WO2020100486A1 - Expansion turbine filling system for high-pressure hydrogen - Google Patents

Expansion turbine filling system for high-pressure hydrogen Download PDF

Info

Publication number
WO2020100486A1
WO2020100486A1 PCT/JP2019/040181 JP2019040181W WO2020100486A1 WO 2020100486 A1 WO2020100486 A1 WO 2020100486A1 JP 2019040181 W JP2019040181 W JP 2019040181W WO 2020100486 A1 WO2020100486 A1 WO 2020100486A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
filling
expansion turbine
hydrogen gas
expansion
Prior art date
Application number
PCT/JP2019/040181
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 純
高橋 強
Original Assignee
株式会社日立プラントメカニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントメカニクス filed Critical 株式会社日立プラントメカニクス
Publication of WO2020100486A1 publication Critical patent/WO2020100486A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention provides hydrogen for filling hydrogen gas, which serves as fuel for a hydrogen automobile (hereinafter, simply referred to as “hydrogen automobile”) such as a fuel cell automobile, from a hydrogen gas supply source into a fuel tank of the hydrogen automobile.
  • the present invention relates to a high pressure hydrogen expansion turbine type filling system applied to a temperature lowering system technology such as a precooler function in a final filling section of a filling facility (hereinafter, sometimes referred to as a “hydrogen station”).
  • Hydrogen gas used as fuel for hydrogen automobiles undergoes adiabatic expansion (isoenthalpy expansion) from high pressure in the expansion valve and other parts provided in the path filled with hydrogen gas Since it also expands in a high region, it has the property that the temperature after expansion rises due to the Joule-Thomson effect. Therefore, at the hydrogen station, when the hydrogen gas, which is the fuel for the hydrogen vehicle, is filled from the hydrogen gas supply source into the fuel tank of the hydrogen vehicle, the hydrogen gas is filled at the portion such as the expansion valve provided in the path for filling the hydrogen gas. The temperature of the gas rises.
  • FIG. 1 shows an example of the self-temperature change at each secondary pressure when hydrogen gas is expanded in one step from 30 MPa at 70 MPa (G), which is the tank pressure of the supply source.
  • the maximum temperature upper limit during hydrogen filling is set to 85 ° C due to the temperature limitation due to the material of the fuel tank and the operating temperature of the fuel cell body cell.
  • cooling means such as heat exchanger is arranged in the path for filling hydrogen gas, and this cooling means A method of filling a hydrogen automobile while cooling the hydrogen has been proposed and put into practical use (see, for example, Patent Document 1).
  • FIG. 2 and FIG. 3 show configuration diagrams of the current general 70 MPa (G) hydrogen station.
  • This hydrogen station includes a compressor equipment 1 including a compressor unit that receives hydrogen gas, a hydrogen pressure storage equipment 2 including a pressure accumulator unit that stores the hydrogen gas sent from the compressor equipment 1, and a hydrogen pressure storage equipment 2.
  • An expansion valve 3 and a hydrogen gas precooler 4 which are provided in a path for filling the hydrogen tank fuel tank 6 with the hydrogen gas, and a hydrogen precooling system 5 for cooling the hydrogen gas via the hydrogen gas precooler 4.
  • the hydrogen precooling system 5 is provided with a refrigerator facility 7 including a compressor, a condenser, an expansion valve, an evaporator, an accumulator, and the like, and a brine circuit 8 including a brine tank, a primary brine pump, a secondary pump, and the like. I am trying.
  • the hydrogen received by the compressor facility 1 is an intermediate pressure (40 MPa (G) in the figure) or a high pressure (82 MPa (G in the figure). )) And is held in the form of compressed gas in the pressure accumulator unit of the hydrogen accumulator 2 at the respective pressures.
  • the hydrogen precooling system 5 is configured by combining a normal refrigerator facility 7 such as a CFC refrigerant and a brine circuit 8 operating at around ⁇ 40 ° C., so that the configuration is complicated, Moreover, many rotary devices such as a refrigerant compressor for a refrigerator, a primary brine pump, and a secondary brine pump are also required.
  • the conventional hydrogen precooling system used to lower the temperature of the hydrogen gas in the final filling part of the hydrogen station has the following problems.
  • Externally independent hydrogen precool system is a system that operates by external power. It is about 40 kW at a general hydrogen station (300 Nm 3 / h), and the operation of the hydrogen precooling system itself raises the operating cost.
  • CFCs alternative CFCs
  • this precooler facility itself is subject to the refrigeration and safety regulations of the High Pressure Gas Safety Law, which limits its facilities and operations.
  • 3) Having CFCs and brine in the station requires measures to prevent environmental accidents due to external leakage of CFCs and brine.
  • the hydrogen pre-cooling system used to lower the temperature of hydrogen gas at the final filling part of this hydrogen station uses the expander (expansion turbine) to lower the temperature of hydrogen gas during the process of expanding and decompressing hydrogen gas, and the cold energy Is used for precooling hydrogen gas, and it is possible to solve the problems of the hydrogen precooling system used for lowering the temperature of hydrogen gas in the final filling section of the conventional hydrogen station. there were.
  • the hydrogen gas source line 9 is connected to the circuit of the expansion turbine 11, and the expansion turbine 11 finally expands the hydrogen gas
  • the high pressure hydrogen expansion turbine type filling system 10 is configured to fill the enthalpy lowered (temperature lowered) hydrogen gas into the fuel tank 6 of the hydrogen vehicle via the hydrogen gas supply unit 13.
  • the expansion turbine 11 may be configured by only the expansion turbine.
  • FIG. 5 shows changes in filling flow rate, pressure, and temperature by expansion (valve expansion) using a hydrogen gas expansion valve (conventional method) and expansion turbine type charging system for high-pressure hydrogen (new method).
  • the present invention has a simple configuration, a low burden of maintenance and management services, and power consumption.
  • the operating cost including the cost can be reduced, general-purpose members can be used as the constituent members of the hydrogen gas supply unit, and smooth and efficient filling (shortening of filling time) and energy utilization efficiency of equipment can be achieved. It is an object of the present invention to provide an expansion turbine type filling system for high-pressure hydrogen capable of improving the fuel consumption.
  • the high pressure hydrogen expansion turbine type filling system of the present invention is a filling system for performing enthalpy lowering of hydrogen gas using an expansion turbine when pressurizing and filling hydrogen gas accumulated at high pressure into a tank.
  • the system is characterized in that a regenerator having a hydrogen storage alloy incorporated therein is provided at the outlet of the expansion turbine, and a heating heat source for heating the inside of the regenerator.
  • a turbine compressor can be used for the expansion turbine.
  • the high temperature fluid extracted from the exhaust heat side to the aftercooler of the turbine / compressor is guided to the regenerator containing the hydrogen storage alloy and returned to the aftercooler after heat exchange.
  • a circuit can be provided.
  • the exhaust heat side of the hydrogen filling equipment refers to equipment that releases the exhaust heat in the hydrogen filling equipment, specifically, each cooler of a hydrogen compressor, a cooler of a precool chiller equipment, and the like.
  • the expansion turbine when the hydrogen gas accumulated at a high pressure is charged under pressure into the tank, the expansion turbine finally expands the hydrogen to lower the enthalpy (temperature drop). )
  • the configuration is simple, the burden of maintenance and management services is low, and the operating costs including power consumption costs can be reduced. It is possible to provide a hydrogen precooling system used to reduce the temperature of hydrogen gas in the filling section.
  • a turbine compressor for the expansion turbine that is, by using a turbine compressor having an expansion impeller on one side of a rotary shaft and a compression impeller on the other side, the energy generated in the expander is extracted.
  • the rotational energy obtained on the turbine side is used to increase the pressure of hydrogen gas on the compressor side so that the hydrogen gas is guided to the turbine inlet.
  • FIG. 6 is a graph showing changes in filling flow rate, pressure, and temperature due to expansion (valve expansion) of hydrogen gas using an expansion valve. It is explanatory drawing of the hydrogen station using the conventional hydrogen precooling system. It is explanatory drawing of the hydrogen station using the conventional hydrogen precooling system. It is explanatory drawing which shows an example of the expansion turbine type filling system of the high pressure hydrogen of a new system. It is a graph which shows the change of the filling flow rate and pressure of the expansion (valve expansion) (conventional system) which used the expansion valve of hydrogen gas, and the expansion turbine type
  • this high-pressure hydrogen expansion turbine-type filling system uses the high-pressure hydrogen expansion turbine-type filling system of the present invention for reducing the temperature of hydrogen gas at the final filling portion of a hydrogen station.
  • a regenerator 14 containing a hydrogen storage alloy therein and a heating heat source (not shown) for heating the inside of the regenerator 14 are provided.
  • the expansion turbine 11 may be configured by only an expansion turbine, but in the present embodiment, it is a turbine / compressor, that is, a rotary shaft that is generally used to perform compression and expansion of a refrigerant in the past.
  • a turbine compressor having an expansion impeller on one side and a compression impeller on the other side is used.
  • this high pressure hydrogen expansion turbine type filling system 10 connects the hydrogen gas source line 9 to the circuit of the expansion turbine 11.
  • the hydrogen gas is finally expanded in the expansion turbine 11 and the enthalpy lowered (temperature lowered) hydrogen gas is filled into the fuel tank 6 of the hydrogen vehicle via the hydrogen gas supply unit 13. I have to.
  • the cooler 12 can be provided at the inlet of the expansion turbine 11 on the turbine 11a side.
  • a water cooling type or a chiller unit type can be preferably used as the cold heat source 12a of the cooler 12. Thereby, the temperature drop of hydrogen gas can be assisted.
  • Fig. 5 shows changes in the filling flow rate and pressure and temperature due to expansion using a hydrogen gas expansion valve (valve expansion) (conventional method) and high-pressure hydrogen expansion turbine type charging system (new method).
  • valve expansion conventional method
  • high-pressure hydrogen expansion turbine type charging system new method
  • the high pressure hydrogen expansion turbine filling system 10 By applying the high pressure hydrogen expansion turbine filling system 10 to the hydrogen precooling system used to lower the temperature of the hydrogen gas at the final filling part of the hydrogen station, the high pressure (82 MPa) of the hydrogen gas source line 9 (original) It is possible to drive the expansion turbine 11 using the pressure difference from the hydrogen gas of (pressure) to the fuel tank 6 of the hydrogen automobile to directly fill the expanded hydrogen gas.
  • the expansion ratio of the turbine 11a and the expansion ratio of the compressor 11b can be made relatively large, so that more cold is generated. You can As the filling progresses, the internal pressure of the fuel tank 6 rises and the cold generated by the expansion turbine 11 becomes smaller, but the filling can be finally finished at 85 ° C. or lower.
  • the expansion turbine type filling system 10 for high-pressure hydrogen if nothing is done, takes a short time because the expansion ratio of the expansion turbine 11 is high in the initial stage of filling as shown in FIG. A region where the temperature of hydrogen gas drops to near -70 ° C occurs.
  • a regenerator 14 having a hydrogen storage alloy built therein is provided at the outlet of the expansion turbine 11.
  • the hydrogen storage alloy includes AB2 type (based on alloys of transition elements such as titanium, manganese, zirconium, and nickel) and AB5 type (rare earth elements, niobium, zirconium 1 having a catalytic effect on transition).
  • any conventionally used hydrogen storage alloy such as an alloy system, a Pd (palladium) system, or an alloy system of Ca (calcium) and a transition element (such as nickel) can be appropriately used. Further, it is preferable that the regenerator 14 be detachably incorporated into a pipe connected to the outlet of the expansion turbine 11 via a connection joint.
  • the regenerator 14 containing the hydrogen storage alloy relaxes and smoothes the temperature drop of the hydrogen gas in the initial stage of filling when the expansion ratio of the expansion turbine 11 is high, and specifically, ⁇ 40 ° C. to ⁇ 45.
  • a general-purpose member as a component of the hydrogen gas supply unit 13, for example, a sealing material for a filling hose, which is not compatible with ⁇ 70 ° C.
  • a regenerator that can handle low temperatures can be used.
  • the regenerator 14 has a tank structure formed of a pressure resistant container, and the pressure resistant container is provided with a heat insulating structure so that heat input / heat radiation from the outside can be suppressed or controlled. It has a built-in hydrogen storage alloy.
  • the regenerator 14 has a single tank structure consisting of a hydrogen storage alloy built-in so that the entire amount of hydrogen gas can be led to the hydrogen storage alloy. It is also possible to have a configuration in which a plurality of tanks each containing a regenerator other than the storage alloy are arranged side by side so that a part of the hydrogen gas can be guided to the hydrogen storage alloy.
  • the regenerator is not particularly limited, but is a metal using a metal having a honeycomb structure such as copper or stainless steel, a honeycomb regenerator, or a metal using a ribbon-shaped metal such as copper or stainless steel.
  • (Ribbon scourer) Filling type regenerator, beads or gel of isopropyl alcohol (low temperature regenerator consisting of beads and gel that puts in and out heat in the form of solidification heat at a predetermined target temperature.
  • “PlusICE” An alcohol bead (gel) built-in regenerator using a product name (Phase Change Material Products Limited) can be preferably used.
  • the hydrogen gas is taken into the hydrogen storage alloy when the hydrogen gas is at a low temperature, and the hydrogen gas is released from the hydrogen storage alloy when the hydrogen gas is at a high temperature.
  • the turbine outlet temperature is low (-40 ° C or lower) in the initial (first half) of the expansion + filling operation, so the hydrogen storage alloy built in the regenerator 14 is hydrogen gas. To occlude.
  • the turbine outlet temperature is close to room temperature, so the hydrogen storage alloy contained in the regenerator 14 operates to release the stored hydrogen gas.
  • This operation is actually an operation of putting in and out the hydrogen gas corresponding to the pressure and temperature conditions before and after the equilibrium point of the hydrogen storage alloy.
  • the effect of suppressing the temperature and flow rate (supply amount) of hydrogen gas of -40 ° C or lower is exerted, and when the temperature is near room temperature, the flow rate (supply amount) of hydrogen gas is reduced. Exerts the effect of increasing.
  • smooth and efficient filling shortening of filling time
  • the regenerator 14 at the outlet of the expansion turbine 11 in this way, at the initial stage of filling when the expansion ratio of the expansion turbine 11 is high, the temperature at the outlet of the expansion turbine 11 reaches close to ⁇ 70 ° C.
  • the cold hydrogen is absorbed by passing the cold hydrogen gas through a regenerator 14 containing a hydrogen storage alloy, and the cold gas is supplied at about -40 ° C.
  • the cold energy stored in the regenerator 14 containing the hydrogen storage alloy releases the cold energy in the latter half of the filling process, that is, as the temperature of the outlet of the expansion turbine 11 rises, and the whole temperature behavior is changed. It can be smoothed.
  • the heating heat source for heating the inside of the regenerator 14 is for moving the equilibrium state point of hydrogen storage by the hydrogen storage alloy to a state in which hydrogen is easily released, and the regenerator 14 has a heating heat source such as a heater ( An internal heating heat source (not shown) may be incorporated, or the exhaust heat side of the hydrogen filling equipment may be used as the heating heat source (external heating heat source) 15, as shown in FIGS.
  • the exhaust heat side of the hydrogen filling equipment when used as the heating heat source (external heating heat source) 15, as shown in FIGS. 7 to 9, when the hydrogen gas of the hydrogen storage alloy is released, the hydrogen filling equipment is exhausted.
  • a circuit is provided in which the high-temperature fluid extracted from the heat side is guided to the regenerator 14 containing a hydrogen storage alloy and returned to the heat exhaust side after heat exchange.
  • the exhaust heat side of the hydrogen filling equipment refers to equipment that releases the exhaust heat in the hydrogen filling equipment, specifically, each cooler of a hydrogen compressor, a cooler of a precool chiller equipment, and the like. As a result, the external heat source can be used, and the energy efficiency corresponding to the exhaust heat utilization of the entire hydrogen station can be improved.
  • FIGS. 7A and 8A in addition to using the exhaust heat side of the hydrogen filling equipment as a heating heat source (external heating heat source) 15, FIGS. As shown in b), the exhaust heat to the aftercooler of the turbine / compressor (the cooler 12 provided at the inlet of the expansion turbine 11 on the turbine 11a side) is partially used to further save energy in the entire system. The effect is obtained.
  • FIGS. 7B and 8B when the hydrogen gas of the hydrogen storage alloy is released, the aftercooler of the turbine / compressor (the inlet portion of the expansion turbine 11 on the turbine 11a side). It is possible to provide a circuit in which a required amount of high-temperature fluid extracted from the side of heat exhausted to the cooler 12) provided in the above is introduced into the regenerator 14 containing a hydrogen storage alloy and returned to the aftercooler outlet side after heat exchange.
  • the heating heat source is an internal heating heat source, an external heating heat source, an aftercooler of the turbine / compressor (the inlet portion of the expansion turbine 11 on the turbine 11a side, depending on the actual operating conditions of the expansion turbine type filling system for high-pressure hydrogen).
  • the exhaust heat to the cooler 12) provided in the can be appropriately selected.
  • the hydrogen filling amount decreases in the latter half of the filling (when the system pressure is relatively high).
  • the hydrogen gas already stored in the hydrogen storage alloy is released and contributes to the filling, so that a more rational operation of the filling system becomes possible.
  • the effect demanded of the regenerator 14 having the hydrogen storage alloy built therein is mainly intended to release the hydrogen once stored in the hydrogen storage alloy in a high pressure state and to release the hydrogen again for the purpose of superiority in the process. In this case, in order to release the hydrogen stored in the hydrogen storage alloy to the process side, it is necessary to shift the equilibrium state point of hydrogen storage to a state in which hydrogen is released more easily.
  • the filling amount (flow rate) of hydrogen at the pressure and temperature can be increased by the amount of hydrogen released from the hydrogen storage alloy, and the filling rate can be increased.
  • the regenerator 14 is constructed by incorporating a hydrogen storage alloy therein, and as shown in FIGS. 8 (a) and 8 (b), , A conventional regenerator 16 incorporating the other regenerator described above is combined, and most of the regenerator 16 functions as a normal regenerator 16.
  • a regenerator containing a hydrogen storage alloy is incorporated.
  • the vessel 14 may be used to optimize the hydrogen supply balance. Further, as shown in FIG. 9, it is possible to cope with a wider range of operating conditions by using a circuit configuration in which two regenerators 14 each containing a hydrogen storage alloy are combined.
  • the present invention is not limited to the configurations described in the above embodiments, and does not depart from the scope of the invention.
  • the configuration can be changed appropriately.
  • the high-pressure hydrogen expansion turbine type filling system of the present invention has a simple structure, has a low burden of maintenance and management services, can reduce operating costs including the cost of power consumption, and is a general-purpose member as a constituent member of a hydrogen gas supply unit. Since it can be used, and it has the characteristics of smooth and efficient filling (shortening of the filling time) and improvement of the energy utilization efficiency of the equipment, the final filling of the hydrogen station is possible. It can be suitably used for the purpose of a hydrogen precooling system used for lowering the temperature of hydrogen gas in the section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

In order to provide an expansion turbine filling system for high-pressure hydrogen, which has a simple configuration, has a low burden of maintenance management service, can reduce operation cost including power consumption cost, can use a general-purpose member as a constituent member of a hydrogen gas supply unit, and further can achieve smooth and efficient filling (reduction in fill time) and improvement in the energy use efficiency of a facility, this filling system reduces the enthalpy of hydrogen gas using an expansion turbine 11 when the hydrogen gas accumulated at a high pressure is pressurized and filled into a tank 6, and is provided with, at an outlet of the expansion turbine 11, a regenerator 14 containing a hydrogen-storing alloy, and a heat source for heating which heats the interior of the regenerator 14.

Description

高圧水素の膨張タービン式充填システムHigh-pressure hydrogen expansion turbine filling system
 本発明は、燃料電池自動車等の水素自動車(以下、単に、「水素自動車」という場合がある。)の燃料となる水素ガスを、水素ガス供給源から水素自動車の燃料タンクに充填するための水素充填設備(以下、「水素ステーション」という場合がある。)の最終充填部におけるプレクーラ機能等の温度降下システム技術に適用される高圧水素の膨張タービン式充填システムに関するものである。 The present invention provides hydrogen for filling hydrogen gas, which serves as fuel for a hydrogen automobile (hereinafter, simply referred to as “hydrogen automobile”) such as a fuel cell automobile, from a hydrogen gas supply source into a fuel tank of the hydrogen automobile. The present invention relates to a high pressure hydrogen expansion turbine type filling system applied to a temperature lowering system technology such as a precooler function in a final filling section of a filling facility (hereinafter, sometimes referred to as a “hydrogen station”).
 水素自動車の燃料として用いられる水素ガスは、水素ガスを充填する経路に設けられている膨張弁等の部分で高圧から断熱膨張(等エンタルピ膨張)すると、その性状から逆転温度(-58℃)よりも高い領域での膨張になるため、ジュールトムソン効果によって膨張後の温度が上昇するという性質を有している。
 したがって、水素ステーションにおいて、水素自動車の燃料となる水素ガスを、水素ガス供給源から水素自動車の燃料タンクに充填する際に、水素ガスを充填する経路に設けられている膨張弁等の部分で水素ガスの温度が上昇する。
Hydrogen gas used as fuel for hydrogen automobiles undergoes adiabatic expansion (isoenthalpy expansion) from high pressure in the expansion valve and other parts provided in the path filled with hydrogen gas Since it also expands in a high region, it has the property that the temperature after expansion rises due to the Joule-Thomson effect.
Therefore, at the hydrogen station, when the hydrogen gas, which is the fuel for the hydrogen vehicle, is filled from the hydrogen gas supply source into the fuel tank of the hydrogen vehicle, the hydrogen gas is filled at the portion such as the expansion valve provided in the path for filling the hydrogen gas. The temperature of the gas rises.
 この水素ガスの温度の上昇は、水素ガスの膨張比が大きくなるほど顕著になることから、水素ステーションでの水素ガス供給源からの供給ガスの高圧力化、例えば、供給ガスの圧力(供給源のタンク圧)が、45→70MPa(G)、さらに、82MPa(G)と高圧力化するのに伴って、さらに自己温度上昇量が大きくなってくる。
 一例として、水素ガスを、供給源のタンク圧である70MPa(G)、30℃から一段で膨張させたときの、各2次圧における自己温度変化の一例を図1に示す。
This increase in the temperature of the hydrogen gas becomes more remarkable as the expansion ratio of the hydrogen gas increases, so that the pressure of the supply gas from the hydrogen gas supply source at the hydrogen station is increased, for example, the pressure of the supply gas (the supply gas As the tank pressure increases from 45 to 70 MPa (G) and further to 82 MPa (G), the self-temperature rise amount further increases.
As an example, FIG. 1 shows an example of the self-temperature change at each secondary pressure when hydrogen gas is expanded in one step from 30 MPa at 70 MPa (G), which is the tank pressure of the supply source.
 一方、現状で普及が開始された燃料電池車では、燃料タンクの材質による温度制限と、燃料電池本体セルの運用温度の制限から、水素充填時の最高温度上限は85℃とされている。 On the other hand, in the fuel cell vehicles that have started to be popularized at present, the maximum temperature upper limit during hydrogen filling is set to 85 ° C due to the temperature limitation due to the material of the fuel tank and the operating temperature of the fuel cell body cell.
 そして、上記水素の性質から、何の手段も施さずにそのまま水素ガスを充填すると、水素充填時の温度が、最高温度上限の85℃を越えてしまい、燃料タンクの材質による温度制限や燃料電池本体セルの運用温度の制限、さらに、充填後の冷却に伴う圧力降下等の問題が発生するため、水素ガスを充填する経路に熱交換器等の冷却手段を配置し、この冷却手段で水素ガスを冷却しながら水素自動車に充填する方法が提案され、実用化されている(例えば、特許文献1参照。)。 Due to the above-mentioned properties of hydrogen, if hydrogen gas is directly filled without any means, the temperature at the time of hydrogen filling exceeds the maximum temperature upper limit of 85 ° C., and the temperature limit due to the material of the fuel tank and the fuel cell Since problems such as limitation of operating temperature of the main body cell and pressure drop due to cooling after filling occur, cooling means such as heat exchanger is arranged in the path for filling hydrogen gas, and this cooling means A method of filling a hydrogen automobile while cooling the hydrogen has been proposed and put into practical use (see, for example, Patent Document 1).
 ここで、図2及び図3に、現状の一般的な70MPa(G)の水素ステーションの構成図を示す。
 この水素ステーションは、水素ガスを受け入れる圧縮機ユニットからなる圧縮機設備1と、圧縮機設備1から送られてきた水素ガスを蓄圧する蓄圧器ユニットからなる水素蓄圧設備2と、水素蓄圧設備2からの水素ガスを水素自動車の燃料タンク6に充填するための経路に設けられた膨張弁3及び水素ガスプレクーラ4と、この水素ガスプレクーラ4を介して水素ガスの冷却を行う水素プレクールシステム5とを備え、さらに、水素プレクールシステム5には、圧縮機、凝縮器、膨張弁、蒸発器、アキュムレータ等からなる冷凍機設備7と、ブラインタンク、1次ブラインポンプ、2次ポンプ等からなるブライン回路8を備えるようにしている。
 そして、この水素ステーションは、オンサイト型、オフサイト型の水素ステーションの両者とも、受け入れた水素は圧縮機設備1で中間圧(図例では40MPa(G))や高圧(図例では82MPa(G))まで圧縮され、それぞれの圧力で水素蓄圧設備2の蓄圧ユニット内にて圧縮ガスの形で保持される。
 これらの水素ガスを、需要側である車載の燃料タンク6へ充填するには、膨張弁3を介しての膨張により行われるが、その際に水素ガス自身の温度上昇を伴うため、外部設備である水素プレクールシステム5により-40℃まで冷却される。
 現状の技術では、この水素プレクールシステム5は、フロン冷媒等の通常の冷凍機設備7と、-40℃近辺で動作するブライン回路8とを組み合わせて構成されているため、構成が複雑であり、また、冷凍機用冷媒圧縮機、1次ブラインポンプ、2次ブラインポンプ等の多くの回転機器も必要になる。
Here, FIG. 2 and FIG. 3 show configuration diagrams of the current general 70 MPa (G) hydrogen station.
This hydrogen station includes a compressor equipment 1 including a compressor unit that receives hydrogen gas, a hydrogen pressure storage equipment 2 including a pressure accumulator unit that stores the hydrogen gas sent from the compressor equipment 1, and a hydrogen pressure storage equipment 2. An expansion valve 3 and a hydrogen gas precooler 4 which are provided in a path for filling the hydrogen tank fuel tank 6 with the hydrogen gas, and a hydrogen precooling system 5 for cooling the hydrogen gas via the hydrogen gas precooler 4. Further, the hydrogen precooling system 5 is provided with a refrigerator facility 7 including a compressor, a condenser, an expansion valve, an evaporator, an accumulator, and the like, and a brine circuit 8 including a brine tank, a primary brine pump, a secondary pump, and the like. I am trying.
In both of the on-site type and off-site type hydrogen stations, the hydrogen received by the compressor facility 1 is an intermediate pressure (40 MPa (G) in the figure) or a high pressure (82 MPa (G in the figure). )) And is held in the form of compressed gas in the pressure accumulator unit of the hydrogen accumulator 2 at the respective pressures.
In order to fill the in-vehicle fuel tank 6 on the demand side with these hydrogen gases, expansion is performed via the expansion valve 3, but at that time, the temperature of the hydrogen gas itself rises, so that it is necessary to use external equipment. It is cooled to -40 ° C by a certain hydrogen precooling system 5.
According to the current technology, the hydrogen precooling system 5 is configured by combining a normal refrigerator facility 7 such as a CFC refrigerant and a brine circuit 8 operating at around −40 ° C., so that the configuration is complicated, Moreover, many rotary devices such as a refrigerant compressor for a refrigerator, a primary brine pump, and a secondary brine pump are also required.
 このため、従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムにおいては、以下の課題があった。
 1)外部で独立した水素プレクールシステムはそれ自体が外部電力で稼働するシステムである。一般的な水素ステーション(300Nm/h)で約40kWとなっており、水素プレクールシステムの運用自体が運転コストを上昇させる。
 2)冷凍機の冷媒にフロン(代替えフロン)を使用するため法的な扱いを受け、このプレクーラ設備自体が高圧ガス保安法の冷凍保安則にかかり、設備や運用において制約を受ける。
 3)フロンやブラインをステーション内に保有することは、フロンやブラインの外部漏洩に対する環境事故の予防対策が必要になる。
 4)水素プレクールシステムが、冷凍回路とブライン回路の2段構成で複雑であることや、冷媒圧縮機やブラインポンプ等の回転機が複数存在するため、多くの保守管理役務が生じる。
 5)ブラインを介したシステムのため、運転起動から定常状態になるまで時間を要する。このため、充填作業のかなり前から水素プレクールシステムを事前起動、系内を定常状態にしておく必要がある。
 6)水素ステーション自体の設置スペースを小型化する際に、水素プレクールシステムの専有スペースがその制約となる。
 7)現状の-40℃という温度では、さらに水素の急速充填に制限が出てくる。将来において、さらに充填時間を短くするためには、現状の-40℃よりも低い温度に予冷が必要となる可能性もある。
Therefore, the conventional hydrogen precooling system used to lower the temperature of the hydrogen gas in the final filling part of the hydrogen station has the following problems.
1) Externally independent hydrogen precool system is a system that operates by external power. It is about 40 kW at a general hydrogen station (300 Nm 3 / h), and the operation of the hydrogen precooling system itself raises the operating cost.
2) Because CFCs (alternative CFCs) are used as refrigerants in refrigerators, they are legally treated, and this precooler facility itself is subject to the refrigeration and safety regulations of the High Pressure Gas Safety Law, which limits its facilities and operations.
3) Having CFCs and brine in the station requires measures to prevent environmental accidents due to external leakage of CFCs and brine.
4) Since the hydrogen precooling system is complicated by the two-stage configuration of the refrigeration circuit and the brine circuit, and there are a plurality of rotating machines such as the refrigerant compressor and the brine pump, many maintenance management services occur.
5) Since it is a system that uses brine, it takes time from the start of operation to the steady state. Therefore, it is necessary to start the hydrogen precooling system in advance and keep the system in a steady state long before the filling work.
6) When downsizing the installation space of the hydrogen station itself, the exclusive space of the hydrogen precooling system is a limitation.
7) At the current temperature of -40 ° C, there will be restrictions on the rapid filling of hydrogen. In the future, in order to further shorten the filling time, pre-cooling to a temperature lower than the current -40 ° C may be required.
 ところで、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点に鑑み、本件出願人は、先に、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にできる、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムを提案した(特許文献2参照。)。 By the way, in view of the problems of the hydrogen precooling system used for lowering the temperature of the hydrogen gas in the final filling part of the above-mentioned conventional hydrogen station, the applicant of the present invention has previously proposed that the configuration is simple and the maintenance management service is performed. We proposed a hydrogen precooling system used for lowering the temperature of hydrogen gas at the final filling part of a hydrogen station, which has a low burden and can reduce operating costs including power consumption (see Patent Document 2).
 この水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムは、水素ガスを膨張減圧する過程で膨張機(膨張タービン)により水素ガスの温度降下を行い、その冷熱エネルギを利用して水素ガスの予冷を行うものであり、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点を解消することができるものであった。 The hydrogen pre-cooling system used to lower the temperature of hydrogen gas at the final filling part of this hydrogen station uses the expander (expansion turbine) to lower the temperature of hydrogen gas during the process of expanding and decompressing hydrogen gas, and the cold energy Is used for precooling hydrogen gas, and it is possible to solve the problems of the hydrogen precooling system used for lowering the temperature of hydrogen gas in the final filling section of the conventional hydrogen station. there were.
 より具体的には、この水素プレクールシステムは、図4に示すように、水素ガス源ライン9を、膨張タービン11の回路に接続し、膨張タービン11にて最終的に水素ガスを膨張させて、エンタルピ降下(温度降下)させた水素ガスを、水素ガス供給ユニット13を介して、水素自動車の燃料タンク6に充填するようにした、高圧水素の膨張タービン式充填システム10として構成されている。
 なお、図4に示す例は、膨張タービン11に、タービン11aとコンプレッサ11bとを同軸に配したタービン・コンプレッサを用いたものであるが、膨張タービンのみで構成することもできる。
More specifically, in this hydrogen precooling system, as shown in FIG. 4, the hydrogen gas source line 9 is connected to the circuit of the expansion turbine 11, and the expansion turbine 11 finally expands the hydrogen gas, The high pressure hydrogen expansion turbine type filling system 10 is configured to fill the enthalpy lowered (temperature lowered) hydrogen gas into the fuel tank 6 of the hydrogen vehicle via the hydrogen gas supply unit 13.
Although the example shown in FIG. 4 uses the turbine / compressor in which the turbine 11a and the compressor 11b are coaxially arranged in the expansion turbine 11, the expansion turbine 11 may be configured by only the expansion turbine.
 ここで、図5に、水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と高圧水素の膨張タービン式充填システム(新方式)による充填流量及び圧力並びに温度の変化を示す。 Here, FIG. 5 shows changes in filling flow rate, pressure, and temperature by expansion (valve expansion) using a hydrogen gas expansion valve (conventional method) and expansion turbine type charging system for high-pressure hydrogen (new method).
 ところで、この高圧水素の膨張タービン式充填システム10において、膨張タービン11の出口の温度は、刻々と変化する膨張タービン11の膨張比により決まるため一定ではない。
 すなわち、図5の典型的なタービン出口(=充填タンク入口)温度の計算事例に示すように(「Tin[新方式]」は、高圧水素の膨張タービン式充填システム10における膨張タービン11の出口温度(=充填タンク入口温度)の挙動例を示す。)、充填の初期段階においては、膨張タービン11の膨張比が高いために、短時間ではあるものの-70℃近くまで水素ガスの温度が降下する領域が生じる。
 このように、水素ガスの温度が-40℃よりも降下する時間帯があるため、水素ガス供給ユニット13の構成部材、例えば、充填ホースのシール材を-70℃対応のものにする必要があり、設備コストの上昇につながるという問題があった(課題8)。
By the way, in the high pressure hydrogen expansion turbine type filling system 10, the temperature of the outlet of the expansion turbine 11 is not constant because it is determined by the expansion ratio of the expansion turbine 11 which changes every moment.
That is, as shown in a typical calculation example of the turbine outlet (= filling tank inlet) temperature in FIG. 5, “Tin [new method]” is the outlet temperature of the expansion turbine 11 in the expansion turbine type filling system 10 for high pressure hydrogen. (= Example of behavior of filling tank inlet temperature).) In the initial stage of filling, the expansion ratio of the expansion turbine 11 is high, so that the temperature of hydrogen gas drops to near −70 ° C. for a short time. Areas arise.
As described above, since there is a time period when the temperature of the hydrogen gas falls below -40 ° C, it is necessary to make the constituent members of the hydrogen gas supply unit 13, for example, the sealing material of the filling hose compatible with -70 ° C. However, there was a problem that this would lead to an increase in equipment costs (Problem 8).
特開2004-116619号公報JP 2004-116619 A 特開2017-150660号公報JP, 2017-150660, A
 本発明は、上記従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの有する問題点に鑑み、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にでき、水素ガス供給ユニットの構成部材に汎用の部材を用いることができ、さらに、スムースで効率的な充填(充填時間の短縮)や、設備のエネルギの利用効率の向上を図ることができる高圧水素の膨張タービン式充填システムを提供することを目的とする。 In view of the problems of the hydrogen precooling system used for lowering the temperature of hydrogen gas in the final filling section of the above-mentioned conventional hydrogen station, the present invention has a simple configuration, a low burden of maintenance and management services, and power consumption. The operating cost including the cost can be reduced, general-purpose members can be used as the constituent members of the hydrogen gas supply unit, and smooth and efficient filling (shortening of filling time) and energy utilization efficiency of equipment can be achieved. It is an object of the present invention to provide an expansion turbine type filling system for high-pressure hydrogen capable of improving the fuel consumption.
 上記目的を達成するため、本発明の高圧水素の膨張タービン式充填システムは、高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムにおいて、膨張タービンの出口に水素吸蔵合金を内蔵した蓄冷器と、該蓄冷器の内部を加熱する加熱熱源とを設けたことを特徴とする。 In order to achieve the above object, the high pressure hydrogen expansion turbine type filling system of the present invention is a filling system for performing enthalpy lowering of hydrogen gas using an expansion turbine when pressurizing and filling hydrogen gas accumulated at high pressure into a tank. The system is characterized in that a regenerator having a hydrogen storage alloy incorporated therein is provided at the outlet of the expansion turbine, and a heating heat source for heating the inside of the regenerator.
 この場合において、前記膨張タービンに、タービン・コンプレッサを用いることができる。 In this case, a turbine compressor can be used for the expansion turbine.
 また、前記水素吸蔵合金の水素ガスの放出の際に、タービン・コンプレッサのアフタークーラへの排熱側から抽気した高温流体を水素吸蔵合金を内蔵した蓄冷器へ導き、熱交換後にアフタークーラに戻す回路を設けることができる。 Further, at the time of releasing the hydrogen gas of the hydrogen storage alloy, the high temperature fluid extracted from the exhaust heat side to the aftercooler of the turbine / compressor is guided to the regenerator containing the hydrogen storage alloy and returned to the aftercooler after heat exchange. A circuit can be provided.
 また、前記水素吸蔵合金の水素ガスの放出の際に、水素充填設備の排熱側から抽気した高温流体を水素吸蔵合金を内蔵した蓄冷器へ導き、熱交換後に排熱側に戻す回路を設けることができる。
 ここで、水素充填設備の排熱側とは、水素充填設備において、排熱が放出される機器、具体的には、水素圧縮機の各クーラー、プレクール・チラー設備のクーラー等をいう。
In addition, when releasing the hydrogen gas of the hydrogen storage alloy, a high-temperature fluid extracted from the exhaust heat side of the hydrogen filling equipment is guided to a regenerator containing the hydrogen storage alloy, and a circuit for returning to the exhaust heat side after heat exchange is provided. be able to.
Here, the exhaust heat side of the hydrogen filling equipment refers to equipment that releases the exhaust heat in the hydrogen filling equipment, specifically, each cooler of a hydrogen compressor, a cooler of a precool chiller equipment, and the like.
 本発明の高圧水素の膨張タービン式充填システムによれば、高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンにて最終的に水素を膨張させて、エンタルピ降下(温度降下)させた水素ガスを調節タンク側へ充填するようにすることにより、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にできる、例えば、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムを提供することができる。
 そして、膨張タービンの出口に水素吸蔵合金を内蔵した蓄冷器を設けることにより、膨張タービンの膨張比が高い充填の初期段階における水素ガスの温度降下の度合いを緩和、平滑化して、水素ガス供給ユニットの構成部材に汎用の部材を用いることを可能にし、設備コストが上昇することを防止することができるとともに、スムースで効率的な充填(充填時間の短縮)や、設備のエネルギの利用効率の向上を図ることができる。
According to the high-pressure hydrogen expansion turbine type filling system of the present invention, when the hydrogen gas accumulated at a high pressure is charged under pressure into the tank, the expansion turbine finally expands the hydrogen to lower the enthalpy (temperature drop). ) By filling the regulated tank side with hydrogen gas, the configuration is simple, the burden of maintenance and management services is low, and the operating costs including power consumption costs can be reduced. It is possible to provide a hydrogen precooling system used to reduce the temperature of hydrogen gas in the filling section.
Then, by providing a regenerator having a hydrogen storage alloy built in at the outlet of the expansion turbine, the degree of temperature drop of hydrogen gas at the initial stage of filling when the expansion ratio of the expansion turbine is high is relaxed and smoothed, and the hydrogen gas supply unit It is possible to use general-purpose members as the component members of the above, and it is possible to prevent the equipment cost from rising, and smooth and efficient filling (shortening of filling time) and improvement of energy utilization efficiency of equipment. Can be planned.
 また、前記膨張タービンに、タービン・コンプレッサを用いること、すなわち、回転軸の一方側に膨張用インペラ、他方側に圧縮用インペラを有するタービン・コンプレッサを用いることにより、膨張機において発生するエネルギを取り出し、有効利用する手段を別途設ける必要がなく、さらに、タービン側にて得られた回転エネルギを利用してコンプレッサ側にて水素ガスの圧力を上昇させて、タービン入口へ導かれるようにすることによって、コンプレッサで昇圧された分、タービンの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができる。 Further, by using a turbine compressor for the expansion turbine, that is, by using a turbine compressor having an expansion impeller on one side of a rotary shaft and a compression impeller on the other side, the energy generated in the expander is extracted. In addition, it is not necessary to provide a separate means for effective use, and the rotational energy obtained on the turbine side is used to increase the pressure of hydrogen gas on the compressor side so that the hydrogen gas is guided to the turbine inlet. The expansion ratio of the turbine increases as much as the pressure is increased by the compressor, so that a larger heat drop (= amount of cold generation) can be obtained.
水素ガスの膨張弁を用いた膨張(弁膨張)による充填流量及び圧力並びに温度の変化を示すグラフである。6 is a graph showing changes in filling flow rate, pressure, and temperature due to expansion (valve expansion) of hydrogen gas using an expansion valve. 従来の水素プレクールシステムを用いた水素ステーションの説明図である。It is explanatory drawing of the hydrogen station using the conventional hydrogen precooling system. 従来の水素プレクールシステムを用いた水素ステーションの説明図である。It is explanatory drawing of the hydrogen station using the conventional hydrogen precooling system. 新方式の高圧水素の膨張タービン式充填システムの一例を示す説明図である。It is explanatory drawing which shows an example of the expansion turbine type filling system of the high pressure hydrogen of a new system. 水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と高圧水素の膨張タービン式充填システム(新方式)による充填流量及び圧力の変化並びに温度の変化を示すグラフである。It is a graph which shows the change of the filling flow rate and pressure of the expansion (valve expansion) (conventional system) which used the expansion valve of hydrogen gas, and the expansion turbine type | system | group filling system (new system) of high-pressure hydrogen, and the change of temperature. 本発明の高圧水素の膨張タービン式充填システムの一実施例を示す説明図である。It is explanatory drawing which shows one Example of the expansion turbine type filling system of the high pressure hydrogen of this invention. 本発明の高圧水素の膨張タービン式充填システムの一実施例を示す説明図である。It is explanatory drawing which shows one Example of the expansion turbine type filling system of the high pressure hydrogen of this invention. 本発明の高圧水素の膨張タービン式充填システムの一実施例を示す説明図である。It is explanatory drawing which shows one Example of the expansion turbine type filling system of the high pressure hydrogen of this invention. 本発明の高圧水素の膨張タービン式充填システムの一実施例を示す説明図である。It is explanatory drawing which shows one Example of the expansion turbine type filling system of the high pressure hydrogen of this invention.
 以下、本発明の高圧水素の膨張タービン式充填システムの実施の形態を、図面に基づいて説明する。 An embodiment of a high-pressure hydrogen expansion turbine type filling system of the present invention will be described below with reference to the drawings.
 この高圧水素の膨張タービン式充填システムは、図6に示すように、本発明の高圧水素の膨張タービン式充填システムを、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用したものであって、高圧に蓄圧された水素ガスをタンク6へ加圧充填する際に、膨張タービン11を用いて水素ガスのエンタルピ降下を行う充填システムにおいて、膨張タービン11の出口に水素吸蔵合金を内蔵した蓄冷器14と、この蓄冷器14の内部を加熱する加熱熱源(図示省略。)とを設けるようにしたものである。 As shown in FIG. 6, this high-pressure hydrogen expansion turbine-type filling system uses the high-pressure hydrogen expansion turbine-type filling system of the present invention for reducing the temperature of hydrogen gas at the final filling portion of a hydrogen station. An outlet of the expansion turbine 11 in a filling system that is applied to a pre-cooling system, in which the enthalpy of the hydrogen gas is lowered by using the expansion turbine 11 when the tank 6 is pressurized and filled with hydrogen gas accumulated at a high pressure. In addition, a regenerator 14 containing a hydrogen storage alloy therein and a heating heat source (not shown) for heating the inside of the regenerator 14 are provided.
 ここで、膨張タービン11は、膨張タービンのみで構成することもできるが、本実施例においては、タービン・コンプレッサ、すなわち、従来、例えば、冷媒の圧縮と膨張を行うために汎用されている回転軸の一方側に膨張用インペラ、他方側に圧縮用インペラを有するタービン・コンプレッサを用いるようにしている。 Here, the expansion turbine 11 may be configured by only an expansion turbine, but in the present embodiment, it is a turbine / compressor, that is, a rotary shaft that is generally used to perform compression and expansion of a refrigerant in the past. A turbine compressor having an expansion impeller on one side and a compression impeller on the other side is used.
 具体的には、図6に示す、水素ステーションの水素ガスの最終膨張機構のように、この高圧水素の膨張タービン式充填システム10は、水素ガス源ライン9を、膨張タービン11の回路に接続して構成され、膨張タービン11にて最終的に水素ガスを膨張させて、エンタルピ降下(温度降下)させた水素ガスを、水素ガス供給ユニット13を介して、水素自動車の燃料タンク6に充填するようにしている。 Specifically, like the final expansion mechanism of hydrogen gas at the hydrogen station shown in FIG. 6, this high pressure hydrogen expansion turbine type filling system 10 connects the hydrogen gas source line 9 to the circuit of the expansion turbine 11. The hydrogen gas is finally expanded in the expansion turbine 11 and the enthalpy lowered (temperature lowered) hydrogen gas is filled into the fuel tank 6 of the hydrogen vehicle via the hydrogen gas supply unit 13. I have to.
 ここで、膨張タービン11は、回転軸の一方側に膨張用インペラを有するタービン11aを、他方側に圧縮用インペラを有するコンプレッサ11bを備えるようにし、タービン11a側にて得られた回転エネルギを利用してコンプレッサ11b側にて水素ガスの圧力を上昇させて、タービン11aの入口へ導かれるようにする(水素ガスは、コンプレッサ11bに供給され、その後、タービン11aに供給される。)ことによって、コンプレッサ11bで昇圧された分、タービン11aの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができるものとなる。 Here, the expansion turbine 11 is provided with a turbine 11a having an expansion impeller on one side of a rotating shaft and a compressor 11b having a compression impeller on the other side, and uses the rotational energy obtained on the turbine 11a side. Then, the pressure of the hydrogen gas is increased on the compressor 11b side so as to be guided to the inlet of the turbine 11a (the hydrogen gas is supplied to the compressor 11b and then to the turbine 11a). The expansion ratio of the turbine 11a is increased by the amount of pressure increased by the compressor 11b, and a larger heat drop (= cold generation amount) can be obtained.
 また、膨張タービン11のタービン11a側の入口部に冷却器12を設けることができる。
 冷却器12の冷熱源12aには、水冷方式のものやチラーユニット方式のものを好適に用いることができる。
 これにより、水素ガスの温度降下を補助することができる。
Further, the cooler 12 can be provided at the inlet of the expansion turbine 11 on the turbine 11a side.
As the cold heat source 12a of the cooler 12, a water cooling type or a chiller unit type can be preferably used.
Thereby, the temperature drop of hydrogen gas can be assisted.
 図5に、水素ガスの膨張弁を用いた膨張(弁膨張)(従来方式)と高圧水素の膨張タービン式充填システム(新方式)による充填流量及び圧力の変化並びに温度の変化を示す。 Fig. 5 shows changes in the filling flow rate and pressure and temperature due to expansion using a hydrogen gas expansion valve (valve expansion) (conventional method) and high-pressure hydrogen expansion turbine type charging system (new method).
 高圧水素の膨張タービン式充填システム10を、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用することによって、水素ガス源ライン9の高圧(82MPa)(元圧)の水素ガスから水素自動車の燃料タンク6に対して、圧力差を利用して膨張タービン11を駆動して、膨張した水素ガスを直接的に充填することができる。
 この場合、充填初期においては、元圧と燃料タンク6の内圧の差が大きいことから、タービン11aでの膨張比及びコンプレッサ11bによる膨張比が比較的大きく取れるため、より多くの寒冷を発生することができる。
 充填が進むにつれて燃料タンク6の内圧は上昇していき、膨張タービン11による発生寒冷は小さくなっていくが、最終的に85℃以下で充填を終えることができる。
By applying the high pressure hydrogen expansion turbine filling system 10 to the hydrogen precooling system used to lower the temperature of the hydrogen gas at the final filling part of the hydrogen station, the high pressure (82 MPa) of the hydrogen gas source line 9 (original) It is possible to drive the expansion turbine 11 using the pressure difference from the hydrogen gas of (pressure) to the fuel tank 6 of the hydrogen automobile to directly fill the expanded hydrogen gas.
In this case, since the difference between the original pressure and the internal pressure of the fuel tank 6 is large at the initial stage of filling, the expansion ratio of the turbine 11a and the expansion ratio of the compressor 11b can be made relatively large, so that more cold is generated. You can
As the filling progresses, the internal pressure of the fuel tank 6 rises and the cold generated by the expansion turbine 11 becomes smaller, but the filling can be finally finished at 85 ° C. or lower.
 ところで、高圧水素の膨張タービン式充填システム10は、何の対処もしないと、図5に示すように、充填の初期段階においては、膨張タービン11の膨張比が高いために、短時間ではあるものの-70℃近くまで水素ガスの温度が降下する領域が生じる。 By the way, the expansion turbine type filling system 10 for high-pressure hydrogen, if nothing is done, takes a short time because the expansion ratio of the expansion turbine 11 is high in the initial stage of filling as shown in FIG. A region where the temperature of hydrogen gas drops to near -70 ° C occurs.
 そこで、本実施例の高圧水素の膨張タービン式充填システム10においては、膨張タービン11の出口に水素吸蔵合金を内蔵した蓄冷器14を設けるようにしている。
 ここで、水素吸蔵合金には、AB2型(チタン、マンガン、ジルコニウム、ニッケルなどの遷移元素の合金をベースとしたもの)、AB5型(希土類元素、ニオブ、ジルコニウム1に対して触媒効果を持つ遷移元素(ニッケル、コバルト、アルミニウム等)5を含む合金をベースとしたもの(LaNi、ReNi等表))、Ti(チタン)-Fe(鉄)系、V(バナジウム)系、Mg(マグネシウム)合金系、Pd(パラジウム)系、Ca(カルシウム)と遷移元素(ニッケル等)の合金系等の水素吸蔵合金として従来汎用されているものを適宜用いることができる。
 また、蓄冷器14は、膨張タービン11の出口に接続された配管に対して接続継手を介して、着脱可能に組み込むようにすることが好ましい。
Therefore, in the high pressure hydrogen expansion turbine type filling system 10 of the present embodiment, a regenerator 14 having a hydrogen storage alloy built therein is provided at the outlet of the expansion turbine 11.
Here, the hydrogen storage alloy includes AB2 type (based on alloys of transition elements such as titanium, manganese, zirconium, and nickel) and AB5 type (rare earth elements, niobium, zirconium 1 having a catalytic effect on transition). Based on alloys containing elements (nickel, cobalt, aluminum, etc.) 5 (LaNi 5 , ReNi 5, etc.), Ti (titanium) -Fe (iron) -based, V (vanadium) -based, Mg (magnesium) Any conventionally used hydrogen storage alloy such as an alloy system, a Pd (palladium) system, or an alloy system of Ca (calcium) and a transition element (such as nickel) can be appropriately used.
Further, it is preferable that the regenerator 14 be detachably incorporated into a pipe connected to the outlet of the expansion turbine 11 via a connection joint.
 この水素吸蔵合金を内蔵した蓄冷器14は、膨張タービン11の膨張比が高い充填の初期段階における水素ガスの温度降下の度合いを緩和、平滑化して、具体的には、-40℃~-45℃で動作するようにして、水素ガス供給ユニット13の構成部材、例えば、充填ホースのシール材に、-70℃対応のものではなく、汎用の部材を用いることを可能にするためのもので、特に、低温に対して対応可能な蓄冷器を用いることができる。 The regenerator 14 containing the hydrogen storage alloy relaxes and smoothes the temperature drop of the hydrogen gas in the initial stage of filling when the expansion ratio of the expansion turbine 11 is high, and specifically, −40 ° C. to −45. In order to operate at a temperature of 0 ° C., it is possible to use a general-purpose member as a component of the hydrogen gas supply unit 13, for example, a sealing material for a filling hose, which is not compatible with −70 ° C. In particular, a regenerator that can handle low temperatures can be used.
 ここで、蓄冷器14は、耐圧容器で構成した槽構造をし、外部からの入熱/放熱を抑制したり、制御することができるように、耐圧容器には断熱構造を施こし、内部に水素吸蔵合金を内蔵するようにしている。
 蓄冷器14は、水素吸蔵合金を内蔵したものからなる単一の槽構成とし、水素ガスの全量を水素吸蔵合金に導くことができるようにするほか、水素吸蔵合金を内蔵したものに加え、水素吸蔵合金以外の蓄冷体を内蔵したものからなる複数の槽を並設した構成とし、水素ガスの一部を水素吸蔵合金に導くことができるようにすることもできる。
 なお、蓄冷体には、特に限定されるものではないが、銅、ステンレススチール等のハニカム構造の金属を用いた金属ハニカム式蓄冷体、銅、ステンレススチール等のリボンたわし状の金属を用いた金属(リボンたわし状)充填式蓄冷体、イソプロピルアルコールのビーズやジェル(所定の目的温度で固化熱の形で熱を出し入れするビーズやジェルで構成された低温蓄冷体をいう。例えば、「PlusICE」(商品名)(Phase Change Material Products Limited製。)を用いたアルコールビーズ(ジェル)内臓式蓄冷体等を好適に用いることができる。
Here, the regenerator 14 has a tank structure formed of a pressure resistant container, and the pressure resistant container is provided with a heat insulating structure so that heat input / heat radiation from the outside can be suppressed or controlled. It has a built-in hydrogen storage alloy.
The regenerator 14 has a single tank structure consisting of a hydrogen storage alloy built-in so that the entire amount of hydrogen gas can be led to the hydrogen storage alloy. It is also possible to have a configuration in which a plurality of tanks each containing a regenerator other than the storage alloy are arranged side by side so that a part of the hydrogen gas can be guided to the hydrogen storage alloy.
The regenerator is not particularly limited, but is a metal using a metal having a honeycomb structure such as copper or stainless steel, a honeycomb regenerator, or a metal using a ribbon-shaped metal such as copper or stainless steel. (Ribbon scourer) Filling type regenerator, beads or gel of isopropyl alcohol (low temperature regenerator consisting of beads and gel that puts in and out heat in the form of solidification heat at a predetermined target temperature. For example, "PlusICE" ( An alcohol bead (gel) built-in regenerator using a product name (Phase Change Material Products Limited) can be preferably used.
 水素吸蔵合金を内蔵した蓄冷器14は、水素ガスが低温の場合は、水素ガスが水素吸蔵合金に取り込まれ、水素ガスが高温の場合には、水素吸蔵合金から水素ガスが放出される。
 この高圧水素の膨張タービン式充填システムにおいて、膨張+充填運転の初期(前半)はタービン出口温度が低い(-40℃以下)であるため、蓄冷器14に内蔵された水素吸蔵合金は、水素ガスを吸蔵する動作をする。
 一方、膨張+充填運転の後半は、タービン出口温度は常温近くになるため、蓄冷器14に内蔵された水素吸蔵合金は、吸蔵した水素ガスを放出する動作をする。
 この動作は、実際には、水素吸蔵合金の平衡点前後において、圧力と温度の条件でそれに見合う水素ガスの出し入れ動作となる。
 これにより、低温時には、-40℃以下の水素ガスの温度と流量(供給量)を抑制する効果(より一層の蓄冷効果)を発揮し、常温近くになると、水素ガスの流量(供給量)を増加させる効果を発揮する。
 結果として、水素ガスの温度と流量(供給量)の両方から蓄冷効果と流量配分において、スムースで効率的な充填(充填時間の短縮)を実現することができる。
In the regenerator 14 containing the hydrogen storage alloy, the hydrogen gas is taken into the hydrogen storage alloy when the hydrogen gas is at a low temperature, and the hydrogen gas is released from the hydrogen storage alloy when the hydrogen gas is at a high temperature.
In this high-pressure hydrogen expansion turbine filling system, the turbine outlet temperature is low (-40 ° C or lower) in the initial (first half) of the expansion + filling operation, so the hydrogen storage alloy built in the regenerator 14 is hydrogen gas. To occlude.
On the other hand, in the latter half of the expansion + filling operation, the turbine outlet temperature is close to room temperature, so the hydrogen storage alloy contained in the regenerator 14 operates to release the stored hydrogen gas.
This operation is actually an operation of putting in and out the hydrogen gas corresponding to the pressure and temperature conditions before and after the equilibrium point of the hydrogen storage alloy.
As a result, when the temperature is low, the effect of suppressing the temperature and flow rate (supply amount) of hydrogen gas of -40 ° C or lower (further cold storage effect) is exerted, and when the temperature is near room temperature, the flow rate (supply amount) of hydrogen gas is reduced. Exerts the effect of increasing.
As a result, smooth and efficient filling (shortening of filling time) can be realized in terms of the cold storage effect and flow rate distribution from both the temperature and flow rate (supply amount) of hydrogen gas.
 そして、このように、膨張タービン11の出口に蓄冷器14を設けるようにすることによって、膨張タービン11の膨張比が高い、充填の初期段階において、膨張タービン11の出口で-70℃近くまで温度が降下した水素ガスを、水素吸蔵合金を内蔵した蓄冷器14を通過させることによって、寒冷を吸収し、-40℃前後にして供給するようにする。そして、水素吸蔵合金を内蔵した蓄冷器14に蓄冷された寒冷エネルギは、充填プロセスの後半、すなわち、膨張タービン11の出口の温度が上昇していくにつれて、寒冷を放出し、全体の温度挙動を平滑化することができる。 Thus, by providing the regenerator 14 at the outlet of the expansion turbine 11 in this way, at the initial stage of filling when the expansion ratio of the expansion turbine 11 is high, the temperature at the outlet of the expansion turbine 11 reaches close to −70 ° C. The cold hydrogen is absorbed by passing the cold hydrogen gas through a regenerator 14 containing a hydrogen storage alloy, and the cold gas is supplied at about -40 ° C. The cold energy stored in the regenerator 14 containing the hydrogen storage alloy releases the cold energy in the latter half of the filling process, that is, as the temperature of the outlet of the expansion turbine 11 rises, and the whole temperature behavior is changed. It can be smoothed.
 ところで、蓄冷器14の内部を加熱する加熱熱源は、水素吸蔵合金による水素吸蔵の平衡状態点を、水素を放出しやすい状態へ移行させるためのもので、蓄冷器14にヒータ等の加熱熱源(内部加熱熱源。図示省略。)を内蔵するようにしたり、図7~図9に示すように、水素充填設備の排熱側を加熱熱源(外部加熱熱源)15とすることができる。 By the way, the heating heat source for heating the inside of the regenerator 14 is for moving the equilibrium state point of hydrogen storage by the hydrogen storage alloy to a state in which hydrogen is easily released, and the regenerator 14 has a heating heat source such as a heater ( An internal heating heat source (not shown) may be incorporated, or the exhaust heat side of the hydrogen filling equipment may be used as the heating heat source (external heating heat source) 15, as shown in FIGS.
 ここで、水素充填設備の排熱側を加熱熱源(外部加熱熱源)15とする場合、図7~図9に示すように、水素吸蔵合金の水素ガスの放出の際に、水素充填設備の排熱側から抽気した高温流体を水素吸蔵合金を内蔵した蓄冷器14へ導き、熱交換後に排熱側に戻す回路を設けるようにしている。
 ここで、水素充填設備の排熱側とは、水素充填設備において、排熱が放出される機器、具体的には、水素圧縮機の各クーラー、プレクール・チラー設備のクーラー等をいう。
 これにより、外部熱源の利用が可能となり、水素ステーション全体の排熱利用分に相当するエネルギ効率の向上を図ることができる。
Here, when the exhaust heat side of the hydrogen filling equipment is used as the heating heat source (external heating heat source) 15, as shown in FIGS. 7 to 9, when the hydrogen gas of the hydrogen storage alloy is released, the hydrogen filling equipment is exhausted. A circuit is provided in which the high-temperature fluid extracted from the heat side is guided to the regenerator 14 containing a hydrogen storage alloy and returned to the heat exhaust side after heat exchange.
Here, the exhaust heat side of the hydrogen filling equipment refers to equipment that releases the exhaust heat in the hydrogen filling equipment, specifically, each cooler of a hydrogen compressor, a cooler of a precool chiller equipment, and the like.
As a result, the external heat source can be used, and the energy efficiency corresponding to the exhaust heat utilization of the entire hydrogen station can be improved.
 そして、図7(a)及び図8(a)に示すように、水素充填設備の排熱側を加熱熱源(外部加熱熱源)15とすることに加えて、図7(b)及び図8(b)に示すように、タービン・コンプレッサのアフタークーラ(膨張タービン11のタービン11a側の入口部に設けた冷却器12)への排熱を一部利用することで、さらに全体システムとしての省エネルギ効果が得られる。
 具体的には、図7(b)及び図8(b)に示すように、水素吸蔵合金の水素ガスの放出の際に、タービン・コンプレッサのアフタークーラ(膨張タービン11のタービン11a側の入口部に設けた冷却器12)への排熱側から必要量だけ抽気した高温流体を水素吸蔵合金を内蔵した蓄冷器14へ導き、熱交換後にアフタークーラ出口側に戻す回路を設けることができる。
Then, as shown in FIGS. 7A and 8A, in addition to using the exhaust heat side of the hydrogen filling equipment as a heating heat source (external heating heat source) 15, FIGS. As shown in b), the exhaust heat to the aftercooler of the turbine / compressor (the cooler 12 provided at the inlet of the expansion turbine 11 on the turbine 11a side) is partially used to further save energy in the entire system. The effect is obtained.
Specifically, as shown in FIGS. 7B and 8B, when the hydrogen gas of the hydrogen storage alloy is released, the aftercooler of the turbine / compressor (the inlet portion of the expansion turbine 11 on the turbine 11a side). It is possible to provide a circuit in which a required amount of high-temperature fluid extracted from the side of heat exhausted to the cooler 12) provided in the above is introduced into the regenerator 14 containing a hydrogen storage alloy and returned to the aftercooler outlet side after heat exchange.
 ここで、加熱熱源は、高圧水素の膨張タービン式充填システムの実際の運用状況等に応じて、内部加熱熱源、外部加熱熱源、タービン・コンプレッサのアフタークーラ(膨張タービン11のタービン11a側の入口部に設けた冷却器12)への排熱を、適宜取捨選択することができる。 Here, the heating heat source is an internal heating heat source, an external heating heat source, an aftercooler of the turbine / compressor (the inlet portion of the expansion turbine 11 on the turbine 11a side, depending on the actual operating conditions of the expansion turbine type filling system for high-pressure hydrogen). The exhaust heat to the cooler 12) provided in the can be appropriately selected.
 ところで、膨張タービンで水素充填操作を行うような本システムにおいては、水素の充填量(流量)は、充填の後半(系の圧力が比較的高い場合)に低下していく。この充填の後半において、水素吸蔵合金に既に蓄えられた水素ガスを放出させ、充填に寄与させることで充填システムのより合理的な運用が可能になる。
 水素吸蔵合金を内蔵した蓄冷器14に求められる効果は、一度水素吸蔵合金内に吸蔵した水素を高圧状態において、再度放出することを主に利用してプロセス上の優位性を目的としている。
 この場合、水素吸蔵合金に吸蔵された水素を、プロセス側へ放出させるには、水素吸蔵の平衡状態点を、より水素を放出しやすい状態へ移行させる必要があり、それには圧力を降下させるか、温度を上げる必要がある。ところが、充填の後半は系内の圧力は比較的高いため、吸蔵合金をほぼ同じ温度を保ちながら効果的に放出させるには、内部加熱熱源や外部加熱熱源で加熱する必要がある。この熱量を適切に与えることで、その圧力、温度における水素の充填量(流量)を、水素吸蔵合金から放出した水素の分だけ増加させ、充填速度を高めることができる。
By the way, in the present system in which the expansion turbine performs the hydrogen filling operation, the hydrogen filling amount (flow rate) decreases in the latter half of the filling (when the system pressure is relatively high). In the latter half of this filling, the hydrogen gas already stored in the hydrogen storage alloy is released and contributes to the filling, so that a more rational operation of the filling system becomes possible.
The effect demanded of the regenerator 14 having the hydrogen storage alloy built therein is mainly intended to release the hydrogen once stored in the hydrogen storage alloy in a high pressure state and to release the hydrogen again for the purpose of superiority in the process.
In this case, in order to release the hydrogen stored in the hydrogen storage alloy to the process side, it is necessary to shift the equilibrium state point of hydrogen storage to a state in which hydrogen is released more easily. , You need to raise the temperature. However, since the pressure in the system is relatively high in the latter half of the filling, it is necessary to heat the storage alloy with the internal heating heat source or the external heating heat source in order to effectively release the storage alloy while keeping the same temperature. By appropriately providing this heat amount, the filling amount (flow rate) of hydrogen at the pressure and temperature can be increased by the amount of hydrogen released from the hydrogen storage alloy, and the filling rate can be increased.
 蓄冷器14は、図7(a)及び(b)に示すように、すべて水素吸蔵合金を内蔵させて構成するようにするほか、図8(a)及び(b)に示すように、これに、上述の他の蓄冷体を内蔵させた従来型の蓄冷器16を組み合わせて、大半は通常型の蓄冷器16で機能させ、水素が過剰又は不足する場合に、水素吸蔵合金を内蔵させた蓄冷器14を使用し、水素供給バランスを最適にするようにすることもできる。
 また、図9に示すように、水素吸蔵合金を内蔵させた蓄冷器14を2基組み合わせた回路構成とすることで、さらに広い運転条件に対応できるようにすることもできる。この場合、例えば、片方の蓄冷器14で水素吸蔵運転しながら、片方の蓄冷器14で水素放出(加圧運転)が可能であり、充填プロセスにおいてそれぞれの最適な水素の充填量(流量)を供給可能とするものである。
As shown in FIGS. 7 (a) and 7 (b), the regenerator 14 is constructed by incorporating a hydrogen storage alloy therein, and as shown in FIGS. 8 (a) and 8 (b), , A conventional regenerator 16 incorporating the other regenerator described above is combined, and most of the regenerator 16 functions as a normal regenerator 16. When hydrogen is excessive or insufficient, a regenerator containing a hydrogen storage alloy is incorporated. The vessel 14 may be used to optimize the hydrogen supply balance.
Further, as shown in FIG. 9, it is possible to cope with a wider range of operating conditions by using a circuit configuration in which two regenerators 14 each containing a hydrogen storage alloy are combined. In this case, for example, it is possible to release hydrogen (pressurize operation) in one of the regenerators 14 while operating to store hydrogen in one of the regenerators 14, and to determine the optimum hydrogen filling amount (flow rate) in the filling process. It is possible to supply.
 本発明の高圧水素の膨張タービン式充填システムを、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムに適用することによって、従来の水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの課題を、以下のとおり解決することができる。
 課題1)については、膨張タービン自体の稼働には外部電力を必要としないため、従来の水素プレクールシステムの運転コスト(電気代)に対して、ほとんど電力は必要としない。
 課題2)については、冷媒が存在しないので、別個には冷凍則にかからないシステムとなる。水素ステーション全体の高圧ガス保安法のなかで対処することができる。
 課題3)については、フロン冷媒やブライン自体が存在しないので、環境事故に対するリスクはなくなる。
 課題4)については、かなりシンプルなシステム構成となるため、運転コストのみならず保守コストも大幅に低減できる。
 課題5)については、膨張タービンの起動と同時に温度降下状態が作れるため、系内の時定数が非常に小さい。事前起動の時間はわずかになる。
 課題6)については、膨張タービンのコールドボックスのみでよいので大幅な省スペース化が図れる。従来のものに対して体積比率で10%程度になる。
 課題7)については、膨張タービンを複数台組み合わせたり、最適な流量の膨張タービンを用いることにより、容易に設備流量を増加させることができ、大きなプレクール冷却器なしに、大型の燃料電池バスやトラックの充填設備を構成することが可能である。
 課題8)については、膨張タービンの出口に水素吸蔵合金を内蔵した蓄冷器を設けることにより、膨張タービンの膨張比が高い充填の初期段階における水素ガスの温度降下の度合いを緩和、平滑化して、水素ガス供給ユニットの構成部材に汎用の部材を用いることを可能にし、設備コストが上昇することを防止することが可能になり、さらに、スムースで効率的な充填(充填時間の短縮)や、設備のエネルギの利用効率の向上を図ることができる。
 さらに、膨張タービンにタービン・コンプレッサを用いることにより、膨張機において発生するエネルギを取り出し、有効利用する手段を別途設ける必要がなく、さらに、膨張タービン側にて得られた回転エネルギを利用してコンプレッサ側にて水素ガスの圧力を上昇させて、タービン入口へ導かれるようにすることによって、コンプレッサで昇圧された分、タービンの膨張比が大きくなり、より多くの熱落差(=寒冷発生量)を得るようにすることができる。
By applying the high-pressure hydrogen expansion turbine type filling system of the present invention to a hydrogen precooling system used for lowering the temperature of hydrogen gas in the final filling part of a hydrogen station, hydrogen is added to the final filling part of a conventional hydrogen station. The problems of the hydrogen precooling system used to lower the temperature of the gas can be solved as follows.
Regarding the problem 1), since the external power is not required to operate the expansion turbine itself, almost no power is required with respect to the operating cost (electricity cost) of the conventional hydrogen precooling system.
Regarding the problem 2), since there is no refrigerant, the system does not follow the refrigeration law separately. It can be dealt with in the high pressure gas safety law of the entire hydrogen station.
Regarding problem 3), there is no risk of environmental accidents because there is no CFC refrigerant or brine itself.
Regarding issue 4), since the system configuration is fairly simple, not only operating costs but also maintenance costs can be significantly reduced.
Regarding the problem 5), since a temperature drop state can be created at the same time when the expansion turbine is started, the time constant in the system is very small. Pre-launch time will be short.
With regard to Problem 6), only the cold box of the expansion turbine is required, so that a large space saving can be achieved. The volume ratio is about 10% compared to the conventional one.
Regarding issue 7), it is possible to easily increase the equipment flow rate by combining a plurality of expansion turbines or using an expansion turbine with an optimum flow rate, and without using a large precooling cooler, a large fuel cell bus or truck. It is possible to configure the filling equipment of.
Regarding the problem 8), by providing a regenerator having a hydrogen storage alloy built in at the outlet of the expansion turbine, the degree of temperature drop of hydrogen gas at the initial stage of filling when the expansion ratio of the expansion turbine is high is relaxed and smoothed, It is possible to use general-purpose members as the constituent members of the hydrogen gas supply unit, and it is possible to prevent an increase in equipment costs. Furthermore, smooth and efficient filling (shortening of filling time) and equipment It is possible to improve the use efficiency of the energy.
Further, by using a turbine compressor for the expansion turbine, it is not necessary to separately provide a means for extracting and effectively utilizing the energy generated in the expander, and further, using the rotational energy obtained on the expansion turbine side, the compressor is utilized. By increasing the pressure of hydrogen gas on the side so that it is guided to the turbine inlet, the expansion ratio of the turbine increases by the amount of pressure boosted by the compressor, and more heat difference (= cold generation amount) is generated. You can get it.
 以上、本発明の高圧水素の膨張タービン式充填システムについて、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 Although the high pressure hydrogen expansion turbine type filling system of the present invention has been described above based on the embodiments thereof, the present invention is not limited to the configurations described in the above embodiments, and does not depart from the scope of the invention. The configuration can be changed appropriately.
 本発明の高圧水素の膨張タービン式充填システムは、構成が簡易で、保守管理役務の負担が少なく、消費電力のコストを含む運転コストを低廉にでき、水素ガス供給ユニットの構成部材に汎用の部材を用いることができ、さらに、スムースで効率的な充填(充填時間の短縮)や、設備のエネルギの利用効率の向上を図ることができるという特性を有していることから、水素ステーションの最終充填部において水素ガスの温度を降下させるために用いられる水素プレクールシステムの用途に好適に用いることができる。 The high-pressure hydrogen expansion turbine type filling system of the present invention has a simple structure, has a low burden of maintenance and management services, can reduce operating costs including the cost of power consumption, and is a general-purpose member as a constituent member of a hydrogen gas supply unit. Since it can be used, and it has the characteristics of smooth and efficient filling (shortening of the filling time) and improvement of the energy utilization efficiency of the equipment, the final filling of the hydrogen station is possible. It can be suitably used for the purpose of a hydrogen precooling system used for lowering the temperature of hydrogen gas in the section.
 1 圧縮機設備
 2 水素蓄圧設備
 3 膨張弁 
 4 水素ガスプレクーラ
 5 水素プレクールシステム
 6 燃料タンク(タンク)
 7 冷凍機設備
 8 ブライン回路
 9 水素ガス源ライン
 10 高圧水素の膨張タービン式充填システム
 11 膨張タービン(タービン・コンプレッサ)
 11a タービン
 11b コンプレッサ
 12 冷却器(アフタークーラ)
 12a 冷熱源
 13 水素ガス供給ユニット
 14 蓄冷器
 15 加熱熱源(外部加熱熱源)
 16 蓄冷器
1 Compressor equipment 2 Hydrogen pressure storage equipment 3 Expansion valve
4 Hydrogen gas precooler 5 Hydrogen precooling system 6 Fuel tank (tank)
7 Refrigerator equipment 8 Brine circuit 9 Hydrogen gas source line 10 High pressure hydrogen expansion turbine type filling system 11 Expansion turbine (turbine / compressor)
11a turbine 11b compressor 12 cooler (aftercooler)
12a Cold heat source 13 Hydrogen gas supply unit 14 Regenerator 15 Heating heat source (external heating heat source)
16 regenerator

Claims (4)

  1.  高圧に蓄圧された水素ガスをタンクへ加圧充填する際に、膨張タービンを用いて水素ガスのエンタルピ降下を行う充填システムにおいて、膨張タービンの出口に水素吸蔵合金を内蔵した蓄冷器と、該蓄冷器の内部を加熱する加熱熱源とを設けたことを特徴とする高圧水素の膨張タービン式充填システム。 In a filling system that uses an expansion turbine to lower the enthalpy of hydrogen gas when pressure-filling hydrogen gas stored at a high pressure, a regenerator with a hydrogen storage alloy built in at the outlet of the expansion turbine and the regenerator An expansion turbine type filling system for high-pressure hydrogen, comprising: a heating heat source for heating the inside of the reactor.
  2.  前記膨張タービンに、タービン・コンプレッサを用いたことを特徴とする請求項1に記載の高圧水素の膨張タービン式充填システム。 The expansion turbine type filling system for high-pressure hydrogen according to claim 1, wherein a turbine compressor is used for the expansion turbine.
  3.  前記水素吸蔵合金の水素ガスの放出の際に、タービン・コンプレッサのアフタークーラへの排熱側から抽気した高温流体を水素吸蔵合金を内蔵した蓄冷器へ導き、熱交換後にアフタークーラに戻す回路を設けたことを特徴とする請求項2に記載の高圧水素の膨張タービン式充填システム。 At the time of releasing the hydrogen gas of the hydrogen storage alloy, a high temperature fluid extracted from the exhaust heat side to the aftercooler of the turbine / compressor is guided to the regenerator containing the hydrogen storage alloy, and a circuit is returned to the aftercooler after heat exchange. The expansion turbine type filling system for high pressure hydrogen according to claim 2, wherein the filling system is provided.
  4.  前記水素吸蔵合金の水素ガスの放出の際に、水素充填設備の排熱側から抽気した高温流体を水素吸蔵合金を内蔵した蓄冷器へ導き、熱交換後に排熱側に戻す回路を設けたことを特徴とする請求項1、2又は3に記載の高圧水素の膨張タービン式充填システム。 When releasing the hydrogen gas of the hydrogen storage alloy, a circuit was provided for guiding the high temperature fluid extracted from the exhaust heat side of the hydrogen filling equipment to the regenerator containing the hydrogen storage alloy and returning it to the exhaust heat side after heat exchange. An expansion turbine type filling system for high-pressure hydrogen according to claim 1, 2 or 3.
PCT/JP2019/040181 2018-11-14 2019-10-11 Expansion turbine filling system for high-pressure hydrogen WO2020100486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-213567 2018-11-14
JP2018213567A JP2020079628A (en) 2018-11-14 2018-11-14 High-pressure hydrogen expansion turbin type filling system

Publications (1)

Publication Number Publication Date
WO2020100486A1 true WO2020100486A1 (en) 2020-05-22

Family

ID=70730741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040181 WO2020100486A1 (en) 2018-11-14 2019-10-11 Expansion turbine filling system for high-pressure hydrogen

Country Status (2)

Country Link
JP (1) JP2020079628A (en)
WO (1) WO2020100486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332425A1 (en) * 2022-09-01 2024-03-06 Linde GmbH System for compressing, storing and providing gas and corresponding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283886A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Hydrogen supply system and its operation method
JP2016138594A (en) * 2015-01-27 2016-08-04 ヤマト・H2Energy Japan株式会社 Simple type hydrogen station
JP2017150661A (en) * 2016-02-23 2017-08-31 株式会社日立プラントメカニクス Control method of high pressure hydrogen charging system with expansion turbine and compressor
JP2018009651A (en) * 2016-07-14 2018-01-18 株式会社日立プラントメカニクス High-pressure hydrogen expansion turbine type filling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283886A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Hydrogen supply system and its operation method
JP2016138594A (en) * 2015-01-27 2016-08-04 ヤマト・H2Energy Japan株式会社 Simple type hydrogen station
JP2017150661A (en) * 2016-02-23 2017-08-31 株式会社日立プラントメカニクス Control method of high pressure hydrogen charging system with expansion turbine and compressor
JP2018009651A (en) * 2016-07-14 2018-01-18 株式会社日立プラントメカニクス High-pressure hydrogen expansion turbine type filling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332425A1 (en) * 2022-09-01 2024-03-06 Linde GmbH System for compressing, storing and providing gas and corresponding method
WO2024046598A1 (en) * 2022-09-01 2024-03-07 Linde Gmbh System for compressing, storing and providing gas and corresponding method

Also Published As

Publication number Publication date
JP2020079628A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6708505B2 (en) High-pressure hydrogen expansion turbine filling system
US20180128171A1 (en) Method and apparatus for power storage
JP4932525B2 (en) Hydrogen station
WO2017145769A1 (en) Expansion turbine and compressor-type high-pressure hydrogen filling system and control method for same
WO2016152339A1 (en) Hydrogen pre-cooling system
WO2020100486A1 (en) Expansion turbine filling system for high-pressure hydrogen
JP6231245B1 (en) High-pressure hydrogen expansion turbine filling system
CN105937416A (en) Cryogenic liquid air energy storage system utilizing waste heat lithium bromide to perform refrigeration
JP6525262B2 (en) Hydrogen precool system
JP2017150661A (en) Control method of high pressure hydrogen charging system with expansion turbine and compressor
CN213540514U (en) Liquid air energy storage system with self-absorption of compression heat
CN115325774A (en) Small-sized hydrogen liquefying device and method for segmented conversion of orthohydrogen and parahydrogen by adopting low-temperature cooler
JP2021156419A (en) Hydrogen filling system
JP3604733B2 (en) Pulse tube refrigerator
CN113266437B (en) Liquid air energy storage device based on integrated cold box
CN113417710B (en) Liquid air energy storage device based on compact cold box
CN219283780U (en) Liquefied gas energy optimizing system
US20240229685A9 (en) Pressure control for closed brayton cycles
US20240133321A1 (en) Pressure control for closed brayton cycles
RU2062412C1 (en) Plant for supplying natural gas
JP2017150660A (en) High pressure hydrogen charging system with expansion turbine and compressor
CN112228157A (en) Metal hydrogen storage material energy supply system of nitrogen working medium
JP2013234717A (en) Gas filling device and gas filling method
CN116242183A (en) Supercritical CO 2 Photo-thermal power generation and liquid state compression energy storage system and operation method thereof
CN117722874A (en) Phase change cold accumulation system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885378

Country of ref document: EP

Kind code of ref document: A1