JP5057683B2 - Hydrogen production equipment - Google Patents

Hydrogen production equipment Download PDF

Info

Publication number
JP5057683B2
JP5057683B2 JP2006099544A JP2006099544A JP5057683B2 JP 5057683 B2 JP5057683 B2 JP 5057683B2 JP 2006099544 A JP2006099544 A JP 2006099544A JP 2006099544 A JP2006099544 A JP 2006099544A JP 5057683 B2 JP5057683 B2 JP 5057683B2
Authority
JP
Japan
Prior art keywords
hydrogen
flow path
gas
flow rate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006099544A
Other languages
Japanese (ja)
Other versions
JP2007269593A (en
Inventor
昇 椿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006099544A priority Critical patent/JP5057683B2/en
Publication of JP2007269593A publication Critical patent/JP2007269593A/en
Application granted granted Critical
Publication of JP5057683B2 publication Critical patent/JP5057683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、炭化水素ガスを原料として高純度の水素ガスを生成する水素製造装置に関する。   The present invention relates to a hydrogen production apparatus that generates high-purity hydrogen gas using hydrocarbon gas as a raw material.

燃料電池などの燃料として水素ガスを利用するために、炭化水素ガスとしての例えば都市ガスから高純度の水素ガスを生成する水素製造装置が提案され実用に供されている(例えば、特許文献1参照)。この種の水素製造装置は、例えば、図2に示す構成であり、改質装置2、昇圧装置4、水素精製装置6、水素貯蔵タンク8及びオフガス用タンク10を備えている。改質装置2においては、炭化水素ガスとしての都市ガスと水蒸気とを用いて改質反応が行われて水素リッチガスが生成される。水素リッチガスは第1送給流路12を介して昇圧装置4に送給され、この昇圧装置4により昇圧される。昇圧された水素リッチガスは第2送給流路14を通して水素精製装置6に送給され、水素精製装置6にて不純物が除去され、高純度水素ガスが水素貯蔵タンク8に貯蔵され、このようにして水素ガスが精製される。   In order to use hydrogen gas as fuel for a fuel cell or the like, a hydrogen production apparatus that generates high-purity hydrogen gas from, for example, city gas as hydrocarbon gas has been proposed and put into practical use (see, for example, Patent Document 1). ). This type of hydrogen production apparatus has, for example, the configuration shown in FIG. 2, and includes a reformer 2, a booster 4, a hydrogen purifier 6, a hydrogen storage tank 8, and an offgas tank 10. In the reformer 2, a reforming reaction is performed using city gas and water vapor as hydrocarbon gas to generate a hydrogen rich gas. The hydrogen rich gas is supplied to the booster 4 through the first supply passage 12 and is boosted by the booster 4. The pressurized hydrogen-rich gas is sent to the hydrogen purifier 6 through the second feed passage 14, impurities are removed by the hydrogen purifier 6, and the high-purity hydrogen gas is stored in the hydrogen storage tank 8, in this way. Thus, hydrogen gas is purified.

このような水素製造装置では、第1送給流路12と第2送給流路14との間に昇圧装置4をバイパスしてバイパス流路16が設けられ、このバイパス流路16に圧力調整弁18が配設されている。圧力調整弁18は第2送給流路14に配設された圧力検知手段20の検知圧力に基づいて開閉制御され、第2送給流路14の水素リッチガスの圧力が所定圧力を超えると、圧力調整弁18が開放されて第2送給流路14の水素リッチガスの一部がバイパス流路16を通して第1送給流路12に戻される。また、第2送給流路14には流量制御弁22が配設され、この流量制御弁22は第2送給流路14に配設された流量検出手段24の検出流量に基づいて開閉制御される。   In such a hydrogen production apparatus, a bypass flow path 16 is provided by bypassing the booster 4 between the first supply flow path 12 and the second supply flow path 14, and pressure adjustment is performed in the bypass flow path 16. A valve 18 is provided. The pressure regulating valve 18 is controlled to open and close based on the detected pressure of the pressure detecting means 20 disposed in the second supply flow path 14, and when the pressure of the hydrogen rich gas in the second supply flow path 14 exceeds a predetermined pressure, The pressure regulating valve 18 is opened, and a part of the hydrogen rich gas in the second supply passage 14 is returned to the first supply passage 12 through the bypass passage 16. Further, a flow rate control valve 22 is disposed in the second supply flow path 14, and the flow rate control valve 22 is controlled to open and close based on the detected flow rate of the flow rate detection means 24 disposed in the second supply flow path 14. Is done.

特開2004−299995号公報JP 2004-299995 A

上述した水素製造装置では、水素精製装置6の精製効率を高めるためには、水素精製装置の流入側圧力を高く保持するのが望ましい。一方、安全上の観点から、第2送給流路14の水素リッチガスは、圧力調整弁18によって所定圧力(例えば、0.98Mpa)に維持されるように構成されるが、この第2送給流路14に圧力検出手段20、流量制御弁22及び流量検出手段24が配設されているので、これらが第2送給流路14を流れる水素リッチガスの抵抗となって圧力損失が生じ、このことに起因して、水素精製装置6の流入側圧力が幾分低下し、水素精製装置6の精製効率が低下するという問題がある。   In the hydrogen production apparatus described above, in order to increase the purification efficiency of the hydrogen purification apparatus 6, it is desirable to keep the inflow pressure of the hydrogen purification apparatus high. On the other hand, from the viewpoint of safety, the hydrogen-rich gas in the second supply passage 14 is configured to be maintained at a predetermined pressure (for example, 0.98 Mpa) by the pressure adjustment valve 18. Since the pressure detection means 20, the flow rate control valve 22 and the flow rate detection means 24 are disposed in the flow path 14, these become resistances of the hydrogen rich gas flowing through the second supply flow path 14, and pressure loss occurs. As a result, there is a problem that the pressure on the inflow side of the hydrogen purification device 6 is somewhat reduced, and the purification efficiency of the hydrogen purification device 6 is reduced.

本発明は、第2送給流路における圧力損失をできる限り少なくし、水素精製装置の精製効率を高めることができる水素製造装置を提供することである。   An object of the present invention is to provide a hydrogen production apparatus that can reduce the pressure loss in the second supply flow path as much as possible and increase the purification efficiency of the hydrogen purification apparatus.

本発明の請求項1に記載の水素製造装置は、炭化水素ガスを改質反応させて水素リッチガスを生成するための改質装置と、前記改質装置にて改質された水素リッチガスを圧縮して昇圧するための昇圧装置と、昇圧された水素リッチガスに含まれた不純物を除去して高純度水素ガスを生成するための水素精製装置と、精製された高純度水素ガスを貯蔵するための水素貯蔵タンクと、を備えた水素製造装置であって、
前記昇圧装置をバイパスしてバイパス流路が設けられ、前記バイパス流路の一端側は前記改質装置と前記昇圧装置を接続する第1送給流路に接続され、その他端側は前記昇圧装置と前記水素精製装置とを接続する第2送給流路に接続され、
前記バイパス流路には流量制御弁が設けられ、前記流量制御弁は前記第1送給流路を流れる水素リッチガスの流量及び前記第2送給流路を流れる水素リッチガスの圧力に基づいて開閉制御されることを特徴とする。
A hydrogen production apparatus according to claim 1 of the present invention includes a reformer for generating a hydrogen rich gas by reforming a hydrocarbon gas, and compressing the hydrogen rich gas reformed by the reformer. Boosting device for boosting the pressure, hydrogen purifying device for removing impurities contained in the boosted hydrogen-rich gas to generate high-purity hydrogen gas, and hydrogen for storing the purified high-purity hydrogen gas A hydrogen production apparatus comprising a storage tank,
A bypass channel is provided to bypass the booster, and one end of the bypass channel is connected to a first feed channel that connects the reformer and the booster, and the other end is the booster. And a second feed flow channel connecting the hydrogen purification device,
The bypass flow path is provided with a flow rate control valve, and the flow rate control valve is controlled to open and close based on the flow rate of the hydrogen rich gas flowing through the first supply flow path and the pressure of the hydrogen rich gas flowing through the second supply flow path. It is characterized by being.

また、本発明の請求項2に記載の水素製造装置では、前記第1送給流路には流量検出手段が設けられ、前記第2送給流路には圧力検出手段が設けられ、前記流量制御弁は、前記流量検出手段及び前記圧力検出手段の検出信号に基づいて開閉制御されることを特徴とする。   In the hydrogen production apparatus according to claim 2 of the present invention, the first supply flow path is provided with a flow rate detection means, the second supply flow path is provided with a pressure detection means, and the flow rate The control valve is controlled to open and close based on detection signals from the flow rate detection means and the pressure detection means.

本発明の請求項1に記載の水素製造装置によれば、昇圧装置をバイパスしてバイパス流路が設けられ、このバイパス流路に流量制御弁が設けられ、この流量制御弁が第1送給流路を流れる水素リッチガスの流量及び第2送給流路を流れる水素リッチガスの圧力に基づいて開閉制御される。そして、第2送給流路の水素リッチガスの圧力が所定圧力(例えば、0.98MPa)を超えると、流量制御弁が開放されて(流量制御弁が開放されているときには、その開度が更に大きくなる)水素リッチガスの一部が第2送給流路からバイパス流路を通して第1送給流路に流れるので、第2送給流路の水素リッチガスの圧力を所定圧力に維持することができる。また、第1送給流路を通して流れる水素リッチガスの流量が所定量より多くなる(又は少なくなる)と、流量制御弁の開度が大きくなり(又は小さくなり)、第2送給流路からバイパス流路を通して第1送給流路に流れる戻り流量が多くなり(又は少なくなり)、これによって水素精製装置に送られる水素リッチガスの送給量が減少(又は増加)する。このような水素製造装置では、従来の水素製造装置に設けられていた圧力調整弁及び流路制御弁をバイパス流路に設けた流量制御弁に置き換えることができ、これによって、第2送給流路における圧力損失を小さくすることができ、その結果、水素精製装置での精製効率を高めることができる。 According to the hydrogen production device of the first aspect of the present invention, the bypass device is bypassed to provide the bypass flow path, the flow rate control valve is provided in the bypass flow path, and the flow rate control valve is the first feed. Opening / closing control is performed based on the flow rate of the hydrogen rich gas flowing through the flow path and the pressure of the hydrogen rich gas flowing through the second supply flow path. Then, when the pressure of the hydrogen rich gas in the second supply channel exceeds a predetermined pressure (for example, 0.98 MPa), the flow control valve is opened (when the flow control valve is opened, the opening degree is further increased). Part of the hydrogen-rich gas (which increases) flows from the second feed channel to the first feed channel through the bypass channel, so that the pressure of the hydrogen-rich gas in the second feed channel can be maintained at a predetermined pressure. . Further, the flow rate of the hydrogen rich gas flowing through the first feeding passage is more than a predetermined amount (or less), opening size no longer flow control valve (or small no longer), the second feeding passage The return flow rate flowing from the first through the bypass flow path to the first supply flow path increases (or decreases), thereby decreasing (or increasing) the supply amount of the hydrogen-rich gas sent to the hydrogen purifier. In such a hydrogen production apparatus, the pressure regulating valve and the flow path control valve provided in the conventional hydrogen production apparatus can be replaced with a flow rate control valve provided in the bypass flow path, whereby the second feed flow The pressure loss in the channel can be reduced, and as a result, the purification efficiency in the hydrogen purifier can be increased.

また、本発明の請求項2に記載の水素製造装置によれば、第1送給流路に流量検出手段が設けられ、第2送給流路に圧力検出手段が設けられるので、これら流量検出手段の検知流量及び圧力検出手段の検知圧力に基づいて流量制御弁を開閉制御することによって、第2送給流路における水素リッチガスの圧力を所定圧力に維持することができるとともに、第2送給流路を通して水素精製装置に送給される水素リッチガスの流量を所定流量に維持することができる。   Moreover, according to the hydrogen production apparatus of the second aspect of the present invention, the flow rate detecting means is provided in the first supply flow path, and the pressure detection means is provided in the second supply flow path. By controlling the opening and closing of the flow rate control valve based on the detected flow rate of the means and the detected pressure of the pressure detecting means, the pressure of the hydrogen rich gas in the second supply passage can be maintained at a predetermined pressure, and the second supply The flow rate of the hydrogen rich gas fed to the hydrogen purifier through the flow path can be maintained at a predetermined flow rate.

以下、図1を参照して、本発明に従う水素製造装置の一実施形態について説明する。図1は、第1の実施形態の水素製造装置を簡略的に示す簡略図である。
図1において、図示の水素製造装置は、炭化水素ガスを改質する改質装置102、例えばコンプレッサから構成される昇圧装置104、水素リッチガスを精製して高純度水素ガスを生成する水素精製装置106と、生成された高純度水素ガスを貯蔵するための水素貯蔵タンク108と、水素精製装置106からのオフガスを一時的に貯蔵するためのオフガス貯蔵タンク110と、を備えている。
Hereinafter, an embodiment of the hydrogen production apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a simplified diagram schematically illustrating the hydrogen production apparatus according to the first embodiment.
In FIG. 1, the illustrated hydrogen production apparatus includes a reformer 102 that reforms hydrocarbon gas, for example, a booster 104 that includes a compressor, and a hydrogen purifier 106 that purifies hydrogen-rich gas to produce high-purity hydrogen gas. A hydrogen storage tank 108 for storing the generated high-purity hydrogen gas, and an off-gas storage tank 110 for temporarily storing off-gas from the hydrogen purifier 106.

改質装置102は燃焼バーナ112を備え、この燃焼バーナ112の燃焼ガスの熱を利用して改質装置102が750℃前後の高温に維持される。この改質装置102には原料供給流路114及び水蒸気供給流路116が接続され、この原料供給流路114を通して原料である炭化水素ガス、例えば都市ガス(例えば、都市ガス13A)が供給されるとともに、水蒸気供給流路116を通して水蒸気が供給される。また、原料供給流路114から分岐して燃料供給流路118が設けられ、原料供給流路114を流れる炭化水素ガスの一部が燃料供給流路118を通して燃焼バーナ112に供給される。改質装置102には改質触媒が充填され、炭化水素ガス及び水蒸気が高温状態下で改質反応し、水素成分が多い水素リッチガスが生成される。   The reformer 102 includes a combustion burner 112, and the reformer 102 is maintained at a high temperature around 750 ° C. by using the heat of the combustion gas of the combustion burner 112. A raw material supply flow path 114 and a water vapor supply flow path 116 are connected to the reformer 102, and a hydrocarbon gas as a raw material, for example, a city gas (for example, a city gas 13 </ b> A) is supplied through the raw material supply flow path 114. At the same time, water vapor is supplied through the water vapor supply channel 116. Further, a fuel supply flow path 118 is provided which branches from the raw material supply flow path 114, and a part of the hydrocarbon gas flowing through the raw material supply flow path 114 is supplied to the combustion burner 112 through the fuel supply flow path 118. The reformer 102 is filled with a reforming catalyst, and a hydrocarbon gas and water vapor undergo a reforming reaction under a high temperature condition to generate a hydrogen rich gas having a large amount of hydrogen components.

改質装置102と昇圧装置104とは第1送給流路120を介して接続され、昇圧装置104と水素精製装置106とは第2送給流路122を介して接続されている。改質装置102にて改質された水素リッチガスは第1送給流路120を通して昇圧装置104に送給され、この昇圧装置104にて所定圧力に昇圧された後に第2送給流路122を通して水素精製装置106に送給される。改質装置102にて改質された水素リッチガスは、例えば0.15MPa又はそれより幾分高い圧力状態であり、このような圧力状態のものが昇圧装置104によって例えば0.98MPaに昇圧される。   The reformer 102 and the booster 104 are connected via a first feed channel 120, and the booster 104 and the hydrogen purifier 106 are connected via a second feed channel 122. The hydrogen-rich gas reformed by the reformer 102 is fed to the booster 104 through the first feed channel 120, and after being boosted to a predetermined pressure by the booster 104, it passes through the second feed channel 122. It is sent to the hydrogen purifier 106. The hydrogen-rich gas reformed by the reformer 102 is in a pressure state of, for example, 0.15 MPa or somewhat higher, and the pressure in such a pressure state is boosted to, for example, 0.98 MPa by the booster 104.

水素精製装置106はそれ自体周知のものであり、例えば、活性アルミナ、カーボンモレキュラーシープ(CMS)、ゼオライトなどの吸着剤を充填した圧力スイング式の水素精製装置である。この水素精製装置106は、加圧下において水素リッチガスからこれに含まれた水、二酸化炭素、一酸化炭素、メタン、窒素などの不純物を吸着除去して高純度の水素ガスを精製し、またその吸着した不純物を減圧下において吸着剤から脱着させる。このような水素精製装置106としては、例えば、3塔の水素精製部を備え、各水素精製部において吸着、均圧、減圧、洗浄、昇圧の各工程を順に繰り返すことによって、高純度の水素を連続的に精製することができる。   The hydrogen purifier 106 is known per se, and is, for example, a pressure swing type hydrogen purifier filled with an adsorbent such as activated alumina, carbon molecular sheep (CMS), or zeolite. This hydrogen purifier 106 purifies high-purity hydrogen gas by adsorbing and removing impurities such as water, carbon dioxide, carbon monoxide, methane, and nitrogen contained in the hydrogen-rich gas under pressure. Impurities are desorbed from the adsorbent under reduced pressure. As such a hydrogen purification apparatus 106, for example, a hydrogen purification unit having three towers is provided, and in each hydrogen purification unit, high-purity hydrogen is obtained by repeating the steps of adsorption, pressure equalization, pressure reduction, washing, and pressure increase in order. It can be purified continuously.

水素精製装置106と水素貯蔵タンク108とは第3送給流路124を介して接続され、この第3送給流路124に開閉弁126が配設されている。開閉弁126が開状態のときには、水素精製装置106にて精製された高純度水素ガスが第3送給流路124を通して水素貯蔵タンク108に送給され、この水素貯蔵タンク108に貯蔵される。また、開閉弁126が閉状態のときには、水素精製装置106と水素貯蔵タンク108との連通が遮断され、水素貯蔵タンク108に貯蔵された高純度水素ガスが水素精製装置106側に流れることはない。尚、水素貯蔵タンク108に貯蔵された高純度水素ガスは、需要に応じて水素ガス送出流路128を通して送出される。   The hydrogen purifier 106 and the hydrogen storage tank 108 are connected via a third feed channel 124, and an open / close valve 126 is disposed in the third feed channel 124. When the on-off valve 126 is open, the high-purity hydrogen gas purified by the hydrogen purifier 106 is supplied to the hydrogen storage tank 108 through the third supply passage 124 and stored in the hydrogen storage tank 108. When the on-off valve 126 is closed, the communication between the hydrogen purifier 106 and the hydrogen storage tank 108 is cut off, and the high purity hydrogen gas stored in the hydrogen storage tank 108 does not flow to the hydrogen purifier 106 side. . The high-purity hydrogen gas stored in the hydrogen storage tank 108 is sent out through the hydrogen gas delivery channel 128 according to demand.

水素精製装置106とオフガスタンク110とはオフガス送給流路130を介して接続され、このオフガスタンク110と燃料供給流路118とがオフガス供給流路132を介して接続されている。水素精製装置106にて生じるオフガスは、オフガス送給流路130を通してオフガス貯蔵タンク110に一時的に貯えられ、このオフガス貯蔵タンク110のオフガスは、オフガス供給流路132を通して燃料供給流路118に供給され、燃料供給流路118を通して供給される炭化水素ガスに混合されて燃焼バーナ112に供給され、炭化水素ガスとともに燃焼される。   The hydrogen purifier 106 and the off-gas tank 110 are connected via an off-gas supply passage 130, and the off-gas tank 110 and the fuel supply passage 118 are connected via an off-gas supply passage 132. Off-gas generated in the hydrogen purifier 106 is temporarily stored in the off-gas storage tank 110 through the off-gas supply passage 130, and the off-gas in the off-gas storage tank 110 is supplied to the fuel supply passage 118 through the off-gas supply passage 132. Then, it is mixed with the hydrocarbon gas supplied through the fuel supply passage 118, supplied to the combustion burner 112, and burned together with the hydrocarbon gas.

この水素製造装置には、更に、昇圧装置104をバイパスしてバイパス流路134が設けられ、その一端側が第1送給流路120に接続され、その他端側が第2送給流路122に接続されている。このバイパス流路134には流量制御弁136が設けられ、流量制御弁136はコントローラ138によって開閉制御されるように構成されている。   The hydrogen production apparatus further includes a bypass flow path 134 that bypasses the booster 104, one end side of which is connected to the first supply flow path 120, and the other end side connected to the second supply flow path 122. Has been. The bypass flow path 134 is provided with a flow control valve 136, and the flow control valve 136 is configured to be controlled to open and close by a controller 138.

この実施形態では、第1送給流路120には流量検出手段140が設けられ(具体的には、バイパス流路134の一端側の接続部位よりも上流側に設けられる)、また第2送給流路122には圧力検出手段142が設けられ(具体的には、バイパス流路134の他端側の接続部位よりも下流側に設けられる)、流量検出手段140及び圧力検出手段142からの検出信号がコントローラ138に送給され、コントローラ138は流量検出手段140の検知流量及び圧力検出手段142の検知圧力に基づいて流量制御弁を開閉制御する。   In this embodiment, the flow rate detecting means 140 is provided in the first supply flow path 120 (specifically, provided on the upstream side of the connection portion on one end side of the bypass flow path 134), and the second supply flow path 120 is provided. The pressure detection means 142 is provided in the supply flow path 122 (specifically, provided on the downstream side of the connection portion on the other end side of the bypass flow path 134), from the flow rate detection means 140 and the pressure detection means 142. A detection signal is sent to the controller 138, and the controller 138 controls opening and closing of the flow rate control valve based on the detected flow rate of the flow rate detecting means 140 and the detected pressure of the pressure detecting means 142.

この水素製造装置において、流量制御弁136の開閉制御は、次の通りにして行われる。例えば、昇圧装置104にて昇圧されて第2送給流路122を流れる水素リッチガスの圧力が所定圧力(例えば、0.98MPa)を超えると、圧力検出手段142からの検出信号に基づいてコントローラ138は開信号を生成し、この開信号に基づいて流量制御弁136を開放する。例えば、流量制御弁136が閉状態のときには、この開信号に基づいて開放され、また流量制御弁がある開度のときには、この開度より幾分大きい開度となる。このように開放されると、第2送給流路122を流れる水素リッチガスの一部がバイパス流路134を通して第1送給流路120に流れ、これによって、第2送給流路122の水素リッチガスの圧力が下がり、第2送給流路122の水素リッチガスの圧力を所定圧力に維持し、所定圧力を超える圧力上昇を防止することができる。   In this hydrogen production apparatus, the opening / closing control of the flow control valve 136 is performed as follows. For example, when the pressure of the hydrogen rich gas that is boosted by the booster 104 and flows through the second supply flow path 122 exceeds a predetermined pressure (for example, 0.98 MPa), the controller 138 is based on the detection signal from the pressure detection unit 142. Generates an open signal and opens the flow control valve 136 based on the open signal. For example, when the flow control valve 136 is closed, the flow control valve 136 is opened based on this open signal, and when the flow control valve has a certain opening, the opening is somewhat larger than this opening. When opened in this way, a part of the hydrogen-rich gas flowing through the second supply flow path 122 flows to the first supply flow path 120 through the bypass flow path 134, and thereby the hydrogen in the second supply flow path 122. The pressure of the rich gas is lowered, the pressure of the hydrogen rich gas in the second supply passage 122 is maintained at a predetermined pressure, and an increase in pressure exceeding the predetermined pressure can be prevented.

また、第1送給流路120を通して流れる水素リッチガスの流量が所定量より多くなる(又は少なくなる)と、流量検出手段140からの検出信号に基づいてコントローラ138は信号(又は信号)を生成し、この信号(又は信号)に基づいて流量制御弁136の開度が大きくなり(又は小さくなり)、第2送給流路122からバイパス流路134を通して第1送給流路120に戻る水素リッチガスの流量が多くなり(又は少なくなり)、これによって水素精製装置106に送られる水素リッチガスの送給量が減少(又は増加)し、水素精製装置106に送給される水素リッチガスの流量を所定流量に維持することができる。 Further, the flow rate of the hydrogen rich gas flowing through the first feeding passage 120 is larger than a predetermined amount (or less), the controller 138 based on a detection signal from the flow rate detecting unit 140 a opening signal (or closed signal) generated, the opening signal (or closed signal) opening of the flow control valve 136 based on the size no longer (or small no longer), the first feed stream through the bypass passage 134 from the second feeding passage 122 The flow rate of the hydrogen-rich gas that returns to the path 120 increases (or decreases), thereby reducing (or increasing) the supply amount of the hydrogen-rich gas sent to the hydrogen purifier 106, and hydrogen supplied to the hydrogen purifier 106. The flow rate of the rich gas can be maintained at a predetermined flow rate.

上述した水素製造装置では、バイパス流路134に流量制御弁136を設け、この流量制御弁136を流量検出手段140及び圧力検出手段142によって開閉制御することによって、水素精製装置106に送給される水素リッチガスの流量及び圧力を所望の通りに制御することができる。   In the hydrogen production apparatus described above, the flow rate control valve 136 is provided in the bypass flow path 134, and the flow rate control valve 136 is controlled to be opened and closed by the flow rate detection means 140 and the pressure detection means 142, thereby being supplied to the hydrogen purification apparatus 106. The flow and pressure of the hydrogen rich gas can be controlled as desired.

また、このような水素製造装置では、図1と従来の水素製造装置を示す図2とを対比することによって容易に理解される如く、従来の水素製造装置においてバイパス流路に設けられていた圧力調整弁と第2送給流路に設けられていた流量制御弁とを、バイパス流路134に設けた流量制御弁136に置き換えることができ、これによって、従来存在していた第2送給流路の流量制御弁及びこれに関連する部材を省略することができる。従って、第2送給流路122における圧力損失を小さくすることができ、その結果、水素精製装置の流入側における水素リッチガスの圧力を高く維持でき、これによって、水素精製装置の精製効率を高めることができる。   Moreover, in such a hydrogen production apparatus, as easily understood by comparing FIG. 1 with FIG. 2 showing a conventional hydrogen production apparatus, the pressure provided in the bypass channel in the conventional hydrogen production apparatus. The control valve and the flow control valve provided in the second supply flow path can be replaced with the flow control valve 136 provided in the bypass flow path 134, whereby the second supply flow that has existed in the past is provided. The flow control valve for the passage and the members related thereto can be omitted. Therefore, the pressure loss in the second supply flow path 122 can be reduced, and as a result, the pressure of the hydrogen rich gas on the inflow side of the hydrogen purifier can be kept high, thereby increasing the purification efficiency of the hydrogen purifier. Can do.

以上、本発明に従う水素製造装置の一実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。   As mentioned above, although one embodiment of the hydrogen production apparatus according to the present invention has been described, the present invention is not limited to such an embodiment, and various changes and modifications can be made without departing from the scope of the present invention.

上述した実施形態では、特に図示していないが、昇圧装置104と水素精製装置106との間に、水素リッチガス中の一酸化炭素を水素ガスに変成するための一酸化炭素変成装置を設けるようにしてもよい。   In the above-described embodiment, although not particularly illustrated, a carbon monoxide conversion device for converting carbon monoxide in the hydrogen-rich gas into hydrogen gas is provided between the booster device 104 and the hydrogen purification device 106. May be.

第1の実施形態の水素製造装置を簡略的に示す簡略図。The simplification figure which shows the hydrogen production apparatus of 1st Embodiment simply. 従来の水素製造装置を簡略的に示す図。The figure which shows the conventional hydrogen production apparatus simply.

符号の説明Explanation of symbols

102 改質装置
104 昇圧装置
106 水素精製装置
108 水素貯蔵タンク
120 第1送給流路
122 第2送給流路
134 バイパス流路
136 流量制御弁
138 コントローラ
140 流量検出手段
142 圧力検出手段
DESCRIPTION OF SYMBOLS 102 Reformer 104 Booster 106 Hydrogen refiner 108 Hydrogen storage tank 120 1st supply flow path 122 2nd supply flow path 134 Bypass flow path 136 Flow rate control valve 138 Controller 140 Flow rate detection means 142 Pressure detection means

Claims (2)

炭化水素ガスを改質反応させて水素リッチガスを生成するための改質装置と、前記改質装置にて改質された水素リッチガスを圧縮して昇圧するための昇圧装置と、昇圧された水素リッチガスに含まれた不純物を除去して高純度水素ガスを生成するための水素精製装置と、精製された高純度水素ガスを貯蔵するための水素貯蔵タンクと、を備えた水素製造装置であって、
前記昇圧装置をバイパスしてバイパス流路が設けられ、前記バイパス流路の一端側は前記改質装置と前記昇圧装置を接続する第1送給流路に接続され、その他端側は前記昇圧装置と前記水素精製装置とを接続する第2送給流路に接続され、
前記バイパス流路には流量制御弁が設けられ、前記流量制御弁は前記第1送給流路を流れる水素リッチガスの流量及び前記第2送給流路を流れる水素リッチガスの圧力に基づいて開閉制御されることを特徴とする水素製造装置。
A reformer for generating a hydrogen-rich gas by reforming a hydrocarbon gas, a booster for compressing and boosting the hydrogen-rich gas reformed by the reformer, and a boosted hydrogen-rich gas A hydrogen production apparatus comprising: a hydrogen purification device for removing impurities contained in the gas to produce high-purity hydrogen gas; and a hydrogen storage tank for storing the purified high-purity hydrogen gas,
A bypass channel is provided to bypass the booster, and one end of the bypass channel is connected to a first feed channel that connects the reformer and the booster, and the other end is the booster. And a second feed flow channel connecting the hydrogen purification device,
The bypass flow path is provided with a flow rate control valve, and the flow rate control valve is controlled to open and close based on the flow rate of the hydrogen rich gas flowing through the first supply flow path and the pressure of the hydrogen rich gas flowing through the second supply flow path. A hydrogen production apparatus.
前記第1送給流路には流量検出手段が設けられ、前記第2送給流路には圧力検出手段が設けられ、前記流量制御弁は、前記流量検出手段及び前記圧力検出手段の検出信号に基づいて開閉制御されることを特徴とする請求項1に記載の水素製造装置。   The first supply flow path is provided with a flow rate detection means, the second supply flow path is provided with a pressure detection means, and the flow rate control valve is a detection signal of the flow rate detection means and the pressure detection means. The hydrogen production apparatus according to claim 1, wherein the open / close control is performed based on
JP2006099544A 2006-03-31 2006-03-31 Hydrogen production equipment Expired - Fee Related JP5057683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099544A JP5057683B2 (en) 2006-03-31 2006-03-31 Hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099544A JP5057683B2 (en) 2006-03-31 2006-03-31 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2007269593A JP2007269593A (en) 2007-10-18
JP5057683B2 true JP5057683B2 (en) 2012-10-24

Family

ID=38672770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099544A Expired - Fee Related JP5057683B2 (en) 2006-03-31 2006-03-31 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP5057683B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202930B2 (en) * 2013-08-06 2017-09-27 大阪瓦斯株式会社 Hydrogen production apparatus and hydrogen production method
JP6764384B2 (en) * 2017-09-20 2020-09-30 東京瓦斯株式会社 Hydrogen production equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116731B2 (en) * 1999-03-30 2008-07-09 富士電機ホールディングス株式会社 Hydrogen generator and operation method thereof
JP3777124B2 (en) * 2002-01-15 2006-05-24 ジャパン・エア・ガシズ株式会社 Exhaust gas treatment method and treatment apparatus
JP4236500B2 (en) * 2003-03-31 2009-03-11 大阪瓦斯株式会社 Hydrogen production apparatus and hydrogen production method
JP4476565B2 (en) * 2003-06-03 2010-06-09 株式会社東芝 Waste treatment system
JP2005339847A (en) * 2004-05-24 2005-12-08 Toyota Motor Corp Fuel cell system

Also Published As

Publication number Publication date
JP2007269593A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
AU2005316725B2 (en) Apparatus and method for controlling compressor motor speed in a hydrogen generator
JP6566639B2 (en) Method for operating hydrogen production apparatus and hydrogen production apparatus
US9776863B2 (en) Method for hydrogen production
JP6820219B2 (en) Hydrogen production system
AU2005316726A1 (en) Apparatus and method for producing hydrogen
KR20090009261A (en) Hydrogen production system and method of controlling flow rate of offgas in the system
JP5057683B2 (en) Hydrogen production equipment
JP6202930B2 (en) Hydrogen production apparatus and hydrogen production method
JP4316386B2 (en) Method and apparatus for producing hydrogen from hydrogen rich feed gas
US20060090395A1 (en) Compact synthesis gas generation system
JP2005517622A5 (en)
US20040115504A1 (en) Fuel cell system with a membrane unit for separating a hydrogen-enriched fuel from a hydrogen-containing mixture
JP2019151537A (en) Hydrogen production device
JP4815250B2 (en) Operation method of hydrogen purifier
JP2002355522A (en) Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
JP7129330B2 (en) Hydrogen production device, hydrogen production method, and operation program
JP2019055893A (en) Hydrogen production apparatus
JPS60155501A (en) Purification of ammonia synthesis gas
JP3819174B2 (en) Off-gas flow rate control method in pressure swing adsorption device
JP4236500B2 (en) Hydrogen production apparatus and hydrogen production method
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP2004299994A (en) Hydrogen production apparatus
US7427304B2 (en) Fuel gas manufacturing apparatus
JP7126470B2 (en) Hydrogen production device operating method and hydrogen production device
JP4771668B2 (en) Hydrogen production method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees