JP2014240376A - 多価グリシジル化合物の製造方法 - Google Patents

多価グリシジル化合物の製造方法 Download PDF

Info

Publication number
JP2014240376A
JP2014240376A JP2013245273A JP2013245273A JP2014240376A JP 2014240376 A JP2014240376 A JP 2014240376A JP 2013245273 A JP2013245273 A JP 2013245273A JP 2013245273 A JP2013245273 A JP 2013245273A JP 2014240376 A JP2014240376 A JP 2014240376A
Authority
JP
Japan
Prior art keywords
acid
compound
group
glycidyl ether
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013245273A
Other languages
English (en)
Other versions
JP6238699B2 (ja
Inventor
千佳 山下
Chika Yamashita
千佳 山下
圭孝 石橋
Yoshitaka Ishibashi
圭孝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2013245273A priority Critical patent/JP6238699B2/ja
Publication of JP2014240376A publication Critical patent/JP2014240376A/ja
Application granted granted Critical
Publication of JP6238699B2 publication Critical patent/JP6238699B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Resins (AREA)

Abstract

【課題】過酸化水素水溶液を酸化剤として用いて2−アルケニル基を有するグリシジルエーテル化合物の2−アルケニル基を酸化する際に、化合物にもともと存在するグリシジルエーテル基の加水分解などの副反応、加水分解に伴うゲル化などが抑制された、多価グリシジル化合物を効率的に製造できる方法を提供する。【解決手段】分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、少なくともリン酸を含む2種類以上の酸、及び第四級アンモニウム塩の存在下、グリシジルエーテル化合物を含む反応液のpHを1.0〜4.0に制御し、反応液へ過酸化水素水溶液を0.1〜2時間かけて添加し、過酸化水素水溶液の添加終了後、2〜6時間で反応を停止する。【選択図】なし

Description

本発明は、多価グリシジル(エポキシ)化合物の製造方法に関する。さらに詳しくは、硬度、強度、耐熱性に優れ、特に、電子材料分野に適した硬化性樹脂組成物の原料となる多価グリシジル化合物の製造方法に関する。
グリシジル(エポキシ)化合物は電気特性、接着性、耐熱性などに優れるために、塗料分野、土木分野、電気分野などの多くの用途で使用されている。特に、ビスフェノールA型ジグリシジルエーテル、ビスフェノールF型ジグリシジルエーテル、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などの芳香族グリシジル(エポキシ)化合物は、耐水性、接着性、機械物性、耐熱性、電気絶縁性、経済性などが優れることから種々の硬化剤と組み合わせて広く使用されている。
グリシジル化合物及び硬化剤を含む樹脂の物性を向上させるため、グリシジル化合物は目的物性に合うように分子設計される。例えば、ビスフェノールA型ジグリシジルエーテルにおいては、基本骨格のフェノール部位の芳香環を水素化し、脂肪族シクロヘキサン骨格に誘導することで、硬化物の光学特性(透明性)が向上する、又は硬化時の流動性が向上することが知られている。フェノールノボラック型エポキシ樹脂においては、グリシジル化合物の重合度、分子量分布などを調整することで、硬化時の流動性を変化させたり、硬化物の耐熱性、接着性などを制御したりすることができる。
グリシジル化合物及び硬化剤を含む樹脂の硬化物の耐熱性、接着性などを向上させる手法として、グリシジル化合物の多官能化が知られている。樹脂中の反応性官能基の密度(一分子あたりに含まれる官能基の量)を増加させることで、グリシジル化合物と硬化剤の間の反応架橋点を増加することができる。硬化物の単位体積当たりの架橋密度が増加するため、分子のミクロ運動が制御されて硬化物の外部影響に対する耐性が高まる。その結果、硬化物の耐熱性の向上、硬化物への剛性、接着性などの付与が可能となる。
グリシジル化合物の多官能化の一つの手法として、芳香環骨格を有するグリシジル化合物の芳香環骨格に2つ以上のグリシジル基を導入し、架橋密度を向上させる方法が知られている。例えば、特許文献1(特開昭63−142019号公報)には、ビスフェノールを基本骨格とする化合物のフェノール部位に結合したグリシジルエーテル基に対し、オルト位又はパラ位にグリシジル基を有する多価グリシジル化合物が金属への良好な接着性、低吸湿性、良好な機械的特性を有することが開示されている。これらの化合物は、ビスフェノール−Fなどのフェノール類を出発原料として、フェノールヒドロキシ基の2−アルケニル化、それによって生じた2−アルケニルエーテル基のクライゼン転位によるオルト位又はパラ位の2−アルケニル化、続くエピクロロヒドリンを用いるグリシジルエーテル化、及び側鎖2−アルケニル基の酸化(グリシジル化)により合成されている。
しかしながら、最終段階で行われる酸化(グリシジル化)反応においては、反応点である2−アルケニル基に対し、過酢酸、過ギ酸、m−クロロ過安息香酸、ペルオキソフタル酸などの有機過酸化物、又は過モリブデン酸、過バナジン酸、過タングステン酸などの無機過酸化物を化学当量以上必要とするため、目的物からこれら酸化剤の残渣を除去することが困難である、あるいは酸化剤のコストが高く、工業的に実現性に乏しい場合があった。
一方、2−アルケニル基を酸化する手法として、酸化剤に過酸化水素水溶液を用いる方法が知られている(特許文献2:特開昭60−60123号公報)。この手法によれば、微量の金属触媒存在下、フェニルアリルエーテル化合物を効率的に酸化することができる。ビスフェノールを基本骨格とする化合物のフェノール部位に結合したグリシジルエーテル基に対し、オルト位又はパラ位にグリシジル基を有する多価グリシジル化合物は、グリシジルエーテル基に対してオルト位又はパラ位に2−アルケニル基を有する対応する基質を酸化することで得ることができるが、過酸化水素水溶液を酸化剤として用いると、基質にもともと存在するグリシジルエーテル基が加水分解されるという問題がある。また、グリシジルエーテル基の加水分解反応により副生成物としてジオール化合物が生成するが、ジオール化合物は、ヒドロキシル基(親水部)が疎水性の主骨格(芳香環)に結合しているため、反応液中で分子同士が凝集しやすく、ゲル状物質を形成しやすい。これらゲル状物質は、反応後の後処理を煩雑とし、目的物の収率及び純度を低下させる要因となる。このように過酸化水素水溶液を酸化剤に用いて、グリシジルエーテル基に対してオルト位又はパラ位に2−アルケニル基を有する基質の2−アルケニル基をグリシジル化する場合、グリシジルエーテル基の加水分解などの副反応、及び加水分解に伴うゲル化などの制御が必要である。
特開昭63−142019号公報 特開昭60−60123号公報
本発明は、過酸化水素水溶液を酸化剤として用いて2−アルケニル基を有するグリシジルエーテル化合物の2−アルケニル基を酸化する際に、化合物にもともと存在するグリシジルエーテル基の加水分解などの副反応、加水分解に伴うゲル化などが抑制された、多価グリシジル化合物を効率的に製造できる方法を提供するものである。
本発明者らは、前記課題を解決するために鋭意研究し、実験を重ねた結果、基質として分子内に1つ以上のグリシジルエーテル基及び2つ以上の2−アルケニル基を有するグリシジルエーテル化合物を用い、触媒としてタングステン化合物、リン酸、及び第四級アンモニウム塩の存在下、過酸化水素水溶液を酸化剤として用いて酸化(グリシジル化)する際に、リン酸以外の酸を併用して反応液のpHを制御し、反応液への過酸化水素水溶液の添加時間及びその後の反応時間を所定の範囲に制御することにより、高効率かつ高純度で分子内に3つ以上のグリシジル基を有する多価グリシジル化合物を得ることができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下のとおりのものである。
[1]分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、少なくともリン酸を含む2種類以上の酸、及び第四級アンモニウム塩の存在下、前記グリシジルエーテル化合物を含む反応液のpHを1.0〜4.0に制御し、前記反応液へ過酸化水素水溶液を0.1〜2時間かけて添加し、過酸化水素水溶液の添加終了後、2〜6時間で反応を停止することを特徴とする多価グリシジル化合物の製造方法。
[2]前記グリシジルエーテル化合物が、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換のグリシジルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ前記置換又は非置換のグリシジルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物である[1]に記載の多価グリシジル化合物の製造方法。
[3]前記グリシジルエーテル化合物が、一般式(1):
Figure 2014240376
(式中、R及びRは、各々独立して、下記式(2)又は(3)で表され、Qは、各々独立して、式:−CR−で表されるアルキレン基、炭素数3〜12のシクロアルキレン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基、炭素数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R及びRは各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数3〜12のシクロアルキル基、又は炭素数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)及び(3)中のR、R、R、R、R及びR10は、各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数3〜12のシクロアルキル基又は炭素数6〜10のアリール基を表す。但し、複数のRの内少なくとも1つは式(2)で表され、複数のRの内少なくとも2つは式(3)で表される。)で表される化合物である[1]又は[2]のいずれかに記載の多価グリシジル化合物の製造方法。
Figure 2014240376
Figure 2014240376
[4]前記グリシジルエーテル化合物が、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、ビフェニルアラルキル型フェノール、フェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端にCHが結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、ORに対してRがオルト位又はパラ位に位置するグリシジルエーテル化合物である[3]に記載の多価グリシジル化合物の製造方法。
[5]前記タングステン化合物が、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物である[1]〜[4]のいずれかに記載の多価グリシジル化合物の製造方法。
[6]前記第四級アンモニウム塩の窒素原子に結合した置換基の炭素数の合計が6以上50以下である[1]〜[5]のいずれかに記載の多価グリシジル化合物の製造方法。
[7]リン酸以外の前記酸が、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸からなる群から選択される少なくとも一種の鉱酸又はベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸からなる群から選択される少なくとも一種の有機酸である[1]〜[6]のいずれかに記載の多価グリシジル化合物の製造方法。
本発明の多価グリシジル化合物の製造方法によれば、目的物から酸化剤由来残渣の除去が簡便化できるとともに、安価な過酸化水素水溶液を酸化剤として使用するため、製造コストを低減できる。また、反応液のpHを制御し、グリシジルエーテル基の加水分解に寄与する酸性水溶液と反応基質及び生成物との接触時間を制御することで、副生する加水分解物の生成量を低減することができ、高純度で多価グリシジル化合物を得ることができる。そのため、本発明により工業的に有用な多価グリシジル化合物を効率的に製造することができる。
実施例1で得られた生成物のH−NMRスペクトルである。 実施例2で得られた生成物のH−NMRスペクトルである。 実施例3で得られた生成物のH−NMRスペクトルである。 比較例4で得られた生成物のH−NMRスペクトル(下段)及び目的物(式(6))のH−NMRスペクトル(上段)である。
以下、本発明を詳細に説明する。本発明の多価グリシジル化合物の製造方法は、分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、少なくともリン酸を含む2種類以上の酸、及び第四級アンモニウム塩の存在下、前記グリシジルエーテル化合物を含む反応液のpHを1.0〜4.0に制御し、前記反応液へ過酸化水素水溶液を0.1〜2時間かけて添加し、過酸化水素水溶液の添加終了後、2〜6時間で反応を停止することを特徴とする。詳細は後述するが、本発明では分子内にもともと存在するグリシジルエーテル基の加水分解を最小限に抑制しつつ、2−アルケニル基を酸化(グリシジル化)することで多価グリシジル化合物を製造する。本明細書において「グリシジル基」とは、置換又は非置換のグリシジル基に加えてグリシジル骨格を有する置換又は非置換のグリシジルエーテル基をも含む。例えば、「3つ以上のグリシジル基」とは置換又は非置換のグリシジル基と置換又は非置換のグリシジルエーテル基の総数が3つ以上であることを意味する。本明細書において「グリシジルエーテル基」とは、グリシジルオキシ基を意味する。
本発明において酸化反応に用いられる反応基質は、分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物であれば特に制限はないが、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換のグリシジルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ置換又は非置換のグリシジルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物が比較的容易に入手できる点で好ましい。例えば、好適なグリシジルエーテル化合物として以下の一般式(1)で表される化合物が挙げられる。
Figure 2014240376
式中、R及びRは、各々独立して、下記式(2)又は(3)で表され、Qは、各々独立して、式:−CR−で表されるアルキレン基、炭素数3〜12のシクロアルキレン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基(例えば、2つの芳香環が結合してなるアリーレン基としてビフェニル骨格を有するアリーレン基が、3つの芳香環が結合してなるアリーレン基としてトリフェニル骨格を有するアリーレン基が挙げられる)、炭素数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R及びRは各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数3〜12のシクロアルキル基、又は炭素数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)及び(3)中のR、R、R、R、R及びR10は、各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数3〜12のシクロアルキル基又は炭素数6〜10のアリール基を表す。但し、複数のRの内少なくとも1つは式(2)で表され、複数のRの内少なくとも2つは式(3)で表される。なお、式(2)及び式(3)中の*は、酸素原子又は芳香環を構成する炭素原子との結合部であることを意味する。
Figure 2014240376
Figure 2014240376
上記一般式(1)で表される具体的なグリシジルエーテル化合物として、R及びRの好ましいものとしてはR〜R10が全て水素原子の式(2)又は式(3)で表される基が挙げられる。Qの好ましいものとしては、式:−CR−で表されるアルキレン基としてR及びRが各々独立して、水素原子、炭素数が1〜10のアルキル基、フェニル基、又はナフチル基であるものが挙げられる。炭素数3〜12のシクロアルキレン基の好ましいものとしてはシクロヘキシリデン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基の好ましいものとしてはフェニレン基、及びビフェニルジイル基が挙げられる。炭素数7〜12の二価の脂環式縮合環の好ましいものとしては二価のテトラヒドロジシクロペンタジエン環が挙げられる。これらを組み合わせた二価基の好ましいものとしては、−CH−Ph−Ph−CH−基(本明細書においてPhは無置換のベンゼン環を意味する)、及び−CH−Ph−CH−基が挙げられる。好ましい具体的な化合物としては、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、CH−Ph−Ph−CH骨格のビフェニルアラルキル型フェノール、CH−Ph−CH骨格のフェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端にCHが結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、ORに対してRがオルト位又はパラ位に位置するグリシジルエーテル化合物が挙げられる。また、上記一般式(1)で表されるグリシジルエーテル化合物以外のグリシジルエーテル化合物として、一般式(1)のフェノール骨格の代わりにナフタレン骨格を有する化合物、例えばナフタレンノボラックも挙げられる。
本発明の多価グリシジル化合物の製造方法においては、反応基質である上記グリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合を、過酸化水素水溶液を酸化剤として用いて酸化(グリシジル化)する。過酸化水素水溶液の濃度には特に制限はないが、一般的には約1〜約80質量%、好ましくは約20〜約60質量%の範囲から選ばれる。工業的な生産性の観点、及び分離の際の操作性・コストの点からは過酸化水素水溶液は高濃度のほうが好ましいが、一方で過度に高濃度の、及び/又は過剰量の過酸化水素水溶液を用いないほうが経済性、安全性などの観点で好ましい。
過酸化水素水溶液の使用量には特に制限はない。反応液中の過酸化水素濃度は反応の進行に伴い減少する。この減少に対し追添補充することにより反応液中の過酸化水素濃度を約0.1〜約30質量%、より好ましくは約5〜約10質量%の範囲内に保持することが好ましい。0.1質量%より少ないと生産性が悪くなり、一方、30質量%より多いと溶媒と水の混合組成中での爆発性が高まり危険となる場合がある。
過酸化水素水溶液の反応液への添加は、添加開始から0.1〜2時間の範囲で総量を逐次又は連続的に少量ずつ行う。添加は好ましくは0.5〜1.5時間の範囲で行う。過酸化水素水溶液の添加時間が長くなる(添加速度が遅い)と、系内の過酸化水素濃度が低下し、酸化反応の効率が低下するとともに、加水分解が競合して起こるおそれがある。なお、反応初期に反応液に多量の過酸化水素水溶液を一度に添加すると反応が急激に進行し危険な場合があるため、過酸化水素水溶液は反応液を撹拌しながら反応液の過酸化水素濃度について反応で消費されているのを確認しつつ滴下することにより加えることが好ましい。
過酸化水素水溶液の添加終了後も反応を継続する。反応液を撹拌しながら反応を継続することが好ましく、撹拌には磁気撹拌子又は撹拌翼を有するスターラーを用いることが好ましい。撹拌速度は一般に100〜2000rpmの範囲であり、好ましくは300〜1500rpmの範囲である。反応液は、反応基質であるグリシジルエーテル化合物単体、又は有機溶媒に溶解させたグリシジルエーテル化合物を含む有機層と、過酸化水素を含む水層の二相系であり、この二相がエマルジョン様となるよう撹拌することが望ましい。2−アルケニル基の炭素−炭素二重結合の酸化(グリシジル化)反応の進行に伴い、反応液の粘性は高まる。反応基質であるグリシジルエーテル化合物及び/又は生成物である多価グリシジル化合物のグリシジル基の加水分解及びゲル状物の副生を防ぐため、過酸化水素水溶液の添加終了後、2〜6時間の範囲で反応を継続した後、撹拌及び加熱を停止して酸化反応を完了する。2時間未満で反応を停止すると、反応基質のグリシジルエーテル化合物が多く含まれ、目的物の収率が低い。6時間より長く反応を継続すると、加水分解物が主生成物となり、場合によってはゲル状物が生成することから、反応液の後処理工程が煩雑となり、目的物の収率が大幅に低下する。
過酸化水素水溶液を用いた酸化(グリシジル化)は、タングステン化合物、少なくともリン酸を含む2種類以上の酸、及び第四級アンモニウム塩を含む触媒の存在下で実施することができる。これらの化合物は比較的安価であるため、過酸化水素を酸化剤として用いたグリシジルエーテル化合物の炭素−炭素二重結合の酸化を低コストで行うことができる。
触媒として用いるタングステン化合物としては、水中でタングステン酸アニオンを生成する化合物が好適であり、例えば、タングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物などが挙げられるが、タングステン酸、三酸化タングステン、リンタングステン酸、タングステン酸ナトリウム二水和物などが好ましい。これらタングステン化合物類は単独で使用しても2種以上を混合使用してもよい。
これらの水中でタングステン酸アニオンを生成する化合物の触媒活性は、タングステン酸アニオン1モルに対して、約0.2〜約0.8モルの対カチオンが存在したほうが高い。このようなタングステン組成物の調製法としては、例えばタングステン酸とタングステン酸のアルカリ金属塩を、タングステン酸アニオンと対カチオンが前記比率となるように混合してもよいし、タングステン酸をアルカリ化合物(アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩など)と混合するか、タングステン酸のアルカリ金属塩又はアルカリ土類金属塩とリン酸、硫酸などの鉱酸のような酸性化合物を組み合わせてもよい。これらの好ましい具体例としては、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物が挙げられる。
タングステン化合物の触媒としての使用量は、タングステン原子として、反応基質であるグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して、約0.0001〜約20モル%、好ましくは約0.01〜約20モル%の範囲から選ばれる。
触媒として用いる第四級アンモニウム塩としては、その窒素原子に結合した置換基の炭素数の合計が6以上50以下、好ましくは10以上40以下の第四級有機アンモニウム塩が、酸化(グリシジル化)反応の活性が高くて好ましい。
第四級アンモニウム塩としては、塩化トリオクチルメチルアンモニウム、塩化トリオクチルエチルアンモニウム、塩化ジラウリルジメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ラウリルジメチルベンジルアンモニウム、塩化トリカプリルメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化テトラブチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウムなどの塩化物;臭化トリオクチルメチルアンモニウム、臭化トリオクチルエチルアンモニウム、臭化ジラウリルジメチルアンモニウム、臭化ラウリルトリメチルアンモニウム、臭化ステアリルトリメチルアンモニウム、臭化ラウリルジメチルベンジルアンモニウム、臭化トリカプリルメチルアンモニウム、臭化ジデシルジメチルアンモニウム、臭化テトラブチルアンモニウム、臭化ベンジルトリメチルアンモニウム、臭化ベンジルトリエチルアンモニウムなどの臭化物;ヨウ化トリオクチルメチルアンモニウム、ヨウ化トリオクチルエチルアンモニウム、ヨウ化ジラウリルジメチルアンモニウム、ヨウ化ラウリルトリメチルアンモニウム、ヨウ化ステアリルトリメチルアンモニウム、ヨウ化ラウリルジメチルベンジルアンモニウム、ヨウ化トリカプリルメチルアンモニウム、ヨウ化ジデシルジメチルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化ベンジルトリメチルアンモニウム、ヨウ化ベンジルトリエチルアンモニウムなどのヨウ化物;リン酸水素化トリオクチルメチルアンモニウム、リン酸水素化トリオクチルエチルアンモニウム、リン酸水素化ジラウリルジメチルアンモニウム、リン酸水素化ラウリルトリメチルアンモニウム、リン酸水素化ステアリルトリメチルアンモニウム、リン酸水素化ラウリルジメチルベンジルアンモニウム、リン酸水素化トリカプリルメチルアンモニウム、リン酸水素化ジデシルジメチルアンモニウム、リン酸水素化テトラブチルアンモニウム、リン酸水素化ベンジルトリメチルアンモニウム、リン酸水素化ベンジルトリエチルアンモニウムなどのリン酸水素化物;硫酸水素化トリオクチルメチルアンモニウム、硫酸水素化トリオクチルエチルアンモニウム、硫酸水素化ジラウリルジメチルアンモニウム、硫酸水素化ラウリルトリメチルアンモニウム、硫酸水素化ステアリルトリメチルアンモニウム、硫酸水素化ラウリルジメチルベンジルアンモニウム、硫酸水素化トリカプリルメチルアンモニウム、硫酸水素化ジデシルジメチルアンモニウム、硫酸水素化テトラブチルアンモニウム、硫酸水素化ベンジルトリメチルアンモニウム、硫酸水素化ベンジルトリエチルアンモニウムなどの硫酸水素化物などが挙げられる。
これらの第四級アンモニウム塩は、単独で使用しても2種以上を混合使用してもよい。その使用量は反応基質のグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.0001〜約10モル%が好ましく、より好ましくは約0.01〜約10モル%の範囲から選ばれる。
本発明の多価グリシジル化合物の製造方法においては、助触媒としてリン酸を用いる。リン酸は、酸素原子が触媒金属であるタングステン金属中心に配位することで、活性種を生成する。また、リン酸以外の酸を併用することで反応液のpHを1.0〜4.0に制御する。反応液のpHは1.2〜3.8であることが好ましく、1.4〜3.5であることがより好ましい。反応液のpHが4.0より高いと反応速度が低下するため生産性が低下し、一方、1.0より低い場合、グリシジル基の加水分解が進行して収率が低下する傾向がある。リン酸の使用量は反応基質のグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.01〜約10モル%が好ましく、より好ましくは約0.1〜約10モル%の範囲から選ばれる。
リン酸以外の酸としては鉱酸又は有機酸のいずれも用いることができる。鉱酸の例としては、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸が挙げられる。有機酸の例としては、ベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸が挙げられる。その使用量は反応基質のグリシジルエーテル化合物の2−アルケニル基の炭素−炭素二重結合に対して約0.001〜約10モル%が好ましく、より好ましくは約0.01〜約10モル%の範囲から選ばれる。これらの酸の中でも緩衝効果が大きくpHを1.0〜4.0の範囲に保持しやすいため硫酸が好ましい。
グリシジル化反応において、有機溶媒を用いないか、必要に応じて有機溶媒を用いて、過酸化水素水溶液と前記した触媒とを混合し、反応基質のグリシジルエーテル化合物のグリシジル化反応を進行させることができる。溶媒を用いる場合には、反応速度が遅くなり、溶媒によっては加水分解反応などの望ましくない反応が進行しやすくなることがあるため、適切に選択する必要がある。反応基質のグリシジルエーテル化合物の粘度があまりに高い場合や固体である場合には必要最小限の有機溶媒を用いてもよい。用いることができる有機溶媒としては、芳香族炭化水素、脂肪族炭化水素、又は脂環式炭化水素が好ましく、例えばトルエン、キシレン、ヘキサン、オクタン、シクロヘキサンなどが挙げられる。濃度については必要最小限の使用に留めた方が製造コストなどの点で有利であり、有機溶媒の使用量はグリシジルエーテル化合物100質量部に対して好ましくは約300質量部以下、より好ましくは約100質量部以下である。
また、酸化(グリシジル化)反応において、工業的に安定に生産を行うことを考えると、触媒と基質を最初に反応器に仕込み、反応温度を極力一定に保ちつつ、過酸化水素水溶液については反応で消費されているのを確認しながら、徐々に加えていった方がよい。このような方法を採れば、反応器内で過酸化水素が異常分解して酸素ガスが発生したとしても、過酸化水素の蓄積量が少なく圧力上昇を最小限に留めることができる。
反応温度があまりに高いと副反応が多くなり、低すぎる場合には過酸化水素の消費速度が遅くなり、反応液中に蓄積することがあるので、反応温度は、好ましくは約40〜約100℃、より好ましくは約50℃〜約80℃の範囲で制御する。過酸化水素水溶液の添加及び添加終了後の反応のいずれも上記温度範囲で行うことが好ましい。例えば、過酸化水素水溶液の添加中は反応温度を低め(約50℃〜60℃)に設定し、添加速度を高くすることにより滴下時間を短くし、過酸化水素水溶液の添加終了後に反応温度を高め(約70℃〜80℃)の範囲に制御し、反応を進行させることで、酸化の効率を向上させることもできる。
反応終了後は、水層と有機層の比重差がほとんど無い場合があるが、その場合には水層に無機化合物の飽和水溶液を混合して、有機層と比重差をつけることにより有機抽出溶媒を使用しなくても二層分離を行うことができる。特にタングステン化合物の比重は重いので、水層を下層に持って来るために、本来触媒として必要な前記した使用量を超えるタングステン化合物を用いてもよい。この場合、水層からのタングステン化合物を再使用して、タングステン化合物の利用効率を高めることが望ましい。
また、逆に基質によっては有機層の比重が1.2近くとなるものもあるので、このような場合には水を追添して、水層の比重を1に近づけることにより、上層に水層、下層に有機層を持って来ることもできる。また、反応液の抽出にトルエン、シクロヘキサン、ヘキサン、塩化メチレンなどの有機溶媒を用いて抽出を実施することもでき、状況に応じて最適な分離方法を選択することができる。
このようにして水層と分離した有機層を濃縮後、蒸留、クロマト分離、再結晶や昇華などの通常の方法によって、得られた多価グリシジル化合物を取り出すことができる。
以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例に制限されるものではない。
合成例1:基質(4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジグリシジルエーテル])の合成
500mL三口丸底フラスコに、式(4)で表される4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール](大和化成株式会社製)100g(325mmol)、エピクロロヒドリン(東京化成工業株式会社製)135g(1.46mol)、及びメタノール(純正化学株式会社製)15.6g(487mmol)を入れ、溶解させた。70℃まで昇温した後、水酸化ナトリウム(和光純薬株式会社製)15.6g(390mmol)を粒状のまま3時間かけて添加し、添加終了後、80℃で3時間撹拌(撹拌速度400rpm)した。反応終了後、反応液を室温まで冷却した後、析出した塩がすべて溶解するまで純水を加え、分液処理した。有機層を分離し、有機溶媒を留去(70℃、50mmHg、2時間)した。得られた粗生成物を、メチルエチルケトン(東京化成工業株式会社製)133gに溶解し、70℃まで昇温した後、水酸化ナトリウム(和光純薬株式会社製)19.4g(487mmol)を粒状のまま添加し、1時間撹拌(撹拌速度400rpm)した。反応終了後、反応液を室温まで冷却した後、析出した塩がすべて溶解するまで純水を加え、分液処理した。有機層を分離し、有機溶媒を留去(70℃、50mmHg、2時間)し、式(5)で表される4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジグリシジルエーテル](130g、309mmol、95%収率)を主成分とする褐色液体を得た。この褐色液体のエポキシ当量(JIS−K7236規格に基づく)は220であり、H−NMR測定した結果、式(5)で表される化合物を主成分として含むことを確認した。式(5)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ1.64(6H,s,CH),δ2.75(2H,dd,PhOCHCHCHO),δ2.89(2H,dd,PhOCHCHCHO),δ3.35(6H,m,PhOCHCHO,PhC CH=CH),δ3.95(2H,dd,PhOCHCHCHO),δ4.19(2H,dd,PhOCHCHCHO),δ5.05(4H,m,PhCHCH=C ),δ5.97(2H,m,PhCH=CH),δ6.71(d,2H,aromatic),δ6.90−7.08(m,2H,aromatic),δ7.12−7.30(2H,m,aromatic).
Figure 2014240376
Figure 2014240376
実施例1:2,2−ビス(3−グリシジル−4−グリシジルオキシフェニル)プロパンの合成
500mL三口丸底フラスコに、上記合成例1で得られた4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェニルジグリシジルエーテル]81.1g(193mmol)、タングステン酸ナトリウム二水和物(日本無機化学工業株式会社製)6.37g(19.3mmol)、リン酸(和光純薬工業株式会社製)0.945g(9.6mmol)、硫酸(和光純薬工業株式会社製)0.940g(9.6mmol)、及び硫酸水素化トリオクチルメチルアンモニウム(MTOAHS、旭化学工業株式会社製)9.02g(19.3mmol)を入れ、トルエン(純正化学株式会社製)75gに溶解させた。70℃まで昇温した後、35質量%過酸化水素水溶液(菱江化成株式会社製)112.6g(1.160mol)を1時間かけて撹拌しながら滴下し、70℃でさらに2時間撹拌(撹拌速度400rpm)した。反応初期において、反応液のpHは1.4であり、2時間反応後の反応液のpHは3.2であった。反応終了後、反応液を室温まで冷却した後、純水75gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム(和光純薬工業株式会社製)を純水に溶解して調製した10質量%亜硫酸ナトリウム水溶液75gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水75gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去することにより、エポキシ化合物のエポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.09である生成物78.3g(173mmol、収率89.6%)を得た。収率は、(上記後処理後、目的とするエポキシ化合物を含む混合物の取得量/反応率100%で酸化反応が進行した際に得られる物質量)×100)として算出した。生成物のエポキシ当量が式(6)で表される化合物の理論エポキシ当量と近いことから、生成物中にグリシジル基の加水分解物を殆ど含まないことが示唆される。この生成物をH−NMR測定した結果、式(6)で表される化合物を主成分として含むことを確認した。式(6)で表される化合物に帰属する測定データは以下のとおりである。生成物のH−NMRスペクトルを図1に示す。
H−NMR{400MHz,CDCl,27℃},δ1.64(6H,s,CH),δ2.54(2H,m,PhCHCHCHO),δ2.7−2.8(6H,m,PhC CHCHHO,PhCHCHCHO),δ2.90(4H,m,PhOC CHCHO),δ3.17(2H,m,PhOCHCHCHO),δ3.35(2H,m,PhOCHCHCHO),δ3.95(2H,m,PhCHCHO),δ4.24(2H,dd,PhOCHCHO),δ6.74(d,2H,aromatic),δ7.02−7.05(m,4H,aromatic).
Figure 2014240376
合成例2:基質(オルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテル(BRG−556−ALEPと略記)の合成
2000mLの3つ口型フラスコに、炭酸カリウム(日本曹達株式会社製)171.1g(1.24mol)を純水155.6gに溶解した溶液、式(7)で表されるフェノールノボラック(ショウノール(登録商標)BRG−556、o=2〜7、平均値:5.1)(昭和電工株式会社製)500.0g、及び炭酸ナトリウム(関東化学株式会社製)65.61g(0.619mol、固体のまま)を仕込み、反応器を窒素置換し85℃に加熱した。窒素気流下、酢酸アリル(昭和電工株式会社製)272.7g(2.72mol)、トリフェニルホスフィン(北興化学工業株式会社製)3.247g(12.4mmol)、及び50%含水5%−Pd/C−STDタイプ(エヌ・イーケムキャット株式会社製)0.105g(0.0248mmol)を入れ、窒素雰囲気中、105℃に昇温して4時間反応させた後、酢酸アリル27.3g(0.273mol)を追添し、加熱を12時間継続した。その後撹拌を停止し、静置することで有機層と水層の二層に分離した。析出している塩が溶解するまで、純水(200g)を添加した後、トルエン200gを加え、80℃以上の温度に保持して白色沈殿が析出していないことを確認した後、Pd/Cを濾過(1ミクロンのメンブランフィルター(アドバンテック社製KST−142−JAを用いて加圧(0.3MPa))により回収した。この濾滓をトルエン100gで洗浄するとともに、水層を分離した。50℃以上で有機層を純水200gで2度洗浄し、水層が中性であることを確認した。有機層を分離後、減圧下、濃縮し、褐色油状物を得た(560g、定量的)。この褐色油状物をH−NMR測定した結果、式(8)で表されるフェノールノボラックアリルエーテル体(以下、BRG−556−ALと略記)を主成分として含むことを確認した。式(8)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.6−4.0(4H,m,PhCHPh),δ4.4−4.8(2H,m,C CH=CH),δ5.1−5.3(1H,m,CHCH=CH),δ5.3−5.5(1H,m,CHCH=CH),δ5.8−6.2(1H,m,CH=CH),δ6.6−7.3(12H,m,aromatic).
Figure 2014240376
Figure 2014240376
1000mLのナスフラスコに磁気撹拌子と、上記合成で得られたフェノールノボラックアリルエーテル体500gを入れ、窒素雰囲気下、190℃で加熱した。3時間後、冷却し、黒色固体を得た(550g、定量的)。この黒色固体をH−NMR測定した結果、式(9)で表されるフェノールノボラックアリル置換体(以下、BRG−556−CLと略記)を主成分として含むことを確認した。式(9)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.2−3.4(2H,m,C CH=CH),δ3.6−4.0(5H,m,PhCHPh,OH),δ4.6−5.0(1H,m,CHCH=CH),δ5.0−5.3(1H,m,CHCH=CH),δ5.8−6.1(1H,m,CH=CH),δ6.6−7.2(12H,m,aromatic).
Figure 2014240376
合成例1における4,4’−(ジメチルメチレン)ビス[2−(2−プロペニル)フェノール]を上記合成で得られたフェノールノボラックアリル置換体(BRG−556−CL)に変更した以外は合成例1同様にエピクロロヒドリンを用いてオルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテルを合成し茶褐色油状物を得た(収率96%)。この茶褐色油状物をH−NMR測定した結果、式(10)で表されるオルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテル(以下、BRG−556−ALEPと略記)を主成分として含むことを確認した。式(10)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ2.5−3.0(2H,m,PhOC CHCHO),δ3.2−3.4(2H,m,C CH=CH),δ3.4−3.6(2H,m,PhOCHCHC O),δ3.6−4.0(5H,m,PhCHPh,PhOCHCHO),δ4.9−5.1(2H,m,CHCH=CHH),δ5.8−6.1(1H,m,CH=CH),δ6.6−7.2(12H,m,aromatic).
Figure 2014240376
実施例2:フェノールノボラック型多価グリシジル化合物の合成
500mL三口丸底フラスコに、上記合成例2で得られたオルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテル(BRG−556−ALEP)75g(約400mmol)、タングステン酸ナトリウム二水和物13.1g(39.8mmol)、リン酸1.95g(19.8mmol)、硫酸1.94g(19.8mmol)、及びMTOAHS18.6g(39.8mmol)を入れ、トルエン75gに溶解させた。70℃まで昇温した後、35質量%過酸化水素水溶液232.2g(2.39mol)を1時間かけて撹拌しながら滴下し、70℃でさらに2時間撹拌(撹拌速度400rpm)した。反応初期において、反応液のpHは1.6であり、2時間反応後の反応液のpHは3.4であった。反応終了後、反応液を室温まで冷却した後、純水75gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム水溶液(10質量%)75gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水75gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去した。エポキシ当量が140、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.19である茶色高粘性油状生成物を56g(173mmol、収率74.7%)得た。この生成物をH−NMR測定した結果、式(11)で表されるフェノールノボラック型多価グリシジル化合物を主成分として含むことを確認した。式(11)で表される化合物に帰属する測定データは以下のとおりである。生成物のH−NMRスペクトルを図2に示す。
H−NMR{400MHz,CDCl,27℃},δ2.5−2.8(2H,m,PhOC CHCHO),δ2.8−3.0(4H,m,PhC CHCHO,PhCHCHC O),δ3.1−3.4(2H,m,PhOCHCHC O),δ3.6−4.0(6H,m,PhCHPh,PhOCHCHO,PhCHCHO),δ6.6−7.2(12H,m,aromatic).
Figure 2014240376
合成例3:基質(オルト位又はパラ位にアリル基を有するトリフェニルメタンノボラック(フェノールとベンズアルデヒドの重縮合物)グリシジルエーテル(TRI−220−ALEPと略記)の合成
原料としてショウノール(登録商標)BRG−556の代わりに式(12)で表されるトリフェニルメタンノボラック(ショウノール(登録商標)TRI−220、p=2〜7、平均値:3.1)(昭和電工株式会社製)500.0gを用いた以外は、合成例2のBRG−556−ALEPと同様に三段階で基質を合成した。まず、第一の工程でトリフェニルメタンノボラックアリルエーテル体(以下、TRI−220−ALと略記)を合成し茶褐色油状物を得た(収率94%)。この茶褐色油状物をH−NMR測定した結果、式(13)で表されるトリフェニルメタンノボラックアリルエーテル体を主成分として含むことを確認した。式(13)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.2−3.4(2H,m,PhCHPh),δ4.5−4.6(2H,m,C CH=CH),δ5.2−5.3(1H,m,CHCH=CH),δ5.3−5.5(1H,m,CHCH=CH),δ6.0−6.1(1H,m,CH=CH),δ6.6−7.3(17H,m,aromatic).
Figure 2014240376
Figure 2014240376
上記、BRG−556−ALEPの合成同様、第二の工程でトリフェニルメタンノボラックアリル置換体(以下、TRI−220−CLと略記)体を合成し褐色油状物を得た(収率98%)。この褐色油状物をH−NMR測定した結果、式(14)で表される化合物を主成分として含むことを確認した。式(14)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.2−3.4(2H,m,PhCHPh),δ4.8−4.9(1H,m,CHCH=CH),δ5.0−5.2(3H,m,CHCH=CH,CHCH=CH,CHCH=CH),δ5.8−6.1(1H,m,CH=CH),δ6.6−7.4(17H,m,aromatic).
Figure 2014240376
上記、BRG−556−ALEPと同様、第三の工程でトリフェニルメタンノボラック型グリシジルエーテル(以下、TRI−220−ALEPと略記)体を合成し褐色油状物を得た(収率98%)。この褐色油状物をH−NMR測定した結果、式(15)で表される化合物を主成分として含むことを確認した。式(15)で表される化合物に帰属する測定データは以下のとおりである。
H−NMR{400MHz,CDCl,27℃},δ3.0−3.2(2H,m,PhOC CHCHO),δ3.2−3.4(2H,m,C CH=CH),δ3.5−3.8(2H,m,PhOCHCHC O),δ3.9−4.2(5H,m,PhCHPh,PhOCHCHO),δ4.8−5.1(2H,m,CHCH=CHH),δ5.7−6.0(1H,m,CH=CH),δ6.6−7.4(17H,m,aromatic).
Figure 2014240376
実施例3:トリフェニルメタンノボラック型多価グリシジル化合物の合成
500mL三口丸底フラスコに、上記合成例3で得られたオルト位又はパラ位にアリル基を有するトリフェニルメタンノボラック型グリシジルエーテル(TRI−220−ALEP)75g(約240mmol)、タングステン酸ナトリウム二水和物7.90g(24.0mmol)、リン酸1.17g(11.9mmol)、硫酸1.16g(11.9mmol)、及びMTOAHS11.2g(24.0mmol)を入れ、トルエン75gに溶解させた。70℃まで昇温した後、35質量%過酸化水素水溶液140g(1.44mol)を1時間かけて撹拌しながら滴下し、70℃でさらに2時間撹拌(撹拌速度400rpm)した。反応初期において、反応液のpHは1.4であり、2時間反応後の反応液のpHは3.2であった。反応終了後、反応液を室温まで冷却した後、純水75gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム水溶液(10質量%)75gを加えて洗浄することで残存する過酸化水素を還元した。水層を除き、純水75gを加えて再度洗浄した。有機層を単離し、有機溶媒(トルエン)を留去した。エポキシ当量が188、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.09である茶色高粘性油状生成物を43g(約137mmol、収率57.3%)得た。生成物のエポキシ当量が式(16)で表される化合物の理論エポキシ当量と近いことから、生成物中にグリシジル基の加水分解物を殆ど含まないことが示唆される。この茶色高粘性油状物をH−NMR測定した結果、式(16)で表されるトリフェニルメタンノボラック型多価グリシジル化合物を主成分として含むことを確認した。式(16)で表される化合物に帰属する測定データは以下のとおりである。生成物のH−NMRスペクトルを図3に示す。
H−NMR{400MHz,CDCl,27℃},δ2.4−2.6(2H,m,PhOC CHCHO),δ2.6−2.8(4H,m,PhC CHCHO,PhCHCHC O),δ2.8−3.0(2H,m,PhOCHCHC O),δ3.0−3.3(2H,m,PhCHPh),δ3.8−4.0(2H,m,PhOCHCHO),δ4.1−4.3(2H,m,PhCHCHO),δ6.6−7.3(12H,m,aromatic).
Figure 2014240376
比較例1
過酸化水素水溶液添加終了後の反応時間を9時間とした以外は実施例1と同様にしてグリシジル化反応を行い、エポキシ当量が186、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.64である生成物23g(収率27.3%)を得た。反応を長時間行ったため、ゲル状物が生成し、目的物の取得収率が下がり、エポキシ当量比も上昇した。
比較例2
過酸化水素水溶液の滴下時間を3時間、過酸化水素水溶液添加終了後の反応時間を1時間とした以外は実施例1と同様にしてグリシジル化反応を行い、エポキシ当量が172、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.52である生成物43g(収率51.1%)を得た。滴下を長時間行い、過酸化水素水溶液添加終了後の反応時間を短縮すると、エポキシ当量比が上昇する。H−NMR{400MHz,CDCl,27℃}分析により、反応中間体であるアリル体含有率が実施例1に比べて約30%高いことが確認された。エポキシ当量比上昇の要因は反応効率が低いためと推定される。
比較例3
リン酸の量を2倍(1.89g(19.3mmol))とし、硫酸を共存させなかった以外は実施例1と同様にしてグリシジル化反応を行った。反応初期において、反応液のpHは1.8であり、2時間反応後の反応液のpHは5.8であった。エポキシ当量が158、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.40の生成物70g(収率83.3%)を得た。酸としてリン酸のみを使用すると、エポキシ当量比が上昇する。H−NMR{400MHz,CDCl,27℃}分析により、反応中間体であるアリル体含有率が実施例1に比べて約20%高いことが確認された。エポキシ当量比上昇の要因は反応効率が低いためと推定される。
比較例4
リン酸の量を10倍とし、反応液のpHを0.5程度に調整した以外は実施例1と同様にしてグリシジル化反応を行った。加水分解物と考えられる褐色状のゲル状物が多量に析出(159g、含水状)し、目的物を反応液から抽出することは困難であった。反応液は全体がゲル化し、粘稠なスポンジ状となった。ゲル状物をろ取して、酢酸エチル(50mL)、メタノール(50mL)で順次洗浄後、ろ紙で挟み溶媒分を吸収後、固形分を減圧下乾燥し、褐色固体を得た。得られた生成物のH−NMRスペクトルを図4に示す。下段が生成物のH−NMRスペクトルであり、上段が目的物(式(6))のH−NMRスペクトルである。生成物中の目的物に帰属される信号の含有率は10%以下であり、80%以上が加水分解物及びその会合物(ゲル状物)に帰属される。加水分解物に帰属されると推察できる信号データは以下のとおりである。
H−NMR{400MHz,DMSO−d,27℃}δ1.60(6H,s,CH),δ3.3−3.5(2H,brm,PhCHCH(O)CH(O),PhOCHCH(O)CH(O)),δ3.6(2H,brm,PhCHCH(OH)C (OH)),δ3.8(2H,m,PhOCHCH(OH)C (OH)),δ3.9(2H,brm,PhOCH(OH)CH(OH)),δ4.4(2H,brm,PhCH(OH)CH(OH)),δ4.6(2H,brm,PhOC CH(OH)CH(OH)),δ4.9(2H,brm,PhC CH(OH)CH(OH)),δ6.8(brm,2H,aromatic),δ6.9−7.1(m,4H,aromatic).
比較例5
リン酸及び硫酸の量をそれぞれ0.5倍とし、反応液のpHを5.0程度に調整した以外は実施例1と同様にグリシジル化反応を行い、エポキシ当量が222、エポキシ当量比(E/Er=実測によるエポキシ当量/理論エポキシ当量)が1.69の生成物72g(収率85.1%)を得た。反応液のpHを4.0より高くすると、エポキシ当量比が上昇する。H−NMR{400MHz,CDCl,27℃}分析により、反応中間体であるアリル体含有率が実施例1に比べて約30%高いことが確認された。エポキシ当量比上昇の要因は反応効率が低いためと推定される。
比較例6
リン酸を用いず代わりに硫酸を2倍量使用し、反応液のpHを約0.5に調整した以外は実施例1と同様にグリシジル化反応を行った。加水分解物と考えられるゲル状物が多量に析出(214g、含水状)し、目的物を反応液から抽出することは困難であった。収率の低下要因は比較例4同様、加水分解が起こったためと推定される。
比較例7
200mL三口丸底フラスコに、合成例2で得られたオルト位又はパラ位にアリル基を有するフェノールノボラック型グリシジルエーテル(BRG−556−ALEP)(昭和電工株式会社製)15g、m−クロロ過安息香酸(東京化成工業株式会社製)16.7g(96.6mmol)、ジクロロメタン(純正化学株式会社製)40gに溶解させた。25℃で12時間撹拌(撹拌速度400rpm)した。反応終了後、水15gを加え分液処理した。有機層を分離し、亜硫酸ナトリウム水溶液(10質量%、和光純薬工業株式会社製)15gを加えて洗浄することで残存する過酸化物を還元した。有機層を単離し、有機溶媒(ジクロロメタン)を留去した。シリカゲルカラムクロマトグラフィー(溶出溶媒:2:1ヘキサン−酢酸エチル→酢酸エチルのみ)にて、分離したが、いずれの分画においても、m−クロロ安息香酸の残渣が確認され、完全な分離が困難であった。
本発明の多価グリシジル化合物の製造方法によれば、置換又は非置換のグリシジルエーテル基及び置換又は非置換の2−アルケニル基を有する反応基質と過酸化水素水溶液との反応から、簡便な操作で安全に、高収率(グリシジルエーテル基の加水分解を抑制)かつ低コストで置換又は非置換の多価グリシジル化合物を製造できるため、工業的に有用である。

Claims (7)

  1. 分子内に1つ以上の置換又は非置換のグリシジルエーテル基及び2つ以上の置換又は非置換の2−アルケニル基を有するグリシジルエーテル化合物を、過酸化水素水溶液を酸化剤として用いて、触媒としてタングステン化合物、少なくともリン酸を含む2種類以上の酸、及び第四級アンモニウム塩の存在下、前記グリシジルエーテル化合物を含む反応液のpHを1.0〜4.0に制御し、前記反応液へ過酸化水素水溶液を0.1〜2時間かけて添加し、過酸化水素水溶液の添加終了後、2〜6時間で反応を停止することを特徴とする多価グリシジル化合物の製造方法。
  2. 前記グリシジルエーテル化合物が、分子内に芳香環を含み、芳香環に直結した1つ以上の置換又は非置換のグリシジルエーテル基と芳香環に直結した2つ以上の置換又は非置換の2−アルケニル基を有し、かつ前記置換又は非置換のグリシジルエーテル基に対してオルト位又はパラ位に置換又は非置換の2−アルケニル基が位置する化合物である請求項1に記載の多価グリシジル化合物の製造方法。
  3. 前記グリシジルエーテル化合物が、一般式(1):
    Figure 2014240376
    (式中、R及びRは、各々独立して、下記式(2)又は(3)で表され、Qは、各々独立して、式:−CR−で表されるアルキレン基、炭素数3〜12のシクロアルキレン基、炭素数6〜10の単独芳香環からなるアリーレン基若しくは2〜3の炭素数6〜10の芳香環が結合してなるアリーレン基、炭素数7〜12の二価の脂環式縮合環、又はこれらを組み合わせた二価基であり、R及びRは各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数3〜12のシクロアルキル基、又は炭素数6〜10のアリール基であり、nは0〜50の整数を表す。式(2)及び(3)中のR、R、R、R、R及びR10は、各々独立して、水素原子、炭素数1〜10のアルキル基、炭素数3〜12のシクロアルキル基又は炭素数6〜10のアリール基を表す。但し、複数のRの内少なくとも1つは式(2)で表され、複数のRの内少なくとも2つは式(3)で表される。)で表される化合物である請求項1又は2のいずれかに記載の多価グリシジル化合物の製造方法。
    Figure 2014240376
    Figure 2014240376
  4. 前記グリシジルエーテル化合物が、ビスフェノール−A、ビスフェノール−F、フェノールノボラック、トリフェニルメタンフェノール、ビフェニルアラルキル型フェノール、フェニルアラルキル型フェノール、又は無置換のテトラヒドロジシクロペンタジエン骨格のフェノール若しくは両端にCHが結合した無置換のテトラヒドロジシクロペンタジエン骨格のフェノールのいずれかの基本骨格を有し、ORに対してRがオルト位又はパラ位に位置するグリシジルエーテル化合物である請求項3に記載の多価グリシジル化合物の製造方法。
  5. 前記タングステン化合物が、タングステン酸ナトリウムとタングステン酸の混合物、タングステン酸ナトリウムと鉱酸の混合物、又はタングステン酸とアルカリ化合物の混合物である請求項1〜4のいずれか一項に記載の多価グリシジル化合物の製造方法。
  6. 前記第四級アンモニウム塩の窒素原子に結合した置換基の炭素数の合計が6以上50以下である請求項1〜5のいずれか一項に記載の多価グリシジル化合物の製造方法。
  7. リン酸以外の前記酸が、ポリリン酸、ピロリン酸、スルホン酸、硝酸、硫酸、塩酸、及びホウ酸からなる群から選択される少なくとも一種の鉱酸又はベンゼンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及びトリフルオロ酢酸からなる群から選択される少なくとも一種の有機酸である請求項1〜6のいずれか一項に記載の多価グリシジル化合物の製造方法。
JP2013245273A 2013-05-13 2013-11-27 多価グリシジル化合物の製造方法 Active JP6238699B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245273A JP6238699B2 (ja) 2013-05-13 2013-11-27 多価グリシジル化合物の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013101568 2013-05-13
JP2013101568 2013-05-13
JP2013245273A JP6238699B2 (ja) 2013-05-13 2013-11-27 多価グリシジル化合物の製造方法

Publications (2)

Publication Number Publication Date
JP2014240376A true JP2014240376A (ja) 2014-12-25
JP6238699B2 JP6238699B2 (ja) 2017-11-29

Family

ID=52139841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245273A Active JP6238699B2 (ja) 2013-05-13 2013-11-27 多価グリシジル化合物の製造方法

Country Status (1)

Country Link
JP (1) JP6238699B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094353A (ja) * 2014-11-12 2016-05-26 昭和電工株式会社 多価グリシジル化合物の製造方法
WO2018083881A1 (ja) * 2016-11-07 2018-05-11 昭和電工株式会社 多価グリシジル化合物の製造方法
EP3219708A4 (en) * 2014-11-12 2018-05-23 Showa Denko K.K. Process for producing polyvalent glycidyl compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060123A (ja) * 1983-09-13 1985-04-06 Sumitomo Chem Co Ltd エポキシ化物の製造法
JPS63142019A (ja) * 1986-12-02 1988-06-14 チバーガイギー アクチエンゲゼルシヤフト 多官能価エポキシド樹脂
JP2010235649A (ja) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd 精製エポキシ樹脂の製造方法
WO2011019061A1 (ja) * 2009-08-13 2011-02-17 昭和電工株式会社 ポリグリシジルエーテル化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060123A (ja) * 1983-09-13 1985-04-06 Sumitomo Chem Co Ltd エポキシ化物の製造法
JPS63142019A (ja) * 1986-12-02 1988-06-14 チバーガイギー アクチエンゲゼルシヤフト 多官能価エポキシド樹脂
JP2010235649A (ja) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd 精製エポキシ樹脂の製造方法
WO2011019061A1 (ja) * 2009-08-13 2011-02-17 昭和電工株式会社 ポリグリシジルエーテル化合物の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094353A (ja) * 2014-11-12 2016-05-26 昭和電工株式会社 多価グリシジル化合物の製造方法
EP3219708A4 (en) * 2014-11-12 2018-05-23 Showa Denko K.K. Process for producing polyvalent glycidyl compound
US10160737B2 (en) 2014-11-12 2018-12-25 Showa Denko K.K. Process for producing polyvalent glycidyl compound
WO2018083881A1 (ja) * 2016-11-07 2018-05-11 昭和電工株式会社 多価グリシジル化合物の製造方法
KR20190034610A (ko) * 2016-11-07 2019-04-02 쇼와 덴코 가부시키가이샤 다가 글리시딜 화합물의 제조 방법
JPWO2018083881A1 (ja) * 2016-11-07 2019-09-19 昭和電工株式会社 多価グリシジル化合物の製造方法
TWI679196B (zh) * 2016-11-07 2019-12-11 日商昭和電工股份有限公司 多價縮水甘油化合物的製造方法
KR102204653B1 (ko) 2016-11-07 2021-01-19 쇼와 덴코 가부시키가이샤 다가 글리시딜 화합물의 제조 방법

Also Published As

Publication number Publication date
JP6238699B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
TWI616442B (zh) 環氧化合物之製造方法及環氧化反應用觸媒組成物
JP4998271B2 (ja) フェノール樹脂及び樹脂組成物
JP6238701B2 (ja) 多価グリシジル化合物の製造方法
JP6238699B2 (ja) 多価グリシジル化合物の製造方法
KR20120000103A (ko) 에폭시수지, 에폭시수지 조성물 및 경화물
JP6692471B2 (ja) 硬化性樹脂組成物
JP6611729B2 (ja) 多価グリシジル化合物の製造方法
WO2011019061A1 (ja) ポリグリシジルエーテル化合物の製造方法
JP2011213716A (ja) ポリアリルオキシ化合物の製造方法及びポリグリシジルオキシ化合物の製造方法
KR101415113B1 (ko) 글리시딜에테르 화합물의 제조 방법 및 모노알릴모노글리시딜에테르 화합물
JP6351487B2 (ja) 多価グリシジル化合物の製造方法
JP2016094353A5 (ja)
JP5901521B2 (ja) エポキシ化合物の製造方法
JPH05247016A (ja) エポキシ化グリシジルエステル類の製造方法
JP5745258B2 (ja) グリシジルエーテル化合物の製造方法
JP2016204647A (ja) 多官能エポキシ樹脂及び中間体、エポキシ樹脂組成物、硬化物
JP6849971B2 (ja) シリコーン変性エポキシ樹脂およびその組成物と硬化物
JP2006028057A (ja) 液状エポキシ化合物の製造方法
JPWO2004078821A1 (ja) フルオロカーボン変性エポキシ樹脂
WO2011152251A1 (ja) 脂環式モノアリルエーテルモノグリシジルエーテル化合物
JP2001181227A (ja) 新規脂環基含有化合物及びその製造方法
JPH07165883A (ja) エポキシ樹脂及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350