN111921533A/zh active Pending
- 2012-01-27 US US13/984,089 patent/US20130330650A1/en not_active Abandoned
- 2012-01-27 WO PCT/GB2012/050168 patent/WO2012107738A1/en not_active Ceased
-
2017
- 2017-01-18 US US15/408,450 patent/US20170125821A1/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2014510993A5 (enExample) | ||
| Wang et al. | New insight into the decomposition mechanism of formic acid on Pd (111): competing formation of CO2 and CO | |
| Qiao et al. | Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts | |
| Xu et al. | Fabrication of nanoporous Cu–Pt (Pd) core/shell structure by galvanic replacement and its application in electrocatalysis | |
| Hayden | Particle size and support effects in electrocatalysis | |
| Back et al. | Bifunctional interface of Au and Cu for improved CO2 electroreduction | |
| Simões et al. | Electrooxidation of sodium borohydride at Pd, Au, and Pd x Au1− x carbon-supported nanocatalysts | |
| Cho et al. | Importance of ligand effect in selective hydrogen formation via formic acid decomposition on the bimetallic Pd/Ag catalyst from first-principles | |
| Luo et al. | Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction | |
| Wang et al. | Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction | |
| Alia et al. | Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base | |
| Wang et al. | Highly stable and CO-tolerant Pt/Ti0. 7W0. 3O2 electrocatalyst for proton-exchange membrane fuel cells | |
| Rodriguez et al. | The activation of gold and the water–gas shift reaction: Insights from studies with model catalysts | |
| Sneed et al. | Nanoscale-phase-separated Pd–Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis | |
| Yan et al. | Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals | |
| Chen et al. | Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells | |
| Edwards et al. | Strategies for designing supported gold–palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide | |
| Kobayashi et al. | Atomic-level Pd− Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption | |
| Wang et al. | Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts | |
| JP2014534052A5 (enExample) | ||
| Gan et al. | Thermal facet healing of concave octahedral Pt–Ni nanoparticles imaged in situ at the atomic scale: implications for the rational synthesis of durable high-performance ORR electrocatalysts | |
| Zhang et al. | Insights into the preference of CO2 formation from HCOOH decomposition on Pd surface: a theoretical study | |
| Sha et al. | Mechanism for oxygen reduction reaction on Pt3Ni alloy fuel cell cathode | |
| Ren et al. | Controllable modification of the electronic structure of carbon-supported core–shell Cu@ Pd catalysts for formic acid oxidation | |
| Duan et al. | Insights into the effect of Pt atomic ensemble on HCOOH oxidation over Pt-decorated Au bimetallic catalyst to maximize Pt utilization |