JP2014504740A - 化学分析装置内へ分析物を導入する方法 - Google Patents

化学分析装置内へ分析物を導入する方法 Download PDF

Info

Publication number
JP2014504740A
JP2014504740A JP2013552730A JP2013552730A JP2014504740A JP 2014504740 A JP2014504740 A JP 2014504740A JP 2013552730 A JP2013552730 A JP 2013552730A JP 2013552730 A JP2013552730 A JP 2013552730A JP 2014504740 A JP2014504740 A JP 2014504740A
Authority
JP
Japan
Prior art keywords
heating element
flow path
analyte
conduit
preconcentrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013552730A
Other languages
English (en)
Other versions
JP2014504740A5 (ja
JP5991993B2 (ja
Inventor
デービッド ラファーティ
マイケル スペンサー
ジェームス ワイルド
ペドロ オジェダ
トーマス ボーデン
Original Assignee
ファースト ディテクト コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファースト ディテクト コーポレイション filed Critical ファースト ディテクト コーポレイション
Publication of JP2014504740A publication Critical patent/JP2014504740A/ja
Publication of JP2014504740A5 publication Critical patent/JP2014504740A5/ja
Application granted granted Critical
Publication of JP5991993B2 publication Critical patent/JP5991993B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • G01N2030/085Preparation using an enricher using absorbing precolumn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • G01N30/6069Construction of the column body with compartments or bed substructure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/02Analysing materials by measuring the pressure or volume of a gas or vapour by absorption, adsorption, or combustion of components and measurement of the change in pressure or volume of the remainder
    • G01N7/04Analysing materials by measuring the pressure or volume of a gas or vapour by absorption, adsorption, or combustion of components and measurement of the change in pressure or volume of the remainder by absorption or adsorption alone

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

2つの末端(108A、108B)間の流路(106)を規定し、かつ加熱エレメントが、該加熱エレメントの伝導性表面の少なくとも一部上に直接沈着した少なくとも1つの吸着剤物質(115)を有するように導管内に配置された加熱エレメント(102)を有する導管(200)を含む、化学物質予備濃縮装置(100)を開示する。そのような加熱エレメント(102)のいくつかは、ストリップを通る複数の開口部(112、710)と、流路(106)に沿って間隔のあいた一連の起伏(114)との両方を規定している導電性ストリップの形状である。

Description

関連明細書の相互参照
本明細書は、参照によって本明細書に組み込まれている、2011年2月7日に出願された、米国特許仮出願第61/440,267号明細書に対する優先権の恩典を主張する。
背景
本明細書は、分析のために、化学分析装置内へ分析物を導入することに関する。
ガスクロマトグラフ(「GC」)、質量分析器(「MS」)、イオン移動度スペクトロメータ(「IMS」)及び様々なその他の化学分析ツールが、例えば、化学兵器、爆薬、麻薬、有毒な工業用化学物質、揮発性有機化合物、半揮発性有機化合物、炭化水素、空気中汚染物質、除草剤、農薬および種々の他の危険な汚染物質放出物を含む、わずかな量の化学物質を同定するために一般に使用される。利用可能な検出技術の要約が、Yin Sun and Kowk Y Ong,Detection Technologies for Chemical Warfare Agents and Toxic Vapors, 2005, CRC Press,ISBN 1−56670−668−8(非特許文献1)(「Sun & Ong」)に含まれている。
化学物質検出器は、検出可能なマトリックス中に、最小濃度の分析物を有する。いくつかの化学物質、とりわけ脅威に関して、典型的な器具の感度限界と比較して極めて低い濃度にて検出することが望ましい。例えば、いくつかの用途において、器具が効果的であるためには、1ppb以下まで存在する化学物質を検出することが可能でなければならない。以下の表1は、いくつかの一般的な化学兵器(CWA)に対する、生命および健康に対する差し迫った危険(Immediate Danger to Life and Health(IDLH))の値を用いて示したものである。本表を検討することから分かるように、これらの物質は、2ppbの低さの濃度で危険であり、したがって、種々のCWAを検出することを意図する器具は、相当するIDLH未満を検出可能でなければならない。
(表1)一般的なCWAのIDLH値
出典はSun & Ong。
Figure 2014504740
さらに、多くの爆薬は、非常に低い揮発指数を有し、したがって、周辺の空気中に極めて少量の蒸気を放出する。化学物質試料が気体形態にて器具内に導入されることを典型的に必要とする質量分析器の場合、感度限界が低いことが特に有用である。とりわけ、質量分析器が、器具の近位の空気を単純に分析することによって、爆薬の存在を効果的に検出するためには、極めて低い感度限界が望ましい(理想的には1兆分の1)。
この低濃度検出を促進するために、いくつかのシステムは、化学分析装置へ導入される試料の見かけ濃度を増加させるために、化学物質予備濃縮装置を含む。例えば、標的の分析種が分析装置内へ流れ込むことを許容する一方で、特定の分析種を除去またはブロックするために、試料入口と化学分析装置の間の膜を使用することによって、分析装置内に導入された試料の見かけ濃度を増加させることが可能である。膜入口が、商業的利用において効果的であると証明されている一方で、これらは典型的に、低濃度ゲイン(<100)に限定され、膜を通過することが許容される物質のタイプについて選択的である。他のアプローチは、関心対象の分析種をトラップするために、固体吸着剤チューブを利用することである。従来の吸着剤チューブは典型的に、吸着性物質、固体吸着剤(例えば塩化カルシウム、シリカゲル)、または特定の適用に適した種々の吸着剤物質でコーティングされた、または吸着性物質からなる、ガラスファイバーまたはビーズが充填された金属またはガラスのチューブから構成される。「吸着(absorption)」(バルク物質との分析物の相互作用を意味する)という用語と、「吸着(adsorption)」(物質の表面との相互作用を意味する)という用語はどちらも相互互換的に使用されることが留意されるべきである。分析物を回収する特定の機構は、物質依存的であり、すべての形態の回収が、本明細書の範囲に包含されている。チューブ類は典型的に、電流を通すとそのチューブ類を加熱するニクロム線によって覆われる。回収段階の間、吸着剤物質が分析物を吸着する一方で、試料がチューブを(例えばキャリアガスまたは液体によって)通過する。次いでこれらの吸着剤を加熱し、分析物を、吸着された時間よりきわめて短い時間で、分析装置内に放出し、それによって、化学分析装置により「認識される」濃度を増加させる。
吸着剤物質を間接的に加熱することは、しばしば種々の非効率性をもたらす。例えば、チューブ内の吸着剤物質は典型的に、不良な熱伝導経路を提供し、したがってチューブの内部への熱の流れが妨害される。さらに、周辺への熱の損失を補填するために、追加のエネルギーおよび時間が、典型的に必要である。加えて、吸着剤物質はしばしば、サンプリングおよび脱着の間、キャリアガスの移動を妨害する。またさらに、濃度における大きなゲインが可能である一方で、従来の吸着剤チューブは、他の欠点を有しうる。1)十分な材料を吸着および脱着するために相当量の時間およびエネルギーが必要とされうる。2)吸着剤物質上の種々の位置が、同時に加熱されず、したがって分析物が異なる時間に放出され、よって任意の1つのサンプル時間において見られる見かけ濃度が減少し、予備濃縮装置の総分解度を拡散しうる。3)分析物、吸着剤およびバックグラウンドマトリックス間の反応が、化学分析装置内へ未知物が導入されることによって、測定を歪めうる。4)測定されたゲインが異なる吸着剤間で大きく変化するため、非常に選択的であり得る。5)吸着剤物質が均一に加熱されず、したがっていくつかの分析物が、異なる時間にて、種々の程度まで放出される。
Yin Sun and Kowk Y Ong,Detection Technologies for Chemical Warfare Agents and Toxic Vapors, 2005, CRC Press,ISBN 1−56670−668−8
概要
本明細書に記述された主題の1つの革新的な局面は、該して、2つの末端間の流路を規定している導管と、導管内に、加熱エレメントがその導電性表面の少なくとも一部上に直接沈着した少なくとも1つの吸着剤物質を有するように配置された加熱エレメントとを含む化学物質予備濃縮装置にて具体化可能である。いくつかの実施形態において、導管は、細長い導管であり、加熱エレメントは、ストリップを通る複数の開口部と、流路に沿って間隔のあいた一連の起伏との両方を規定する導電性ストリップの形状である。
これらおよび他の態様はそれぞれ任意に、1つまたはそれ以上の下記の特徴を含む。導管の内部横断面は実質的に、流路に対して直角に横断しうる。加熱エレメントは、導電性フィラメントのメッシュであってよい。加熱エレメントは、少なくとも複数の吸着剤物質で部分的にコーティングされてよく、いくつかの場合、複数の吸着剤物質が、流路に沿って連続して配置可能である。加熱エレメントは、電源に連結するように構成された2つの電極を含んでよい。予備濃縮装置はさらに、導管内に減圧環境を形成するために導管の排気を制御するように構成された制御回路を含んでよい。制御回路は、導管の排気の後、少なくとも1つの吸着剤物質から、少なくとも1つの分析物を脱着するために、加熱エレメントを通して電流を伝導するように構成可能である。制御回路は、予備濃縮装置内に配置されるか、または予備濃縮装置に連結した、少なくとも1つの流量制御デバイスと通信する。
導管は、2つの末端の少なくとも1つに、流量制御器を含んでいてよい。加熱エレメントは、加熱エレメントを通る複数の開口部を規定可能である。加熱エレメントは、流路に沿って間隔のあいた一連の起伏を規定可能である。一連の起伏は、流路に沿って複数の吸着剤表面を形成可能であり、分析物の吸着を増強するために、流路に沿った流れが吸着剤表面に当たるように、並べられる。一連の起伏は、流路の断面積に対して、流路に沿った空気の流れの局所乱流を増加させるのに十分な大きさであってよい。加熱エレメントは、加熱エレメントを通る複数の開口部と、流路に沿って間隔のあいた一連の起伏との両方を規定可能であり、該複数の開口部と起伏は、流路に沿って複数の障壁を形成し、該複数の開口部と起伏は、分析物の吸着を増強するために、流路に沿った流れが障壁に当たるように、並べられる。流路は加熱エレメントの両側に沿って延びていてよい。ストリップは、起伏がストリップの両側上に存在するように、該して一定の厚さであり得る。
他の局面によると、分析のために分析物を化学分析装置内に導入することは、2つの末端間の流路を規定している導管を含み、かつ、その中に配置された少なくとも1つの吸着剤物質で少なくとも部分的にコーティングされた加熱エレメント(加熱エレメントは電気導体である)を有する脱着チューブを提供すること;導管内に減圧環境を形成するために、導管を排気すること;次いで吸着剤物質から分析物を脱着するために、加熱エレメントを通して電流を伝導すること;および脱着した分析物を化学分析装置に移送すること、によって実施される。いくつかの場合で、加熱エレメントは、ストリップを通る複数の開口部と、流路に沿って間隔のあいた一連の起伏との両方を規定している、導電性ストリップの形状であってよい。さらに、いくつかの例において、脱着チューブを提供することには、脱着した分析物を供給するために、脱着チューブを利用することが含まれてよい。2つの末端の第一は、入口であってよく、分析物を化学分析装置内に導入することには、入口内へ、かつ流路に沿って試験試料を導入して、吸着剤物質による分析物の吸着を引き起こすことがさらに含まれてよい。脱着した分析物を、化学分析装置内へ移送することには、加熱エレメント上の1つまたは複数の吸着剤物質コーティングから脱着した異なる分析物を、化学分析装置へ移送することが含まれてよい。脱着した分析物を化学分析装置内へ移送することには、脱着チューブと化学分析装置との間の流量制御デバイスを作動させることが含まれてよい。
他の局面において、化学分析システムは、上記の予備濃縮装置の1つまたは複数、および吸着剤物質から脱着した分析物を受け取るために予備濃縮装置に連結した化学分析装置を特徴とする。任意に、化学分析装置は、質量分析器でありうる。加熱エレメントは、加熱エレメントを通る複数の開口部と、流路に沿って間隔のあいた一連の起伏との両方を規定可能であり、該複数の開口部と一連の起伏は、流路に沿って複数の吸着剤障壁を形成し、該複数の開口部と一連の起伏は、分析物の吸着を増強するために、流路に沿った流れが障壁に当たるように、並べられる。いくつかのシステムは、電源を含んでよく、導電性ストリップが、電源に連結した2つの電極を含んでよい。さらに、いくつかのシステムに、導管内に減圧環境を形成するために、導管を排気するように構成された制御回路が含まれてよい。制御回路は、導管の排気の後に、接着材料から分析物を脱着するために、加熱エレメントを通して電流を伝導するように構成されてよい。いくつかの場合で、制御回路は、流路に沿って分析物が再吸着されるのを阻止するために、化学分析装置への分析物の移送の間、加熱エレメントを通して電流を伝導するように構成可能である。
本明細書で記述した主題の特定の態様は、以下の利点の1つまたは複数を実現するように実施可能である。予備濃縮装置は、実質的により高い濃度ゲイン率を示すことができ、したがって広く種々の化学物質検出器に関して、有意に改善された感度を可能にする。熱効率における改善は、予備濃縮装置の総応答時間が、迅速な応答が望まれる状況(例えば空港の爆発物検査)における実質的に改善された許容可能な配備であることを意味する。セキュリティのマーケットに加えて、予備濃縮装置はまた、気体サンプリングおよび液体サンプリングの両方に対する普遍的解決策を提供することによって、ヘルスケアおよび水質分析において、新規のマーケットも開拓しうる。吸着剤コーティングを加熱エレメント上に直接適用することによって、エネルギー消費の少ない、迅速で均一な加熱を通した改善された脱着が達成されうる。さらに、加熱エレメントの設計は、改善された流路を提供し、複数の吸着剤コーティングを有する単一のチューブにより、複数の化学物質種が検出されることを可能にしうる。ヒーターを直接コーティングすることによって、熱膨張によるずれによって引き起こされる内部応力が最小化され、したがって、デバイスの信頼性が改善される。多重層に頼らず、ヒーターを直接コーティングすることによって、予備濃縮装置の再現性を改善することが可能である。
本明細書に述された主題の1つまたはそれ以上の態様の詳細が、添付の図面および以下の説明に示される。主題の他の特徴、局面および利点が、説明、図面および特許請求の範囲より明らかになるであろう。
予備濃縮装置入口を含む、化学分析システムのシステム図である。 図2A〜2Cは、例示的なメッシュストリップおよびチューブの透視図である。 図3Aおよび3Bは、例示的なクリンピングツールの透視図である。 例示的な熱脱着チューブの透視図である。 化学分析システムを操作する技術のフロー図である。 水サンプリングシステムの操作を図解しているフロー図である。 その長さに沿って種々の形状、および種々の直径の複数のオリフィスを有する、例示的なストリップである。
種々の図面中の同様の参照記号は、同様の要素を示す。
詳細な説明
説明の目的のために、以下の記述において、分析のために、質量分析器内へ分析物を導入することに関する特定の例が、本明細書中で記述された主題の実施形態の全体的な理解を提供するために示される。本明細書で記述された実施形態は、他の機能においても同様に使用可能であり、質量分析器に限定する必要はない。例えば、実施形態は、例えばガスおよび液体クロマトグラフ、イオン移動スペクトロメータ、弾性表面波センサ、電気化学セルおよび光学分光計(例えばRaman、UV−VIS、NIRおよび同様の化学的検出器)を含む他の化学分析装置の操作を改善するために使用してよい。したがって、他の実施形態が、本請求項の範囲内である。
図1は、熱脱着チューブ(TDT)104を形成しているチューブ(例えばステンレススチール、水晶またはガラスチューブ)内に配置された吸着性加熱エレメント(AHE)102を含む、例示的な予備濃縮装置入口100のシステム図を描写している。TDT104は、末端108Aと108B間の流路106を規定する。いくつかの実施形態において、TDT104は、流路に対して、実質的に直角に横断する内部横断面を有する。以下でさらに詳細に記述するように、他の実施形態には、他の形状を有する内部横断面が含まれてよい。
AHE102は、ストリップを通る複数の開口部112と、流路106に沿って間隔のあいた一連の起伏114との両方を規定している導電性ストリップ110から形成されている。ストリップ110には、測定および分析のために、標的化学物質を吸着することにおいて利用するための、1つまたは複数の吸着剤物質からなるコーティング115が含まれる。ストリップ110は、導線/電極103A、103Bを介して、電源117に連結している。電源117は、コントローラ116に連結し、コントローラ116によって発生した制御シグナル応答した吸着および/または脱着サイクルの間、熱を発生するために、AHE102に種々の電圧を提供するように構成されている。本例において、コントローラ116は、以下に記述する一連の操作を実施するためにプログラムされた、組込マイクロコントローラを含む。他の実施形態には、配線論理回路またはアナログ回路、コンピュータ、またはこれらの組み合わせが含まれる。コントローラ116はまた、流量制御デバイスアクチュエータ、例えばバルブアクチュエータ118A〜118Dに連結し、相当するバルブアクチュエータに適切な制御シグナルを伝達することによって、例えばバルブ119A〜119Dなどの流量制御デバイスを開閉するように構成されている。図1にて図解した実施形態において、バルブ119A〜119DはTDT104を、化学分析装置120(例えば質量分析器)、分析物の流れを制御するための分析物ポンプ122、脱着の前に減圧環境を形成するためにTDT104を排気するための粗引きポンプ124に連結させる。
いくつかの実施形態において、複数の熱脱着チューブが、冗長性を提供するため、または流路106中の吸着剤の数を増加させるために平行に連結している。いくつかの例には、標的化された回収、誘導体化などを許容するために、連続して連結した複数の熱脱着チューブが含まれる。さらに、いくつかの例において、1つまたは複数の熱脱着チューブが、冗長分析、異なる分析技術などのために、複数の化学分析装置120に連結している。いくつかの配置には、複数の熱脱着チューブが、1つまたは複数の化学分析装置120に対して連続平行アレンジメントで連結するように、これらのアレンジメントの組み合わせが含まれる。
図1を再び参照して、TDT104が、バルブ119Cを通して、化学分析装置120に直接接続しているが、いくつかの実施形態は任意に、脱着の間、吸着剤物質から脱着し、かつ試料101から抽出された分析物の、化学分析装置内への流れを制限するために、例えばTDT104と化学分析装置120との間に、流量制御器、圧力バリア、またはバリア膜のような流量制御デバイスを含む。しかしながら、一般に、流量制御デバイスは、化学分析装置内へ分析物を導入するために、化学分析装置120に連結した高流量ポンプ(示していない)における抵抗を利用することによって、およびTDT104を化学分析装置チャンバーと同一の圧力まで減少させることによって、省略可能である。
ほとんどの場合、ストリップ110の製造は、材料の所与の平面領域に対して、もっとも大きな表面積に影響を与えるように決定される。いくつかの例において、ストリップ110は、30%開口と0.002インチのワイヤ直径を有する伝導性ワイヤメッシュから形成される。ストリップ110の他の構造には、例えば織りワイヤフレーム、低密度繊維シート(例えばガラスファイバーシート)、グラファイトシート(グラフェンを含む)、および化学的にエッチングされた開口部を有する抵抗性シートが含まれる。ストリップ材料は、その抵抗性が、電流が通過する時に、熱を生じるのに十分であるように選択される。例えば、いくつかの実施形態において、ニクロム線が使用される。
吸着剤物質は、任意の好適なコーティング技術を用いて、ストリップ110を形成するために使用されるシート材料の少なくとも一部上へ、物理的または化学的にコーティングされる。例えば、いくつかの実施形態において、シート材料は、加圧下で、粘性液体ポリマーの濃縮容量にシートを通過させ、次いで高温で熱硬化することによってコーティングされる。所望のコーティング厚を達成するために、複数の通過を実施してよい。粘性液体ポリマーは、コーティングのために溶媒中で提供可能である。他の例において、コーティング技術には、例えばPoropak P、Propak T、TenaxおよびCarbosieveのような市販の固体支持体を、吸着ポリマーでコーティングすることが含まれる。例えば、スラリーが、Supelco(登録商標)、Carbosieve(商標)Mesh 80/100または177〜149μm、ポリエチレンイミン(PEI)、ポリメチルメタクリレート(PMMA)またはいくつかの他のポリマーと溶媒をふくむように形成可能である。次いでこのスラリーを、シート材料の両面にコーティングすることが可能である。
いくつかの実施形態において、シート材料の部分を、予想される流路に沿った連続様式にて、異なる吸着剤でコーティングし、そうすることで、各ストリップ110が、異なる物質を回収するために、TDT104を変える必要なしに、単一の試みにて、複数の化学物質を吸着/脱着可能である。例えば図1において、コーティング115には、疎水性物質(例えばCarboxen 1016)を吸着するために有用な吸着剤物質115Aと、親水性物質(例えばCarbopak X)を吸着するために有用な吸着剤物質115Bが含まれる。追加の吸着剤コーティングの利用や他の吸着剤の組み合わせおよびアレンジメントの利用もまた可能である。例えば、いくつかの態様において、流路106が、先により弱い吸着剤を通って流れるように、より弱い吸着剤として分類された1つまたは複数の吸着剤が、より強い吸着剤より前方に配置される。この方法において、有意な量の簡単に引き寄せられる分子が、より強い吸着剤に達する前に、弱い吸着剤によって吸着され、そうすることで、より強い吸着剤が、簡単に吸着されるものによって先に飽和されることなしに、他の分子を引き寄せることが可能である。
一旦コーティングされたならば、シート材料は、ストリップ110を形成するために切断またはエッチングされ、起伏114を形成するためにクリンピング(crimp)される。他の実施形態において、シート材料は、ストリップ110を形成するために、材料を切断またはエッチングする必要を避ける大きさにされる。例えば、いくつかの例において、電気鋳造メッシュストリップが、ストリップ110を形成するために、コーティングされ、クリンピングされる。図2Aおよび2Bは、吸着剤物質115Aでコーティングされた例示的なストリップ110を図解している。いくつかの例において、コーティング厚は、3μm〜20μmである。他の厚さもまた可能である。
いくつかの実施形態において、ストリップ110中に形成される起伏114の数は、分析物分子が、流路に沿ってそれを通って通過しなければならない障壁の所望数を達成するために決定される。一連の起伏が、流路に沿って複数の吸着表面(すなわち障壁)を形成し、該一連の起伏は、試料101中の分析物の吸着を増強するために、流路に沿った流れが吸着剤表面に当たるように、並べられる。さらに、いくつかの実施形態において、一連の起伏は、流路の断面積に対して、流路に沿った空気の流れの局所乱流を増加させるのに十分な大きさである。試料101を、複数の障壁(例えば30+)中のオリフィス/開口部を通して通過させることによって、予備濃縮装置によって吸着されている分析物分子の確率が、実質的に増加し、したがって、システム100の感度および効率が改善される。いくつかの例において、吸着されている分析物分子の確率は、試料がそれを通って流れることができる自由な空間を減少させることによって増加する。例えば、図2Cは、クリンピングされたストリップ110の横断面寸法とほぼ等しい内部横断面寸法を有する例示的なチューブ200を図解している。
図3Aおよび3Bは、起伏114を形成するのに用いるための、例示的なクリンピングツール300を図解している。クリンピングツール300には、クリンピングギア302および304が含まれ、それぞれ、ギア306、308を駆動するために連結した、それぞれのシャフト303、305によって駆動される。ギア302および304のギア歯は、互いに決して接触しないように、または複数の側面上にコーティングされている吸着剤と一度に接触しないように、十分狭く設計される。この方法において、クリンピング工程の間に除去される吸着剤コーティングの量は最小化される。いくつかの実施形態において、クリンピングギア302、304は、クリンピング工程の間の吸着剤コーティングの除去をさらに最小化するために、プラスチック材料(例えばナイロンまたはポリアセタール)から製造される。駆動ギア306は、駆動ギア308上のギア歯309の相当する組とかみ合う、一連のギア歯307を含む。ギア支持体320は、ストリップ110を、クリンピングギアとの接触に導くためのチャネル322を形成する。チャネル322内へストリップ110を供給することによって起伏114が形成され、一方で駆動ギアアクチュエータ(示していない)が、駆動ギア306、308を回転させ、クリンピングギア302および304中の相当する回転を生じ、クリンピングギア上に形成される互いにかみ合った歯310、311の組の間で、それらがストリップ110をグリップすることを引き起こす。他の実施形態において、例えば、ラックおよびピニオンアセンブリ、またはスタンピング工程を使用することを含む、他の技術を使用して、起伏114を形成する、および/またはストリップ110をベースシート材料から分離する。
いくつかの実施形態において、ストリップ110は、その長さに沿って種々の形状を有し、一定加熱、一定温度、製造の簡便さ、フラッシュおよび燃焼の減少、またはこれらおよび他の現象の組み合わせを達成するように構成される。例えば、図7は、その長さに沿った種々の形状と、種々の直径の複数のオリフィス710を有するストリップ700を図解している。ホットスポットを避けるために、ストリップ700は、オリフィスの数および大きさ、およびストリップに沿った各点での断面幅を変えることによって、その長さに沿って均一な断面積を維持する。例えば、横断面720、722および724は、R1=R2=R3であるように、それぞれ、横断面抵抗R1、R2、R3を有する。ストリップ700とオリフィス710はニクロムシート中で化学的にエッチングされ、それによってシート材料を切断する必要性が除外される。注釈として、本図解におけるオリフィスの大きさは、オリフィス710間の大きさにおける差違を図解するために強調されている。本方法において、ストリップ700は、四角形、長方形、円形、台形、三角形などを含む、任意の形状のチューブに適合するように構成可能である。本方法におけるエッチングストリップ700のさらなる利点には、チューブ内に挿入された時に捕らえられる、シート材料の切断の間に作成される落後繊維の除外が含まれる。他の利点には、形成の間のコーティングに対する最小のインパクト、生じる表面積およびオリフィスの大きさのより大きな制御、例えば30%、40%、50%開口、オリフィス710の大きさおよび位置を制御することによる流路のより良好な制御が含まれる。さらに、ストリップ700は、フラックスおよびはんだのガス放出を除外する、より良好なはんだ接合および/または機械的連結の選択肢を助ける、各末端での一体形成された末端接触を含むように製造可能である。
一旦形成され、望む長さに切断またはエッチングされたならば、ストリップ110は、導線103A、103Bにはんだ付けされ、TDT104内にアセンブリされる。いくつかの例において、導線は、例えば圧着によって、連結器を用いて、または溶接によって、ストリップ110に機械的に連結され、したがって、はんだ付けの必要性を回避する。図4は、TDT104の各末端108A、108Bにて、PTFEのT継手402、404を含む、完成した熱吸着チューブアセンブリ400を図解している。例えばステンレススチール、PEEK、PFA、FEP、PCTFE、アセタール、ナイロンおよび種々の他の組成材料を含む他の材料がまた、T継手402、404を形成するために使用されてもよい。継手402および404中の穴は、種々の手段を用いて密封可能であり、それには接着剤(例えばTorr−Seal)、圧縮フィットワイヤ(pressure fit wire)およびグロメットが含まれるがこれらに限定はされない。
図5は、化学分析装置内に分析物を導入するために図1のシステムを操作するための、例示的な技術(500)を図解している。図解されているように、コントローラ116が、バルブ119Aおよび119Dを開き、AHE102を渡って通過する分析物の流れを開始することによって、試料を導入する(502)。試料が、表面を渡り、AHE102の開口部を通って引き込まれると、1つまたは複数の化学物質が、吸着剤物質コーティング115によって吸着される。いくつかの態様において、ジュール加熱を介して、TDT104中に熱を発生させるために、吸着段階の間、電源117によって、AHE102中で電流が発生する。本方法において、周囲温度に関わらず一定温度が提供され、したがって、ある範囲の温度範囲にわたる予備濃縮装置の操作が改善される。吸着段階の間の加熱はまた、一部の分析物の吸着を意図的に防止するまたは制限するためにも使用されてよい。さらに、TDT104中に発生した熱は、分析物流路を形成しているシステムの部分を効果的に加熱する。
十分な量の分析物がAHE102によって吸着された後、コントローラ116はバルブ119Aおよび119Dを閉じ、そしてバルブ119Bを開いて、排気を開始する(504)。粗引きポンプ124がTDT104を排気し、TDT104中の圧力を望むレベルまで減少させ(506)、それによって減圧環境を形成する。
脱着段階の前の、TDT104内に含まれる実質的にすべての気体の排気は、効果的に、化学分析装置120に導入された化学物質の濃度を、非排気ハウジングから導入された化学物質の濃度よりも増加させる。この概念をさらに説明するために、吸着剤物質への分析物の吸着と、続く「デッドボリューム」への放出による、予備濃縮装置ゲインGsorptionが、入口濃度と、脱着した物質の得られた濃度によって規定されるようにする。
sorption=Cdesorbed/Cinlet
式中Cinletは入口濃度であり、Cdesorbedは、脱着した物質の得られた濃度である。Cinletは、特定の実験によって決定され、Cdesorbedは、その中に脱着される容量Vdesorbedに対する回収された物質の量、mcollectedによって与えられる。
desorbed=mcollected/Vdesorbed
回収された物質の量は、
Figure 2014504740
(式中εcollectionはコーティングされたメッシュの回収効率)となるように、曝露時間、濃度Cinletでの入口流および流速Qsampleに依存する。以下の表2は、吸着/脱着によるゲインの計算値の例を説明している。
(表2)
Figure 2014504740
バックグラウンドマトリックスの分圧と比較して低い分析物の分圧に関して、減少した圧力に対する「デッドボリューム」の排気によるゲインが
evacuation=Pinlet/Pevacuated
で得られ、式中Pinletは入口流の圧力であり、Pevacuatedは、排気後のデッドボリューム中の減少した圧力である。本式は、Pevacuatedが、検出器具の内部操作圧力より大きいか、または等しい時にのみ有効である。排気した圧力と実質的に同等の脱着の分圧に関して、ゲインは、
evacuation=Pinlet/(pevacuated+pdesorbed
によって得られ、式中pevacuatedは排気後のバックグラウンドの分圧であり、pdesorbedは脱着した分析物の分圧である。正味のゲインは、
G=GsorptionxGevacuation
によって得られる。
以下の表3は、吸着およびデッドボリュームの排気の両方によって得られる正味のゲインを示している、計算値の例を説明している。
(表3)
Figure 2014504740
したがって、実質的な予備濃縮装置ゲインは、予備濃縮装置内での高度に吸着性の物質と、デッドボリュームの排気との組み合わせにより得られる。したがって、上記の表を参照すると、1ppmの検出下限を有する器具が、一般的な毒物の閾値より大幅に低い50pptrの濃度にて、化学物質に関して有効に警報を発することができる。
図5を再び参照して、一旦排気が完了し、望む圧力レベルに達したならば、コントローラ116がバルブ119Bを閉じ、バルブ119Cを開き、分析物を化学分析装置120内に導入するために、脱着サイクルを開始する(508)。電源117が、AHE102を通して電流を発生させ、吸着剤物質コーティング115の温度を急速に上昇させ、分析物を化学分析装置120に放出する(510)。
いくつかの例において、加熱エレメントは、TDT104中に存在する圧力において異なる沸点を有する複数の分析物を含みうる回収器上に伝わった温度が、1つまたは複数の分析物を保持する一方で、1つまたは複数の分析物が放出されるのを許容するように制御される。いくつかの実施形態において、異なる時間点で、分析物が放出され、化学分析装置120内に導入されるように、AHE102の温度があるパターンで調節され、バルブ119Cが操作される。いくつかの例において、TDT104の圧力が、TDT104からの分析物の選択的放出を許容するために、実質的に一定の温度または相当する温度プロファイルのいずれかを含むあるパターンで調節される。AHE102の温度は、AHE102に適用される電圧/電流を調節することによって制御される。
いくつかの実施形態において、AHE102の温度を、例えば温度センサを用いることによって直接測定する。しかしながら、いくつかの例において、吸着剤の温度を測定することは、もっとも小さな温度センサ(小型の熱電対)と比べてさえヒーターの質量が小さいことに起因して難しい可能性がある。さらに、温度センサを付着し、チューブに検出リードを通すことは、さらなる困難をもたらし、システムを複雑にする可能性がある。いくつかの例において、温度が視覚的に測定され、したがって、検出リードをチューブに通す必要性が避けられる。
いくつかの例において、AHE102は、エレメントの温度が、伝導性材料(例えばニクロム)の抵抗とその温度間の公知および予測可能な相関に基づいて検出されるように、温度センサとして使用される。抵抗は、加熱エレメントにおける電圧および電流をモニタすることによって測定可能である(すなわちR=V/I)。本技術により、外部温度センサ(接触不良、温度センサの熱質量などによる、測定された温度対実際の温度における熱のずれを引き起こし、その変動を示しうる)を追加する必要性なしに、またTDT104内に個別の熱センサおよび関連した制御回路を追加する複雑さなしに、迅速かつ動的な温度決定が許容される。
(経過時間または温度閾値に基づき)脱着および導入段階が完了した後、コントローラ116が、AHE102に適用されている電源を止め、バルブ119Cを閉じ、吸着工程を再開する前に、バルブ119Aおよび119Dを開くことによって、TDT104を冷却する。いくつかの実施形態において、コントローラ116は、流路に沿った分析物の再吸着を阻止するためにバルブ119Cが閉じられるまで、AHE102を通る電流を維持する。
いくつかの例において、予備濃縮装置入口システム100が試料液体に対して使用される。図6は、液体サンプリングのための直接液体サンプラーとしての予備濃縮装置の利用を記述しているフローチャートである。記述されているように、液体試料が、液体サンプリングポンプを用いて予備濃縮装置内に引き込まれる(610)。次いで分析物が、液体流から、コーティングされたメッシュ内に吸着される(620)。ある時間が経過した後、パージガス(例えば窒素)を使用して、液体を予備濃縮装置の外に押し出す(630)。いくつかの実施形態において、次いで予備濃縮装置を、図4に関して上述したように、排気する(640)。次いで吸着剤物質を、コーティングしたメッシュ中に電流を発生させることによって加熱し(650)、化学分析装置内に導入する(660)。
上述した例において、システム100の加熱された部分の熱質量は、間接加熱法と比較した場合、有意に減少するので、AHE102を直接加熱することによって、ほぼリアルタイムの分析が達成可能である。したがって、サイクル時間をもまた、30秒より短く減らすことが可能でもある。さらに、吸着剤コーティング115を直接加熱することによって、熱効率が有意に増加する。加えて、TDT104を低圧に排気することによって、伝導性および対流性の熱損失が減少する。したがって、いくつかの実施形態において、予備濃縮装置入口システム100は、出力(平均)10W未満/出力(ピーク)30Wで操作可能である。さらに、TDT104の排気は、いくつかの場合、見かけのゲインをおよそ10〜10まで増加させ、それによって、予備濃縮装置の総ゲインをおよそ10〜10まで増加させる。
以下の表4は、本明細書で記述された技術による結果である、4つの吸着剤に対する測定された予備濃縮装置ゲインを提供する。各吸着剤に対するゲインは、脱着サイクルについて測定された総イオン電流(TIC)であるICconcentratorを、同一の分析物が質量分析器への直接の入口にあった時に測定されたTICであるICdirectで除すことで算出され、
Figure 2014504740
で得られる。イオン電流は、質量スペクトル中の少なくとも1つの候補ピークについて、または実質的に全スペクトルについて、モニタされてよい。示されているように、アセトンについてのゲインは、Carboxen1016の5567から、Carboxen1018の59793までの範囲である。酢酸エチルについてのゲインは、Carboxen1016の105630から、Carboxen1003の377766までの範囲である。
(表4)
Figure 2014504740
本明細書は、多くの特定の実施形態の詳細を含む一方で、これらは、いかなる発明または請求されるものの範囲における制限としても解釈されるべきではなく、むしろ、特定の発明の特定の態様に特異的な特徴の記述として解釈されるべきである。別々の態様の文脈中で、本明細書中で記述される特定の特徴はまた、単一の態様における組み合わせで実施可能でもある。逆に、単一の態様の文脈にて記述される種々の特徴はまた、複数の態様において別々に、または任意の好適なサブコンビネーションにて実施可能でもある。さらに、特徴は、特定の組み合わせで作用しているように記述されてもよく、そしてそのように最初に請求されてもよいが、いくつかの場合では、請求された組み合わせからの1つまたはそれ以上の特徴が、その組み合わせから除外可能であり、また、請求された組み合わせが、サブコンビネーションまたはサブコンビネーションのバリエーションを指向してもよい。
同様に、操作が、特定の順番で図面にて描写されているが、望む結果を達成するために、そのような操作が、示されている特定の順番もしくは連続した順番で実施されること、またはすべての説明した操作が実施されることを要求していると理解されるべきではない。さらに、上述された態様中の種々のシステムの構成要素の分離は、すべての態様においてそのような分離が要求されると理解されるべきではなく、記述された構成要素およびシステムは、一般に、単一製品内に一緒に統合されるか、または複数の製品内にパッケージされうることが理解されるべきである。
[本発明1001]
2つの末端(108A、108B)間の流路(106)を規定している導管(200)と
該導管内に配置された加熱エレメント(102)と
を含む化学物質予備濃縮装置(100)であって、
該加熱エレメントが、該加熱エレメント(102)の導電性表面の少なくとも一部上に直接沈着している少なくとも1つの吸着剤物質(115)を有する、化学物質予備濃縮装置。
[本発明1002]
導管(200)の内部横断面が、流路(106)に対して実質的に直角に横断している、本発明1001の予備濃縮装置。
[本発明1003]
加熱エレメント(102)が、導電性フィラメントのメッシュである、本発明1001または本発明1002の予備濃縮装置。
[本発明1004]
加熱エレメント(102)が、少なくとも複数の吸着剤物質(115A、115B)で部分的にコーティングされている、前記本発明のいずれかの予備濃縮装置。
[本発明1005]
前記複数の吸着剤物質(115A、115B)が、流路(106)に沿って連続して配置されている、本発明1004の予備濃縮装置。
[本発明1006]
加熱エレメント(102)が、電源(117)に連結するように構成された2つの電極(103A、103B)を含む、前記本発明のいずれかの予備濃縮装置。
[本発明1007]
導管(200)の排気を制御して該導管内に減圧環境を形成するように構成された制御回路(116)をさらに含む、前記本発明のいずれかの予備濃縮装置。
[本発明1008]
制御回路(116)が、加熱エレメント(102)を通して電流を伝導して、導管(200)の排気の後に少なくとも1つの吸着剤物質(115)から少なくとも1つの分析物を脱着するように構成されている、本発明1007の予備濃縮装置。
[本発明1009]
制御回路(116)が、予備濃縮装置(100)内に配置されているかまたは予備濃縮装置(100)と連結している少なくとも1つの流量制御デバイスと通信する、本発明1007または本発明1008の予備濃縮装置。
[本発明1010]
導管(200)が、2つの末端(108A、108B)の少なくとも1つにおいて流量制限器を含む、前記本発明のいずれかの予備濃縮装置。
[本発明1011]
加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)を規定している、前記本発明のいずれかの予備濃縮装置。
[本発明1012]
加熱エレメント(102)が、流路(106)に沿って間隔があいた一連の起伏(114)を規定している、前記本発明のいずれかの予備濃縮装置。
[本発明1013]
前記一連の起伏(114)が、流路(106)に沿って複数の吸着剤表面を形成し、かつ、該一連の起伏が、分析物の吸着を増強するために、流路に沿った流れが吸着剤表面に当たるように、並べられている、本発明1012の予備濃縮装置。
[本発明1014]
前記一連の起伏(114)が、流路(106)の断面積に対して、流路に沿った空気の流れの局所乱流を増加させるのに十分な大きさである、本発明1012または本発明1013の予備濃縮装置。
[本発明1015]
加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)の両方を規定し、該複数の開口部および起伏が、流路に沿って複数の障壁を形成し、かつ、該複数の開口部および起伏が、分析物の吸着を増強するために、流路に沿った流れが該障壁に当たるように、並べられている、本発明1001の予備濃縮装置。
[本発明1016]
起伏(114)が加熱エレメントの両側上に存在するように、加熱エレメント(102)が概して一定の厚さである、本発明1015の予備濃縮装置。
[本発明1017]
流路(106)が、加熱エレメント(102)の両側に沿って延びている、前記本発明のいずれかの予備濃縮装置。
[本発明1018]
2つの末端(108A、108B)間の流路(106)を規定し、かつその中に配置された少なくとも1つの吸着剤物質(115)で少なくとも部分的にコーティングされた加熱エレメント(102)を有する導管(200)を含む、脱着チューブ(104)を提供する工程、
該導管内に減圧環境を形成するために、該導管(200)を排気する工程、
次いで、該吸着剤物質(115)から分析物を脱着させるために、該加熱エレメント(102)を通して電流を伝導する工程、および
脱着した分析物を化学分析装置(120)内に移送する工程
を含む、分析のために化学分析装置(120)内に分析物を導入する方法であって、
該加熱エレメント(102)が導電体である、方法。
[本発明1019]
加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)との両方を規定する、本発明1018の方法。
[本発明1020]
脱着した分析物を供給するために、脱着チューブ(104)を利用する工程を含む、本発明1018または本発明1019の方法。
[本発明1021]
2つの末端(108A、108B)の第一が入口であり、かつ前記方法が、吸着剤物質(115)による分析物の吸着を引き起こすために、試験試料を該入口内に、かつ流路(106)に沿って導入する工程をさらに含む、本発明1018〜1020のいずれかの方法。
[本発明1022]
脱着した分析物を化学分析装置(120)内に移送する工程が、加熱エレメント(102)上の1つまたは複数の吸着剤物質コーティング(115A、115B)から脱着した異なる分析物を化学分析装置(120)内に移送することを含む、本発明1018〜1021のいずれかの方法。
[本発明1023]
脱着した分析物を化学分析装置(120)内に移送する工程が、脱着チューブ(103)と化学分析装置(120)との間の流量制御デバイス(119C)を作動させることを含む、本発明1018〜1022のいずれかの方法。
[本発明1024]
本発明1001の予備濃縮装置(100)と、
吸着剤物質(115)から脱着した分析物を受け取るために、該予備濃縮装置に連結した化学分析装置(120)と
を含む、化学分析システム。
[本発明1025]
化学分析装置(120)が、質量分析器である、本発明1024のシステム。
[本発明1026]
加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)と、流路(106)に沿って間隔のあいた一連の起伏(114)との両方を規定し、該複数の開口部および一連の起伏が、流路に沿った複数の吸着剤障壁を形成し、かつ、該複数の開口部および一連の起伏が、分析物の吸着を増強するために、流路に沿った流れが該障壁に当たるように、並べられている、本発明1024または1025のシステム。
[本発明1027]
電源(117)をさらに含む、本発明1026のシステムであって、加熱エレメント(102)が、該電源(117)に連結した2つの電極(103A、103B)を含む、システム。
[本発明1028]
導管(200)内に減圧環境を形成するために、該導管を排気するように構成された制御回路(116)をさらに含む、本発明1026または1027のシステム。
[本発明1029]
制御回路(116)が、導管(200)を排気した後、吸着剤物質(115)から分析物を吸着するために、加熱エレメント(102)を通して電流を伝導するように構成されている、本発明1026〜1028のいずれかのシステム。
[本発明1030]
制御回路(116)が、流路(106)に沿って分析物が再吸着されることを阻止するために、化学分析装置(120)への分析物の移送の間、加熱エレメント(102)を通して電流を伝導するように構成されている、本発明1026〜1029のいずれかのシステム。
[本発明1031]
2つの末端(108A、108B)間の流路(106)を規定している、細長い導管(200)と、
吸着物質(115)で少なくとも部分的にコーティングされ、かつ該導管(200)内に配置されている加熱エレメント(102)と
を含む、化学分析装置予備濃縮装置(100)であって、
該加熱エレメント(102)が、ストリップを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)との両方を規定している導電性ストリップの形状である、
化学分析装置予備濃縮装置。
[本発明1032]
本発明1031の予備濃縮装置(100)と、
吸着剤物質(115)から脱着した分析物を受け取るために、該予備濃縮装置に連結した化学分析装置(120)と
を含む、化学分析システム。
[本発明1033]
2つの末端(108A、108B)間の流路(106)を規定し、かつ、その上に沈着した吸着剤物質(115)で少なくとも部分的にコーティングされた加熱エレメント(102)を有する、細長い導管(200)を含む、脱着チューブ(104)を提供する工程、
該導管内に減圧環境を形成するために、該導管(200)を排気する工程、
次いで、該吸着剤物質(115)から分析物を脱着するために、該加熱エレメント(102)を通して電流を伝導する工程、および
脱着した分析物を化学分析装置(120)内に移送する工程
を含む、分析のために化学分析装置内に分析物を導入する方法であって、
前記加熱エレメント(102)が、ストリップを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)との両方を規定している、導電性ストリップの形状である、方法。
本明細書に述された主題の1つまたはそれ以上の態様の詳細が、添付の図面および以下の説明に示される。主題の他の特徴、局面および利点が、説明、図面および特許請求の範囲より明らかになるであろう。

Claims (33)

  1. 2つの末端(108A、108B)間の流路(106)を規定している導管(200)と
    該導管内に配置された加熱エレメント(102)と
    を含む化学物質予備濃縮装置(100)であって、
    該加熱エレメントが、該加熱エレメント(102)の導電性表面の少なくとも一部上に直接沈着している少なくとも1つの吸着剤物質(115)を有する、化学物質予備濃縮装置。
  2. 導管(200)の内部横断面が、流路(106)に対して実質的に直角に横断している、請求項1に記載の予備濃縮装置。
  3. 加熱エレメント(102)が、導電性フィラメントのメッシュである、請求項1または請求項2に記載の予備濃縮装置。
  4. 加熱エレメント(102)が、少なくとも複数の吸着剤物質(115A、115B)で部分的にコーティングされている、前記請求項のいずれか1項に記載の予備濃縮装置。
  5. 前記複数の吸着剤物質(115A、115B)が、流路(106)に沿って連続して配置されている、請求項4に記載の予備濃縮装置。
  6. 加熱エレメント(102)が、電源(117)に連結するように構成された2つの電極(103A、103B)を含む、前記請求項のいずれか1項に記載の予備濃縮装置。
  7. 導管(200)の排気を制御して該導管内に減圧環境を形成するように構成された制御回路(116)をさらに含む、前記請求項のいずれか1項に記載の予備濃縮装置。
  8. 制御回路(116)が、加熱エレメント(102)を通して電流を伝導して、導管(200)の排気の後に少なくとも1つの吸着剤物質(115)から少なくとも1つの分析物を脱着するように構成されている、請求項7に記載の予備濃縮装置。
  9. 制御回路(116)が、予備濃縮装置(100)内に配置されているかまたは予備濃縮装置(100)と連結している少なくとも1つの流量制御デバイスと通信する、請求項7または請求項8に記載の予備濃縮装置。
  10. 導管(200)が、2つの末端(108A、108B)の少なくとも1つにおいて流量制限器を含む、前記請求項のいずれか1項に記載の予備濃縮装置。
  11. 加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)を規定している、前記請求項のいずれか1項に記載の予備濃縮装置。
  12. 加熱エレメント(102)が、流路(106)に沿って間隔があいた一連の起伏(114)を規定している、前記請求項のいずれか1項に記載の予備濃縮装置。
  13. 前記一連の起伏(114)が、流路(106)に沿って複数の吸着剤表面を形成し、かつ、該一連の起伏が、分析物の吸着を増強するために、流路に沿った流れが吸着剤表面に当たるように、並べられている、請求項12に記載の予備濃縮装置。
  14. 前記一連の起伏(114)が、流路(106)の断面積に対して、流路に沿った空気の流れの局所乱流を増加させるのに十分な大きさである、請求項12または請求項13に記載の予備濃縮装置。
  15. 加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)の両方を規定し、該複数の開口部および起伏が、流路に沿って複数の障壁を形成し、かつ、該複数の開口部および起伏が、分析物の吸着を増強するために、流路に沿った流れが該障壁に当たるように、並べられている、請求項1に記載の予備濃縮装置。
  16. 起伏(114)が加熱エレメントの両側上に存在するように、加熱エレメント(102)が概して一定の厚さである、請求項15に記載の予備濃縮装置。
  17. 流路(106)が、加熱エレメント(102)の両側に沿って延びている、前記請求項のいずれか1項に記載の予備濃縮装置。
  18. 2つの末端(108A、108B)間の流路(106)を規定し、かつ導管内に配置された少なくとも1つの吸着剤物質(115)で少なくとも部分的にコーティングされた加熱エレメント(102)を有する導管(200)を含む、脱着チューブ(104)を提供する工程、
    該導管内に減圧環境を形成するために、該導管(200)を排気する工程、
    次いで、該吸着剤物質(115)から分析物を脱着させるために、該加熱エレメント(102)を通して電流を伝導する工程、および
    脱着した分析物を化学分析装置(120)内に移送する工程
    を含む、分析のために化学分析装置(120)内に分析物を導入する方法であって、
    該加熱エレメント(102)が導電体である、方法。
  19. 加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)との両方を規定する、請求項18に記載の方法。
  20. 脱着した分析物を供給するために、脱着チューブ(104)を利用する工程を含む、請求項18または請求項19に記載の方法。
  21. 2つの末端(108A、108B)の第一が入口であり、かつ前記方法が、吸着剤物質(115)による分析物の吸着を引き起こすために、試験試料を該入口内に、かつ流路(106)に沿って導入する工程をさらに含む、請求項18〜20のいずれか1項に記載の方法。
  22. 脱着した分析物を化学分析装置(120)内に移送する工程が、加熱エレメント(102)上の1つまたは複数の吸着剤物質コーティング(115A、115B)から脱着した異なる分析物を化学分析装置(120)内に移送することを含む、請求項18〜21のいずれか1項に記載の方法。
  23. 脱着した分析物を化学分析装置(120)内に移送する工程が、脱着チューブ(103)と化学分析装置(120)との間の流量制御デバイス(119C)を作動させることを含む、請求項18〜22のいずれか1項に記載の方法。
  24. 請求項1に記載の予備濃縮装置(100)と、
    吸着剤物質(115)から脱着した分析物を受け取るために、該予備濃縮装置に連結した化学分析装置(120)と
    を含む、化学分析システム。
  25. 化学分析装置(120)が、質量分析器である、請求項24に記載のシステム。
  26. 加熱エレメント(102)が、該加熱エレメントを通る複数の開口部(112、710)と、流路(106)に沿って間隔のあいた一連の起伏(114)との両方を規定し、該複数の開口部および一連の起伏が、流路に沿った複数の吸着剤障壁を形成し、かつ、該複数の開口部および一連の起伏が、分析物の吸着を増強するために、流路に沿った流れが該障壁に当たるように、並べられている、請求項24または25に記載のシステム。
  27. 電源(117)をさらに含む、請求項26に記載のシステムであって、加熱エレメント(102)が、該電源(117)に連結した2つの電極(103A、103B)を含む、システム。
  28. 導管(200)内に減圧環境を形成するために、該導管を排気するように構成された制御回路(116)をさらに含む、請求項26または27に記載のシステム。
  29. 制御回路(116)が、導管(200)を排気した後、吸着剤物質(115)から分析物を吸着するために、加熱エレメント(102)を通して電流を伝導するように構成されている、請求項26〜28のいずれか1項に記載のシステム。
  30. 制御回路(116)が、流路(106)に沿って分析物が再吸着されることを阻止するために、化学分析装置(120)への分析物の移送の間、加熱エレメント(102)を通して電流を伝導するように構成されている、請求項26〜29のいずれか1項に記載のシステム。
  31. 2つの末端(108A、108B)間の流路(106)を規定している、細長い導管(200)と、
    吸着物質(115)で少なくとも部分的にコーティングされ、かつ該導管(200)内に配置されている加熱エレメント(102)と
    を含む、化学分析装置予備濃縮装置(100)であって、
    該加熱エレメント(102)が、ストリップを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)との両方を規定している導電性ストリップの形状である、
    化学分析装置予備濃縮装置。
  32. 請求項31に記載の予備濃縮装置(100)と、
    吸着剤物質(115)から脱着した分析物を受け取るために、該予備濃縮装置に連結した化学分析装置(120)と
    を含む、化学分析システム。
  33. 2つの末端(108A、108B)間の流路(106)を規定し、かつ、その上に沈着した吸着剤物質(115)で少なくとも部分的にコーティングされた加熱エレメント(102)を有する、細長い導管(200)を含む、脱着チューブ(104)を提供する工程、
    該導管内に減圧環境を形成するために、該導管(200)を排気する工程、
    次いで、該吸着剤物質(115)から分析物を脱着するために、該加熱エレメント(102)を通して電流を伝導する工程、および
    脱着した分析物を化学分析装置(120)内に移送する工程
    を含む、分析のために化学分析装置内に分析物を導入する方法であって、
    前記加熱エレメント(102)が、ストリップを通る複数の開口部(112、710)と、流路(106)に沿って間隔があいた一連の起伏(114)との両方を規定している、導電性ストリップの形状である、方法。
JP2013552730A 2011-02-07 2012-02-07 化学分析装置内へ分析物を導入する方法 Expired - Fee Related JP5991993B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161440267P 2011-02-07 2011-02-07
US61/440,267 2011-02-07
PCT/US2012/024138 WO2012109237A1 (en) 2011-02-07 2012-02-07 Introducing an analyte into a chemical analyzer

Publications (3)

Publication Number Publication Date
JP2014504740A true JP2014504740A (ja) 2014-02-24
JP2014504740A5 JP2014504740A5 (ja) 2016-03-24
JP5991993B2 JP5991993B2 (ja) 2016-09-14

Family

ID=45771897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013552730A Expired - Fee Related JP5991993B2 (ja) 2011-02-07 2012-02-07 化学分析装置内へ分析物を導入する方法

Country Status (6)

Country Link
US (2) US8784737B2 (ja)
EP (1) EP2673616B1 (ja)
JP (1) JP5991993B2 (ja)
CN (1) CN103380362B (ja)
CA (1) CA2826873C (ja)
WO (1) WO2012109237A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103561A1 (ja) * 2014-12-22 2016-06-30 パナソニックIpマネジメント株式会社 化学物質濃縮器および化学物質検出装置
WO2017047041A1 (ja) * 2015-09-18 2017-03-23 パナソニック株式会社 化学物質濃縮器および化学物質検出装置
WO2018079174A1 (ja) * 2016-10-31 2018-05-03 パナソニック株式会社 化学物質濃縮器および化学物質検出装置
US10788406B2 (en) 2015-12-14 2020-09-29 Panasonic Corporation Chemical substance concentrator and chemical substance detector
WO2023239099A1 (ko) * 2022-06-08 2023-12-14 한국화학연구원 대기오염원 농축 및 파과 시스템

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207497B2 (en) 2009-05-08 2012-06-26 Ionsense, Inc. Sampling of confined spaces
US10501316B2 (en) 2010-11-15 2019-12-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nanowire arrays for trace vapor preconcentration
EP2663995B1 (en) * 2011-01-12 2019-07-03 Astrotech Technologies, Inc. Evacuating a sample chamber
US8822949B2 (en) 2011-02-05 2014-09-02 Ionsense Inc. Apparatus and method for thermal assisted desorption ionization systems
US8901488B1 (en) 2011-04-18 2014-12-02 Ionsense, Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
US9244051B2 (en) * 2012-07-03 2016-01-26 Chevron U.S.A. Inc. Detection of hydrocarbons in aqueous environments
US10229824B2 (en) 2013-03-11 2019-03-12 1St Detect Corporation Chemical analysis instrument with multi-purpose pump
US10317350B2 (en) * 2014-05-30 2019-06-11 X-Ray Optical Systems, Inc. Active, variable sample concentration method and apparatus for sub-ppb measurements and exemplary X-ray analysis applications thereof
US9337007B2 (en) 2014-06-15 2016-05-10 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
CN105590827B (zh) * 2014-11-13 2017-07-28 中国科学院大连化学物理研究所 一种质谱低温富集高温热解析的吹扫式膜进样装置及应用
CN104569228B (zh) * 2014-12-31 2016-03-16 同方威视技术股份有限公司 一种进样装置
CN104483423B (zh) * 2014-12-31 2016-03-09 同方威视技术股份有限公司 样品采集和热解析进样装置和方法以及痕量检测设备
US9899196B1 (en) 2016-01-12 2018-02-20 Jeol Usa, Inc. Dopant-assisted direct analysis in real time mass spectrometry
FR3052557A1 (fr) * 2016-06-09 2017-12-15 Commissariat Energie Atomique Systeme de prelevement et d'analyse d'un echantillon gazeux
US10295511B2 (en) * 2016-12-15 2019-05-21 David R. Hall Microfabricated staged preconcentration and parallel column for gas chromatography
US10056218B1 (en) 2017-02-17 2018-08-21 Savannah River Nuclear Solutions, Llc Graphene/graphite-based filament for thermal ionization
WO2018195144A1 (en) * 2017-04-18 2018-10-25 The Government Of The United States Of America As Represented By The Secretary Of The Navy Nanowire arrays for trace vapor preconcentration
US10636640B2 (en) 2017-07-06 2020-04-28 Ionsense, Inc. Apparatus and method for chemical phase sampling analysis
WO2019133613A2 (en) * 2017-12-27 2019-07-04 Perkinelmer Health Sciences, Inc. Thermal desorption systems with drying devices and methods of using them
CN108692998B (zh) * 2018-05-14 2020-09-22 清华大学深圳研究生院 一种用于气体检测的进样方法
WO2019231859A1 (en) 2018-06-01 2019-12-05 Ionsense Inc. Apparatus and method for reducing matrix effects when ionizing a sample
US11874270B1 (en) 2018-07-31 2024-01-16 Inspectir Systems, Llc Techniques for rapid detection and quantitation of volatile organic compounds (VOCs) using breath samples
EP3829433A4 (en) * 2018-07-31 2022-03-30 University of North Texas TECHNIQUES FOR THE RAPID DETECTION AND QUANTIFICATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) USING BREATH SAMPLES
US11662340B1 (en) 2018-07-31 2023-05-30 InspectIR Systems, Inc. Techniques for rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples
US11879890B1 (en) 2018-07-31 2024-01-23 Inspectir Systems, Llc Techniques for rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples
US11841359B1 (en) 2018-07-31 2023-12-12 Inspectir Systems, Llc Techniques for portable rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples
US11841372B1 (en) 2018-07-31 2023-12-12 Inspectir Systems, Llc Techniques for rapid detection and quantitation of volatile organic compounds (VOCs) using breath samples
US11721533B1 (en) 2018-07-31 2023-08-08 Inspectir Systems, Llc Techniques for rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples
US11264228B2 (en) 2018-10-09 2022-03-01 Savannah River Nuclear Solutions, Llc Method of making a carbon filament for thermal ionization
US11352884B2 (en) * 2019-06-17 2022-06-07 Halliburton Energy Services, Inc. Downhole hydrogen sulfide capture and measurement
US11796431B2 (en) 2019-09-24 2023-10-24 Leonid Krasnobaev Thermal desorption tube for portable, battery-powered field analyzer or line-powered analyzer
CN114730694A (zh) 2019-10-28 2022-07-08 埃昂森斯股份有限公司 脉动流大气实时电离
FR3108724B1 (fr) * 2020-03-24 2022-07-29 Centre Nat Rech Scient Pré-concentrateur microfluidique
US11913861B2 (en) 2020-05-26 2024-02-27 Bruker Scientific Llc Electrostatic loading of powder samples for ionization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655071A (ja) * 1992-06-07 1994-03-01 Seibu Giken:Kk 再生機能および賦活機能を内蔵したシート状収着体および収着用積層体
JP2004061391A (ja) * 2002-07-31 2004-02-26 T Hasegawa Co Ltd 揮発性化合物の識別装置及び該化合物の識別方法
US20070084347A1 (en) * 2005-09-30 2007-04-19 Owlstone Nanotech, Inc. 3D miniature preconcentrator and inlet sample heater
JP2008126138A (ja) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd ガス除去フィルタ
US20090090197A1 (en) * 2007-10-04 2009-04-09 Alan Finlay Pre-concentrator and sample interface
JP2009531698A (ja) * 2006-03-30 2009-09-03 スミスズ ディテクション−ワトフォード リミテッド 予濃縮器および検出装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142143A (en) * 1990-10-31 1992-08-25 Extrel Corporation Method and apparatus for preconcentration for analysis purposes of trace constitutes in gases
KR100252818B1 (en) * 1992-06-07 2000-04-15 Seibu Giken Kk Sorbing sheets and laminates having reactivating and invigorating functions
CA2120682C (en) * 1994-04-06 1999-02-23 Sabatino Nacson Improved apparatus for rapid and specific detection of organic vapours
US5854431A (en) * 1997-12-10 1998-12-29 Sandia Corporation Particle preconcentrator
US6171378B1 (en) 1999-08-05 2001-01-09 Sandia Corporation Chemical preconcentrator
US6455003B1 (en) * 1999-11-17 2002-09-24 Femtometrics, Inc. Preconcentrator for chemical detection
US6503298B1 (en) 2001-04-30 2003-01-07 Battelle Memorial Institute Apparatus and methods for hydrogen separation/purification utilizing rapidly cycled thermal swing sorption
US20040224422A1 (en) * 2002-09-27 2004-11-11 Ulrich Bonne Phased micro analyzer III, IIIA
US7000452B2 (en) * 2002-09-27 2006-02-21 Honeywell International Inc. Phased micro fluid analyzer
US6929678B2 (en) * 2003-05-19 2005-08-16 Teledyne Tekmar Company Purge and trap concentrator with improved drying
EP1634053A4 (en) * 2003-06-10 2010-02-24 Univ Louisville Res Found COLLECTION DEVICE HAVING DIRECT CIRCULATING SMALL SCALE ABSORBING PLATE
KR100687284B1 (ko) * 2005-11-30 2007-02-27 강성탁 히트파이프를 이용한 이중 유리관 집열장치
US7282676B1 (en) * 2006-01-27 2007-10-16 Sandia Corporation Integrating preconcentrator heat controller
US7727314B1 (en) 2006-01-31 2010-06-01 Sandia Corporation Methods for improved preconcentrators
US7430928B2 (en) * 2006-02-08 2008-10-07 Battelle Memorial Insititute Method and apparatus for concentrating vapors for analysis
US7799280B1 (en) * 2006-02-16 2010-09-21 Sandia Corporation Tortuous path chemical preconcentrator
US8117896B2 (en) * 2006-08-09 2012-02-21 Seacoast Science, Inc. Preconcentrators and methods of making and using the same
WO2008093590A1 (ja) * 2007-02-02 2008-08-07 Panasonic Corporation 発熱体ユニット及び加熱装置
US8137979B2 (en) * 2007-06-25 2012-03-20 Qinetiq Limited Preconcentrator device
US8088341B2 (en) 2007-07-25 2012-01-03 University Of Louisville Research Foundation, Inc. Analyte collection devices and methods
WO2010014950A1 (en) * 2008-07-31 2010-02-04 University Of Louisville Rasearch Foundation, Inc. Large volume analyte preconcentrator
CA2772319A1 (en) * 2009-08-27 2011-03-17 Pedro Ojeda Preconcentrating a sample

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655071A (ja) * 1992-06-07 1994-03-01 Seibu Giken:Kk 再生機能および賦活機能を内蔵したシート状収着体および収着用積層体
JP2004061391A (ja) * 2002-07-31 2004-02-26 T Hasegawa Co Ltd 揮発性化合物の識別装置及び該化合物の識別方法
US20070084347A1 (en) * 2005-09-30 2007-04-19 Owlstone Nanotech, Inc. 3D miniature preconcentrator and inlet sample heater
JP2009531698A (ja) * 2006-03-30 2009-09-03 スミスズ ディテクション−ワトフォード リミテッド 予濃縮器および検出装置
JP2008126138A (ja) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd ガス除去フィルタ
US20090090197A1 (en) * 2007-10-04 2009-04-09 Alan Finlay Pre-concentrator and sample interface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103561A1 (ja) * 2014-12-22 2016-06-30 パナソニックIpマネジメント株式会社 化学物質濃縮器および化学物質検出装置
JPWO2016103561A1 (ja) * 2014-12-22 2017-10-05 パナソニックIpマネジメント株式会社 化学物質濃縮器および化学物質検出装置
WO2017047041A1 (ja) * 2015-09-18 2017-03-23 パナソニック株式会社 化学物質濃縮器および化学物質検出装置
JPWO2017047041A1 (ja) * 2015-09-18 2018-07-05 パナソニック株式会社 化学物質濃縮器および化学物質検出装置
US10788406B2 (en) 2015-12-14 2020-09-29 Panasonic Corporation Chemical substance concentrator and chemical substance detector
WO2018079174A1 (ja) * 2016-10-31 2018-05-03 パナソニック株式会社 化学物質濃縮器および化学物質検出装置
JPWO2018079174A1 (ja) * 2016-10-31 2019-09-12 パナソニック株式会社 化学物質濃縮器および化学物質検出装置
US11169059B2 (en) 2016-10-31 2021-11-09 Panasonic Corporation Chemical substance concentrator and chemical substance detection device
WO2023239099A1 (ko) * 2022-06-08 2023-12-14 한국화학연구원 대기오염원 농축 및 파과 시스템

Also Published As

Publication number Publication date
US8784737B2 (en) 2014-07-22
CA2826873A1 (en) 2012-08-16
CN103380362B (zh) 2016-06-29
US20120223226A1 (en) 2012-09-06
EP2673616A1 (en) 2013-12-18
US9599547B2 (en) 2017-03-21
EP2673616B1 (en) 2015-07-01
US20150010442A1 (en) 2015-01-08
JP5991993B2 (ja) 2016-09-14
CA2826873C (en) 2019-04-02
WO2012109237A1 (en) 2012-08-16
CN103380362A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5991993B2 (ja) 化学分析装置内へ分析物を導入する方法
JP5792725B2 (ja) 試料の予備濃縮システム
EP3423821B1 (en) Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (gc) and gas chromatography-mass spectrometry (gcms)
US8191435B2 (en) Method and apparatus for concentrating vapors for analysis
JP2014504740A5 (ja)
US20080289397A1 (en) Portable analytical system for detecting organic chemicals in water
You et al. A portable gas chromatograph for real-time monitoring of aromatic volatile organic compounds in air samples
EP2663995B1 (en) Evacuating a sample chamber
WO2010090667A2 (en) Method, apparatus, and system for integrated vapor and particulate sampling
JP2009531698A (ja) 予濃縮器および検出装置
Lee et al. Micro gas preconcentrator using metal organic framework embedded metal foam for detection of low-concentration volatile organic compounds
JP2009257839A (ja) Voc迅速分析システムおよび分析方法
Sukaew et al. Evaluating the dynamic retention capacities of microfabricated vapor preconcentrators as a function of flow rate
Ricciardella et al. Analysis of a calibration method for non-stationary CVD multi-layered graphene-based gas sensors
WO2020250086A1 (en) A system for chemical analysis by means of gas-chromatographic separation and photoacoustic spectroscopy of samples mixtures
RU2730553C2 (ru) Способ увеличения концентрации газообразных примесей из воздуха и устройство для концентрирования примесей
Song et al. Development of a compact sample pre-concentration system for the detection of a trace amount of volatile organic compounds (VOCs)
Liu PREPARATION AND INTRODUCTION TECHNIQUES
Day et al. Ambient Volatile Organics Sensor Based on Mesoporous Silica Preconcentrator and a Photoionization Detector: Parametric Study and Simulations

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160816

R150 Certificate of patent or registration of utility model

Ref document number: 5991993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees