JP2017150661A - Control method of high pressure hydrogen charging system with expansion turbine and compressor - Google Patents

Control method of high pressure hydrogen charging system with expansion turbine and compressor Download PDF

Info

Publication number
JP2017150661A
JP2017150661A JP2017021814A JP2017021814A JP2017150661A JP 2017150661 A JP2017150661 A JP 2017150661A JP 2017021814 A JP2017021814 A JP 2017021814A JP 2017021814 A JP2017021814 A JP 2017021814A JP 2017150661 A JP2017150661 A JP 2017150661A
Authority
JP
Japan
Prior art keywords
hydrogen
expansion turbine
compressor
hydrogen gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017021814A
Other languages
Japanese (ja)
Other versions
JP2017150661A5 (en
Inventor
吉田 純
Jun Yoshida
純 吉田
幸博 三牧
Yukihiro Mimaki
幸博 三牧
栄人 松尾
Hideto Matsuo
栄人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Archiveworks Co Ltd
Hitachi Plant Mechanics Co Ltd
Original Assignee
Archiveworks Co Ltd
Hitachi Plant Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Archiveworks Co Ltd, Hitachi Plant Mechanics Co Ltd filed Critical Archiveworks Co Ltd
Publication of JP2017150661A publication Critical patent/JP2017150661A/en
Publication of JP2017150661A5 publication Critical patent/JP2017150661A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of a high pressure hydrogen charging system with an expansion turbine and compressor, which has a simple structure, can reduce a site construction cost, can reduce load of work for maintenance management, can reduce an operation cost including a cost of power consumption, extracts energy occurring in an expander, does not need to separately provide effectively usable means to the outside of a dynamo or the like, and can be applicable to a temperature lowering system technology, such as a pre-cooling function, at a final charging part of a hydrogen station.SOLUTION: A charging system, which when pressurizing and charging hydrogen gas accumulated in a high pressure state to a tank 6, performs enthalpy lowering of hydrogen gas with an expansion turbine, includes a process of assembling an expansion turbine compressor 11 into an expansion turbine portion, and a cooler 12 at an inlet part on the expansion turbine side, and is configured to control an outlet temperature of hydrogen gas of the cooler 12.SELECTED DRAWING: Figure 7

Description

本発明は、燃料電池自動車等の水素自動車(以下、単に、「水素自動車」という場合がある。)の燃料となる水素ガスを、水素ガス供給源から水素自動車の燃料タンクに充填するための水素充填設備(以下、「水素ステーション」という場合がある。)の最終充填部におけるプレクーラ機能等の温度降下システム技術に適用される高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法に関するものである。   The present invention relates to hydrogen for filling a fuel tank of a hydrogen vehicle from a hydrogen gas supply source with hydrogen gas serving as a fuel for a hydrogen vehicle such as a fuel cell vehicle (hereinafter sometimes simply referred to as “hydrogen vehicle”). The present invention relates to a method for controlling a high-pressure hydrogen expansion turbine / compressor filling system applied to a temperature drop system technology such as a precooler function in a final filling section of a filling facility (hereinafter also referred to as “hydrogen station”).

水素自動車の燃料として用いられる水素ガスは、水素ガスを充填する経路に設けられている膨張弁等の部分で高圧から断熱膨張(等エンタルピ膨張)すると、その性状から逆転温度(−58℃)よりも高い領域での膨張になるため、ジュールトムソン効果によって膨張後の温度が上昇するという性質を有している。
したがって、水素ステーションにおいて、水素自動車の燃料となる水素ガスを、水素ガス供給源から水素自動車の燃料タンクに充填する際に、水素ガスを充填する経路に設けられている膨張弁等の部分で水素ガスの温度が上昇する。
Hydrogen gas used as a fuel for hydrogen automobiles is subject to reversal temperature (-58 ° C) due to its properties when adiabatic expansion (equal enthalpy expansion) is performed from high pressure in a portion such as an expansion valve provided in a path filled with hydrogen gas. Furthermore, since the expansion occurs in a high region, the temperature after expansion is increased by the Joule-Thompson effect.
Therefore, when hydrogen gas serving as fuel for a hydrogen vehicle is filled from a hydrogen gas supply source into a fuel tank of the hydrogen vehicle at a hydrogen station, the hydrogen gas is generated at a portion such as an expansion valve provided in a path for filling the hydrogen gas. The gas temperature rises.

この水素ガスの温度の上昇は、水素ガスの膨張比が大きくなるほど顕著になることから、水素ステーションでの水素ガス供給源からの供給ガスの高圧力化、例えば、供給ガスの圧力(供給源のタンク圧)が、45→70MPa(G)、さらには、82MPa(G)と高圧力化するのに伴って、さらに自己温度上昇量が大きくなってくる。
一例として、水素ガスを、供給源のタンク圧である70MPa(G)、30℃から一段で膨張させたときの、各2次圧における自己温度変化の一例を図1に示す。
This increase in the temperature of the hydrogen gas becomes more significant as the expansion ratio of the hydrogen gas increases. Therefore, the pressure of the supply gas from the hydrogen gas supply source at the hydrogen station is increased, for example, the pressure of the supply gas (supply source As the tank pressure is increased from 45 to 70 MPa (G), and further to 82 MPa (G), the amount of increase in self-temperature further increases.
As an example, FIG. 1 shows an example of a self-temperature change at each secondary pressure when hydrogen gas is expanded from 70 MPa (G), which is a tank pressure of a supply source, in one step.

一方、現状で普及が開始された燃料電池車では、燃料タンクの材質による温度制限と、燃料電池本体セルの運用温度の制限から、水素充填時の最高温度上限は85℃とされている。   On the other hand, in the fuel cell vehicles that have started to spread at present, the maximum temperature upper limit at the time of hydrogen filling is set to 85 ° C. due to the temperature limitation by the material of the fuel tank and the limitation of the operation temperature of the fuel cell main body cell.

そして、上記水素の性質から、何の手段も施さずにそのまま水素ガスを充填すると、水素充填時の温度が、最高温度上限の85℃を越えてしまい、燃料タンクの材質による温度制限や燃料電池本体セルの運用温度の制限、さらには、充填後の冷却に伴う圧力降下等の問題が発生するため、水素ガスを充填する経路に熱交換器等の冷却手段を配置し、この冷却手段で水素ガスを冷却しながら水素自動車に充填する方法が提案され、実用化されている(例えば、特許文献1参照。)。   And, due to the nature of hydrogen, if hydrogen gas is charged as it is without any means, the temperature at the time of hydrogen filling exceeds the maximum upper limit of 85 ° C., the temperature limit depending on the material of the fuel tank and the fuel cell Since problems such as pressure drop due to cooling of the main body cell and cooling after filling occur, a cooling means such as a heat exchanger is arranged in the path filled with hydrogen gas. A method of filling a hydrogen automobile while cooling gas has been proposed and put into practical use (see, for example, Patent Document 1).

特開2004−116619号公報JP 2004-116619 A

ここで、図2に、現状の一般的な70MPa(G)の水素ステーションの構成図を示す(出典「NEDO水素エネルギー白書」)。
この水素ステーションは、水素ガスを受け入れる圧縮機ユニットからなる圧縮機設備1と、圧縮機設備1から送られてきた水素ガスを蓄圧する蓄圧器ユニットからなる水素蓄圧設備2と、水素蓄圧設備2からの水素ガスを水素自動車の燃料タンク6に充填するための経路に設けられた膨張弁3及び水素ガスプレクーラ4と、プレクーラ4を介して水素ガスの冷却を行う水素プレクールシステム5とを備え、さらに、水素プレクールシステム5には、圧縮機、凝縮器、膨張弁、蒸発器、アキュムレータ等からなる冷凍機設備7と、ブラインタンク、1次ブラインポンプ、2次ポンプ等からなるブライン回路8を備えるようにしている。
そして、この水素ステーションは、オンサイト型、オフサイト型の水素ステーションの両者とも、受け入れた水素は圧縮機設備1で中間圧(図例では40MPa(G))や高圧(図例では82MPa(G))まで圧縮され、それぞれの圧力で水素蓄圧設備2の蓄圧ユニット内にて圧縮ガスの形で保持される。
これらの水素ガスを、需要側である車載の燃料タンク6へ充填するには、膨張弁3を介しての膨張により行われるが、その際に水素ガス自身の温度上昇を伴うため、外部設備である水素プレクールシステム5により−40℃まで冷却される。
現状の技術では、この水素プレクールシステム5は、フロン冷媒等の通常の冷凍機設備7と、−40℃近辺で動作するブライン回路8とを組み合わせて構成されているため、構成が複雑であり、また、冷凍機用冷媒圧縮機、1次ブラインポンプ、2次ブラインポンプ等の多くの回転機器も必要になる。
Here, FIG. 2 shows a configuration diagram of the current general 70 MPa (G) hydrogen station (source “NEDO Hydrogen Energy White Paper”).
This hydrogen station is composed of a compressor facility 1 composed of a compressor unit that receives hydrogen gas, a hydrogen pressure accumulation facility 2 composed of a pressure accumulator unit that accumulates hydrogen gas sent from the compressor facility 1, and a hydrogen pressure storage facility 2. An expansion valve 3 and a hydrogen gas precooler 4 provided in a path for filling the fuel tank 6 of the hydrogen vehicle with hydrogen gas, and a hydrogen precooling system 5 that cools the hydrogen gas via the precooler 4. The hydrogen precooling system 5 is provided with a refrigerator equipment 7 including a compressor, a condenser, an expansion valve, an evaporator, an accumulator, and the like, and a brine circuit 8 including a brine tank, a primary brine pump, a secondary pump, and the like. ing.
In this hydrogen station, both the on-site type and off-site type hydrogen stations receive the hydrogen in the compressor facility 1 at an intermediate pressure (40 MPa (G) in the example) or high pressure (82 MPa (G in the example). )) And is held in the form of compressed gas in the accumulator unit of the hydrogen accumulator 2 at each pressure.
In order to fill these on-demand fuel tanks 6 with the hydrogen gas, expansion is performed through the expansion valve 3. At this time, the temperature of the hydrogen gas itself is increased. It is cooled to −40 ° C. by a certain hydrogen precooling system 5.
In the current technology, the hydrogen precool system 5 is configured by combining a normal refrigerator equipment 7 such as a chlorofluorocarbon refrigerant and a brine circuit 8 that operates near −40 ° C. In addition, many rotary devices such as a refrigerant compressor for a refrigerator, a primary brine pump, and a secondary brine pump are also required.

このため、従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムにおいては、以下の課題があった。
1)外部独立した水素プレクールシステムはそれ自体が外部電力で稼働するシステムである。一般的な水素ステーション(300Nm/h)で約40kWとなっており、水素プレクールシステムの運用自体が運転コストを上昇させる。
2)冷凍機の冷媒にフロン(代替えフロン)を使用するため法的な扱いを受け、このプレクーラ設備自体が高圧ガス保安法の冷凍保安則にかかり、設備や運用において制約を受ける。
3)フロンやブラインをステーション内に保有することは、フロンやブラインの外部漏洩に対する環境事故の予防対策が必要になる。
4)水素プレクールシステムが、冷凍回路とブライン回路の2段構成で複雑であることや、冷媒圧縮機やブラインポンプ等の回転機が複数存在するため、多くの保守管理役務が生じる。
5)ブラインを介したシステムのため、運転起動から定常状態になるまで時間を要する。このため、充填作業のかなり前から水素プレクールシステムを事前起動、系内を定常状態にしておく必要がある。
6)水素ステーション自体の設置スペースを小型化する際に、水素プレクールシステムの専有スペースがその制約となる。
7)現状の−40℃という温度では、さらなる水素の急速充填に制限が出てくる。将来において、さらに充填時間を短くするためには、現状の−40℃よりも低い温度に予冷が必要となる可能性もある。
For this reason, the hydrogen precooling system used for lowering the temperature of the hydrogen gas in the final filling section of the conventional hydrogen station has the following problems.
1) An external independent hydrogen precooling system is a system that itself operates with external power. It is about 40 kW at a general hydrogen station (300 Nm 3 / h), and the operation of the hydrogen precool system itself increases the operating cost.
2) Because of the use of chlorofluorocarbon (alternative chlorofluorocarbon) as the refrigerant of the refrigerator, it is legally treated, and the precooler equipment itself is subject to the refrigeration safety law of the High-Pressure Gas Safety Law, and is restricted in equipment and operation.
3) Holding chlorofluorocarbons or brine in the station requires measures to prevent environmental accidents against external leakage of chlorofluorocarbons or brine.
4) Since the hydrogen precooling system is complicated with a two-stage configuration of a refrigeration circuit and a brine circuit, and there are a plurality of rotating machines such as a refrigerant compressor and a brine pump, many maintenance management services arise.
5) Since it is a system via brine, it takes time from the start of operation to the steady state. For this reason, it is necessary to start the hydrogen precooling system in advance and fill the system in a steady state long before the filling operation.
6) When the installation space of the hydrogen station itself is reduced in size, the space occupied by the hydrogen precool system becomes a limitation.
7) At the current temperature of −40 ° C., there is a limit to further rapid hydrogen filling. In the future, in order to further shorten the filling time, pre-cooling may be required at a temperature lower than the current -40 ° C.

ところで、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点に鑑み、本件出願人は、先に、特願2015−059323において、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にできる、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムを提案している。   By the way, in view of the problems of the hydrogen precooling system used for lowering the temperature of the hydrogen gas in the final filling portion of the conventional hydrogen station, the applicant of the present application previously described in Japanese Patent Application No. 2015-059323. We propose a hydrogen precooling system used to lower the temperature of hydrogen gas at the final filling section of the hydrogen station, which is simple, has less burden on maintenance management services, and can reduce operating costs including power consumption. .

この水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムは、水素ガスを膨張減圧する過程で外部に仕事を取り出す膨張機により水素ガスの温度低下を行い、その冷熱エネルギを利用して水素ガスの予冷を行うものであり、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点を解消することができるものである反面、以下の課題があった。
8)膨張機において発生するエネルギを取り出し、有効利用する手段を別途設ける必要がある。
The hydrogen precooling system used to lower the temperature of the hydrogen gas in the final filling section of this hydrogen station lowers the temperature of the hydrogen gas by an expander that extracts work in the process of expanding and depressurizing the hydrogen gas. This is a precooling of hydrogen gas using energy, and can solve the problems of the hydrogen precooling system used for lowering the temperature of the hydrogen gas in the final filling section of the conventional hydrogen station. However, there were the following problems.
8) It is necessary to separately provide a means for taking out and effectively using energy generated in the expander.

本発明は、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点に鑑み、構成が簡易で、現地工事費用を低減でき、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にでき、さらに、膨張機において発生するエネルギを取り出し、発電機等の外部に有効利用する手段を別途設ける必要がない、水素ステーションの最終充填部におけるプレクーラ機能等の温度降下システム技術に適用できる高圧水素の膨張タービン・コンプレッサ式充填システムを提供することを目的とする。   In view of the problems of the hydrogen precooling system used for lowering the temperature of hydrogen gas in the final filling section of the conventional hydrogen station, the present invention has a simple configuration, can reduce the construction cost, and can be used for maintenance management services. The operation cost including the power consumption can be reduced, and there is no need to separately provide a means for taking out the energy generated in the expander and effectively using it outside the generator, etc. An object of the present invention is to provide an expansion turbine / compressor filling system for high-pressure hydrogen that can be applied to a temperature drop system technology such as a precooler function in a filling section.

上記目的を達成するため、本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法は、高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムの制御方法において、膨張タービン部分に膨張タービン・コンプレッサを組み込むプロセス及び膨張タービン側入口部に冷却器を備え、該冷却器の水素ガスの出口温度を制御することを特徴とする。   In order to achieve the above object, the control method of the high-pressure hydrogen expansion turbine / compressor filling system according to the present invention uses an expansion turbine to compress the hydrogen gas when the hydrogen gas accumulated at high pressure is charged into the tank. A method for controlling a filling system for performing enthalpy lowering, characterized in that a process for incorporating an expansion turbine / compressor in an expansion turbine section, a cooler is provided at an inlet portion of the expansion turbine, and a hydrogen gas outlet temperature of the cooler is controlled. To do.

この場合において、前記冷却器の水素ガスの出口温度を検知して、該出口温度を適正温度になるように、冷却器の寒冷エネルギ量を調節追従するようにすることができる。   In this case, the hydrogen gas outlet temperature of the cooler can be detected, and the amount of cold energy of the cooler can be adjusted and followed so that the outlet temperature becomes an appropriate temperature.

また、水素ガスをタンクへ加圧充填する際の充填時間配分により、それぞれの充填段階で最適なガス温度になるように、冷却器の寒冷エネルギ量を調節追従するようにすることができる。   In addition, the distribution of the filling time when the hydrogen gas is pressurized and filled into the tank can adjust and follow the amount of cold energy of the cooler so that the optimum gas temperature is obtained at each filling stage.

また、タンクの圧力及び温度上昇を検知して、それぞれの充填段階で最適なガス温度になるように、冷却器の寒冷エネルギ量を調節追従するようにすることができる。   It is also possible to detect the pressure and temperature rise of the tank and adjust and follow the amount of cold energy of the cooler so that the optimum gas temperature is obtained at each filling stage.

本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法によれば、高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムの制御方法において、膨張タービン部分に膨張タービン・コンプレッサを組み込むプロセス及び膨張タービン側入口部に冷却器を備え、該冷却器の水素ガスの出口温度を制御し、膨張タービン・コンプレッサにて最終的に水素を膨張させて、エンタルピを低下(温度降下)させた水素ガスを調節タンク側へ充填するようにすることにより、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にできる、例えば、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムを提供することができる。
そして、膨張タービン部分に膨張タービン・コンプレッサを組み込むプロセスを備えること、すなわち、回転軸の一方側に膨張用インペラ、他方側に圧縮用インペラを有する膨張タービン・コンプレッサを用いることにより、膨張機において発生するエネルギを取り出し、有効利用する手段を別途設ける必要がなく、さらに、膨張タービン側にて得られた回転エネルギを利用してコンプレッサ側にて水素ガスの圧力を上昇させて、膨張タービン入口へ導かれるようにすることによって、コンプレッサで昇圧された分、膨張タービンの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができ、さらに、膨張タービン側入口部に冷却器を備えて水素ガスの温度を適正値に下げることにより、タンク充填完了時の温度余裕度の確保やより効率の低い膨張タービンでのプロセス成立が可能となる。
ところで、このプロセスに使用する膨張機、すなわち、タービンは、現在の標準的な水素充填所(水素ステーション)に見合う容量で設計した場合、非常に小型で高速な回転体となることが避けられない。仮に5kgの高圧水素ガスを約3分で充填するシステムの場合、膨張タービンの直径は8〜12mm、最大の膨張比時に相当する回転数は120万回転/分に相当する。
そこで、本発明の高圧水素の膨張タービン・コンプレッサ式充填システムにおいては、具体的には、回転体のロータ軸の一方側に膨張作用を行うインペラ(タービン)を、他方側に、膨張により得られた回転エネルギを消費する圧縮作用を行うインペラ(コンプレッサ)を、それぞれ備えて構成する。
タービンによる水素ガスの膨張により取り出されたエネルギは、タービン回転体の高速回転という形で運動エネルギとして取り出されるが、この高速回転を実現するため、膨張タービン・コンプレッサには、供給される水素ガスを用いた動圧式ガス軸受方式の軸受を採用する。
このため、回転エネルギとして取り出された「仕事」は、軸受による摩擦損失(軸損失)が極めて小さい値に抑制されたものとすることができる。
タービンで得られた回転エネルギからこの軸損失を差し引いた量のエネルギがコンプレッサ側にてプロセスガスを遠心昇圧することで消費され、回転がバランスする。
すなわち、タービンにより取り出された回転エネルギ(タービン動力)は、回転軸の反対側に設けられ、同じ回転数で駆動されるコンプレッサにて、プロセスガスの昇圧することで消費される。
この動圧式ガス軸受方式の軸受で、本発明のような小型で高速な回転体の軸受を構成することで、超高速回転の実現と、非常に少ない軸損失の実現を担保することができる。
このようにして、動力回収を発電回収や、外部へ取り出しての回収を行わず、タービン・コンプレッサとしてクローズしたシステムとすることができ、構成が簡易で、現地工事費用を低減できる。
コンプレッサ側で昇圧されたプロセスガスは、熱力学的な圧縮により圧力上昇と温度上昇を伴う。温度の上昇は、必要に応じて、冷却器(空冷又は水冷のアフタークーラ)を設けることにより、例えば、約20℃近辺に冷却され、熱として外部に捨てられる。圧力上昇は、その分タービン入口における圧力上昇に帰結するため、タービンでの膨張比をさらに高め、結果として寒冷発生量を増大させる効果を奏する。
本発明において、タービンで取り出した動力を、発電機等で電力に変換せずに、タービン・コンプレッサを採用しプロセス内部で利用するとした技術的な理由は、あまりに小型高速回転の機器は、発電機自体が小型かつ高周波となり成立しないことがあり、また、プロセスガスが水素の関係上、防爆の観点からの優位性が挙げられる。
According to the control method of the high-pressure hydrogen expansion turbine / compressor filling system of the present invention, when the hydrogen gas accumulated at a high pressure is pressurized and filled into the tank, the filling is performed using the expansion turbine to lower the enthalpy of the hydrogen gas. In the system control method, a process for incorporating an expansion turbine / compressor into an expansion turbine section and a cooler at an inlet portion on the expansion turbine side are controlled, and an outlet temperature of hydrogen gas of the cooler is controlled. The hydrogen is expanded to fill the adjustment tank with hydrogen gas with reduced enthalpy (temperature drop), which makes the configuration simple, reduces the burden of maintenance management services, and includes the cost of power consumption. Can be used to lower operating costs, for example, to lower the temperature of hydrogen gas in the final filling section of a hydrogen station It is possible to provide a hydrogen pre-cool system.
And a process for incorporating an expansion turbine / compressor in the expansion turbine section, that is, in an expander by using an expansion turbine / compressor having an expansion impeller on one side of the rotating shaft and a compression impeller on the other side. There is no need to separately provide a means for taking out the energy to be used effectively, and further, the rotational energy obtained on the expansion turbine side is used to increase the pressure of the hydrogen gas on the compressor side, leading to the inlet of the expansion turbine. As a result, the expansion ratio of the expansion turbine is increased by the amount boosted by the compressor, and a larger heat drop (= cold generation amount) can be obtained. Equipped with a cooler to reduce the temperature of the hydrogen gas to an appropriate value. Process establishment of a low expansion turbine of securing and more efficient in the margin can be achieved.
By the way, when the expander used in this process, that is, the turbine is designed with a capacity suitable for the current standard hydrogen filling station (hydrogen station), it is inevitable that it becomes a very small and high-speed rotating body. . In the case of a system in which 5 kg of high-pressure hydrogen gas is filled in about 3 minutes, the diameter of the expansion turbine is 8 to 12 mm, and the rotation speed corresponding to the maximum expansion ratio corresponds to 1.2 million revolutions / minute.
Therefore, in the high-pressure hydrogen expansion turbine / compressor filling system of the present invention, specifically, an impeller (turbine) that performs expansion action on one side of the rotor shaft of the rotor is obtained by expansion on the other side. Impellers (compressors) that perform a compression action that consumes the rotational energy are provided and configured.
The energy extracted by the expansion of the hydrogen gas by the turbine is extracted as kinetic energy in the form of high-speed rotation of the turbine rotor. To realize this high-speed rotation, the expansion turbine compressor is supplied with the supplied hydrogen gas. Use the hydrodynamic gas bearing type bearing.
For this reason, the “work” taken out as rotational energy can be one in which the friction loss (shaft loss) by the bearing is suppressed to a very small value.
The amount of energy obtained by subtracting this shaft loss from the rotational energy obtained by the turbine is consumed by centrifugally boosting the process gas on the compressor side, and the rotation balances.
That is, the rotational energy (turbine power) extracted by the turbine is consumed by boosting the process gas in a compressor provided on the opposite side of the rotating shaft and driven at the same rotational speed.
With this dynamic pressure type gas bearing type bearing, a compact and high-speed rotating body bearing as in the present invention is configured, so that it is possible to ensure ultra-high speed rotation and very low shaft loss.
In this way, the power recovery can be made as a turbine / compressor system without generating power or recovering the outside, and the configuration is simple and the construction cost can be reduced.
The process gas pressurized on the compressor side is accompanied by an increase in pressure and temperature due to thermodynamic compression. The rise in temperature is cooled to about 20 ° C., for example, by disposing it as heat by providing a cooler (air-cooled or water-cooled aftercooler) as necessary. The increase in pressure results in an increase in pressure at the turbine inlet, so that the expansion ratio in the turbine is further increased, and as a result, the amount of cold generation is increased.
In the present invention, the technical reason for adopting a turbine compressor in the process without converting the power extracted by the turbine into electric power by a generator or the like is that a device that is too small and fast rotating is a generator. The process itself may be small and high-frequency, and may not be established. In addition, the process gas has an advantage from the viewpoint of explosion prevention because of hydrogen.

水素ガスの膨張弁を用いた膨張(弁膨張)による充填流量及び圧力並びに温度の変化を示すグラフである。It is a graph which shows the change of the filling flow rate by the expansion | swelling (valve expansion) using the expansion valve of hydrogen gas, pressure, and temperature. 従来の水素プレクールシステムを用いた水素ステーションの説明図である。It is explanatory drawing of the hydrogen station using the conventional hydrogen precool system. 本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法を実施する高圧水素の膨張タービン・コンプレッサ式充填システムの一実施例を示す説明図である。It is explanatory drawing which shows one Example of the expansion turbine compressor compression type | system | group of the high pressure hydrogen which implements the control method of the expansion turbine compressor compression type | system | group of the high pressure hydrogen of this invention. 本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法を実施する高圧水素の膨張タービン・コンプレッサ式充填システムの変形実施例を示す説明図である。It is explanatory drawing which shows the deformation | transformation Example of the expansion turbine compressor compression type | system | group of a high pressure hydrogen which implements the control method of the expansion turbine compressor compression type | system | group of the high pressure hydrogen of this invention. 水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と本発明の高圧水素の膨張タービン・コンプレッサ式充填システム(実施例)による充填流量及び圧力の変化を示すグラフである。It is a graph which shows the expansion (valve expansion) (conventional system) using the expansion valve of hydrogen gas, and the change of the filling flow rate and pressure by the expansion turbine compressor type filling system (example) of the present invention. 水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と本発明の高圧水素の膨張タービン・コンプレッサ式充填システム(実施例)による温度の変化を示すグラフである。It is a graph which shows the change of the temperature by the expansion (valve expansion) (conventional system) using the expansion valve of hydrogen gas, and the expansion turbine compressor type filling system (example) of the high-pressure hydrogen of the present invention. 本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法を実施する高圧水素の膨張タービン・コンプレッサ式充填システムのシステム構成の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the system configuration | structure of the expansion turbine compressor compression type | system | group of a high pressure hydrogen which implements the control method of the expansion turbine compressor compression type | system | group of the high pressure hydrogen of this invention. 膨張タービン側入口部に冷却器を備えて水素ガスの温度を変化させた場合の充填完了温度とタービン効率の関係を示すグラフである。It is a graph which shows the relationship between the filling completion temperature at the time of providing the cooler in the expansion turbine side inlet part, and changing the temperature of hydrogen gas, and turbine efficiency. 本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法を実施する高圧水素の膨張タービン・コンプレッサ式充填システムのシステム構成の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the system configuration | structure of the expansion turbine compressor compression type | system | group of a high pressure hydrogen which implements the control method of the expansion turbine compressor compression type | system | group of the high pressure hydrogen of this invention.

以下、本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法の実施の形態を、図面に基づいて説明する。   Embodiments of a control method for an expansion turbine / compressor filling system for high-pressure hydrogen according to the present invention will be described below with reference to the drawings.

この高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法は、本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法を、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用したものであって、当該水素プレクールシステムは、高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムにおいて、膨張タービン部分に膨張タービン・コンプレッサを組み込むプロセス及び膨張タービン側入口部に冷却器を備えて構成される。   The control method of the high-pressure hydrogen expansion turbine / compressor filling system is the same as the control method of the high-pressure hydrogen expansion turbine / compressor filling system of the present invention in order to lower the temperature of the hydrogen gas in the final filling portion of the hydrogen station. The hydrogen precooling system is applied to a used hydrogen precooling system, and the hydrogen precooling system uses an expansion turbine to lower the enthalpy of the hydrogen gas when the hydrogen gas accumulated at a high pressure is charged into the tank. In the above, the process of incorporating the expansion turbine / compressor into the expansion turbine portion and the cooler at the inlet side of the expansion turbine are configured.

ここで、膨張タービン部分に膨張タービン・コンプレッサを組み込むプロセスを備えるために、本実施例においては、従来、例えば、冷媒の圧縮と膨張を行うために汎用されている回転軸の一方側に膨張用インペラ、他方側に圧縮用インペラを有するタービン・コンプレッサ(本明細書において、「膨張タービン・コンプレッサ」という。)を用いることができる。
この膨張タービン・コンプレッサは、供給される水素ガスを用いた動圧式ガス軸受方式の軸受(ラジアル及びスラスト両方向の支承を行う軸受)を備えて構成することができる。
Here, in order to provide a process for incorporating an expansion turbine / compressor into the expansion turbine portion, in the present embodiment, for example, for the purpose of expansion on one side of a rotary shaft that has been conventionally used for compressing and expanding refrigerant. A turbine compressor having an impeller and a compression impeller on the other side (hereinafter referred to as “expansion turbine compressor”) can be used.
The expansion turbine / compressor can be configured to include a hydrodynamic gas bearing type bearing using a supplied hydrogen gas (bearing that supports both radial and thrust directions).

具体的には、図3に示す、水素ステーションの水素ガスの最終膨張機構のように、この水素プレクールシステム10は、水素ガス源ライン9を、膨張タービン・コンプレッサ11の回路に接続して構成され、膨張タービン・コンプレッサ11にて最終的に水素ガスを膨張させて、エンタルピ低下(温度降下)させた水素ガスを、水素ガス供給ユニット13を介して、水素自動車の燃料タンク6に充填するようにしている。   Specifically, like the hydrogen gas final expansion mechanism of the hydrogen station shown in FIG. 3, the hydrogen precooling system 10 is configured by connecting the hydrogen gas source line 9 to the circuit of the expansion turbine / compressor 11. The hydrogen gas finally expanded by the expansion turbine / compressor 11 and reduced in enthalpy (temperature drop) is filled into the fuel tank 6 of the hydrogen vehicle via the hydrogen gas supply unit 13. ing.

ここで、膨張タービン・コンプレッサ11は、回転軸の一方側に膨張用インペラを有する膨張タービン11aを、他方側に圧縮用インペラを有するコンプレッサ11bを備えるようにし、膨張タービン11a側にて得られた回転エネルギを利用してコンプレッサ11b側にて水素ガスの圧力を上昇させて、膨張タービン11aの入口へ導かれるようにする(水素ガスは、コンプレッサ11bに供給され、その後、膨張タービン11aに供給される。)ことによって、コンプレッサ11bで昇圧された分、膨張タービン11aの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができるものとなる。   Here, the expansion turbine / compressor 11 was obtained on the side of the expansion turbine 11a by including an expansion turbine 11a having an expansion impeller on one side of the rotating shaft and a compressor 11b having a compression impeller on the other side. Rotational energy is used to increase the pressure of hydrogen gas on the compressor 11b side so that it is guided to the inlet of the expansion turbine 11a (hydrogen gas is supplied to the compressor 11b and then supplied to the expansion turbine 11a. As a result, the expansion ratio of the expansion turbine 11a is increased by the amount boosted by the compressor 11b, and a larger heat drop (= cold generation amount) can be obtained.

また、膨張タービン・コンプレッサ11の膨張タービン11a側の入口部に冷却器12及びその制御装置14を設けることができる。
冷却器12の冷熱源12aには、水冷方式のものやチラーユニット方式のものを好適に用いることができる。
また、図示は省略するが、同様の冷却器を、コンプレッサ11b側の入口部に設けることもできる。
これにより、水素ガスの温度降下を補助することができ、水素ガスの温度を適正値に下げることにより、タンク充填完了時の温度余裕度の確保やより効率の低い膨張タービンでのプロセス成立が可能となる。
Further, the cooler 12 and its control device 14 can be provided at the inlet portion of the expansion turbine / compressor 11 on the expansion turbine 11a side.
As the cooling heat source 12a of the cooler 12, a water cooling type or a chiller unit type can be suitably used.
Moreover, although illustration is abbreviate | omitted, the same cooler can also be provided in the inlet_port | entrance part by the side of the compressor 11b.
As a result, the temperature drop of the hydrogen gas can be assisted. By reducing the temperature of the hydrogen gas to an appropriate value, it is possible to secure a temperature margin at the completion of tank filling and to establish a process with a less efficient expansion turbine. It becomes.

図5及び図6に、水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と本発明の高圧水素の膨張タービン・コンプレッサ式充填システム(実施例)による充填流量及び圧力並びに温度の変化を示す。   FIG. 5 and FIG. 6 show the filling flow rate, pressure and temperature of the expansion (valve expansion) using a hydrogen gas expansion valve (conventional method) and the high-pressure hydrogen expansion turbine / compressor filling system (example) of the present invention. Showing change.

高圧水素の膨張タービン・コンプレッサ式充填システムを、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用することによって、水素ガス源ライン9の高圧(82MPa)(元圧)の水素ガスから水素自動車の燃料タンク6に対して、圧力差を利用して膨張タービン・コンプレッサ11を駆動して、膨張した水素ガスを直接的に充填することができる。
この場合、充填初期においては、元圧と燃料タンク6の内圧の差が大きいことから、膨張タービン11aでの膨張比及びコンプレッサ11bによる膨張比が比較的大きく取れるため、より多くの寒冷を発生することができる。
充填が進むにつれて燃料タンク6の内圧は上昇していき、膨張タービン・コンプレッサ11による発生寒冷は小さくなっていくが、最終的に85℃以下で充填を終えることができる。
By applying the high pressure hydrogen expansion turbine-compressor filling system to the hydrogen precooling system used to lower the temperature of the hydrogen gas in the final filling section of the hydrogen station, the high pressure (82 MPa) of the hydrogen gas source line 9 ( The expansion turbine / compressor 11 can be driven from the hydrogen gas of the original pressure) to the fuel tank 6 of the hydrogen automobile by using the pressure difference to directly fill the expanded hydrogen gas.
In this case, since the difference between the original pressure and the internal pressure of the fuel tank 6 is large in the initial stage of filling, the expansion ratio in the expansion turbine 11a and the expansion ratio in the compressor 11b can be relatively large, so that more cold is generated. be able to.
As the filling progresses, the internal pressure of the fuel tank 6 rises, and the cold generated by the expansion turbine / compressor 11 decreases, but the filling can finally be completed at 85 ° C. or lower.

ところで、図3に示す実施例においては、1台の膨張タービン・コンプレッサ11を用いるようにしたが、図4に示す変形実施例に示すように、複数台、直列に配置して構成するようにしたり、さらに、複数台、直列に配置したものを並列に配置して構成するようにすることができる。
これにより、膨張タービン・コンプレッサ11のタービン効率をそれぞれの膨張比率で最大の領域にて運転を行い、寒冷発生量に余裕を持たせるようにしたり、容易に設備流量を増加させることができ、大きなプレクール冷却器なしに、大型の燃料電池バスやトラックの充填設備を構成することが可能である。
Incidentally, in the embodiment shown in FIG. 3, one expansion turbine / compressor 11 is used. However, as shown in the modified embodiment shown in FIG. 4, a plurality of units are arranged in series. In addition, a plurality of units arranged in series can be arranged in parallel.
As a result, the turbine efficiency of the expansion turbine / compressor 11 can be operated in the maximum region at the respective expansion ratios, and the amount of cold generated can be given a margin, or the facility flow rate can be easily increased. A large fuel cell bus or truck filling facility can be constructed without a precool cooler.

ところで、図3に示す実施例(図4に示す実施例においても同様。)においては、図7に示すように、膨張タービン・コンプレッサ11の膨張タービン11a側の入口部に冷却器12及びその制御装置14を設け、冷却器12の水素ガスの出口温度を制御するようにしている。
このように構成することによって、冷却器12の水素ガスの出口温度を適正に下げることができ、これにより、充填完了時の燃料タンク6内の温度の余裕度を持たせることができる。
In the embodiment shown in FIG. 3 (the same applies to the embodiment shown in FIG. 4), as shown in FIG. 7, the cooler 12 and its control are provided at the inlet portion of the expansion turbine / compressor 11 on the expansion turbine 11a side. A device 14 is provided to control the outlet temperature of the hydrogen gas from the cooler 12.
By configuring in this way, the outlet temperature of the hydrogen gas of the cooler 12 can be appropriately lowered, and thereby a margin of temperature in the fuel tank 6 at the completion of filling can be provided.

図7において、冷却器12の水素ガスの出口温度を、制御装置14により、例えば、通常の33℃近辺から25℃、20℃に降下させることにより、図8に示すように、充填後の燃料タンク6内の温度上昇に対して余裕を持たせるとともに、膨張タービン効率のより低いものでもプロセスとして構成できることになる。すなわち、新たなクーラで温度降下させるのではなく、冷却器12の寒冷を調節することで目的の温度にすることができる。   In FIG. 7, the hydrogen gas outlet temperature of the cooler 12 is lowered by the control device 14 from, for example, the normal vicinity of 33 ° C. to 25 ° C. and 20 ° C., as shown in FIG. In addition to providing a margin for the temperature rise in the tank 6, it is possible to configure a process having lower expansion turbine efficiency as a process. That is, instead of lowering the temperature with a new cooler, the desired temperature can be achieved by adjusting the cooling of the cooler 12.

この場合、冷却器12の水素ガスの出口温度を検知し、充填初期(最初の20〜30秒)は比較的設定を低く、充填が進むにつれ(寒冷負荷も減少するにつれ)適正な寒冷発生をプログラムし、水素ガスの出口温度を目的の温度に追随させるようにすることが望ましい。
具体的には、水素ガスを燃料タンク6内へ充填するプロトコルの制御は、水素ガス供給ユニット13内に設けた制御装置(コントローラ)にて行うようにする。この場合、予め指定された充填時間配分に見合う最適な寒冷を内部計算し、膨張タービン11aの入口温度(冷却器12の出口温度)を最適に制御することにより、無駄な冷却を行うことなく、最小の外部エネルギで充填を行うことができる。
In this case, the outlet temperature of the hydrogen gas of the cooler 12 is detected, and the setting is relatively low at the initial stage of filling (the first 20 to 30 seconds), and as the filling proceeds (as the cold load decreases), proper cold generation is generated. It is desirable to program so that the outlet temperature of the hydrogen gas follows the target temperature.
Specifically, control of the protocol for filling hydrogen gas into the fuel tank 6 is performed by a control device (controller) provided in the hydrogen gas supply unit 13. In this case, by calculating the optimum cold suitable for the filling time distribution specified in advance and optimally controlling the inlet temperature of the expansion turbine 11a (the outlet temperature of the cooler 12), without unnecessary cooling, Filling can be performed with minimal external energy.

また、燃料タンク6内の圧力及び温度上昇を検知して、水素ガスの出口温度を目的の温度に追随させるようにすることもできる。
具体的には、図9に示すように、水素ガス供給ユニット13側で燃料タンク6の現在の圧力及び温度を検知し、充填完了までの最適な寒冷量を計算し、自動制御にて膨張タービン11aの入口温度(冷却器12の出口温度)を最適に制御することにより、無駄な冷却を行うことなく、最小の外部エネルギで充填を行うことができる。
It is also possible to detect the pressure and temperature rise in the fuel tank 6 so that the outlet temperature of the hydrogen gas follows the target temperature.
Specifically, as shown in FIG. 9, the current pressure and temperature of the fuel tank 6 are detected on the hydrogen gas supply unit 13 side, the optimum cold amount until completion of filling is calculated, and the expansion turbine is automatically controlled. By optimally controlling the inlet temperature of 11a (the outlet temperature of the cooler 12), it is possible to perform charging with minimum external energy without performing unnecessary cooling.

本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法を、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用することによって、従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの課題を、以下のとおり解決することができる。
課題1)については、膨張タービン・コンプレッサ自体の稼働には外部電力を必要としないため、従来の水素プレクールシステムの運転コスト(電気代)に対して、ほとんど電力は必要としない。
課題2)については、冷媒が存在しないので、別個には冷凍則にかからないシステムとなる。水素ステーション全体の高圧ガス保安法のなかで対処することができる。
課題3)については、フロン冷媒やブライン自体が存在しないので、環境事故に対するリスクはなくなる。
課題4)については、かなりシンプルなシステム構成となるため、運転コストのみならず保守コストも大幅に低減できる。
課題5)については、膨張タービン・コンプレッサの起動と同時に温度降下状態が作れるため、系内の時定数が非常に小さい。事前起動の時間はわずかになる。
課題6)については、膨張タービン・コンプレッサのコールドボックスのみでよいので大幅な省スペース化が図れる。従来のものに対して体積比率で10%程度になる。
課題7)については、膨張タービン・コンプレッサを複数台組み合わせたり、最適な流量の膨張タービン・コンプレッサを用いることにより、容易に設備流量を増加させることができ、大きなプレクール冷却器なしに、大型の燃料電池バスやトラックの充填設備を構成することが可能である。
課題8)については、膨張タービン・コンプレッサを用いることにより、膨張機において発生するエネルギを取り出し、有効利用する手段を別途設ける必要がなく、さらに、膨張タービン側にて得られた回転エネルギを利用してコンプレッサ側にて水素ガスの圧力を上昇させて、膨張タービン入口へ導かれるようにすることによって、コンプレッサで昇圧された分、膨張タービンの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができ、さらに、膨張タービン側入口部に冷却器を備えて水素ガスの温度を適正値に下げることにより、タンク充填完了時の温度余裕度の確保やより効率の低い膨張タービンでのプロセス成立が可能となる。
By applying the control method of the high-pressure hydrogen expansion turbine / compressor filling system of the present invention to the hydrogen precooling system used to lower the temperature of the hydrogen gas in the final filling section of the hydrogen station, The problem of the hydrogen precooling system used for lowering the temperature of the hydrogen gas in the final filling section can be solved as follows.
As for the problem 1), since no external electric power is required for the operation of the expansion turbine / compressor itself, little electric power is required for the operation cost (electricity cost) of the conventional hydrogen precooling system.
Regarding the problem 2), since there is no refrigerant, the system does not separately follow the refrigeration law. It can be dealt with in the high-pressure gas safety law of the entire hydrogen station.
As for the problem 3), since there is no chlorofluorocarbon refrigerant or brine itself, there is no risk for an environmental accident.
As for Problem 4), since the system configuration is quite simple, not only the operation cost but also the maintenance cost can be greatly reduced.
Regarding the problem 5), since the temperature drop state can be created simultaneously with the start of the expansion turbine / compressor, the time constant in the system is very small. There will be little pre-launch time.
With respect to the problem 6), only a cold box for the expansion turbine / compressor is required, so that a large space can be saved. The volume ratio is about 10% of the conventional one.
As for Problem 7), it is possible to easily increase the facility flow rate by combining multiple expansion turbines / compressors or using an expansion turbine / compressor with an optimal flow rate. It is possible to configure a battery bus or truck filling facility.
As for Problem 8), it is not necessary to separately provide a means for taking out the energy generated in the expander by using an expansion turbine / compressor and using it effectively. Furthermore, the rotational energy obtained on the expansion turbine side is used. By increasing the pressure of the hydrogen gas on the compressor side and guiding it to the inlet of the expansion turbine, the expansion ratio of the expansion turbine is increased by the amount boosted by the compressor, and more heat drop (= cold In addition, by providing a cooler at the inlet side of the expansion turbine and lowering the hydrogen gas temperature to an appropriate value, it is possible to ensure the temperature margin at the time of tank filling completion and more efficiency It is possible to establish a process with a low expansion turbine.

以上、本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   The control method of the high-pressure hydrogen expansion turbine / compressor filling system according to the present invention has been described based on the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the gist thereof is described. The configuration can be changed as appropriate without departing from the scope of the invention.

本発明の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法は、構成が簡易で、現地工事費用を低減でき、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にでき、さらに、膨張機において発生するエネルギを取り出し、発電機等の外部に有効利用する手段を別途設ける必要がないという特性を有していることから、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの用途に好適に用いることができる。   The control method of the high-pressure hydrogen expansion turbine / compressor filling system of the present invention has a simple configuration, can reduce the cost of construction work, has a low burden of maintenance management service, and can reduce the operation cost including the power consumption cost. Furthermore, since there is no need to separately provide means for taking out the energy generated in the expander and effectively using it outside the generator, the temperature of the hydrogen gas is adjusted at the final filling section of the hydrogen station. It can use suitably for the use of the hydrogen precool system used in order to make it fall.

1 圧縮機設備
2 水素蓄圧設備
3 膨張弁
4 プレクーラ
5 水素プレクールシステム
6 燃料タンク(タンク)
7 冷凍機設備
8 ブライン回路
9 水素ガス源ライン
10 水素プレクールシステム
11 膨張タービン・コンプレッサ
11a 膨張タービン
11b コンプレッサ
12 冷却器
12a 冷熱源
13 水素ガス供給ユニット
14 制御装置
1 Compressor equipment 2 Hydrogen pressure storage equipment 3 Expansion valve
4 Precooler 5 Hydrogen precooling system 6 Fuel tank (tank)
7 Refrigerator equipment 8 Brine circuit 9 Hydrogen gas source line 10 Hydrogen precool system 11 Expansion turbine / compressor 11a Expansion turbine 11b Compressor 12 Cooler 12a Cold heat source 13 Hydrogen gas supply unit 14 Control device

Claims (4)

高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムの制御方法において、膨張タービン部分に膨張タービン・コンプレッサを組み込むプロセス及び膨張タービン側入口部に冷却器を備え、該冷却器の水素ガスの出口温度を制御することを特徴とする高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法。   In a method for controlling a filling system in which an enthalpy of hydrogen gas is lowered using an expansion turbine when hydrogen gas stored at a high pressure is charged into a tank, a process for incorporating an expansion turbine / compressor into the expansion turbine portion and the expansion turbine A control method for an expansion turbine / compressor filling system of high-pressure hydrogen, comprising a cooler at a side inlet portion, and controlling an outlet temperature of hydrogen gas of the cooler. 前記冷却器の水素ガスの出口温度を検知して、該出口温度を適正温度になるように、冷却器の寒冷エネルギ量を調節追従するようにしたことを特徴とする請求項1に記載の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法。   2. The high pressure according to claim 1, wherein the outlet temperature of the hydrogen gas of the cooler is detected and the amount of cold energy of the cooler is adjusted and followed so that the outlet temperature becomes an appropriate temperature. A control method for a hydrogen expansion turbine / compressor filling system. 水素ガスをタンクへ加圧充填する際の充填時間配分により、それぞれの充填段階で最適なガス温度になるように、冷却器の寒冷エネルギ量を調節追従するようにしたことを特徴とする請求項1又は2に記載の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法。   The cooling energy amount of the cooler is adjusted and followed so that an optimum gas temperature is obtained at each filling stage by distributing filling time when hydrogen gas is pressurized and filled into the tank. 3. A method for controlling an expansion turbine / compressor filling system for high-pressure hydrogen according to 1 or 2. タンクの圧力及び温度上昇を検知して、それぞれの充填段階で最適なガス温度になるように、冷却器の寒冷エネルギ量を調節追従するようにしたことを特徴とする請求項1、2又は3に記載の高圧水素の膨張タービン・コンプレッサ式充填システムの制御方法。   The pressure and temperature of the tank are detected, and the amount of cold energy of the cooler is adjusted and followed so that the optimum gas temperature is obtained in each filling stage. A control method for the high-pressure hydrogen expansion turbine / compressor filling system according to claim 1.
JP2017021814A 2016-02-23 2017-02-09 Control method of high pressure hydrogen charging system with expansion turbine and compressor Pending JP2017150661A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032073 2016-02-23
JP2016032073 2016-02-23

Publications (2)

Publication Number Publication Date
JP2017150661A true JP2017150661A (en) 2017-08-31
JP2017150661A5 JP2017150661A5 (en) 2019-07-25

Family

ID=59738897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021814A Pending JP2017150661A (en) 2016-02-23 2017-02-09 Control method of high pressure hydrogen charging system with expansion turbine and compressor

Country Status (1)

Country Link
JP (1) JP2017150661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225019A1 (en) * 2018-05-25 2019-11-28 株式会社 東芝 Hydrogen supply system and control method for hydrogen supply system
WO2020100486A1 (en) * 2018-11-14 2020-05-22 株式会社日立プラントメカニクス Expansion turbine filling system for high-pressure hydrogen
CN114673569A (en) * 2022-03-31 2022-06-28 北京大臻科技有限公司 Hydrogen turbine expansion device and method based on gas bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152871A (en) * 1999-11-26 2001-06-05 Shimadzu Corp Gas turbine device
JP2010032053A (en) * 2008-07-24 2010-02-12 Linde Ag Compression medium storage device and vehicle refueling method
JP2011074925A (en) * 2009-09-29 2011-04-14 Taiyo Nippon Sanso Corp Method and device for filling hydrogen gas
JP2015511695A (en) * 2012-03-27 2015-04-20 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Device and method for filling a tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152871A (en) * 1999-11-26 2001-06-05 Shimadzu Corp Gas turbine device
JP2010032053A (en) * 2008-07-24 2010-02-12 Linde Ag Compression medium storage device and vehicle refueling method
JP2011074925A (en) * 2009-09-29 2011-04-14 Taiyo Nippon Sanso Corp Method and device for filling hydrogen gas
JP2015511695A (en) * 2012-03-27 2015-04-20 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Device and method for filling a tank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225019A1 (en) * 2018-05-25 2019-11-28 株式会社 東芝 Hydrogen supply system and control method for hydrogen supply system
JPWO2019225019A1 (en) * 2018-05-25 2021-05-13 株式会社東芝 Hydrogen supply system and control method of hydrogen supply system
WO2020100486A1 (en) * 2018-11-14 2020-05-22 株式会社日立プラントメカニクス Expansion turbine filling system for high-pressure hydrogen
CN114673569A (en) * 2022-03-31 2022-06-28 北京大臻科技有限公司 Hydrogen turbine expansion device and method based on gas bearing
CN114673569B (en) * 2022-03-31 2024-02-27 北京大臻科技有限公司 Hydrogen turbine expansion device and method based on gas bearing

Similar Documents

Publication Publication Date Title
WO2017145769A1 (en) Expansion turbine and compressor-type high-pressure hydrogen filling system and control method for same
CN109477612B (en) Expansion turbine type filling system for high-pressure hydrogen
EP3303778B1 (en) Improvements in energy storage
US20240003272A1 (en) Multistage-compression energy storage apparatus and method based on carbon dioxide gas-liquid phase change
US10892642B2 (en) Compressed air energy storage power generation apparatus and compressed air energy storage power generation method
WO2016152339A1 (en) Hydrogen pre-cooling system
CN111749743A (en) Compressed air energy storage system sensitively suitable for frequency modulation
JP2017150661A (en) Control method of high pressure hydrogen charging system with expansion turbine and compressor
US20200063658A1 (en) Compressed air storage power generation device
CN107082006A (en) Hydrogen cell automobile high pressure hydrogen refrigerating plant
JP2017032122A (en) Hydrogen precooling system
JP6231245B1 (en) High-pressure hydrogen expansion turbine filling system
CN107706926B (en) Power grid black start and frequency modulation device and method based on battery pack and liquid air energy storage
JP6495053B2 (en) Refrigeration system, refrigeration system operation method, and refrigeration system design method
CN107246739A (en) Hydrogen internal combustion engine automobile high pressure hydrogen refrigerating plant
WO2020110684A1 (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
JP6796505B2 (en) High-pressure hydrogen expansion turbine / compressor filling system
WO2020100486A1 (en) Expansion turbine filling system for high-pressure hydrogen
JP6906013B2 (en) heat pump
JP5413531B1 (en) Next-generation solar power generation apparatus and next-generation natural energy power generation method
JP2014218991A (en) Next-generation electric power supply system, and nest-generation electric power supply method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105