JP2014218991A - Next-generation electric power supply system, and nest-generation electric power supply method - Google Patents

Next-generation electric power supply system, and nest-generation electric power supply method Download PDF

Info

Publication number
JP2014218991A
JP2014218991A JP2013109342A JP2013109342A JP2014218991A JP 2014218991 A JP2014218991 A JP 2014218991A JP 2013109342 A JP2013109342 A JP 2013109342A JP 2013109342 A JP2013109342 A JP 2013109342A JP 2014218991 A JP2014218991 A JP 2014218991A
Authority
JP
Japan
Prior art keywords
power
fluid
generator
pressure
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013109342A
Other languages
Japanese (ja)
Inventor
畑中 武史
Takeshi Hatanaka
武史 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013109342A priority Critical patent/JP2014218991A/en
Publication of JP2014218991A publication Critical patent/JP2014218991A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a next-generation electric power supply system and a next-generation electric power supply method, which have a small size and a high performance and can be produced at a low cost, which have a small occupation installation area and have high safety and reliability, and which can supply a safe electric power at a low cost over a long period of time.SOLUTION: A sealed power cycle circuit 15 is arranged with a fluid compressor 27, an instantaneous supercritical fluid generator 42, a movable piston 200 and a cooler 43. Said instantaneous supercritical fluid generator is heated by the pulse electric power which is generated by supplying a pulse power source 28 with the power storage of said power storage unit from an external power source 50. A low-temperature low-pressure working fluid is compressed by said fluid compressor. An electric generator 16 is supplied with the mechanical energy which has been generated by operating said movable piston with a supercritical fluid produced by bringing said high-pressure working fluid into contact with said instantaneous supercritical fluid which has been generated by bringing said high-pressure working fluid into contact with said instantaneous supercritical fluid generator, thereby to generate a generated electric power. Thus, there are provided a next-generation electric power supply system and a next-generation electric power supply method.

Description

本発明は電力供給システム及び電力供給方法に関し、特に、次世代電力供給システム及び次世代電力供給方法に関する。  The present invention relates to a power supply system and a power supply method, and more particularly to a next generation power supply system and a next generation power supply method.

近年、電力不足が深刻な問題となり、その有効な解決策として商用電源等の外部電源の夜間の余剰電力を圧力エネルギーに変換して、ピーク電力需要時に該圧力エネルギーを電気エネルギーに変換するようにした電力供給システムが注目され、圧縮空気や液圧等の圧力エネルギーを利用した電力供給システムが提案されている。  In recent years, power shortage has become a serious problem, and as an effective solution, the nighttime surplus power of an external power source such as a commercial power source is converted into pressure energy, and the pressure energy is converted into electric energy at peak power demand. Attention has been paid to such power supply systems, and power supply systems using pressure energy such as compressed air and hydraulic pressure have been proposed.

特許文献1には、地上に通常圧液体用アキュムレータを配置するとともに地下に高圧液体アキュムレータを設け、圧縮機を介して圧縮空気を地下の高圧液体アキュムレータに供給して高圧液体アキュムレータ内の空気を圧縮し、その空圧エネルギーを利用して地下の高圧液体アキュムレータから液体を地上の通常圧液体用アキュムレータに移動させ、この時発生する液圧でポンプ兼タービンを駆動してモータ兼発電機により発電するようにした蓄電及び電気エネルギー回収システムが提案されている。  In Patent Document 1, an accumulator for normal pressure liquid is disposed on the ground and a high pressure liquid accumulator is provided underground, and compressed air is supplied to the underground high pressure liquid accumulator via the compressor to compress the air in the high pressure liquid accumulator. Then, using the pneumatic energy, the liquid is transferred from the underground high-pressure liquid accumulator to the ground normal-pressure liquid accumulator, and the pump / turbine is driven by the generated hydraulic pressure to generate power by the motor / generator. A power storage and electrical energy recovery system has been proposed.

特許文献2には、揚水発電のように、地層に近い場所に上部帯水層を設けると共に地下の深い場所に下部帯水層を設け、モニター中の電力系統の使用電力量が所定値以下の場合にポンプ兼モータを駆動して下部帯水層の水を上部帯水層に揚水し、モニター中の電力系統の使用電力量が所定値を下回った場合に、上部帯水層から下部帯水層に落下させる水の運動エネルギーを利用してタービン発電機を駆動することで発電するようにした揚水発電型電力供給システムが提案されている。  In Patent Document 2, an upper aquifer is provided in a place close to the formation, as in a pumped storage power generation, and a lower aquifer is provided in a deep underground place, and the amount of power used by the power system being monitored is less than a predetermined value. If the pump / motor is driven to pump water from the lower aquifer to the upper aquifer, and the amount of power used by the power system being monitored falls below the specified value, the lower aquifer is There has been proposed a pumped-storage power supply system that generates power by driving a turbine generator using the kinetic energy of water that is dropped into a layer.

米国公開特許公報第2010/0270801号US Published Patent Application No. 2010/0270801 米国特許第7952219号U.S. Pat. No. 7,952,219

ところで、特許文献1で開示された蓄電及び電気エネルギー回収システムでは、地上のみならず地下にも大規模な高圧液体アキュムレータの工事が必要であり、必然的に大きな設置面積を必要とし、システム全体の製造コストが著しく高いものとなっていた。しかも、作動媒体として利用される空気は密度が低いため、蓄電容器から圧縮空気を取り出すと、圧縮空気の圧力エネルギーは急激に低下し、長期に亘って安定した電力を供給することが困難であった。  By the way, in the electrical storage and electrical energy recovery system disclosed in Patent Document 1, it is necessary to construct a large-scale high-pressure liquid accumulator not only on the ground but also on the ground, which inevitably requires a large installation area, The manufacturing cost was extremely high. Moreover, since the density of the air used as the working medium is low, when the compressed air is taken out from the storage container, the pressure energy of the compressed air rapidly decreases and it is difficult to supply stable power over a long period of time. It was.

特許文献2で開示された揚水発電型電力供給システムでは、所望の安定した電力をピーク電力需要時間帯において長時間に亘って安定して得るためには、地上近辺の地中と深い地下の両方の場所において広大な設置面積を必要とし、しかも、大規模な帯水槽を工事しなければならず、工事費用面並びに環境面から実用的ではなかった。  In the pumped-storage power supply system disclosed in Patent Document 2, in order to stably obtain desired stable power over a long period of time during peak power demand time, both underground and deep underground near the ground In addition, a large installation area is required at this location, and a large aquarium has to be constructed, which is not practical in terms of construction cost and environment.

本発明は、かかる従来の問題点に鑑みてなされたもので、小型高性能で低コスト生産が可能であり、占有設置面積が小さく、しかも、安全で信頼性が高く、大容量蓄電ユニットを用いることなく、長期に亘って安定した電力を低コストで供給可能な次世代電力供給システム及び次世代電力供給方法を提供することを目的とする。  The present invention has been made in view of such conventional problems, and is capable of small size, high performance and low cost production, has a small footprint, and is safe and reliable, and uses a large-capacity power storage unit. An object of the present invention is to provide a next-generation power supply system and a next-generation power supply method capable of supplying stable power over a long period of time at a low cost.

第1発明によれば、次世代電力供給システムにおいて、密閉動力サイクル回路に流体圧縮機と、瞬間超臨界流体発生器と、可動ピストンと、冷却器とを配置し、外部電源から供給された蓄電用電力を蓄電ユニットに充電し、該蓄電ユニットの蓄電電力をパルス電源に供給することでパルス電力を生成し、該パルス電力により当該瞬間超臨界流体発生器を加熱させ、該流体圧縮機により低温低圧作動流体を圧縮し、該高圧作動流体を該瞬間超臨界流体発生器に接触させることにより超臨界流体を生成し、当該超臨界流体により該可動ピストンを作動させて膨張ガスを生成しながら機械エネルギーを発生させ、該膨張ガスを該冷却器により冷却して該低温低圧作動流体を再生して当該密閉動力サイクル回路に循環させ、該機械エネルギーを発電機に供給して発電電力を生成することを特徴とする。  According to the first invention, in the next-generation power supply system, the fluid compressor, the instantaneous supercritical fluid generator, the movable piston, and the cooler are arranged in the sealed power cycle circuit, and the electric power supplied from the external power source The electric power is charged into the power storage unit, and the electric power stored in the power storage unit is supplied to the pulse power source to generate pulse power. The instantaneous supercritical fluid generator is heated by the pulse power, and the fluid compressor is A machine that compresses a low-pressure working fluid, contacts the high-pressure working fluid with the instantaneous supercritical fluid generator to generate a supercritical fluid, and operates the movable piston with the supercritical fluid to generate an expansion gas. Generating energy, cooling the expansion gas by the cooler, regenerating the low-temperature low-pressure working fluid and circulating it to the sealed power cycle circuit, and supplying the mechanical energy to the generator Wherein the feed to produce a generated power.

請求項2に記載された発明によれば、請求項1記載の構成に加えて、好ましくは、該流体圧縮機から供給された高圧作動流体をバッファアキュムレータで一時的に蓄圧することにより該流体圧縮機と該瞬間超臨界流体発生器との間の第一圧力経路を第一所定圧に維持し、該可動ピストンの低圧側と該流体圧縮機のインレット側との間の第二圧力経路を第一所定圧よりも低い第二所定圧に維持し、該バッファアキュムレータから当該瞬間超臨界流体発生器に供給される高圧作動流体の供給タイミングを制御弁により制御することを特徴とする。  According to the invention described in claim 2, in addition to the structure described in claim 1, preferably, the high-pressure working fluid supplied from the fluid compressor is temporarily stored in the buffer accumulator to compress the fluid. A first pressure path between the compressor and the instantaneous supercritical fluid generator is maintained at a first predetermined pressure, and a second pressure path between the low pressure side of the movable piston and the inlet side of the fluid compressor is The second predetermined pressure lower than the one predetermined pressure is maintained, and the supply timing of the high-pressure working fluid supplied from the buffer accumulator to the instantaneous supercritical fluid generator is controlled by a control valve.

請求項3に記載された発明によれば、請求項1又は2記載の構成に加えて、次世代電力供給システムが、好ましくは、さらに、該動力サイクル回路と熱的に結合させてヒートポンプ回路を配置し、該機械エネルギーの一部により当該ヒートポンプ回路を作動させることで高圧冷媒を生成し、該高圧冷媒を膨張させることにより冷熱を生成する熱交換器を備え、当該冷却器が該熱交換器を備えていて該熱交換器で生成した冷熱により当該膨張ガスを冷却することを特徴とする。  According to the third aspect of the present invention, in addition to the configuration of the first or second aspect, the next generation power supply system preferably further includes a heat pump circuit that is thermally coupled to the power cycle circuit. A heat exchanger configured to generate a high-pressure refrigerant by operating the heat pump circuit with a part of the mechanical energy, and to generate cold heat by expanding the high-pressure refrigerant, the cooler being the heat exchanger The expansion gas is cooled by the cold generated by the heat exchanger.

請求項4に記載された発明によれば、請求項3に記載の構成に加えて、次世代電力供給システムが、好ましくは、さらに、該作動流体及び該冷媒として該密閉動力サイクル回路と該ヒートポンプ回路とにそれぞれ該第一及び第二所定圧で二酸化炭素を封入し、該ヒートポンプ回路において当該機械エネルギーを冷媒圧縮機に供給して該高圧冷媒を生成し、該流体圧縮機と該冷媒圧縮機を超臨界状態で作動させることを特徴とする。  According to the invention described in claim 4, in addition to the configuration described in claim 3, the next-generation power supply system preferably further includes the sealed power cycle circuit and the heat pump as the working fluid and the refrigerant. Carbon dioxide is sealed in the circuit at the first and second predetermined pressures, respectively, and the mechanical energy is supplied to the refrigerant compressor in the heat pump circuit to generate the high-pressure refrigerant, and the fluid compressor and the refrigerant compressor Is operated in a supercritical state.

請求項5に記載された第2発明によれば、次世代電力供給方法が、密閉動力サイクル回路に流体圧縮機と、瞬間超臨界流体発生器と、可動ピストンと、冷却器とを配置し、外部電源から供給された蓄電用電力を蓄電ユニットに充電し、該蓄電ユニットの蓄電電力をパルス電源に供給することでパルス電力を生成し、該パルス電力により当該瞬間超臨界流体発生器を加熱させ、該流体圧縮機により低温低圧作動流体を圧縮し、該高圧作動流体を該瞬間超臨界流体発生器に接触させることにより超臨界流体を生成し、当該超臨界流体により該可動ピストンを作動させて膨張ガスを生成しながら機械エネルギーを発生させ、該膨張ガスを該冷却器により冷却して該低温低圧作動流体を再生して当該密閉動力サイクル回路に循環させ、該機械エネルギーを発電機に供給して発電電力を生成することを特徴とする。  According to the second invention described in claim 5, the next generation power supply method includes a fluid compressor, an instantaneous supercritical fluid generator, a movable piston, and a cooler disposed in a sealed power cycle circuit, Charging power storage power supplied from an external power supply to a power storage unit, generating pulse power by supplying the power stored in the power storage unit to a pulse power supply, and heating the instantaneous supercritical fluid generator with the pulse power Compressing a low-temperature low-pressure working fluid with the fluid compressor, bringing the high-pressure working fluid into contact with the instantaneous supercritical fluid generator to generate a supercritical fluid, and operating the movable piston with the supercritical fluid. Mechanical energy is generated while generating an expansion gas, the expansion gas is cooled by the cooler, the low-temperature low-pressure working fluid is regenerated and circulated through the sealed power cycle circuit, and the mechanical energy is generated. Characterized by supplying to the generator to produce a generated power to.

請求項6に記載された発明によれば、請求項5記載の構成に加えて、次世代電力供給方法において、好ましくは、さらに、該発電機の発電電力の一部或いは該機械エネルギーの一部をオルタネータに供給して作動させることにより得た発電電力を当該蓄電ユニットに充電することを特徴とする。  According to the invention described in claim 6, in addition to the configuration described in claim 5, in the next-generation power supply method, preferably, a part of the generated power of the generator or a part of the mechanical energy is further provided. Is supplied to the alternator and the generated power obtained by operating the generator is charged in the power storage unit.

請求項1記載の第1発明では、外部電源等から供給された蓄電用電力を蓄電ユニットに蓄電しておき、蓄電ユニットの蓄電電力をパルス電源に供給することでパルス電力を生成する。該パルス電力により当該瞬間超臨界流体発生器を加熱させ、該流体圧縮機により低温低圧作動流体を圧縮し、該高圧作動流体を該瞬間超臨界流体発生器に接触させることにより超臨界流体を生成する。当該超臨界流体により該可動ピストンを作動させて膨張ガスを生成しながら機械エネルギーを発生させる。該膨張ガスを該冷却器により冷却して該低温低圧作動流体を再生して当該密閉動力サイクル回路に循環させ、該機械エネルギーを発電機に供給して発電電力を生成する。超臨界流体は高温高圧となるため、可動ピストンの正味平均有効圧力は少なくとも450Kg/cm以上の極めて高い圧力となる。現存のレーシングエンジンで、1つの基準とされる正味平均有効圧力がエンジンの最高出力時において13Kg/cmであることと比較すれば、この可動ピストンの正味平均有効圧力が如何に突出して大きいかが分かる。このようにして発生させた機械エネルギーによって発電機を駆動して発電電力を得る。瞬間超臨界流体発生器は5〜24ボルトの電圧で、消費電流は50〜200アンペアで済むため、蓄電ユニットは小さな容量で済む。したがって、夜間電力若しくは再生可能エネルギー発電装置の発電電力を利用して、ピーク電力需要時間帯に安定した電力を長期に渡って供給することができる。この次世代電力供給システムは数Kw〜数十Kwクラスの家庭用及び小規模電力需要家を始め、数百〜数千メガワットクラスの大型ビル、鉄道施設、上下水道施設及び大規模工場等の大電力需要家にいたるまで広い用途を有する。このように、本発明の次世代電力供給システムは、所謂、ゼロエネルギービル、ゼロエネルギー住宅、ゼロエネルギー工場やゼロエネルギー移動体(電気推進移動体)の実用化が可能となると共に地球環境対策に貢献する。According to the first aspect of the present invention, the power for storage supplied from an external power source or the like is stored in the power storage unit, and the power stored in the power storage unit is supplied to the pulse power source to generate the pulse power. The instantaneous supercritical fluid generator is heated by the pulse power, the low-temperature and low-pressure working fluid is compressed by the fluid compressor, and the high-pressure working fluid is brought into contact with the instantaneous supercritical fluid generator to generate a supercritical fluid. To do. Mechanical energy is generated while the movable piston is operated by the supercritical fluid to generate expansion gas. The expansion gas is cooled by the cooler to regenerate the low-temperature low-pressure working fluid and circulate it in the sealed power cycle circuit, and supply the mechanical energy to a generator to generate generated power. Since the supercritical fluid has a high temperature and a high pressure, the net average effective pressure of the movable piston is an extremely high pressure of at least 450 kg / cm 2 or more. Compared with existing racing engines, the net average effective pressure, which is one standard, is 13 Kg / cm 2 at the maximum output of the engine. I understand. The generator is driven by the mechanical energy generated in this way to obtain generated power. Since the instantaneous supercritical fluid generator has a voltage of 5 to 24 volts and a current consumption of 50 to 200 amperes, the power storage unit requires a small capacity. Therefore, it is possible to supply stable power over a long period of time during peak power demand hours using nighttime power or power generated by a renewable energy power generation device. This next-generation power supply system is used for large-scale buildings, railway facilities, water and sewage facilities, large-scale factories, etc. of several hundred to several thousand megawatts, including households and small-scale electric power consumers of several Kw to several tens of Kw class. It has a wide range of uses up to power consumers. As described above, the next-generation power supply system of the present invention enables practical use of so-called zero energy buildings, zero energy houses, zero energy factories and zero energy mobile bodies (electrically propelled mobile bodies), and is a countermeasure for the global environment. To contribute.

請求項2記載の構成では、該流体圧縮機と該瞬間超臨界流体発生器との間の第一圧力経路を第一所定圧に維持し、該可動ピストンの低圧側と該流体圧縮機のインレット側との間の第二圧力経路を第一所定圧よりも低い第二所定圧に維持することで、高圧超臨界流体を容易に生成し、可動ピストンのエネルギー変換効率を向上させている。しかも、バッファアキュムレータにより当該瞬間超臨界流体発生器に供給される高圧作動流体の脈動を抑制しているため、発電機の回転ムラを少なくすることで発電機の出力電圧がより安定化して発電電力の品質を向上させることが可能となる。  3. The configuration according to claim 2, wherein the first pressure path between the fluid compressor and the instantaneous supercritical fluid generator is maintained at a first predetermined pressure, and the low pressure side of the movable piston and the inlet of the fluid compressor By maintaining the second pressure path between the second pressure path and the second predetermined pressure lower than the first predetermined pressure, a high-pressure supercritical fluid is easily generated, and the energy conversion efficiency of the movable piston is improved. Moreover, since the pulsation of the high-pressure working fluid supplied to the instantaneous supercritical fluid generator is suppressed by the buffer accumulator, the generator output voltage becomes more stable by reducing the rotation unevenness of the generator, and the generated power It becomes possible to improve the quality.

請求項3記載の構成では、密閉動力サイクル回路と熱的に結合したヒートポンプ回路によって冷媒から極低温(例えば、−10℃)の冷熱を発生させ、この極低温冷熱により可動ピストンの膨張ガスを冷却する。その結果、可動ピストンの機械変換効率が飛躍的に向上する。そのため、次世代電力供給システムの運転効率を飛躍的に向上させて次世代電力供給システムの小型高性能化と低コスト化がさらに容易となる。  According to a third aspect of the present invention, cryogenic (for example, −10 ° C.) cold is generated from the refrigerant by the heat pump circuit thermally coupled to the sealed power cycle circuit, and the expansion gas of the movable piston is cooled by the cryogenic cold. To do. As a result, the mechanical conversion efficiency of the movable piston is dramatically improved. Therefore, the operation efficiency of the next-generation power supply system is dramatically improved, and the next-generation power supply system can be further reduced in size, performance, and cost.

請求項4記載の構成では、作動流体及び冷媒として共通の媒体を使用し、密閉動力サイクル回路とヒートポンプ回路とにそれぞれ所定圧で封入したオゾン層破壊係数がゼロで地球温暖化係数が1の自然冷媒である二酸化炭素(CO2)を利用している。二酸化炭素(CO2)は経年変化による運転効率の低下がなく、保守点検の頻度数も大幅に低減できる。また、密閉動力サイクル回路とヒートポンプ回路において、作動流体と冷媒として共通の媒体を循環利用するため、これら成分を消費しない。したがって、ランニングコストを大幅に削減して、安定した電力を低コストで供給することができる。  In the configuration of claim 4, a common medium is used as the working fluid and the refrigerant, and each of the sealed power cycle circuit and the heat pump circuit is sealed at a predetermined pressure, and the natural ozone with a global warming potential of 1 is zero. Carbon dioxide (CO2), which is a refrigerant, is used. Carbon dioxide (CO2) does not deteriorate in operating efficiency due to secular change, and the frequency of maintenance inspections can be greatly reduced. Further, in the sealed power cycle circuit and the heat pump circuit, since a common medium is circulated and used as the working fluid and the refrigerant, these components are not consumed. Therefore, the running cost can be greatly reduced, and stable power can be supplied at a low cost.

請求項5記載に記載された第2発明によれば、次世代電力供給方法において、密閉動力サイクル回路に流体圧縮機と、瞬間超臨界流体発生器と、可動ピストンと、冷却器とを配置し、外部電源から供給された蓄電用電力を蓄電ユニットに充電し、該蓄電ユニットの蓄電電力をパルス電源に供給することでパルス電力を生成する。該パルス電力により当該瞬間超臨界流体発生器を加熱させ、該流体圧縮機により低温低圧作動流体を圧縮し、該高圧作動流体を該瞬間超臨界流体発生器に接触させることにより超臨界流体を生成する。当該超臨界流体により該可動ピストンを作動させて膨張ガスを生成しながら機械エネルギーを発生させる。該膨張ガスを該冷却器により冷却して該低温低圧作動流体を再生して当該密閉動力サイクル回路に循環させ、該機械エネルギーを発電機に供給して発電電力を生成する。この発明によれば、夜間電力等の余剰電力を小容量の蓄電ユニットに充電しておいて、該蓄電ユニットの蓄電電力を利用して発電機を作動させて発電電力を生成しているため、昼間のピーク電力時間帯に低コストで安定した電力を供給することができる。  According to the second invention described in claim 5, in the next generation power supply method, a fluid compressor, an instantaneous supercritical fluid generator, a movable piston, and a cooler are arranged in a sealed power cycle circuit. Then, the power for power storage supplied from the external power source is charged in the power storage unit, and the power stored in the power storage unit is supplied to the pulse power source to generate pulse power. The instantaneous supercritical fluid generator is heated by the pulse power, the low-temperature and low-pressure working fluid is compressed by the fluid compressor, and the high-pressure working fluid is brought into contact with the instantaneous supercritical fluid generator to generate a supercritical fluid. To do. Mechanical energy is generated while the movable piston is operated by the supercritical fluid to generate expansion gas. The expansion gas is cooled by the cooler to regenerate the low-temperature low-pressure working fluid and circulate it in the sealed power cycle circuit, and supply the mechanical energy to a generator to generate generated power. According to this invention, surplus power such as nighttime power is charged in a small-capacity storage unit, and the generator is operated using the stored power of the storage unit to generate generated power. Stable power can be supplied at low cost during the daytime peak power hours.

請求項6記載の構成では、該発電機の発電電力の一部或いは該機械エネルギーの一部をオルタネータに供給して作動させることにより得た発電電力を当該蓄電ユニットに充電する。そのため、当該蓄電ユニットの蓄電電力をパルス電源に長期に亘って供給可能となり、当該蓄電ユニットの容量を増大させることなく、発電機を超臨界流体により長期に亘って作動させることができ、安定した電力を供給することができる  In the configuration according to claim 6, the power storage unit is charged with power generated by supplying a part of the generated power of the generator or a part of the mechanical energy to the alternator and operating the generator. Therefore, the stored power of the power storage unit can be supplied to the pulse power supply for a long period of time, and the generator can be operated for a long time by the supercritical fluid without increasing the capacity of the power storage unit. Can supply power

本発明の実施例による次世代電力供給方法を実行するための次世代電力供給システムのブロック図を示す。1 shows a block diagram of a next generation power supply system for executing a next generation power supply method according to an embodiment of the present invention. FIG. 図1の次世代電力供給システムの圧縮機の断面図を示す。The sectional view of the compressor of the next-generation electric power supply system of Drawing 1 is shown. 図1の次世代電力供給システムの瞬間超臨界流体発生器の断面図を示す。FIG. 2 shows a cross-sectional view of an instantaneous supercritical fluid generator of the next generation power supply system of FIG. 1.

以下、図面に基づき、本発明による次世代電力供給システムの実施例について詳細に説明する。図1に示した実施例において、次世代電力供給システム10は定置型構造のものとして図示しているが、太陽光発電装置や風力発電装置等の外部電源と組み合わせることにより、車両、船舶、航空機、鉄道機関車、宇宙往還機、飛行船等の移動体の電気設備用或いは電気推進装置用電源として適用しても良い。  Embodiments of a next-generation power supply system according to the present invention will be described below in detail with reference to the drawings. In the embodiment shown in FIG. 1, the next-generation power supply system 10 is illustrated as a stationary structure, but it can be combined with an external power source such as a solar power generation device or a wind power generation device to provide a vehicle, ship, or aircraft. It may be applied as a power source for electric equipment or electric propulsion devices for moving bodies such as railway locomotives, space shuttles, airships, etc.

次世代電力供給システム10は、作動流体を利用して圧力エネルギーを機械エネルギーに変換するエネルギー変換装置12と、機械エネルギーの伝達を制御するクラッチCLを有する出力装置14と、出力装置14を介して駆動される発電機16とを備える。  The next-generation power supply system 10 includes an energy conversion device 12 that converts pressure energy into mechanical energy using a working fluid, an output device 14 that has a clutch CL that controls transmission of mechanical energy, and an output device 14. And a generator 16 to be driven.

エネルギー変換装置12は、作動流体Wfを循環させる密閉動力サイクル回路15と、密閉動力サイクル回路15に熱的に結合されていて、密閉動力サイクル回路15で発生した機械エネルギーの一部を利用して冷媒から冷熱を発生させるヒートポンプ回路HPとを備える。密閉動力サイクル回路15は、低温低圧作動流体Wfを圧縮する流体圧縮機(複合型圧縮機)27と、流体圧縮機27から吐出された高温高圧作動流体Wfpを逆止弁29を介して蓄圧する摺動ピストン及びバネ手段30aを内蔵した蓄圧室30bを有するバッファアキュムレータ30と、バッファアキュムレータ30のアウトレット30cから供給される高温高圧作動流体Wfpの供給タイミング(流通期間)を制御する電磁弁からなる制御弁32と、バッファアキュムレータ30から供給された高温高圧作動流体Wfpを加熱して瞬時に超臨界流体からなる高温高圧動力媒体を発生させる瞬間超臨界流体発生器42と、高温高圧動力媒体を作動室116内において爆発的に膨張させて機械エネルギーに変換する可動ピストン(ロータリピストン本体)200と、該機械エネルギーを取り出すとともにその一部を流体圧縮機27に伝達する出力軸132とを有する回転式流体機械40と、ヒートポンプ回路HPで発生した冷熱を利用して回転式流体機械40の膨張ガスを冷却する冷却器43とを備える。  The energy conversion device 12 is thermally coupled to the sealed power cycle circuit 15 that circulates the working fluid Wf and the sealed power cycle circuit 15, and uses a part of the mechanical energy generated in the sealed power cycle circuit 15. And a heat pump circuit HP that generates cold heat from the refrigerant. The hermetic power cycle circuit 15 accumulates the fluid compressor (composite compressor) 27 that compresses the low-temperature and low-pressure working fluid Wf and the high-temperature and high-pressure working fluid Wfp discharged from the fluid compressor 27 via the check valve 29. A control comprising a buffer accumulator 30 having a pressure accumulating chamber 30b incorporating a sliding piston and spring means 30a, and an electromagnetic valve for controlling the supply timing (circulation period) of the high-temperature and high-pressure working fluid Wfp supplied from the outlet 30c of the buffer accumulator 30. A valve 32, an instantaneous supercritical fluid generator 42 that heats the high-temperature and high-pressure working fluid Wfp supplied from the buffer accumulator 30, and instantaneously generates a high-temperature and high-pressure power medium composed of a supercritical fluid; A movable piston (rotary piston) that expands explosively in 116 and converts it into mechanical energy. Rotary fluid machine 40 having an output shaft 132 that extracts mechanical energy and transmits part of the mechanical energy to the fluid compressor 27, and rotary fluid using the cold generated by the heat pump circuit HP. And a cooler 43 that cools the expansion gas of the machine 40.

バッファアキュムレータ30のバネ手段30aは、蓄圧室30bの作動流体が第1所定圧、例えば、20〜60MPaに維持されるように選択される。したがって、後述のように、作動流体として二酸化炭素(CO2)を利用した場合には、密閉動力サイクル回路15において、逆止弁29と制御弁32との間の第一圧力経路における圧力は20〜60MPaに維持され、回転式流体機械40のアウトレット126と流体圧縮機27のインレット356bとの間の第二圧力経路は第2所定圧、例えば、3MPaに維持されるように作動流体が密閉動力サイクル回路15に充填される。その目的は、第二圧力経路を予め第二所定圧に与圧することで、流体圧縮機27が作動流体を圧縮する際に、容易に作動流体及び冷媒(後述する)が超臨界状態下で昇圧される。したがって、流体圧縮機27の駆動に必要な動力を大幅に低減することが可能となり、エネルギー変換装置12のエネルギー変換効率を向上させることができるからである。密閉動力サイクル回路15の作動中にはバッファアキュムレータ30のバネ手段30aに抗して、蓄圧室30bに高温高圧作動流体が蓄圧される。  The spring means 30a of the buffer accumulator 30 is selected so that the working fluid in the pressure accumulating chamber 30b is maintained at a first predetermined pressure, for example, 20 to 60 MPa. Therefore, as will be described later, when carbon dioxide (CO 2) is used as the working fluid, the pressure in the first pressure path between the check valve 29 and the control valve 32 is 20 to 20 in the sealed power cycle circuit 15. The second fluid path between the outlet 126 of the rotary fluid machine 40 and the inlet 356b of the fluid compressor 27 is maintained at 60 MPa, and the working fluid is sealed in a power cycle such that the working fluid is maintained at a second predetermined pressure, eg, 3 MPa. The circuit 15 is filled. The purpose is to pressurize the second pressure path to the second predetermined pressure in advance, so that when the fluid compressor 27 compresses the working fluid, the working fluid and the refrigerant (described later) are easily pressurized under supercritical conditions. Is done. Therefore, the power required for driving the fluid compressor 27 can be greatly reduced, and the energy conversion efficiency of the energy conversion device 12 can be improved. During the operation of the sealed power cycle circuit 15, the high-temperature and high-pressure working fluid is accumulated in the accumulator 30 b against the spring means 30 a of the buffer accumulator 30.

制御弁32は、本願発明者と同一発明者による特願2012−270756号(日本特許第○○○○○○○号)「超臨界エンジン及び超臨界エンジン駆動発電装置並びにこれを具備した次世代移動体」に記載されたものと同一の構造を有するため、詳細な説明を省略する。  The control valve 32 is Japanese Patent Application No. 2012-270756 (Japanese Patent No. XXXXX) "Supercritical Engine, Supercritical Engine Driven Power Generation Device, and Next Generation equipped with the same. Since it has the same structure as that described in the “moving body”, detailed description is omitted.

ヒートポンプ回路HPは、冷却器43を介して密閉動力サイクル回路15と熱的に結合するように配置される。すなわち、回転式流体機械40の膨張ガスを冷却して得た低温低圧作動流体をヒートポンプ回路HPに導入して冷媒Cmとして利用する。ヒートポンプ回路HPは、流体圧縮機27に組み込まれ(内蔵され)ていて低温低圧冷媒Cmを圧縮して超臨界流体からなる高温高圧冷媒Cmpを生成する冷媒圧縮機として機能する冷媒圧縮手段P2(図2参照)と、高温高圧冷媒Cmpの圧力を減圧して蒸発・膨張させて冷熱を発生させる膨張器47と、該冷熱を利用して回転式流体機械40の膨張ガスを冷却する冷却器43として機能する第1熱交換器Ev1と、周囲環境から熱を吸収して第1熱交換器Ev1から出た低温低圧冷媒Cmoを加熱して低温低圧作動流体Wfとして再生する第2熱交換器EV2とを備える。第2熱交換器EV2から出た低温低圧作動流体Wfは密閉動力サイクル回路15に循環され、以後、同一の動力サイクルが繰り返される。  The heat pump circuit HP is arranged to be thermally coupled to the sealed power cycle circuit 15 via the cooler 43. That is, the low-temperature and low-pressure working fluid obtained by cooling the expansion gas of the rotary fluid machine 40 is introduced into the heat pump circuit HP and used as the refrigerant Cm. The heat pump circuit HP is incorporated in (embedded in) the fluid compressor 27 and compresses the low-temperature and low-pressure refrigerant Cm to generate a high-temperature and high-pressure refrigerant Cmp made of a supercritical fluid. 2), an expander 47 that reduces the pressure of the high-temperature and high-pressure refrigerant Cmp to evaporate and expand to generate cold, and a cooler 43 that cools the expanded gas of the rotary fluid machine 40 using the cold A functioning first heat exchanger Ev1, and a second heat exchanger EV2 that absorbs heat from the surrounding environment and heats the low-temperature and low-pressure refrigerant Cmo emitted from the first heat exchanger Ev1 to regenerate it as a low-temperature and low-pressure working fluid Wf. Is provided. The low-temperature and low-pressure working fluid Wf coming out of the second heat exchanger EV2 is circulated to the sealed power cycle circuit 15, and thereafter the same power cycle is repeated.

本実施例において、密閉動力サイクル回路15の作動流体及びヒートポンプ回路HPの冷媒としては、本発明を限定するものではないが、自然界に存在する安全な物質であり、極めて安価に手に入れることができる理由から、オゾン層破壊係数がゼロで地球温暖化係数が1の自然冷媒である二酸化炭素(以下、CO2と略称する)を共通の媒体として利用する。説明の便宜上、密閉動力サイクル回路15の作動流体をCO2作動流体、ヒートポンプ回路HPの冷媒をCO2冷媒と称する。密閉動力サイクル回路15及びヒートポンプ回路HPでは、本発明を限定するものではないが、低圧側の圧力が所定圧、例えば、約3MPaとなるように圧力が調節されてCO2がそれぞれの系統内において充填される。しかしながら、CO2以外の媒体を利用する際は、所定圧はその媒体の種類に応じて適切な圧力値に選択される。  In the present embodiment, the working fluid of the sealed power cycle circuit 15 and the refrigerant of the heat pump circuit HP are not limited to the present invention, but are safe substances existing in nature and can be obtained at a very low cost. For the reason that can be achieved, carbon dioxide (hereinafter abbreviated as CO 2), which is a natural refrigerant having an ozone depletion coefficient of zero and a global warming coefficient of 1, is used as a common medium. For convenience of explanation, the working fluid of the sealed power cycle circuit 15 is referred to as CO2 working fluid, and the refrigerant of the heat pump circuit HP is referred to as CO2 refrigerant. In the sealed power cycle circuit 15 and the heat pump circuit HP, the present invention is not limited. However, the pressure is adjusted so that the pressure on the low pressure side becomes a predetermined pressure, for example, about 3 MPa, and CO2 is filled in each system. Is done. However, when using a medium other than CO2, the predetermined pressure is selected to be an appropriate pressure value according to the type of the medium.

図2より明らかなように、流体圧縮機27は、好ましくは、所定圧(例えば、3MPa)のCO2作動流体Wfを臨界圧力(例えば、20〜60MPa)まで圧縮して高圧CO2作動流体(CO2超臨界流体)Wfpを生成する流体圧縮手段P1と、低温低圧CO2冷媒Cm(例えば、0℃:3MPa)を臨界圧まで圧縮して高圧CO2冷媒(超臨界冷媒)Cmpを生成する冷媒圧縮手段P2とを備えた複合型圧縮機から構成される。  As apparent from FIG. 2, the fluid compressor 27 preferably compresses the CO2 working fluid Wf having a predetermined pressure (for example, 3 MPa) to a critical pressure (for example, 20 to 60 MPa) to compress the high pressure CO2 working fluid (CO2 (Critical fluid) Fluid compression means P1 for generating Wfp, and refrigerant compression means P2 for compressing a low-temperature low-pressure CO2 refrigerant Cm (for example, 0 ° C .: 3 MPa) to a critical pressure to generate a high-pressure CO2 refrigerant (supercritical refrigerant) Cmp It is comprised from the composite type compressor provided with.

図1及び図2に示すように、複合型流体圧縮機27は、瞬間超臨界流体発生器42に同心的に連結されたロータハウジング352と、密閉動力サイクル回路15に接続されて低温低圧CO2作動流体Wfを吸引する第1インレット356Aと、高温高圧CO2作動流体(超臨界流体)Wfpを吐出する第1アウトレット358Aと、低温低圧冷媒Cmを吸引する第2インレット356Bと、超臨界冷媒Cmpを吐出する第2アウトレット358Bと、インレット356A,356B及びアウトレット358A,358Bが開口するロータ作動室360と、回転式流体機械40の駆動軸132に圧入その他の連結手段で駆動連結されていてロータ作動室360に回転可能に収納された加圧ロータ362とを備える。  As shown in FIGS. 1 and 2, the composite fluid compressor 27 is connected to a rotor housing 352 concentrically connected to an instantaneous supercritical fluid generator 42 and a closed power cycle circuit 15 to operate at low temperature and low pressure CO 2. A first inlet 356A that sucks the fluid Wf, a first outlet 358A that discharges the high-temperature and high-pressure CO2 working fluid (supercritical fluid) Wfp, a second inlet 356B that sucks the low-temperature and low-pressure refrigerant Cm, and the supercritical refrigerant Cmp are discharged. The second outlet 358B, the rotor working chamber 360 in which the inlets 356A and 356B and the outlets 358A and 358B open, and the rotor working chamber 360 that is drivingly connected to the drive shaft 132 of the rotary fluid machine 40 by press fitting or other connecting means. And a pressure rotor 362 housed rotatably.

加圧ロータ362は、駆動軸132に形成されたメイン潤滑油供給通路132Lから径方向外側に延びる潤滑油通路362aと、潤滑油供給ポート362bと、潤滑油供給ポート362bからローブ364の外周端部に微量の潤滑油を供給可能な多孔質プラグ362cとを備える。メイン潤滑油供給通路132Lは、本願発明者と同一発明者による日本特許5103570号「回転式流体機械」に記載された潤滑油ポンプ等により潤滑油が供給される。  The pressurizing rotor 362 includes a lubricating oil passage 362a that extends radially outward from the main lubricating oil supply passage 132L formed in the drive shaft 132, a lubricating oil supply port 362b, and an outer peripheral end portion of the lobe 364 from the lubricating oil supply port 362b. And a porous plug 362c capable of supplying a small amount of lubricating oil. Lubricating oil is supplied to the main lubricating oil supply passage 132L by a lubricating oil pump or the like described in Japanese Patent No. 5103570 “Rotating fluid machine” by the same inventor as the present inventors.

複合型流体圧縮機27は、さらに、ロータ作動室360の内周面上を回転移動しながらインレット356A,356BからCO2作動流体Wf及び冷媒Cmをそれぞれ吸引すると共にこれら流体を超臨界圧まで圧縮しながらアウトレット358A,358Bから吐出する複数のローブ364と、ローブ364の径方向内側領域において周方向後縁部に形成された曲面摺動凹部366と、インレット356に隣接して加圧ロータ362に対して移動可能な可動弁368と、可動弁368と曲面摺動凹部366との間に形成された加圧チャンバ370とを備える。可動弁368は、ロータハウジング352内に形成されたバルブ膨張室372に収納されて、ピボット軸374を介して回動するバルブエレメント376を備える。バルブエレメント376の先端部にはローブ364と曲面摺動凹部366とに接触しながら摺動する曲面シール部376aと連通開口部376bとを備える。ロータハウジング352に形成されたバネ収納部378には押圧バネ380がバルブエレメント376を加圧ロータ362側に押圧している。回転式流体機械40の起動時に駆動軸132が図2において、例えば、時計方向に回転駆動されると、複合型流体圧縮機27において、加圧チャンバ370にはインレット356A,356BからそれぞれCO2作動流体Wfと冷媒Cmが吸引され、それぞれ超臨界作動流体及び超臨界CO2冷媒としてアウトレット358A,358Bから吐出される。このように、流体圧縮機27の加圧ロータ362は流体圧縮手段P1と、冷媒圧縮手段P2の共通部品として機能する。  The composite fluid compressor 27 further sucks the CO2 working fluid Wf and the refrigerant Cm from the inlets 356A and 356B while rotating on the inner peripheral surface of the rotor working chamber 360, and compresses these fluids to a supercritical pressure. However, a plurality of lobes 364 discharged from the outlets 358A and 358B, a curved sliding recess 366 formed at the circumferential rear edge in the radially inner region of the lobe 364, and the pressure rotor 362 adjacent to the inlet 356 Movable movable valve 368 and a pressurizing chamber 370 formed between movable valve 368 and curved sliding recess 366. The movable valve 368 includes a valve element 376 that is housed in a valve expansion chamber 372 formed in the rotor housing 352 and rotates via a pivot shaft 374. A distal end portion of the valve element 376 includes a curved seal portion 376a and a communication opening 376b that slide while contacting the lobe 364 and the curved sliding recess 366. A pressure spring 380 presses the valve element 376 toward the pressurizing rotor 362 in the spring housing portion 378 formed in the rotor housing 352. When the rotary fluid machine 40 is started, when the drive shaft 132 is rotated in the clockwise direction in FIG. 2, for example, in the composite fluid compressor 27, the pressurized chamber 370 is supplied with CO2 working fluid from the inlets 356A and 356B, respectively. Wf and refrigerant Cm are sucked and discharged from outlets 358A and 358B as supercritical working fluid and supercritical CO2 refrigerant, respectively. Thus, the pressurizing rotor 362 of the fluid compressor 27 functions as a common part of the fluid compression means P1 and the refrigerant compression means P2.

なお、複合型流体圧縮機27は本願発明者と同一発明者による特願2012−218058号「ロータリ燃焼機関、ハイブリッドロータリ燃焼機関及びこれらを具備した機械装置」に記載されたロータリポンプと同一の構造を有するため、さらなる詳細な説明を省略する。  The composite fluid compressor 27 has the same structure as the rotary pump described in Japanese Patent Application No. 2012-218058 “Rotary Combustion Engine, Hybrid Rotary Combustion Engine, and Mechanical Device Having These” by the same inventor as the present inventor. Therefore, further detailed description is omitted.

図3に示すように、瞬間超臨界流体発生器42は、回転式流体機械40に対してこれと同心的に連結された円筒状リアクタケーシング1100を備える。円筒状リアクタケーシング1100には、円筒状リアクタケーシング1100の内側とケーシング1100の中央内周部1114の径方向外側に形成されたセラミック等の絶縁耐熱層1116と、絶縁耐熱層1116の内側に形成されている超臨界流体発生室1118が形成されている。円筒状リアクタケーシング1100の中央内周部1114は回転式流体機械40の出力軸132を通過可能にするための直径を有する内周壁部1114を備える。  As shown in FIG. 3, the instantaneous supercritical fluid generator 42 includes a cylindrical reactor casing 1100 that is concentrically connected to the rotary fluid machine 40. The cylindrical reactor casing 1100 is formed on the inner side of the cylindrical reactor casing 1100 and the insulating heat resistant layer 1116 such as ceramic formed on the radially outer side of the central inner peripheral portion 1114 of the casing 1100, and on the inner side of the insulating heat resistant layer 1116. A supercritical fluid generation chamber 1118 is formed. A central inner peripheral portion 1114 of the cylindrical reactor casing 1100 includes an inner peripheral wall portion 1114 having a diameter for allowing the output shaft 132 of the rotary fluid machine 40 to pass therethrough.

瞬間超臨界流体発生器42の吸入ポート1102は、径方向壁部1120に延びていて電磁弁32が装着されるとともに、径方向壁部1120には周方向に延びる複数の開口部1122を有する。超臨界流体発生室1118のコーナー部1118a、1118bには対抗電極1124,1126がそれぞれ配置される。一対の電極1124,1126はパルス電源28に接続される。ケーシング1100には温度センサS2が装着され、温度信号Tがコントローラ60(図1参照)に供給され、パルス電力のパルス幅の制御用に利用される。  The suction port 1102 of the instantaneous supercritical fluid generator 42 extends to the radial wall 1120 and is fitted with the electromagnetic valve 32, and the radial wall 1120 has a plurality of openings 1122 extending in the circumferential direction. Counter electrodes 1124 and 1126 are disposed at the corner portions 1118a and 1118b of the supercritical fluid generation chamber 1118, respectively. The pair of electrodes 1124 and 1126 are connected to the pulse power supply 28. A temperature sensor S2 is attached to the casing 1100, and a temperature signal T is supplied to the controller 60 (see FIG. 1) and used for controlling the pulse width of the pulse power.

超臨界流体発生室1118には、対抗電極1124,1126の間に介在していて多数の管状通電加熱セグメント1134が充填される。パルス電力に応答して、多数の管状通電加熱セグメント1134は通電発熱して800〜1200℃の超臨界領域に昇温するため、パルス電源28によってパルス電力のデューティサイクルが所定値となるように制御される。これら管状通電加熱セグメント1134の隙間はアーク放電領域1136としても作用させることもできるが、上述の超臨界領域が維持できれば、必ずしも、アーク放電を発生させる必要性はない。アーク放電を発生させる場合、管状通電加熱セグメント1134としては、例えば、外径6〜30mmの銅タングステンパイプを所定長さ(例えば、外形の0.5倍〜1.5倍の長さ)にカットした通電加熱パイプが挙げられる。図1において、通電加熱パイプ1134は超臨界流体発生室1118において整列状態で配置されたものとして図示されているが、実際の適用例においては、所定圧力で圧接されて電気的接続関係に維持されていればランダム状態に配置されても良い。超臨界流体発生室1118においてアーク放電を発生させない場合は、管状通電加熱セグメント1134として多数の所定長さにカットしたステンレスパイプやその他の高融点金属パイプを使用しても構わない。CO2超臨界流体は、通電加熱パイプ1134の隙間及び通電加熱パイプ1134の穴部を通過する。このとき、これら通電加熱パイプ1134の各部と衝突しながら加熱されて瞬時に高温高圧CO2超臨界流体からなる高温高圧動力媒体が生成される。  The supercritical fluid generating chamber 1118 is filled with a number of tubular energized heating segments 1134 that are interposed between the counter electrodes 1124 and 1126. In response to the pulse power, a number of tubular energized heating segments 1134 generate energized heat and rise to a supercritical region of 800-1200 ° C., so that the pulse power supply 28 controls the duty cycle of the pulse power to a predetermined value. Is done. The gaps between these tubular energized heating segments 1134 can also act as the arc discharge region 1136, but it is not always necessary to generate arc discharge as long as the above-described supercritical region can be maintained. In the case of generating arc discharge, as the tubular energization heating segment 1134, for example, a copper tungsten pipe having an outer diameter of 6 to 30 mm is cut into a predetermined length (for example, 0.5 to 1.5 times the outer length). Energized heating pipe. In FIG. 1, the energization heating pipe 1134 is illustrated as being arranged in the supercritical fluid generation chamber 1118 in an aligned state. However, in an actual application example, the current heating pipe 1134 is pressed at a predetermined pressure and maintained in an electrical connection relationship. If so, they may be arranged in a random state. When arc discharge is not generated in the supercritical fluid generation chamber 1118, a number of stainless steel pipes cut into a predetermined length or other refractory metal pipes may be used as the tubular energization heating segment 1134. The CO 2 supercritical fluid passes through the gap between the electric heating pipe 1134 and the hole of the electric heating pipe 1134. At this time, a high-temperature and high-pressure power medium composed of a high-temperature and high-pressure CO2 supercritical fluid is instantaneously generated by being heated while colliding with each part of the energization heating pipe 1134.

通電加熱パイプ1134として銅タングステンパイプを採用する際には、通電加熱パイプ1134が互いに接触した箇所の隣接部分でアーク放電が発生するようにパルス電力のパルス電圧を選定しても良い。アーク放電は、パルス電圧を周期的に発生させるパルス電力の電圧がハイレベルとローレベルとの間で周期的に変化することでより頻繁に発生する。したがって、パルス電力の電圧におけるハイレベルとローレベルとを制御することにより高温高圧動力媒体の圧力と温度をさらに高めることが可能となる。上述の通電加熱パイプは作動流体の流通抵抗を大幅に低下させる点で有利であるが、導電性高融点加熱手段としてはその他の材料から構成しても良い。例えば、銅タングステンボール、カーボンボール、作動流体を通過させるための溝を配置したバルク状導電性金属体、バルク状導電性カーボン、多孔性高融点金属体や高融点ハニカム金属体等を利用しても良い。超臨界流体発生室1118に隣接してフイルタ部1106が配置され、フイルタ部1106には耐熱性の金属ワイヤー等から形成されたフイルタ1110が充填される。電磁弁32が所定周期で開弁されると、フイルタ1110を通過した超臨界流体Scfはフィルター1142で濾過された後、アウトレット1140から回転式流体機械40のインレット124に供給される。  When a copper tungsten pipe is adopted as the energization heating pipe 1134, the pulse voltage of the pulse power may be selected so that arc discharge is generated in the adjacent portion where the energization heating pipes 1134 are in contact with each other. Arc discharge occurs more frequently when the voltage of pulse power that periodically generates a pulse voltage changes periodically between a high level and a low level. Therefore, it is possible to further increase the pressure and temperature of the high-temperature and high-pressure power medium by controlling the high level and the low level in the voltage of the pulse power. The above-mentioned energization heating pipe is advantageous in that it significantly reduces the flow resistance of the working fluid, but the conductive high melting point heating means may be composed of other materials. For example, using a copper tungsten ball, a carbon ball, a bulk conductive metal body in which a groove for allowing a working fluid to pass, a bulk conductive carbon, a porous refractory metal body, a refractory honeycomb metal body, etc. are used. Also good. A filter unit 1106 is disposed adjacent to the supercritical fluid generation chamber 1118, and the filter unit 1106 is filled with a filter 1110 formed of a heat-resistant metal wire or the like. When the electromagnetic valve 32 is opened at a predetermined cycle, the supercritical fluid Scf that has passed through the filter 1110 is filtered by the filter 1142 and then supplied from the outlet 1140 to the inlet 124 of the rotary fluid machine 40.

回転式流体機械40としては、好ましくは、本願発明者と同一発明者による日本特許第5103570号(発明の名称:回転式流体機械)、特願2012−195513号(発明の名称:回転式流体機械)、及び日本特許第5218929号(発明の名称:ロータリ燃焼機関、ハイブリッドロータリ燃焼機関及びこれらを具備した機械装置)に開示された回転式流体機械と同一構造のものを採用するが、その他の回転式流体機械でもよい。  The rotary fluid machine 40 is preferably Japanese Patent No. 5103570 (Title: Rotary fluid machine) and Japanese Patent Application No. 2012-195513 (Title: Rotary fluid machine) by the same inventor as the present inventors. ), And Japanese Patent No. 5218929 (Title of Invention: Rotary Combustion Engine, Hybrid Rotary Combustion Engine, and Mechanical Device Comprising These) A fluid machine may be used.

図1に戻って、エネルギー変換装置12において、発電機16はクラッチCLを介して出力軸132に連結されて駆動されることにより発電電力を生成する。発電機16のパワーラインPLは商用電源の配電線に系統連係され、或いは、自家設備の電気機器等の負荷(図示せず)に接続される。エネルギー変換装置12は、パルス電源28に蓄電電力を供給するための蓄電ユニット20を備える。蓄電ユニット20には、充電器21を介して外部電源50に接続される。外部電源50は商用電源又は太陽光発電装置や風力発電装置等の再生可能エネルギー発電装置(図示せず)からなる。商用電源が外部電源50として利用される場合は、夜間の余剰電力が蓄電用電力として蓄電ユニット20に充電される。外部電源50は開閉器54を介して変圧器52に接続され、変圧器52は、外部電源50の出力電圧を所定電圧(例えば、12ボルト又は24ボルト)にまで降圧して、充電器21を介して蓄電ユニット20の第1、第2蓄電装置22、23に交互に充電する。発電機16の発電電力の一部を開閉器56を介して変圧器58で降圧した後、充電器21を介して蓄電ユニット20に供給しても良い。一方、発電機16の発電電力の一部を蓄電用電力として利用する代わりに、図1に示すように、エネルギー変換装置12の出力軸132に動力伝達手段45を介して低電圧出力(例えば、12ボルト又は24ボルト)のオルタネータ25を駆動連結し、オルタネータ25の発電電力を蓄電用電力として利用しても良い。この場合、オルタネータ25の出力側は遮断器19を介して蓄電ユニット20に接続される。  Returning to FIG. 1, in the energy conversion device 12, the generator 16 is connected to the output shaft 132 via the clutch CL and is driven to generate generated power. The power line PL of the generator 16 is system-linked to a distribution line of a commercial power source, or connected to a load (not shown) such as an electric device of private equipment. The energy conversion device 12 includes a power storage unit 20 for supplying stored power to the pulse power supply 28. The power storage unit 20 is connected to an external power supply 50 via a charger 21. The external power source 50 includes a commercial power source or a renewable energy power generation device (not shown) such as a solar power generation device or a wind power generation device. When the commercial power source is used as the external power source 50, the nighttime surplus power is charged to the power storage unit 20 as power for power storage. The external power source 50 is connected to the transformer 52 via the switch 54, and the transformer 52 steps down the output voltage of the external power source 50 to a predetermined voltage (for example, 12 volts or 24 volts) to The first and second power storage devices 22 and 23 of the power storage unit 20 are charged alternately. A part of the power generated by the generator 16 may be stepped down by the transformer 58 via the switch 56 and then supplied to the power storage unit 20 via the charger 21. On the other hand, instead of using a part of the generated power of the generator 16 as power for storage, as shown in FIG. 1, a low voltage output (for example, via the power transmission means 45 to the output shaft 132 of the energy conversion device 12). A 12 volt or 24 volt alternator 25 may be connected by driving, and the generated power of the alternator 25 may be used as power for storage. In this case, the output side of the alternator 25 is connected to the power storage unit 20 via the circuit breaker 19.

蓄電ユニット20は、充電器21を介して蓄電電力が供給される蓄電装置22と、第2蓄電装置23と、第1、第2蓄電装置22、23を充電器21に交互に接続する第1切替制御器24と、第1、第2蓄電装置22、23をパルス電源28に交互に接続する第2切替制御器26とを備える。図示を省略しているが、充電器21は公知の構造と同様に低圧の交流電力を直流電力に変換する整流器と、平滑回路とを有する。第1、第2蓄電装置22、23にはそれぞれ電圧及び電流を検出するための電圧センサ及び電流センサ(いずれも図示せず)が接続される。これら電圧センサ及び電流センサの電圧検出値V1及び電流検出値11はコントローラ60に出力され、第1、第2蓄電装置22、23のそれぞれの残蓄電容量(SOC値:State of charge)を演算し、それぞれのSOC値に基づいて遮断器19や第1、第2切替制御器24,26の指令信号を出力するために用いられる。  The power storage unit 20 includes a power storage device 22 to which stored power is supplied via a charger 21, a second power storage device 23, and first and second power storage devices 22 and 23 that are alternately connected to the charger 21. A switching controller 24 and a second switching controller 26 that alternately connects the first and second power storage devices 22 and 23 to the pulse power supply 28 are provided. Although not shown, the charger 21 includes a rectifier that converts low-voltage AC power into DC power and a smoothing circuit, as in a known structure. A voltage sensor and a current sensor (both not shown) for detecting voltage and current are connected to the first and second power storage devices 22 and 23, respectively. The voltage detection value V1 and the current detection value 11 of these voltage sensors and current sensors are output to the controller 60, and the remaining storage capacities (SOC values: State of charge) of the first and second power storage devices 22 and 23 are calculated. These are used to output command signals from the circuit breaker 19 and the first and second switching controllers 24 and 26 based on the respective SOC values.

コントローラ60は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、例えばEEPROM(Electrically Erasable and Programmable Read Only Memory)を用いて構成される。コントローラ60は各種制御対象の制御パラメータを入力するための入力装置(図示せず)や装置始動用スイッチ等が接続されている。  The controller 60 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores a predetermined control program, and a RAM (Random Access Memory) that temporarily stores data. For example, an EEPROM (Electrically Erasable and Programmable Read Only Memory) is used. The controller 60 is connected to an input device (not shown) for inputting control parameters to be controlled and a device start switch.

第1、第2蓄電装置22、23としては、望ましくは、パルス充放電サイクル用途に対応可能な市販のウルトラキャパシタモジュール(米国”Maxwell Technologies“社製)が挙げられる。その他の蓄電ユニットとしては、例えば、急速充放電型蓄電池(古河電池社製:商標名「ウルトラバッテリ」)、大容量電気二重層コンデンサからなるスーパーキャパシタ(トーキン製)、ナトリウムイオン電池、リチウムイオン電池やNi−MH電池(ニッケルー水素電池)やこれら電池と大容量電気二重層コンデンサを組み合わせたものから構成しても良い。なお、蓄電装置22の出力ラインの間にはウルトラキャパシタ(図示せず)を接続しても良い。蓄電装置22及び第2蓄電装置23から交互に出力電力がパルス電源28に供給される。  Desirably, the first and second power storage devices 22 and 23 include commercially available ultracapacitor modules (manufactured by “Maxwell Technologies”, USA) that can be used for pulse charge / discharge cycle applications. Other power storage units include, for example, a rapid charge / discharge storage battery (Furukawa Battery Co., Ltd .: trade name “Ultra Battery”), a supercapacitor (made by Tokin) consisting of a large-capacity electric double layer capacitor, a sodium ion battery, a lithium ion battery Or a Ni-MH battery (nickel-hydrogen battery) or a combination of these batteries and a large-capacity electric double layer capacitor. An ultracapacitor (not shown) may be connected between the output lines of the power storage device 22. Output power is alternately supplied from the power storage device 22 and the second power storage device 23 to the pulse power supply 28.

パルス電源28は第1、第2蓄電装置22,23から供給された蓄電電力をパルス電源28に供給することで、所定周期(例えば、50〜2000ヘルツ)のパルス電力を生成する。パルス電力において、パルス電圧は、好ましくは、12〜24ボルトの間で設定される。複数の通電加熱体の間でアーク放電を発生させたい場合には、ピーク電流とベース電流とからなるパルス電力が瞬間超臨界流体発生器42に供給されるように回路設計しても良い。この時、エネルギー変換装置12の容量に応じて、パルス電力は、好ましくは、ピーク電流通電期間内において流れる50〜200アンペアのピーク電流と、ピーク電流の約十分の一の電流値を有し、オフピーク電流通電期間内において流れるベース電流とを有するように構成しても良い。瞬間超臨界流体発生器42において、多数の通電加熱パイプ1134にパルス電力が供給されると、二酸化炭素の臨界温度374℃以上の温度、例えば、800〜1200℃の温度に昇温する。この温度は、運転条件に合わせてパルス電力の電圧やデューティ比を制御することにより自由に選択することができる。高温高圧作動流体が通電加熱パイプ1134の外表面に順次接触することで、高温高圧動力媒体は超臨界状態下で加熱されて高温の超臨界流体Scfとなる。  The pulse power source 28 supplies the stored power supplied from the first and second power storage devices 22 and 23 to the pulse power source 28 to generate pulse power having a predetermined period (for example, 50 to 2000 hertz). In pulse power, the pulse voltage is preferably set between 12 and 24 volts. When it is desired to generate an arc discharge between a plurality of energized heating elements, the circuit may be designed so that pulse power composed of a peak current and a base current is supplied to the instantaneous supercritical fluid generator 42. At this time, depending on the capacity of the energy conversion device 12, the pulse power preferably has a peak current of 50 to 200 amperes flowing in the peak current conduction period and a current value of about one tenth of the peak current, You may comprise so that it may have the base current which flows in an off-peak current energization period. In the instantaneous supercritical fluid generator 42, when pulsed power is supplied to a large number of energized heating pipes 1134, the temperature rises to a carbon dioxide critical temperature of 374 ° C or higher, for example, 800 to 1200 ° C. This temperature can be freely selected by controlling the voltage and duty ratio of the pulse power according to the operating conditions. When the high-temperature and high-pressure working fluid sequentially contacts the outer surface of the energization heating pipe 1134, the high-temperature and high-pressure power medium is heated in a supercritical state to become a high-temperature supercritical fluid Scf.

パルス電源28は、好ましくは、ピーク電流とベース電流とからなるパルス電力を発生させるものであれば、直流パルス電源又は交流パルス電源のいずれでも良い。直流パルス電源としては、例えば、日本国特許第2587343号に開示されたようなパルスアーク溶接用電源装置に使用されるような回路構成が挙げられる。  The pulse power supply 28 is preferably a DC pulse power supply or an AC pulse power supply as long as it generates a pulse power composed of a peak current and a base current. Examples of the direct-current pulse power supply include a circuit configuration used in a power supply apparatus for pulse arc welding as disclosed in Japanese Patent No. 2587343.

図1において、バッファアキュムレータの圧力センサS1からの圧力信号PS、瞬間超臨界流体発生器42の温度センサS2からの温度信号T(図4参照)と、エネルギー変換装置12の出力軸132の回転数センサS3からの回転数信号SPがコントローラ60に送信される。入力装置(図示せず)からはカレンダー信号や、温度や圧力等のパラメータ設定信号が基準信号としてコントローラ60に入力される。コントローラ60には、第1、第2蓄電器22,23のそれぞれの電圧信号V1と電流信号11とが送信され、コントローラ60はこれら入力信号に応答して第1、第2蓄電器22,23の蓄電状態(State of Charge)を判別して第2切替制御器26を介して第1、第2蓄電装置22、23の一方をパルス電源28に接続するとともに第1切替制御器24を介して第1、第2蓄電装置22、23の他方を充電器21により充電する。さらに、コントローラ60は、センサS1〜S4からの入力信号PS,T,SPに応答して電磁弁32を制御する。このとき、コントローラ60は、回転式流体機械40において膨張行程の全期間中に電磁弁32を開弁状態に維持するように制御する。したがって、回転式流体機械40のロータリピストン本体200には膨張行程の全期間中に高温高圧動力媒体が連続的に作用する。一方、コントローラ60は、次世代電力供給システム10からの発電電力が不要なときには、クラッチCLを離脱させるための制御信号Ccを出力する。  In FIG. 1, the pressure signal PS from the pressure sensor S1 of the buffer accumulator, the temperature signal T (see FIG. 4) from the temperature sensor S2 of the instantaneous supercritical fluid generator 42, and the rotational speed of the output shaft 132 of the energy conversion device 12 A rotation speed signal SP from the sensor S3 is transmitted to the controller 60. From an input device (not shown), a calendar signal and a parameter setting signal such as temperature and pressure are input to the controller 60 as a reference signal. The voltage signal V1 and current signal 11 of each of the first and second capacitors 22 and 23 are transmitted to the controller 60, and the controller 60 stores the charges of the first and second capacitors 22 and 23 in response to these input signals. The state (State of Charge) is determined, and one of the first and second power storage devices 22 and 23 is connected to the pulse power supply 28 via the second switching controller 26 and the first switching controller 24 is connected to the first state. The other of the second power storage devices 22 and 23 is charged by the charger 21. Furthermore, the controller 60 controls the electromagnetic valve 32 in response to the input signals PS, T, SP from the sensors S1 to S4. At this time, the controller 60 controls the rotary fluid machine 40 to maintain the solenoid valve 32 in the open state during the entire expansion stroke. Therefore, the high-temperature and high-pressure power medium continuously acts on the rotary piston main body 200 of the rotary fluid machine 40 during the entire expansion stroke. On the other hand, when the generated power from the next-generation power supply system 10 is unnecessary, the controller 60 outputs a control signal Cc for disengaging the clutch CL.

次に、本発明による次世代電力供給方法を実施するための次世代電力供給システム10の作動について説明する。  Next, the operation of the next generation power supply system 10 for implementing the next generation power supply method according to the present invention will be described.

次世代電力供給システム10の作動において、始動用スイッチ(図示せず)が投入されると、コントローラ60によってパルス電源28が起動され、周期的なパルス電力が瞬間超臨界流体発生器42に供給される。このとき、瞬間超臨界流体発生器42の通電加熱パイプ1134が通電して、例えば、800〜1200℃の温度領域から選択された所望の設定温度(例えば、1000℃)に達する。すると、瞬間超臨界流体発生器42の温度信号Tに応答してコントローラ60から電磁弁32に指令信号が出力され、電磁弁32は通電して開弁する。この時、バッファアキュムレータ30に蓄圧されていた液化高圧(例えば、40MPa)CO2Wfpが瞬間超臨界流体発生器42に高速流で噴出する。そのとき、液化高圧作動流体Wfpが高温の通電加熱パイプ1134の外表面に順次接触して撹拌されながら均一に昇温し、さらに、これら通電加熱パイプ1134の隙間や穴部を通過しながらさらに加温されて所定温度(例えば、約1000℃)近辺の超臨界流体SCfが高温高圧動力媒体となる。次に、超臨界流体SCfは回転式流体機械40のインレット124から膨張室116に流入して可動ピストン(ロータリピストン本体)200に作用して爆発的に膨張して機械エネルギーに変換されて出力軸132にトルクが発生する。  In the operation of the next-generation power supply system 10, when a start switch (not shown) is turned on, the pulse power supply 28 is activated by the controller 60, and periodic pulse power is supplied to the instantaneous supercritical fluid generator 42. The At this time, the energization heating pipe 1134 of the instantaneous supercritical fluid generator 42 is energized, and reaches a desired set temperature (for example, 1000 ° C.) selected from a temperature range of 800 to 1200 ° C., for example. Then, in response to the temperature signal T of the instantaneous supercritical fluid generator 42, a command signal is output from the controller 60 to the electromagnetic valve 32, and the electromagnetic valve 32 is energized to open. At this time, the liquefied high pressure (for example, 40 MPa) CO 2 Wfp accumulated in the buffer accumulator 30 is ejected to the instantaneous supercritical fluid generator 42 at a high speed flow. At that time, the liquefied high-pressure working fluid Wfp sequentially contacts the outer surface of the high-temperature energized heating pipe 1134 and is uniformly heated while being stirred. The supercritical fluid SCf in the vicinity of a predetermined temperature (for example, about 1000 ° C.) when heated is a high-temperature and high-pressure power medium. Next, the supercritical fluid SCf flows into the expansion chamber 116 from the inlet 124 of the rotary fluid machine 40, acts on the movable piston (rotary piston main body) 200, expands explosively, and is converted into mechanical energy to be output shaft. Torque is generated at 132.

エネルギー変換装置12の始動時及び始動完了後において、出力軸132に発生したトルクで複合型圧縮機27が起動し、複合型圧縮機27内の流体圧縮手段P1と冷媒圧縮手段P2が同時に作動し、密閉動力サイクル回路15とヒートポンプ回路HPが互いに同期して起動する。この時、ヒートポンプ回路HPにおいて、冷媒圧縮手段P2から吐出した超臨界冷媒Cmpは、膨張器47で減圧されて膨張・蒸発して低温低圧ガスとなり、冷却器43として機能する第1熱交換器EV1で冷熱(例えば、−10℃:3MPa)を発生して膨張ガスを冷却する。次いで、こうして得られた低温低圧液化ガスは、ヒートポンプ回路HPの液化冷媒として複合型圧縮機27の冷媒圧縮手段P2に循環され、そこで昇圧されて高圧液化冷媒Cmpとして膨張器47に供給される。第1熱交換器EV1を出た液化冷媒Cmoは第2熱交換器EV2で周囲熱を利用して加熱された後、低温低圧CO2作動流体Wfとして複合型圧縮機27の流体圧縮手段P1のインレット356Aから吸引されて流体圧縮手段P1により圧縮され、以後、密閉動力サイクル回路15が繰り返し、実行される。  The composite compressor 27 is activated by the torque generated in the output shaft 132 when the energy conversion device 12 is started and after the start is completed, and the fluid compression means P1 and the refrigerant compression means P2 in the composite compressor 27 are simultaneously operated. The sealed power cycle circuit 15 and the heat pump circuit HP are activated in synchronization with each other. At this time, in the heat pump circuit HP, the supercritical refrigerant Cmp discharged from the refrigerant compression means P2 is decompressed by the expander 47, expands and evaporates to become a low-temperature low-pressure gas, and the first heat exchanger EV1 that functions as the cooler 43 is obtained. Then, cold heat (for example, −10 ° C .: 3 MPa) is generated to cool the expansion gas. Subsequently, the low-temperature low-pressure liquefied gas thus obtained is circulated to the refrigerant compression means P2 of the composite compressor 27 as a liquefied refrigerant of the heat pump circuit HP, where the pressure is increased and supplied to the expander 47 as a high-pressure liquefied refrigerant Cmp. The liquefied refrigerant Cmo that has exited the first heat exchanger EV1 is heated by using the ambient heat in the second heat exchanger EV2, and then, as the low-temperature low-pressure CO2 working fluid Wf, the inlet of the fluid compression means P1 of the composite compressor 27 The air is sucked from 356A and compressed by the fluid compression means P1, and then the sealed power cycle circuit 15 is repeatedly executed.

エネルギー変換装置12の運転中において、オルタネータ25の発電電力は遮断器19及び充電器21を介して蓄電ユニット20に蓄電される。上述したように、オルタネータ25の発電電力の代わりに発電機16の発電電力の一部を蓄電用電力として利用しても良い。この場合、開閉器56を投入して、発電機16の発電電力の一部を変圧器58で降圧した後、充電器21を介して蓄電ユニット20に供給する。外部電源50として商用電源を利用する場合には、開閉器54を投入して、夜間の余剰電力を変圧器52で降圧した後、充電器21を介して蓄電ユニット20に供給する。外部電源50として再生可能エネルギー発電装置を利用してもよい。このように、エネルギー変換装置12の運転中には、発電機16の発電電力の一部若しくは機械エネルギーの一部を利用して駆動したオルタネータ25の発電電力を蓄電用電力として蓄電ユニット20に供給するため、次世代電力供給システムは昼間の電力ピーク時間帯において比較的長期間に亘って安定した電力を供給することができる。  During operation of the energy conversion device 12, the power generated by the alternator 25 is stored in the power storage unit 20 via the circuit breaker 19 and the charger 21. As described above, a part of the power generated by the generator 16 may be used as power for storage instead of the power generated by the alternator 25. In this case, the switch 56 is turned on and a part of the power generated by the generator 16 is stepped down by the transformer 58 and then supplied to the power storage unit 20 via the charger 21. When a commercial power source is used as the external power source 50, the switch 54 is turned on, and the nighttime surplus power is stepped down by the transformer 52 and then supplied to the power storage unit 20 via the charger 21. A renewable energy power generation device may be used as the external power source 50. In this way, during operation of the energy conversion device 12, the generated power of the alternator 25 driven by using a part of the generated power of the generator 16 or a part of the mechanical energy is supplied to the power storage unit 20 as the power for storage. Therefore, the next-generation power supply system can supply stable power over a relatively long period in the daytime power peak time zone.

以上、本発明の実施例による次世代電力供給システム及び次世代電力供給方法が記載されたが、本発明はこの実施例に示された構成に限定されず、様々な変更が可能である。例えば、圧縮機は、複合型圧縮機からなるものとして説明したが、複合型圧縮機をそれぞれの機能に合わせて分離独立させた複数の圧縮機からなるように構成しても良い。また、冷却器と圧縮機との間に第2熱交換器を配置したが、第2熱交換器を省力しても良い。さらに、作動流体及び冷媒はCO2以外の媒体を利用しても良い。  As described above, the next generation power supply system and the next generation power supply method according to the embodiment of the present invention have been described. However, the present invention is not limited to the configuration shown in this embodiment, and various modifications are possible. For example, although the compressor has been described as being composed of a composite compressor, the composite compressor may be composed of a plurality of compressors separated and independent in accordance with their respective functions. Further, although the second heat exchanger is arranged between the cooler and the compressor, the second heat exchanger may be saved. Further, a medium other than CO2 may be used as the working fluid and the refrigerant.

12 エネルギー変換装置;14 出力装置;15 密閉動力サイクル回路;16 発電機;20 蓄電ユニット;21 充電器;22,23 第1、第2蓄電装置;24、26 第1、第2切替制御器;25 オルタネータ;27 圧縮機(複合型圧縮機);28 パルス電源;30 バッファアキュムレータ;32 電磁弁;40 回転式流体機械;42 瞬間超臨界流体発生器;43 冷却器(熱交換器);47 膨張器;50 外部電源;52、58 変圧器;60 コントローラ;HP ヒートポンプ回路;EV1 第1熱交換器;EV2 第2熱交換器DESCRIPTION OF SYMBOLS 12 Energy conversion device; 14 Output device; 15 Sealed power cycle circuit; 16 Generator; 20 Power storage unit; 21 Charger; 22, 23 1st, 2nd power storage device; 24, 26 1st, 2nd switching controller; 25 Alternator; 27 Compressor (composite compressor); 28 Pulsed power supply; 30 Buffer accumulator; 32 Solenoid valve; 40 Rotary fluid machine; 42 Instantaneous supercritical fluid generator; 43 Cooler (heat exchanger); 47 Expansion 50; external power supply; 52, 58 transformer; 60 controller; HP heat pump circuit; EV1 first heat exchanger; EV2 second heat exchanger

Claims (6)

密閉動力サイクル回路に流体圧縮機と、瞬間超臨界流体発生器と、可動ピストンと、冷却器とを配置し、外部電源から供給された蓄電用電力を蓄電ユニットに充電し、該蓄電ユニットの蓄電電力をパルス電源に供給することでパルス電力を生成し、該パルス電力により当該瞬間超臨界流体発生器を加熱させ、該流体圧縮機により低温低圧作動流体を圧縮し、該高圧作動流体を該瞬間超臨界流体発生器に接触させることにより超臨界流体を生成し、当該超臨界流体により該可動ピストンを作動させて膨張ガスを生成しながら機械エネルギーを発生させ、該膨張ガスを該冷却器により冷却して該低温低圧作動流体を再生して当該密閉動力サイクル回路に循環させ、該機械エネルギーを発電機に供給して発電電力を生成することを特徴とする次世代電力供給システム。  A fluid compressor, an instantaneous supercritical fluid generator, a movable piston, and a cooler are disposed in a sealed power cycle circuit, and the power storage unit supplied with power from an external power source is charged into the power storage unit. Pulse power is generated by supplying electric power to the pulse power source, the instantaneous supercritical fluid generator is heated by the pulse power, the low-temperature low-pressure working fluid is compressed by the fluid compressor, and the high-pressure working fluid is A supercritical fluid is generated by contact with a supercritical fluid generator, mechanical energy is generated while generating an expansion gas by operating the movable piston by the supercritical fluid, and the expansion gas is cooled by the cooler. Next, the low-temperature low-pressure working fluid is regenerated and circulated through the sealed power cycle circuit, and the mechanical energy is supplied to the generator to generate generated power. Power supply system. さらに、該流体圧縮機から供給された高圧作動流体をバッファアキュムレータで一時的に蓄圧することにより該流体圧縮機と該瞬間超臨界流体発生器との間の第一圧力経路を第一所定圧に維持し、該可動ピストンの低圧側と該流体圧縮機のインレット側との間の第二圧力経路を第一所定圧よりも低い第二所定圧に維持し、該バッファアキュムレータから当該瞬間超臨界流体発生器に供給される高圧作動流体の供給タイミングを制御弁により制御することを特徴とする請求項1記載の次世代電力供給システム。  Furthermore, the first pressure path between the fluid compressor and the instantaneous supercritical fluid generator is set to a first predetermined pressure by temporarily accumulating the high-pressure working fluid supplied from the fluid compressor with a buffer accumulator. Maintaining a second pressure path between the low pressure side of the movable piston and the inlet side of the fluid compressor at a second predetermined pressure lower than the first predetermined pressure, and from the buffer accumulator to the instantaneous supercritical fluid The next-generation power supply system according to claim 1, wherein the supply timing of the high-pressure working fluid supplied to the generator is controlled by a control valve. さらに、該動力サイクル回路と熱的に結合させてヒートポンプ回路を配置し、該機械エネルギーの一部により当該ヒートポンプ回路を作動させることで高圧冷媒を生成し、該高圧冷媒を膨張させることにより冷熱を生成する熱交換器を備え、当該冷却器が該熱交換器を備えていて該熱交換器で生成した冷熱により当該膨張ガスを冷却することを特徴とする請求項1又は2に記載の次世代電力供給システム。  Further, a heat pump circuit is arranged in thermal connection with the power cycle circuit, and a high-pressure refrigerant is generated by operating the heat pump circuit with a part of the mechanical energy, and the high-temperature refrigerant is expanded to generate cold heat. The next generation according to claim 1, further comprising: a heat exchanger for generating, wherein the cooler includes the heat exchanger, and the expansion gas is cooled by the cold generated by the heat exchanger. Power supply system. 該作動流体及び該冷媒として該密閉動力サイクル回路と該ヒートポンプ回路とにそれぞれ該第一及び第二所定圧で二酸化炭素を封入し、該ヒートポンプ回路において当該機械エネルギーを冷媒圧縮機に供給して該高圧冷媒を生成し、該流体圧縮機と該冷媒圧縮機を超臨界状態で作動させることを特徴とする請求項3に記載の次世代電力供給システム。  Carbon dioxide is sealed in the sealed power cycle circuit and the heat pump circuit as the working fluid and the refrigerant at the first and second predetermined pressures, respectively, and the mechanical energy is supplied to the refrigerant compressor in the heat pump circuit. The next-generation power supply system according to claim 3, wherein a high-pressure refrigerant is generated, and the fluid compressor and the refrigerant compressor are operated in a supercritical state. 密閉動力サイクル回路に流体圧縮機と、瞬間超臨界流体発生器と、可動ピストンと、冷却器とを配置し、外部電源から供給された蓄電用電力を蓄電ユニットに充電し、該蓄電ユニットの蓄電電力をパルス電源に供給することでパルス電力を生成し、該パルス電力により当該瞬間超臨界流体発生器を加熱させ、該流体圧縮機により低温低圧作動流体を圧縮し、該高圧作動流体を該瞬間超臨界流体発生器に接触させることにより超臨界流体を生成し、当該超臨界流体により該可動ピストンを作動させて膨張ガスを生成しながら機械エネルギーを発生させ、該膨張ガスを該冷却器により冷却して該低温低圧作動流体を再生して当該密閉動力サイクル回路に循環させ、該機械エネルギーを発電機に供給して発電電力を生成することを特徴とする次世代電力供給方法。  A fluid compressor, an instantaneous supercritical fluid generator, a movable piston, and a cooler are disposed in a sealed power cycle circuit, and the power storage unit supplied with power from an external power source is charged into the power storage unit. Pulse power is generated by supplying electric power to the pulse power source, the instantaneous supercritical fluid generator is heated by the pulse power, the low-temperature low-pressure working fluid is compressed by the fluid compressor, and the high-pressure working fluid is A supercritical fluid is generated by contact with a supercritical fluid generator, mechanical energy is generated while generating an expansion gas by operating the movable piston by the supercritical fluid, and the expansion gas is cooled by the cooler. Next, the low-temperature low-pressure working fluid is regenerated and circulated through the sealed power cycle circuit, and the mechanical energy is supplied to the generator to generate generated power. Power supply method. 該発電機の発電電力の一部或いは該機械エネルギーの一部をオルタネータに供給して作動させることにより得た発電電力を当該蓄電ユニットに充電することを特徴とする請求項5記載の次世代電力供給方法。  6. The next generation power according to claim 5, wherein the power storage unit is charged with generated power obtained by supplying a part of the generated power of the generator or a part of the mechanical energy to the alternator and operating the generator. Supply method.
JP2013109342A 2013-05-07 2013-05-07 Next-generation electric power supply system, and nest-generation electric power supply method Pending JP2014218991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109342A JP2014218991A (en) 2013-05-07 2013-05-07 Next-generation electric power supply system, and nest-generation electric power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109342A JP2014218991A (en) 2013-05-07 2013-05-07 Next-generation electric power supply system, and nest-generation electric power supply method

Publications (1)

Publication Number Publication Date
JP2014218991A true JP2014218991A (en) 2014-11-20

Family

ID=51937666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109342A Pending JP2014218991A (en) 2013-05-07 2013-05-07 Next-generation electric power supply system, and nest-generation electric power supply method

Country Status (1)

Country Link
JP (1) JP2014218991A (en)

Similar Documents

Publication Publication Date Title
JP6605348B2 (en) Compressed air storage generator
US20200063658A1 (en) Compressed air storage power generation device
US10711653B2 (en) Process and system for extracting useful work or electricity from thermal sources
KR102173489B1 (en) High pressure hydrogen expansion turbine/compressor charging system and control method thereof
JP2014227990A (en) Clean energy generation device, clean energy generation method, and next-generation movable body equipped with clean energy generation device
JP2014230477A (en) Next-generation photovoltaic power generation method and device
JP5299656B1 (en) Thermal energy recovery system, thermal energy recovery method, and next generation solar power generation system using the same
JP2017150661A (en) Control method of high pressure hydrogen charging system with expansion turbine and compressor
JP5397719B1 (en) Clean energy generator and moving body with clean energy generator
JP2015028333A (en) Net zero energy propulsion method for aircraft and net zero energy aircraft
JP2014218991A (en) Next-generation electric power supply system, and nest-generation electric power supply method
JP5413531B1 (en) Next-generation solar power generation apparatus and next-generation natural energy power generation method
JP5403383B1 (en) Clean energy generating device, clean energy generating method, and moving body equipped with clean energy generating device
US11952941B2 (en) Compressed air energy storage power generation device
CN110892139A (en) Compressed air storage power generation device
JP5440966B1 (en) Building with net zero energy support system
JP5352797B1 (en) Next generation power supply system, next generation power supply method and next generation solar power generation system
JP2014227995A (en) Geothermal power generation method and device
JP2014227994A (en) Heat source water utilizing power generation method and device
JP5382562B1 (en) Net Zero Energy Next Generation Ship
JP2014228267A (en) Clean energy generation device, clean energy generation method, and next-generation movable body equipped with clean energy generation device
JP2019027385A (en) Compressed air storage power generation device and method
JP2015017600A (en) Net null energy ship
JP2015017598A (en) Next-generation method and apparatus for photovoltaic power generation
JP2014227991A (en) Net-zero energy building and net-zero energy management method for building