JP2006283886A - Hydrogen supply system and its operation method - Google Patents

Hydrogen supply system and its operation method Download PDF

Info

Publication number
JP2006283886A
JP2006283886A JP2005105088A JP2005105088A JP2006283886A JP 2006283886 A JP2006283886 A JP 2006283886A JP 2005105088 A JP2005105088 A JP 2005105088A JP 2005105088 A JP2005105088 A JP 2005105088A JP 2006283886 A JP2006283886 A JP 2006283886A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
supply system
compressor
buffer tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005105088A
Other languages
Japanese (ja)
Inventor
Takaaki Asakura
隆晃 朝倉
Takumi Tanaka
琢実 田中
Yasushi Fujiwara
裕史 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liquid Gas Co Ltd
Osaka Gas Co Ltd
Original Assignee
Liquid Gas Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liquid Gas Co Ltd, Osaka Gas Co Ltd filed Critical Liquid Gas Co Ltd
Priority to JP2005105088A priority Critical patent/JP2006283886A/en
Publication of JP2006283886A publication Critical patent/JP2006283886A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen supply system and its operation method without increasing the size of the entire system, coping with even a case when a large amount of hydrogen is required to be supplied in a short amount of time. <P>SOLUTION: The hydrogen supply system and its operation method include the following connected in the order of: a hydrogen manufacturing device 1; a buffer tank 2 for storing the hydrogen manufactured by the hydrogen manufacturing device 1; a compressor 3 for compressing the hydrogen from the buffer tank 2; a pressure accumulator 4 for storing the hydrogen compressed by the compressor 3; and a dispenser 5 for supplying the hydrogen from the pressure accumulator 4 to a hydrogen demanding means 6. In the hydrogen supply system, hydrogen storage tanks 8a, 8b for storing the hydrogen by having a hydrogen storage material store the hydrogen are connected to the further upstream side of the compressor 3, and in the operation method for the hydrogen supply system, when pressure in the pressure accumulator 4 is lower than a set pressure for hydrogen replenishment, hydrogen in the hydrogen storage tanks 8a, 8b are replenished. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素の流れ方向の上流側から下流側に向けて、水素製造装置、水素製造装置により製造された水素を収容するバッファタンク、バッファタンクからの水素を圧縮する圧縮機、圧縮機により圧縮された水素を貯蔵する蓄圧器、および、蓄圧器からの水素を水素需要手段に供給するディスペンサが、この順に接続されている水素供給システムとその運転方法に関する。   The present invention relates to a hydrogen production apparatus, a buffer tank that stores hydrogen produced by the hydrogen production apparatus, a compressor that compresses hydrogen from the buffer tank, and a compressor from upstream to downstream in the hydrogen flow direction. The present invention relates to a hydrogen supply system that stores compressed hydrogen, and a dispenser that supplies hydrogen from the pressure accumulator to a hydrogen demand means, and an operation method thereof.

このような水素供給システムは、例えば、水素リッチガスから高純度水素を製造して、その高純度水素を燃料電池自動車などの水素需要手段に供給するためのものである。
そして、この種の水素供給システムとしては、従来、水素製造装置により製造された高純度水素をバッファタンクと蓄圧器に貯蔵するように構成され、蓄圧器内の圧力が満杯圧未満になると、水素製造装置による水素の製造を開始し、満杯圧に達すると、水素の製造を停止するように制御運転するものが知られている(例えば、特許文献1参照)。
Such a hydrogen supply system is, for example, for producing high-purity hydrogen from hydrogen-rich gas and supplying the high-purity hydrogen to hydrogen demand means such as a fuel cell vehicle.
And this type of hydrogen supply system is conventionally configured to store high-purity hydrogen produced by a hydrogen production device in a buffer tank and an accumulator, and when the pressure in the accumulator becomes less than full pressure, It is known that the production of hydrogen by a production apparatus is started and a control operation is performed so as to stop the production of hydrogen when the full pressure is reached (see, for example, Patent Document 1).

特開2004−116544号公報JP 2004-116544 A

ところが、この種の水素製造装置では、運転開始の直後から直ちに水素が製造されることはなく、一般的には、運転開始から1時間程度経過した後に水素が製造される。
したがって、上記公報に記載のシステムや運転方法では、多量の水素を短時間のうちに供給してしまうと、つまり、バッファタンクと蓄圧器に貯蔵してある水素を1時間以内に供給し終わってしまうと、その後、水素製造装置により実際に水素が製造されるまでの間、水素供給が不可能になる。
そのような事態の発生を回避するためには、例えば、蓄圧器を大容量化することが考えられるが、当然、蓄圧器の占める空間が大きくなって、システム全体が大型化することになる。
However, in this type of hydrogen production apparatus, hydrogen is not produced immediately after the start of operation, and in general, hydrogen is produced after about one hour has elapsed since the start of operation.
Therefore, in the system and operation method described in the above publication, if a large amount of hydrogen is supplied in a short time, that is, the hydrogen stored in the buffer tank and the pressure accumulator is supplied within one hour. After that, hydrogen supply becomes impossible until hydrogen is actually produced by the hydrogen production apparatus.
In order to avoid the occurrence of such a situation, for example, it is conceivable to increase the capacity of the pressure accumulator, but naturally, the space occupied by the pressure accumulator becomes larger, and the entire system becomes larger.

本発明は、このような従来の問題点に着目したもので、その目的は、システム全体を大型化することなく、しかも、たとえ多量の水素を短時間のうちに供給する必要がある場合にも対応可能な水素供給システムとその運転方法を提供することにある。   The present invention pays attention to such conventional problems, and its purpose is not to increase the size of the entire system, and even when a large amount of hydrogen needs to be supplied in a short time. An object is to provide a hydrogen supply system and a method for operating the hydrogen supply system.

本発明の第1の特徴構成は、水素の流れ方向の上流側から下流側に向けて、水素製造装置、水素製造装置により製造された水素を収容するバッファタンク、バッファタンクからの水素を圧縮する圧縮機、圧縮機により圧縮された水素を貯蔵する蓄圧器、および、蓄圧器からの水素を水素需要手段に供給するディスペンサが、この順に接続されている水素供給システムであって、水素を水素吸蔵材に吸蔵させて貯蔵する水素貯蔵タンクが、前記圧縮機より上流側に接続されているところにある。   A first characteristic configuration of the present invention compresses hydrogen from a hydrogen production apparatus, a buffer tank containing hydrogen produced by the hydrogen production apparatus, and hydrogen from the buffer tank from the upstream side to the downstream side in the hydrogen flow direction. A hydrogen supply system in which a compressor, a pressure accumulator that stores hydrogen compressed by the compressor, and a dispenser that supplies hydrogen from the pressure accumulator to a hydrogen demand means are connected in this order, and stores hydrogen There is a hydrogen storage tank that is stored in the material by being occluded and connected upstream of the compressor.

本発明の第1の特徴構成によれば、水素の流れ方向の上流側から下流側に向けて、水素製造装置、バッファタンク、圧縮機、蓄圧器、および、ディスペンサが、この順に接続されている水素供給システムにおいて、水素を水素吸蔵材に吸蔵させて貯蔵する水素貯蔵タンクが、圧縮機より上流側に接続されているので、多量の水素を短時間のうちに供給する必要がある場合には、水素吸蔵材に吸蔵されている水素を放出して不足分を補充することにより対応可能となる。
そして、その不足分を補充するための水素は、水素吸蔵材に吸蔵させて水素貯蔵タンク内に貯蔵されるので、たとえ多量の水素を貯蔵する場合であっても、つまり、水素製造装置による1時間分の製造量に見合う量の水素、あるいは、それ以上の量の水素を貯蔵する場合であっても、比較的小さな水素貯蔵タンクを設けるだけで済み、システム全体の大型化を招くこともない。
According to the first characteristic configuration of the present invention, the hydrogen production device, the buffer tank, the compressor, the pressure accumulator, and the dispenser are connected in this order from the upstream side to the downstream side in the hydrogen flow direction. In the hydrogen supply system, the hydrogen storage tank that stores the hydrogen stored in the hydrogen storage material is connected to the upstream side of the compressor, so when a large amount of hydrogen needs to be supplied in a short time This can be dealt with by releasing the hydrogen occluded in the hydrogen occlusion material and replenishing the shortage.
Since the hydrogen for replenishing the shortage is stored in the hydrogen storage tank by being stored in the hydrogen storage material, even if a large amount of hydrogen is stored, that is, 1 by the hydrogen production apparatus. Even when storing an amount of hydrogen corresponding to the amount of production for the time or a larger amount of hydrogen, it is only necessary to provide a relatively small hydrogen storage tank, which does not increase the size of the entire system. .

本発明の第2の特徴構成は、上述した水素供給システムにおいて、前記水素貯蔵タンクが、前記バッファタンクに接続されているところにある。   According to a second characteristic configuration of the present invention, in the hydrogen supply system described above, the hydrogen storage tank is connected to the buffer tank.

本発明の第2の特徴構成によれば、水素貯蔵タンクが、バッファタンクに接続されているので、水素吸蔵材から放出された水素は、バッファタンク内の水素と混合され、バッファタンク内の水素と一緒に圧縮機により所定の圧力にまで圧縮されてディスペンサから水素需要手段に供給される。   According to the second characteristic configuration of the present invention, since the hydrogen storage tank is connected to the buffer tank, the hydrogen released from the hydrogen storage material is mixed with the hydrogen in the buffer tank, and the hydrogen in the buffer tank is And compressed to a predetermined pressure by the compressor and supplied from the dispenser to the hydrogen demand means.

本発明の第3の特徴構成は、水素の流れ方向の上流側から下流側に向けて、水素製造装置、水素製造装置により製造された水素を収容するバッファタンク、バッファタンクからの水素を圧縮する圧縮機、圧縮機により圧縮された水素を貯蔵する蓄圧器、および、蓄圧器からの水素を水素需要手段に供給するディスペンサが、この順に接続されている水素供給システムの運転方法であって、水素を水素吸蔵材に吸蔵させて貯蔵する水素貯蔵タンクを、前記圧縮機より上流側に接続しておいて、前記蓄圧器内の圧力が水素補充用設定圧以下になると、前記水素貯蔵タンク内の水素を補充するところにある。   The third characteristic configuration of the present invention compresses hydrogen from a hydrogen production apparatus, a buffer tank containing hydrogen produced by the hydrogen production apparatus, and hydrogen from the buffer tank from the upstream side to the downstream side in the hydrogen flow direction. A compressor, a pressure accumulator for storing hydrogen compressed by the compressor, and a dispenser for supplying hydrogen from the pressure accumulator to the hydrogen demand means are operating methods of a hydrogen supply system connected in this order, Is connected to the upstream side of the compressor, and when the pressure in the pressure accumulator becomes equal to or lower than the set pressure for hydrogen replenishment, the hydrogen storage tank is stored in the hydrogen storage tank. The hydrogen is being replenished.

本発明の第3の特徴構成によれば、水素の流れ方向の上流側から下流側に向けて、水素製造装置、バッファタンク、圧縮機、蓄圧器、および、ディスペンサが、この順に接続されている水素供給システムの運転方法において、水素を水素吸蔵材に吸蔵させて貯蔵する水素貯蔵タンクを圧縮機より上流側に接続しておいて、蓄圧器内の圧力が水素補充用設定圧以下になると、その水素貯蔵タンク内の水素を補充するので、蓄圧器内の水素がなくなる前に水素貯蔵タンク内の水素を補充することが可能となる。
したがって、多量の水素を短時間のうちに供給する必要がある場合においても、水素の供給を中断させることなく、必要量の水素を連続して水素需要手段に供給することができる。
According to the third characteristic configuration of the present invention, the hydrogen production device, the buffer tank, the compressor, the pressure accumulator, and the dispenser are connected in this order from the upstream side to the downstream side in the hydrogen flow direction. In the operation method of the hydrogen supply system, a hydrogen storage tank that stores hydrogen by storing it in the hydrogen storage material is connected to the upstream side of the compressor, and when the pressure in the pressure accumulator becomes equal to or lower than the set pressure for hydrogen replenishment, Since the hydrogen in the hydrogen storage tank is replenished, it is possible to replenish the hydrogen in the hydrogen storage tank before the hydrogen in the pressure accumulator runs out.
Therefore, even when it is necessary to supply a large amount of hydrogen within a short time, the necessary amount of hydrogen can be continuously supplied to the hydrogen demand means without interrupting the supply of hydrogen.

本発明の第4の特徴構成は、上述した水素供給システムの運転方法において、前記蓄圧器内の圧力が水素製造用設定圧以下になると、前記水素製造装置による水素の製造を開始するところにある。   According to a fourth characteristic configuration of the present invention, in the operation method of the hydrogen supply system described above, when the pressure in the pressure accumulator becomes equal to or lower than a set pressure for hydrogen production, production of hydrogen by the hydrogen production apparatus is started. .

本発明の第4の特徴構成によれば、蓄圧器内の圧力が水素製造用設定圧以下になると、水素製造装置による水素の製造を開始するので、上述したように、多量の水素を短時間のうちに供給する必要がある場合、水素貯蔵タンク内の水素を補充して対応するのと並行して、水素製造装置による水素の製造を開始することも可能となり、たとえ水素貯蔵タンク内の水素を使い切ったとしても、引き続いて水素製造装置により製造した水素を水素需要手段に供給することができる。   According to the fourth characteristic configuration of the present invention, when the pressure in the pressure accumulator becomes equal to or lower than the set pressure for hydrogen production, production of hydrogen by the hydrogen production apparatus is started. It is possible to start the production of hydrogen by the hydrogen production device in parallel with the replenishment of the hydrogen in the hydrogen storage tank. Even if the battery is used up, the hydrogen produced by the hydrogen production apparatus can be continuously supplied to the hydrogen demand means.

本発明の第5の特徴構成は、上述した水素供給システムの運転方法において、前記蓄圧器内の圧力が水素停止用設定圧以上になると、前記水素製造装置による水素の製造を停止するところにある。   According to a fifth characteristic configuration of the present invention, in the operation method of the hydrogen supply system described above, when the pressure in the pressure accumulator becomes equal to or higher than the set pressure for stopping hydrogen, the hydrogen production by the hydrogen production apparatus is stopped. .

本発明の第5の特徴構成によれば、蓄圧器内の圧力が水素停止用設定圧以上になると、水素製造装置による水素の製造を停止するので、水素製造装置により必要以上の量の水素を製造することもなく、ランニングコストのコストアップを抑えることができる。   According to the fifth characteristic configuration of the present invention, when the pressure in the pressure accumulator becomes equal to or higher than the hydrogen stop setting pressure, the hydrogen production by the hydrogen production device is stopped. Without manufacturing, it is possible to suppress an increase in running cost.

本発明による水素供給システムとその運転方法につき、実施の形態を図面に基づいて説明する。
この水素供給システムは、例えば、水素リッチガスから高純度水素を製造して燃料電池自動車などに供給するためのもので、図1に示すように、水素の流れ方向の上流側から下流側に向けて、水素製造装置1、水素製造装置1により製造された高純度水素を一時的に収容するバッファタンク2、そのバッファタンク2からの高純度水素を圧縮する圧縮機3、圧縮機3により圧縮されて昇圧された高圧の高純度水素を貯蔵する蓄圧器4、および、蓄圧器4からの高純度水素を水素需要手段の一例である燃料電池自動車6に供給するディスペンサ5が、第1〜第4水素搬送路7a,7b,7c,7dを介して、この順に接続されて構成されている。
Embodiments of a hydrogen supply system and an operation method thereof according to the present invention will be described with reference to the drawings.
This hydrogen supply system is, for example, for producing high-purity hydrogen from a hydrogen-rich gas and supplying it to a fuel cell vehicle or the like, as shown in FIG. 1, from the upstream side to the downstream side in the hydrogen flow direction. The hydrogen production apparatus 1, the buffer tank 2 that temporarily stores the high purity hydrogen produced by the hydrogen production apparatus 1, the compressor 3 that compresses the high purity hydrogen from the buffer tank 2, and the compressor 3 that is compressed The pressure accumulator 4 that stores the high-pressure high-purity hydrogen that has been boosted, and the dispenser 5 that supplies the high-purity hydrogen from the pressure accumulator 4 to the fuel cell vehicle 6 that is an example of the hydrogen demand means are the first to fourth hydrogens. The transport paths 7a, 7b, 7c and 7d are connected in this order.

この水素供給システムにおいて、水素吸蔵材の一例である粉粒状の水素吸蔵合金を収容して、その水素吸蔵合金に高純度水素を吸蔵させて貯蔵する第1と第2の水素貯蔵タンク8a,8bが設けられ、両水素貯蔵タンク8a,8bが、第1と第2の水素貯蔵路9a,9bを介して第1水素搬送路7aに並列に接続され、第1水素貯蔵路9aに第1貯蔵用電磁弁10aが、第2水素貯蔵路9bに第2貯蔵用電磁弁10bが設けられている。
そして、両水素貯蔵タンク8a,8bは、第1と第2の水素補充路11a,11bを介してバッファタンク2に並列に接続され、第1水素補充路11aに第1補充用電磁弁12aが、第2水素補充路11bに第2補充用電磁弁12bが設けられている。
In this hydrogen supply system, first and second hydrogen storage tanks 8a and 8b for storing a granular hydrogen storage alloy which is an example of a hydrogen storage material and storing the hydrogen storage alloy by storing high purity hydrogen therein. The hydrogen storage tanks 8a and 8b are connected in parallel to the first hydrogen transfer path 7a via the first and second hydrogen storage paths 9a and 9b, and the first storage tank 9a stores the first storage. The electromagnetic valve 10a is provided with the second storage electromagnetic valve 10b in the second hydrogen storage path 9b.
Both hydrogen storage tanks 8a and 8b are connected in parallel to the buffer tank 2 via first and second hydrogen replenishment paths 11a and 11b, and a first replenishment electromagnetic valve 12a is connected to the first hydrogen replenishment path 11a. A second replenishing solenoid valve 12b is provided in the second hydrogen replenishment path 11b.

水素製造装置1は、水素リッチガスから高純度水素を製造するもので、第1から第3までの3つの水素精製塔13a,13b,13cを備え、各水素精製塔13a,13b,13cは、水素リッチガス供給路14に対してそれぞれ供給用分岐路14a,14b,14cを介して互いに並列に接続され、各供給用分岐路14a,14b,14cには、それぞれ供給用電磁弁15a,15b,15cが設けられている。
水素リッチガス供給路14には、例えば、13Aなどの都市ガスを原料とし、昇圧した都市ガスから硫黄分をppbレベルにまで除去し、水蒸気改質用の触媒によって水素リッチガスに改質するとともに、変成用の触媒によって水素リッチガス中の一酸化炭素を二酸化炭素に変成し、さらに、余分な水分を除去した後の水素リッチガスが供給される。
The hydrogen production apparatus 1 produces high-purity hydrogen from a hydrogen-rich gas, and includes three hydrogen purification towers 13a, 13b, and 13c from first to third, and each of the hydrogen purification towers 13a, 13b, and 13c includes hydrogen The rich gas supply passage 14 is connected in parallel to each other via supply branch passages 14a, 14b, and 14c. Supply solenoid valves 15a, 15b, and 15c are provided in the supply branch passages 14a, 14b, and 14c, respectively. Is provided.
In the hydrogen rich gas supply path 14, for example, a city gas such as 13A is used as a raw material, sulfur is removed from the pressurized city gas to the ppb level, reformed to a hydrogen rich gas by a steam reforming catalyst, and modified. The hydrogen-rich gas after the carbon monoxide in the hydrogen-rich gas is converted to carbon dioxide and the excess water is removed is supplied by the catalyst for use.

各水素精製塔13a,13b,13cには、加圧下においてその水素リッチガスから水、二酸化炭素、一酸化炭素、メタン、窒素などの不純物を吸着除去して高純度水素を精製する適切な吸着剤が収容されている。
各水素精製塔13a,13b,13cは、排出用分岐路16a,16b,16cを介して第1水素搬送路7aに互いに並列に接続され、各排出用分岐路16a,16b,16cにそれぞれ排出用電磁弁17a,17b,17cが設けられ、この第1水素搬送路7aに上述したバッファタンク2や両水素貯蔵タンク8a,8bが接続されている。
Each hydrogen purification tower 13a, 13b, 13c has an appropriate adsorbent that purifies high-purity hydrogen by adsorbing and removing impurities such as water, carbon dioxide, carbon monoxide, methane, and nitrogen from the hydrogen-rich gas under pressure. Contained.
The hydrogen purification towers 13a, 13b, and 13c are connected in parallel to the first hydrogen transfer path 7a via the discharge branch paths 16a, 16b, and 16c, and are discharged to the discharge branch paths 16a, 16b, and 16c, respectively. Electromagnetic valves 17a, 17b, and 17c are provided, and the above-described buffer tank 2 and both hydrogen storage tanks 8a and 8b are connected to the first hydrogen transfer path 7a.

さらに、各水素精製塔13a,13b,13cは、均圧用分岐路18a,18b,18cを介して均圧路18に互いに並列に接続され、各均圧用分岐路18a,18b,18cにはそれぞれ均圧用電磁弁19a,19b,19cが設けられ、均圧路18の端部は、第3水素精製塔13cにおける排出用分岐路16cとの接続箇所より下流側において第1水素搬送路7aに接続され、その接続箇所より上流側の均圧路18にも均圧用電磁弁19dが設けられている。
各水素精製塔13a,13b,13cの供給用分岐路14a,14b,14cには、図外のオフガスタンクに接続されるオフガス排出路20a,20b,20cがそれぞれ接続され、各オフガス排出路20a,20b,20cにそれぞれオフガス電磁弁21a,21b,21cが設けられている。
Further, each of the hydrogen purification towers 13a, 13b, 13c is connected in parallel to the pressure equalizing path 18 via the pressure equalizing branch paths 18a, 18b, 18c, and the pressure equalizing branches 18a, 18b, 18c are respectively connected to the pressure equalizing branches 18a, 18b, 18c. Pressure solenoid valves 19a, 19b, and 19c are provided, and an end portion of the pressure equalizing passage 18 is connected to the first hydrogen transport passage 7a on the downstream side of the connection portion with the discharge branch passage 16c in the third hydrogen purification tower 13c. A pressure equalizing solenoid valve 19d is also provided in the pressure equalizing path 18 upstream of the connection location.
Off-gas discharge paths 20a, 20b, and 20c connected to off-gas tanks (not shown) are connected to the supply branch paths 14a, 14b, and 14c of the hydrogen purification towers 13a, 13b, and 13c, respectively. Off-gas solenoid valves 21a, 21b, and 21c are provided at 20b and 20c, respectively.

このような構成からなる水素供給システムは、その作動の全てが自動制御されるように構成され、そのため、制御手段22が設けられるとともに、蓄圧器4や両水素貯蔵タンク8a,8bには、それぞれ内圧を検出する圧力センサ(図示せず)が設けられ、それら圧力センサからの圧力信号が制御手段22に入力される。
そして、その制御手段22が、各圧力センサからの信号に基づいて第1と第2貯蔵用電磁弁10a,10b、第1と第2補充用電磁弁12a,12b、供給用電磁弁15a〜15c、排出用電磁弁17a〜17c、均圧用電磁弁19a〜19d、および、オフガス電磁弁21a〜21cなどを開閉制御するように構成されている。
The hydrogen supply system having such a configuration is configured such that all of its operations are automatically controlled. Therefore, the control means 22 is provided, and the pressure accumulator 4 and the two hydrogen storage tanks 8a and 8b are respectively provided. Pressure sensors (not shown) for detecting internal pressure are provided, and pressure signals from these pressure sensors are input to the control means 22.
And the control means 22 is based on the signal from each pressure sensor, the 1st and 2nd electromagnetic valve for storage 10a, 10b, the 1st and 2nd electromagnetic valve for replenishment 12a, 12b, the electromagnetic valve for supply 15a-15c The discharge solenoid valves 17a to 17c, the pressure equalizing solenoid valves 19a to 19d, and the off-gas solenoid valves 21a to 21c are controlled to be opened and closed.

つぎに、この水素製造装置の作動と運転方法について説明する。
高純度水素は、通常、40MPa程度の高圧で蓄圧器4内に貯蔵され、燃料電池自動車6に供給する必要があれば、ディスペンサ5を介して供給される。
燃料電池自動車6への供給によって、蓄圧器4内の圧力が水素製造用設定圧P1(例えば、30MPa)以下になると、水素製造装置1による高純度水素の製造が開始される。
その水素製造装置1による高純度水素の製造は、水素リッチガス供給路14からの水素リッチガスが第1〜第3水素精製塔13a〜13cのいずれかに供給されて高純度水素に精製されて製造される。
Next, the operation and operation method of this hydrogen production apparatus will be described.
High-purity hydrogen is usually stored in the accumulator 4 at a high pressure of about 40 MPa, and is supplied via the dispenser 5 if necessary to be supplied to the fuel cell vehicle 6.
When the pressure in the pressure accumulator 4 becomes equal to or lower than the hydrogen production set pressure P1 (for example, 30 MPa) due to the supply to the fuel cell vehicle 6, production of high-purity hydrogen by the hydrogen production apparatus 1 is started.
The production of high purity hydrogen by the hydrogen production apparatus 1 is produced by supplying the hydrogen rich gas from the hydrogen rich gas supply path 14 to any one of the first to third hydrogen purification towers 13a to 13c and purifying it to high purity hydrogen. The

図2の運転工程図と図3の運転説明図を参照して、例えば、第1水素精製塔13aにおいて精製される場合であれば、図3の(イ)に示すように、供給用電磁弁15aの開弁によって第1水素精製塔13aに水素リッチガスが供給され、加圧下においてその水素リッチガス中に含まれる水、二酸化炭素、一酸化炭素、メタン、窒素などの不純物を吸着剤に吸着させて高純度水素を精製する吸着工程が実行される。
その際、第2水素精製塔13bと第3水素精製塔13cにおいては、均圧電磁弁19b,19cの開弁に伴って均圧工程が実行され、その後、均圧電磁弁19b,19cの閉弁に伴って均圧工程が終了する。そして、図3の(ロ)に示すように、第2水素精製塔13bにおいては、排出用電磁弁17bの開弁によって昇圧工程が実行され、第3水素精製塔13cにおいては、オフガス電磁弁21cの開弁によって減圧工程が実行され、さらに、図3の(ハ)に示すように、第3水素精製塔13cにおいては、排出用電磁弁17cの開弁によって洗浄工程が実行される。
Referring to the operation process diagram of FIG. 2 and the operation explanatory diagram of FIG. 3, for example, in the case of purification in the first hydrogen purification tower 13a, as shown in FIG. By opening the valve 15a, a hydrogen-rich gas is supplied to the first hydrogen purification tower 13a. Under pressure, impurities such as water, carbon dioxide, carbon monoxide, methane, and nitrogen contained in the hydrogen-rich gas are adsorbed by the adsorbent. An adsorption process for purifying high purity hydrogen is performed.
At that time, in the second hydrogen purification tower 13b and the third hydrogen purification tower 13c, a pressure equalization step is executed as the pressure equalizing solenoid valves 19b and 19c are opened, and then the pressure equalizing solenoid valves 19b and 19c are closed. The pressure equalization process ends with the valve. Then, as shown in FIG. 3B, in the second hydrogen purification tower 13b, the pressure increasing step is executed by opening the discharge electromagnetic valve 17b, and in the third hydrogen purification tower 13c, the off-gas electromagnetic valve 21c. As shown in FIG. 3C, the depressurization step is executed, and in the third hydrogen purification tower 13c, the cleaning step is executed by opening the discharge electromagnetic valve 17c.

第1水素精製塔13aにおける吸着工程の実行で精製された高純度水素は、排出用電磁弁17aの開弁に伴って排出用分岐路16aと第1水素搬送路7aを通ってバッファタンク2へ送られ、その後、圧縮機3の作動に伴って圧縮され、40MPaにまで昇圧されて蓄圧器4へと送られる。
この高純度水素の製造中において、蓄圧器4内の圧力が水素補充用設定圧P2(例えば、20MPa)以下になると、第1と第2水素貯蔵タンク8a,8bのいずれか一方または両方から高純度水素が補充される。つまり、両水素貯蔵タンク8a,8bのいずれか一方または両方が図外の加熱装置により加熱されて、水素吸蔵合金に吸蔵された水素が放出され、その放出された水素が両補充用電磁弁12a,12bのいずれか一方または両方の開弁に伴ってバッファタンク2に補充される。
The high-purity hydrogen purified by performing the adsorption process in the first hydrogen purification tower 13a passes through the discharge branch path 16a and the first hydrogen transfer path 7a to the buffer tank 2 when the discharge electromagnetic valve 17a is opened. Then, it is compressed along with the operation of the compressor 3, boosted to 40 MPa, and sent to the pressure accumulator 4.
During the production of this high purity hydrogen, when the pressure in the pressure accumulator 4 becomes equal to or lower than the hydrogen replenishment set pressure P2 (for example, 20 MPa), the pressure is increased from one or both of the first and second hydrogen storage tanks 8a and 8b. Purified hydrogen is replenished. That is, one or both of the hydrogen storage tanks 8a and 8b are heated by a heating device (not shown) to release hydrogen stored in the hydrogen storage alloy, and the released hydrogen is used as the replenishing solenoid valve 12a. , 12b, the buffer tank 2 is replenished with the opening of one or both of the valves.

その後、蓄圧器4内の圧力が30MPaまで回復すると、水素貯蔵タンク8a,8bからの補充を停止し、必要に応じて貯蔵用電磁弁10a,10bのいずれか一方または両方が開弁されて水素貯蔵タンク8a,8bに高純度水素が供給されるとともに、水素貯蔵タンク8a,8bが図外の冷却装置により冷却されて水素吸蔵合金に高純度水素が吸蔵される。
そして、蓄圧器4内の圧力が水素停止用設定圧P3(例えば、40MPa)以上になると、水素製造装置1による水素の製造を停止するのであり、このような運転が繰り返し実行される。
なお、水素貯蔵タンク8a,8bが満杯になった状態で水素の製造を停止してもよい。
Thereafter, when the pressure in the pressure accumulator 4 recovers to 30 MPa, the replenishment from the hydrogen storage tanks 8a and 8b is stopped, and either one or both of the storage electromagnetic valves 10a and 10b are opened as necessary. High-purity hydrogen is supplied to the storage tanks 8a and 8b, and the hydrogen storage tanks 8a and 8b are cooled by a cooling device (not shown) so that the high-purity hydrogen is stored in the hydrogen storage alloy.
Then, when the pressure in the pressure accumulator 4 becomes equal to or higher than the hydrogen stop set pressure P3 (for example, 40 MPa), the hydrogen production by the hydrogen production apparatus 1 is stopped, and such an operation is repeatedly executed.
The hydrogen production may be stopped when the hydrogen storage tanks 8a and 8b are full.

〔別実施形態〕
(1)先の実施形態では、水素製造装置1の一例として13Aなどの都市ガスを改質した水素リッチガスから高純度水素を製造する装置を示したが、水素製造装置1としては他の形式の水素製造装置を使用することもできる。
また、水素吸蔵材の一例として水素吸蔵合金を示したが、水素吸蔵合金に代えて、カーボンナノチューブ、カーボンナノコイル、あるいは、カーボンナノファイバと呼ばれる水素を吸蔵・放出する特性を有する炭素化合物の粉粒体を使用することもできる。
[Another embodiment]
(1) In the previous embodiment, an apparatus for producing high-purity hydrogen from a hydrogen-rich gas obtained by reforming a city gas such as 13A has been shown as an example of the hydrogen production apparatus 1. A hydrogen production apparatus can also be used.
Also, a hydrogen storage alloy is shown as an example of a hydrogen storage material, but instead of the hydrogen storage alloy, carbon nanotube powder, carbon nanocoil, or carbon nanofiber, a carbon compound powder having a characteristic of storing and releasing hydrogen. Granules can also be used.

(2)先の実施形態では、水素貯蔵タンク8a,8bを圧縮機3より上流側に位置するバッファタンク2に接続した例を示したが、水素貯蔵タンク8a,8bは、圧縮機3より上流側であれば、如何なる箇所にも接続可能であり、また、水素貯蔵タンク8a,8bは、先の実施形態のように2つに限るものではなく、水素貯蔵タンクをひとつだけ接続することも、3つ以上接続することもできる。 (2) In the previous embodiment, the example in which the hydrogen storage tanks 8a and 8b are connected to the buffer tank 2 located on the upstream side of the compressor 3 is shown. However, the hydrogen storage tanks 8a and 8b are upstream of the compressor 3. Can be connected to any location, and the hydrogen storage tanks 8a and 8b are not limited to two as in the previous embodiment, and only one hydrogen storage tank can be connected, Three or more can be connected.

(3)先の実施形態では、水素製造用設定圧P1と水素補充用設定圧P2を異なる値に設定し、水素製造装置1による高純度水素の製造を開始した後、水素貯蔵タンク8a,8bから高純度水素を補充するように構成した例を示したが、逆に、水素貯蔵タンク8a,8bからの高純度水素の補充を開始した後、水素製造装置1により高純度水素を製造するように構成することも、また、水素製造用設定圧P1と水素補充用設定圧P2を同じ値に設定して、水素製造装置1による高純度水素の製造と水素貯蔵タンク8a,8bからの高純度水素の補充を同時に実行するように構成することもできる。 (3) In the previous embodiment, the hydrogen production setting pressure P1 and the hydrogen replenishment setting pressure P2 are set to different values, and after the production of high-purity hydrogen by the hydrogen production apparatus 1 is started, the hydrogen storage tanks 8a, 8b However, conversely, after replenishment of high purity hydrogen from the hydrogen storage tanks 8a and 8b is started, high purity hydrogen is produced by the hydrogen production apparatus 1. In addition, the hydrogen production setting pressure P1 and the hydrogen replenishment setting pressure P2 are set to the same value so that the high-purity hydrogen is produced by the hydrogen production apparatus 1 and the high-purity from the hydrogen storage tanks 8a and 8b. It can also be configured to perform hydrogen replenishment simultaneously.

(4)水素製造装置1は、先の実施形態に示した製造装置に限るものではなく、種々の水素製造装置を使用することができる。 (4) The hydrogen production apparatus 1 is not limited to the production apparatus shown in the previous embodiment, and various hydrogen production apparatuses can be used.

水素供給システムを示す概略構成図Schematic configuration diagram showing the hydrogen supply system 水素製造装置の運転状態を示す工程図Process diagram showing the operating state of the hydrogen production system 水素製造装置の運転状態を示す説明図Explanatory drawing showing the operating state of the hydrogen production system

符号の説明Explanation of symbols

1 水素製造装置
2 バッファタンク
3 圧縮機
4 蓄圧器
5 ディスペンサ
6 水素需要手段
8a,8b 水素貯蔵タンク
DESCRIPTION OF SYMBOLS 1 Hydrogen production apparatus 2 Buffer tank 3 Compressor 4 Accumulator 5 Dispenser 6 Hydrogen demand means 8a, 8b Hydrogen storage tank

Claims (5)

水素の流れ方向の上流側から下流側に向けて、水素製造装置、水素製造装置により製造された水素を収容するバッファタンク、バッファタンクからの水素を圧縮する圧縮機、圧縮機により圧縮された水素を貯蔵する蓄圧器、および、蓄圧器からの水素を水素需要手段に供給するディスペンサが、この順に接続されている水素供給システムであって、
水素を水素吸蔵材に吸蔵させて貯蔵する水素貯蔵タンクが、前記圧縮機より上流側に接続されている水素供給システム。
From upstream to downstream in the hydrogen flow direction, a hydrogen production apparatus, a buffer tank that contains hydrogen produced by the hydrogen production apparatus, a compressor that compresses hydrogen from the buffer tank, and hydrogen that is compressed by the compressor And a dispenser that supplies hydrogen from the pressure accumulator to the hydrogen demand means is a hydrogen supply system connected in this order,
A hydrogen supply system in which a hydrogen storage tank that stores hydrogen by storing it in a hydrogen storage material is connected upstream of the compressor.
前記水素貯蔵タンクが、前記バッファタンクに接続されている請求項1に記載の水素供給システム。   The hydrogen supply system according to claim 1, wherein the hydrogen storage tank is connected to the buffer tank. 水素の流れ方向の上流側から下流側に向けて、水素製造装置、水素製造装置により製造された水素を収容するバッファタンク、バッファタンクからの水素を圧縮する圧縮機、圧縮機により圧縮された水素を貯蔵する蓄圧器、および、蓄圧器からの水素を水素需要手段に供給するディスペンサが、この順に接続されている水素供給システムの運転方法であって、
水素を水素吸蔵材に吸蔵させて貯蔵する水素貯蔵タンクを、前記圧縮機より上流側に接続しておいて、前記蓄圧器内の圧力が水素補充用設定圧以下になると、前記水素貯蔵タンク内の水素を補充する水素供給システムの運転方法。
From upstream to downstream in the hydrogen flow direction, a hydrogen production apparatus, a buffer tank that contains hydrogen produced by the hydrogen production apparatus, a compressor that compresses hydrogen from the buffer tank, and hydrogen that is compressed by the compressor And a dispenser that supplies hydrogen from the pressure accumulator to the hydrogen demand means is an operation method of the hydrogen supply system connected in this order,
A hydrogen storage tank that stores hydrogen by storing it in a hydrogen storage material is connected to the upstream side of the compressor, and when the pressure in the pressure accumulator falls below a set pressure for hydrogen replenishment, the hydrogen storage tank Of operating a hydrogen supply system for replenishing hydrogen.
前記蓄圧器内の圧力が水素製造用設定圧以下になると、前記水素製造装置による水素の製造を開始する請求項3に記載の水素供給システムの運転方法。   The operation method of the hydrogen supply system according to claim 3, wherein when the pressure in the pressure accumulator becomes equal to or lower than a set pressure for hydrogen production, production of hydrogen by the hydrogen production device is started. 前記蓄圧器内の圧力が水素停止用設定圧以上になると、前記水素製造装置による水素の製造を停止する請求項3または4に記載の水素供給システムの運転方法。   The operation method of the hydrogen supply system according to claim 3 or 4, wherein when the pressure in the pressure accumulator becomes equal to or higher than a set pressure for stopping hydrogen, the hydrogen production by the hydrogen production device is stopped.
JP2005105088A 2005-03-31 2005-03-31 Hydrogen supply system and its operation method Withdrawn JP2006283886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105088A JP2006283886A (en) 2005-03-31 2005-03-31 Hydrogen supply system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105088A JP2006283886A (en) 2005-03-31 2005-03-31 Hydrogen supply system and its operation method

Publications (1)

Publication Number Publication Date
JP2006283886A true JP2006283886A (en) 2006-10-19

Family

ID=37406016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105088A Withdrawn JP2006283886A (en) 2005-03-31 2005-03-31 Hydrogen supply system and its operation method

Country Status (1)

Country Link
JP (1) JP2006283886A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202619A (en) * 2007-02-16 2008-09-04 Hitachi Plant Technologies Ltd Hydrogen station
EP2056013A1 (en) * 2007-10-31 2009-05-06 Chung Yuan-Cheng Unlimited supplying type partial gas pressure structure
US8210214B2 (en) * 2007-12-27 2012-07-03 Texaco Inc. Apparatus and method for providing hydrogen at a high pressure
CN102782390A (en) * 2010-02-24 2012-11-14 海德瑞克斯亚股份有限公司 Hydrogen release system
JP5378624B1 (en) * 2013-07-03 2013-12-25 東京瓦斯株式会社 High pressure hydrogen production system and method for operating high pressure hydrogen production system
CN103925471A (en) * 2014-04-23 2014-07-16 北京九谷超微科技有限公司 Hydrogen supply system
JP2015183766A (en) * 2014-03-24 2015-10-22 東京瓦斯株式会社 High pressure hydrogen production system and operational method of high pressure hydrogen production system
JP2015197114A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen station
JP2016109265A (en) * 2014-12-09 2016-06-20 ヤマト・H2Energy Japan株式会社 Hydrogen gas charging device and method
JP2016138594A (en) * 2015-01-27 2016-08-04 ヤマト・H2Energy Japan株式会社 Simple type hydrogen station
JP2017137913A (en) * 2016-02-02 2017-08-10 株式会社神戸製鋼所 Gas supply device
WO2020100486A1 (en) * 2018-11-14 2020-05-22 株式会社日立プラントメカニクス Expansion turbine filling system for high-pressure hydrogen
WO2020196530A1 (en) * 2019-03-28 2020-10-01 Jxtgエネルギー株式会社 Hydrogen gas supply device and hydrogen gas supply method
CN112283577A (en) * 2020-11-04 2021-01-29 太原理工大学 Vehicle-mounted high-pressure hydrogen grading filling system
CN113631254A (en) * 2019-03-27 2021-11-09 引能仕株式会社 Hydrogen gas supply device and hydrogen gas supply method
WO2024063201A1 (en) * 2022-09-22 2024-03-28 한국자동차연구원 Hydrogen refueling device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202619A (en) * 2007-02-16 2008-09-04 Hitachi Plant Technologies Ltd Hydrogen station
EP2056013A1 (en) * 2007-10-31 2009-05-06 Chung Yuan-Cheng Unlimited supplying type partial gas pressure structure
US8210214B2 (en) * 2007-12-27 2012-07-03 Texaco Inc. Apparatus and method for providing hydrogen at a high pressure
CN102782390A (en) * 2010-02-24 2012-11-14 海德瑞克斯亚股份有限公司 Hydrogen release system
JP5378624B1 (en) * 2013-07-03 2013-12-25 東京瓦斯株式会社 High pressure hydrogen production system and method for operating high pressure hydrogen production system
JP2015013759A (en) * 2013-07-03 2015-01-22 東京瓦斯株式会社 High-pressure hydrogen production system and operation method thereof
JP2015183766A (en) * 2014-03-24 2015-10-22 東京瓦斯株式会社 High pressure hydrogen production system and operational method of high pressure hydrogen production system
JP2015197114A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen station
CN103925471A (en) * 2014-04-23 2014-07-16 北京九谷超微科技有限公司 Hydrogen supply system
JP2016109265A (en) * 2014-12-09 2016-06-20 ヤマト・H2Energy Japan株式会社 Hydrogen gas charging device and method
JP2016138594A (en) * 2015-01-27 2016-08-04 ヤマト・H2Energy Japan株式会社 Simple type hydrogen station
JP2017137913A (en) * 2016-02-02 2017-08-10 株式会社神戸製鋼所 Gas supply device
WO2020100486A1 (en) * 2018-11-14 2020-05-22 株式会社日立プラントメカニクス Expansion turbine filling system for high-pressure hydrogen
CN113631254A (en) * 2019-03-27 2021-11-09 引能仕株式会社 Hydrogen gas supply device and hydrogen gas supply method
CN113631254B (en) * 2019-03-27 2023-12-19 引能仕株式会社 Hydrogen supply device and hydrogen supply method
WO2020196530A1 (en) * 2019-03-28 2020-10-01 Jxtgエネルギー株式会社 Hydrogen gas supply device and hydrogen gas supply method
CN112283577A (en) * 2020-11-04 2021-01-29 太原理工大学 Vehicle-mounted high-pressure hydrogen grading filling system
WO2024063201A1 (en) * 2022-09-22 2024-03-28 한국자동차연구원 Hydrogen refueling device

Similar Documents

Publication Publication Date Title
JP2006283886A (en) Hydrogen supply system and its operation method
US7416569B2 (en) Fuel gas production apparatus and method of starting operation of fuel gas production apparatus
CA2516989C (en) Off-gas feed method and target gas purification system
US9656202B2 (en) Method and device for separating a gas mixture by means of pressure swing adsorption
US20050220704A1 (en) Method of storing and supplying hydrogen to a pipeline
JP2009154079A (en) Stopping method of gas production apparatus
US20080223213A1 (en) Adsorption Process To Recover Hydrogen From Feed Gas Mixtures Having Low Hydrogen Concentration
TWI549740B (en) Purifying method and purifying apparatus for argon gas
CN102311102B (en) Helium purifying method and purifying device thereof
JP2007209868A (en) Stable operation method of pressure swing adsorption device
TW201219297A (en) for recycling argon gas at a high purity with lower costs and less energy consumption
JP4815250B2 (en) Operation method of hydrogen purifier
JP2007269526A (en) Hydrogen refining unit and operation method thereof
JP4041085B2 (en) Fuel gas production system and method for stopping the same
US7427304B2 (en) Fuel gas manufacturing apparatus
JP5057683B2 (en) Hydrogen production equipment
JP4180534B2 (en) Fuel gas production apparatus and operation method thereof
JP6987098B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
JP2004299994A (en) Hydrogen production apparatus
JP6882396B2 (en) Hydrogen production equipment and its control method
JP6937087B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP4850431B2 (en) Hydrogen production equipment
JP2004299995A (en) Hydrogen production plant, and hydrogen production method
JP4357979B2 (en) Starting method of fuel gas production apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603