JP2005339847A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2005339847A
JP2005339847A JP2004153853A JP2004153853A JP2005339847A JP 2005339847 A JP2005339847 A JP 2005339847A JP 2004153853 A JP2004153853 A JP 2004153853A JP 2004153853 A JP2004153853 A JP 2004153853A JP 2005339847 A JP2005339847 A JP 2005339847A
Authority
JP
Japan
Prior art keywords
valve
pressure
fuel gas
gas supply
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004153853A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Kobayashi
朋能 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004153853A priority Critical patent/JP2005339847A/en
Publication of JP2005339847A publication Critical patent/JP2005339847A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system with improved system efficiency by the use of a switching valve satisfying the conditions of low-pressure loss, large current volume, high response, high closing property, compactness, and low drive power, in a good balance. <P>SOLUTION: The fuel cell system (10) is provided with a fuel gas storage device (20) for storing fuel gas, a fuel gas supply path (31) connecting the fuel cell with the fuel gas storage device (20), and a switching valve (43) fitted on the fuel gas supply path (31)for adjusting an aperture of the fuel gas supply path (31). The switching valve (43) at least a differential pressure valve driven for switching with the use of fuel gas discharged from the fuel gas storage device (20). Since the differential pressure valve is controlled for switching with pressure of fuel gas, the valve can be switched without much operating power, so that conditions of low-pressure loss, large current volume, high response, high closing property, compactness, and low drive power can be satisfied with a good balance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は反応ガス系統に開閉弁を備えた燃料電池システムに関し、特に、システム効率を高めるための改良技術に関する。   The present invention relates to a fuel cell system having an on-off valve in a reaction gas system, and more particularly to an improved technique for improving system efficiency.

燃料電池車両などの電源装置として、燃料ガスと酸化ガスの酸化還元反応による化学エネルギーを電気エネルギーとして直接取り出すことのできる燃料電池システムが用いられている。この種の燃料電池システムにおいては、例えば、特開2003−178779号公報に開示されているように、ガス配管系統(燃料ガス系統、酸化ガス系統)に各種の遮断弁が用いられているが、その多くは電磁遮断弁である。ガス配管系統に配設される遮断弁としては、システム効率を高めるために、低圧力損失、大流量、高応答性、高締め切り性、小型、低駆動力(低動作電力)であることがバランスよく要求される。
特開2003−178779号公報
2. Description of the Related Art As a power supply device for a fuel cell vehicle or the like, a fuel cell system that can directly extract chemical energy resulting from a redox reaction between a fuel gas and an oxidizing gas as electric energy is used. In this type of fuel cell system, for example, as disclosed in Japanese Patent Application Laid-Open No. 2003-178777, various shutoff valves are used in the gas piping system (fuel gas system, oxidizing gas system). Many of them are electromagnetic shut-off valves. The shut-off valve installed in the gas piping system is balanced by low pressure loss, large flow rate, high response, high deadlines, small size, and low driving power (low operating power) in order to increase system efficiency. Well requested.
JP 2003-178777 A

しかし、低圧力損失かつ大流量の流量特性を満たすには弁流路を大きく確保する必要がある。弁流路を大きくとると、弁の開閉部分に加わる流体の圧力が大きくなるので、弁を開閉駆動するための駆動力が大きくなる。弁の締め切り性や応答性を向上させるためにも大きな駆動力を必要とするが、弁の駆動力を大きくすると補機電力が増大するので、燃費は悪化し、システム効率は低下する。   However, in order to satisfy the flow characteristics of low pressure loss and large flow rate, it is necessary to secure a large valve flow path. If the valve flow path is made larger, the pressure of the fluid applied to the opening / closing portion of the valve increases, so that the driving force for opening / closing the valve increases. A large driving force is also required to improve the valve shut-off and responsiveness. However, increasing the valve driving force increases auxiliary power, resulting in a deterioration in fuel consumption and a reduction in system efficiency.

例えば、電動モータを用いて弁の開閉を行うと、小型化が難しく、しかも良好な応答性が得られない。電磁石で弁を開閉させる直動電磁弁を用いると、低圧力損失かつ大流量を確保するには弁が大型になってしまい、駆動力も大きくなる。パイロット式電磁弁は小型ではあるが、動作時の弁前後の差圧が小さいと良好な締め切り性と応答性を得ることができず、更に逆流も防げない。エア駆動弁は小型であるものの、エア駆動弁に信号圧を供給するためのエアコンプレッサが必要となり、装置の大型化と補機電力の増大を招くので好ましくない。   For example, when an electric motor is used to open and close the valve, it is difficult to reduce the size and good responsiveness cannot be obtained. When a direct acting solenoid valve that opens and closes a valve with an electromagnet is used, the valve becomes large in order to ensure a low pressure loss and a large flow rate, and the driving force also increases. Although the pilot type solenoid valve is small, if the differential pressure before and after the operation is small, good deadlines and responsiveness cannot be obtained, and further backflow cannot be prevented. Although the air-driven valve is small, an air compressor for supplying a signal pressure to the air-driven valve is required, which increases the size of the device and increases auxiliary power, which is not preferable.

そこで、本発明は低圧力損失、大流量、高応答性、高締め切り性、小型、低駆動力の条件をバランスよく満たした開閉弁を用いることで、システム効率を高めることのできる燃料電池システムを提案することを課題とする。   Therefore, the present invention provides a fuel cell system that can improve system efficiency by using an on-off valve that satisfies the conditions of low pressure loss, large flow rate, high response, high deadline, small size, and low driving force in a well-balanced manner. The challenge is to propose.

上記の課題を解決するため、本発明の燃料電池システムは、反応ガスを貯蔵する反応ガス供給源と、燃料電池と反応ガス供給源を接続する反応ガス供給路と、反応ガス供給路上に設けられ反応ガス供給路の開度を調整する開閉弁とを備え、開閉弁は少なくとも反応ガス供給源から放出される反応ガスの圧力を利用して開閉駆動される差圧弁である。反応ガスの圧力で差圧弁を開閉制御するので、大きな動作電力を必要とせずに弁の開閉を行うことが可能となり、低圧力損失、大流量、高応答性、高締め切り性、小型、低駆動力の条件をバランスよく満たすことができる。   In order to solve the above problems, a fuel cell system according to the present invention is provided on a reaction gas supply path for storing a reaction gas, a reaction gas supply path for connecting the fuel cell and the reaction gas supply source, and a reaction gas supply path. An open / close valve that adjusts the opening of the reaction gas supply path, and the open / close valve is a differential pressure valve that is driven to open and close using at least the pressure of the reaction gas released from the reaction gas supply source. Since the differential pressure valve is controlled to open and close by the pressure of the reaction gas, it is possible to open and close the valve without requiring large operating power, and low pressure loss, large flow rate, high response, high shut-off, small size, low drive The power requirements can be met in a well-balanced manner.

差圧弁に駆動用ガスを供給するには、例えば、反応ガス供給路から分岐して差圧弁の信号圧室に連通するバイパス流路を配管し、このバイパス流路を伝播する反応ガスの圧力によって差圧弁を開閉駆動する構成が好ましい。かかる構成により、反応ガスの圧力を信号圧として差圧弁に伝播させることができる。   In order to supply the driving gas to the differential pressure valve, for example, a bypass flow path that branches from the reaction gas supply path and communicates with the signal pressure chamber of the differential pressure valve is provided, and the pressure of the reaction gas that propagates through the bypass flow path A configuration in which the differential pressure valve is driven to open and close is preferable. With this configuration, the pressure of the reaction gas can be propagated to the differential pressure valve as a signal pressure.

ここで、反応ガス供給路には反応ガスの圧力を減圧するためのレギュレータが配設されており、バイパス流路はレギュレータよりも上流側の反応ガス供給路から分岐配管されているのが望ましい。バイパス流路を反応ガス供給路のレギュレータの上流側より分岐させることで、駆動用ガスを高圧に調整することができ、反応ガス供給路との差圧を利用して差圧弁を開閉制御できる。   Here, a regulator for reducing the pressure of the reaction gas is provided in the reaction gas supply path, and the bypass flow path is preferably branched from the reaction gas supply path upstream of the regulator. By branching the bypass channel from the upstream side of the regulator of the reaction gas supply path, the driving gas can be adjusted to a high pressure, and the differential pressure valve can be controlled to open and close using the differential pressure with the reaction gas supply path.

反応ガス供給源としては、例えば、反応ガスを高圧状態で貯蔵する高圧ガスタンクが好適である。高圧の反応ガスを差圧弁の駆動用ガスとして利用することで、差圧弁を開閉制御できる。   As the reaction gas supply source, for example, a high-pressure gas tank that stores the reaction gas in a high-pressure state is suitable. By using a high-pressure reaction gas as a driving gas for the differential pressure valve, the differential pressure valve can be controlled to open and close.

本発明によれば、反応ガスの圧力で差圧弁を開閉制御するので、大きな動作電力を必要とせずに弁の開閉を行うことが可能となり、低圧力損失、大流量、高応答性、高締め切り性、小型、低駆動力の条件をバランスよく満たすことができる。   According to the present invention, since the differential pressure valve is controlled to open and close by the pressure of the reaction gas, the valve can be opened and closed without requiring a large operating power, and low pressure loss, large flow rate, high response, and high deadline can be achieved. Performance, small size, and low driving force can be satisfied in a well-balanced manner.

図1は本実施形態の燃料電池システム10の燃料ガス系統を中心とするシステム構成図である。同システムの燃料ガス系統には、主として、燃料ガス(反応ガス)を貯蔵する燃料貯蔵装置(反応ガス供給源)20と、燃料貯蔵装置20に貯蔵された燃料ガスを燃料電池(セルスタック)に供給するための燃料ガス供給路(反応ガス供給路)31と、燃料ガス供給路31を流れる燃料ガスを遮断する差圧弁43と、燃料ガス供給路31から分岐して差圧弁43の信号圧室に連通するバイパス流路(分岐流路又は迂回流路)32が配設されている。差圧弁43は開閉弁又は遮断弁として機能する。燃料貯蔵装置20は燃料ガスを高圧に圧縮して貯蔵するための装置であり、例えば、燃料ガスを300気圧〜700気圧程度の圧力で充填する高圧水素タンク(高圧ガスタンク)などが好適である。燃料ガス供給路31には、高圧に圧縮された燃料ガスを中圧(中間圧力)に減圧するための中圧レギュレータ(中圧減圧弁)41と、中圧に減圧された燃料ガスを更に低圧(通常運転圧力)に減圧するための低圧レギュレータ(低圧減圧弁)42と、上述した差圧弁43の各々が上流から下流にかけて順に配設されている。説明の便宜上、燃料ガス供給路31のうち中圧レギュレータ41の上流側の流路を31a、中圧レギュレータ41と低圧レギュレータ42の間の流路を31b、低圧レギュレータ42と差圧弁43の間の流路を31c、差圧弁43の下流側の流路を31dとし、各々の流路31a〜31dのガス圧をP1〜P4とする。   FIG. 1 is a system configuration diagram centering on a fuel gas system of a fuel cell system 10 of the present embodiment. The fuel gas system of the system mainly includes a fuel storage device (reactive gas supply source) 20 for storing fuel gas (reactive gas), and the fuel gas stored in the fuel storage device 20 to a fuel cell (cell stack). A fuel gas supply path (reaction gas supply path) 31 for supply, a differential pressure valve 43 that shuts off the fuel gas flowing through the fuel gas supply path 31, and a signal pressure chamber of the differential pressure valve 43 branched from the fuel gas supply path 31 A bypass flow path (branch flow path or detour flow path) 32 communicating with is provided. The differential pressure valve 43 functions as an on-off valve or a shut-off valve. The fuel storage device 20 is a device for compressing and storing the fuel gas at a high pressure. For example, a high-pressure hydrogen tank (high-pressure gas tank) that fills the fuel gas at a pressure of about 300 to 700 atm is suitable. The fuel gas supply path 31 has an intermediate pressure regulator (intermediate pressure reducing valve) 41 for reducing the fuel gas compressed to a high pressure to an intermediate pressure (intermediate pressure), and further lowering the fuel gas reduced to the intermediate pressure. A low-pressure regulator (low-pressure pressure reducing valve) 42 for reducing the pressure to (normal operating pressure) and the above-described differential pressure valve 43 are arranged in order from upstream to downstream. For convenience of explanation, a flow path upstream of the intermediate pressure regulator 41 in the fuel gas supply path 31 is 31 a, a flow path between the intermediate pressure regulator 41 and the low pressure regulator 42 is 31 b, and between the low pressure regulator 42 and the differential pressure valve 43. The flow path is 31c, the flow path on the downstream side of the differential pressure valve 43 is 31d, and the gas pressures of the flow paths 31a to 31d are P1 to P4.

図2に示すように、差圧弁43はボディ71の内部空間がダイヤフラム72によって上下2つの内部空間に画成されており、一方は信号圧室73、他方は燃料ガス供給路31である。信号圧室73はバイパス流路32より伝播される燃料ガス(駆動用ガス)の圧力を導入するための導入孔83が形成された密閉空間である。燃料ガス供給路31はボディ71に形成された入口ポート81と出口ポート82を連通するガス流路であり、その流路には弁体74を着座させるための弁座75が形成されている。入口ポート81は燃料ガス流路31cに連通し、出口ポート82は燃料ガス流路31dに連通する。弁体74が弁座75に着座(閉弁)することによって燃料ガス供給路31は遮断され、弁体74が弁座75から離間(開弁)することによって燃料ガス供給路31はスルー状態になる。弁体74はスプリング76,77によって弁座75に押し付けられる方向に付勢されている。信号圧室73に導入される燃料ガスの圧力(信号圧)が低圧の場合にはスプリング76,77の付勢力に抗して弁体74を弁座75から離間する方向に押し上げることが出来ないため、差圧弁43は閉弁する。一方、信号圧室73に導入される燃料ガスの圧力が高圧の場合にはスプリング76,77の付勢力に抗して弁体74を弁座75から離間することが出来るため、差圧弁43は開弁する。このような差圧弁43としては、燃料ガスの流路面積を大きく確保することにより低圧力損失のバルブとして構成するのが望ましい。また、差圧弁43としては、燃料ガス供給路31の開度を「全閉」と「全開」との間でその開度を目標開度に調整するリニア弁でもあってもよく、全開(連通)/全閉(遮断)の2位置に切り換え可能な2位置開閉弁であってもよい。   As shown in FIG. 2, in the differential pressure valve 43, the internal space of the body 71 is defined by upper and lower internal spaces by a diaphragm 72, one of which is a signal pressure chamber 73 and the other is a fuel gas supply path 31. The signal pressure chamber 73 is a sealed space in which an introduction hole 83 for introducing the pressure of the fuel gas (driving gas) propagated from the bypass passage 32 is formed. The fuel gas supply path 31 is a gas flow path communicating with an inlet port 81 and an outlet port 82 formed in the body 71, and a valve seat 75 for seating the valve body 74 is formed in the flow path. The inlet port 81 communicates with the fuel gas passage 31c, and the outlet port 82 communicates with the fuel gas passage 31d. When the valve body 74 is seated (closed) on the valve seat 75, the fuel gas supply path 31 is shut off, and when the valve body 74 is separated (opened) from the valve seat 75, the fuel gas supply path 31 is in a through state. Become. The valve body 74 is urged in a direction to be pressed against the valve seat 75 by springs 76 and 77. When the pressure (signal pressure) of the fuel gas introduced into the signal pressure chamber 73 is low, the valve element 74 cannot be pushed up in the direction away from the valve seat 75 against the urging force of the springs 76 and 77. Therefore, the differential pressure valve 43 is closed. On the other hand, when the pressure of the fuel gas introduced into the signal pressure chamber 73 is high, the valve element 74 can be separated from the valve seat 75 against the urging force of the springs 76 and 77, so that the differential pressure valve 43 is Open the valve. Such a differential pressure valve 43 is preferably configured as a low pressure loss valve by ensuring a large fuel gas passage area. Further, the differential pressure valve 43 may be a linear valve that adjusts the opening degree of the fuel gas supply passage 31 between “fully closed” and “fully opened” to the target opening degree. ) / A two-position on-off valve that can be switched to a two-position (fully closed).

一方、バイパス流路32には、燃料ガス供給路31から分岐して差圧弁43に供給される駆動用ガスを減圧するレギュレータ(減圧弁)44と、制御部(ECU)50によって開閉制御される3ポート電磁弁45の各々が上流から下流にかけて順に配設されている。説明の便宜上、バイパス流路32のうちレギュレータ44の上流側の流路を32a、レギュレータ44と3ポート電磁弁45の間の流路を32b、3ポート電磁弁45と差圧弁43の間の流路を32cとする。3ポート電磁弁45はポートA1〜A3を備えており、ポートA1はバイパス流路32bに、ポートA2はバイパス流路32cに、ポートA3は駆動用ガス排気通路33を介して燃料ガス供給路31bに、それぞれ連通している。駆動用ガス排気通路33にはバイパス流路32から燃料ガス供給路31に排気される駆動用ガスの逆流を防止するための逆止弁46が配設されている。ここで、バイパス流路32b、バイパス流路32c、及び駆動用ガス排気通路33の信号圧をP5〜P7とする。差圧弁43の信号圧室に供給される信号圧P6が高圧になると、駆動用ガスが信号圧室内のスプリングの付勢力に抗して弁を押し開くことにより、差圧弁43が開弁する。信号圧P6が低圧になると、信号圧室内のスプリングが駆動用ガスに抗して弁を閉じることにより、差圧弁43が閉弁する。信号圧P6を高圧と低圧の二段階に調整して差圧弁43を開閉制御するために、常時、P5(高圧)>P2(低圧)となるように圧力調整する。本例では、燃料ガス供給路31とバイパス流路32の分岐点60を中圧レギュレータ41の上流側に設けることで、レギュレータ41,44の1次圧力を同一に設定し、更にギュレータ41,44の調圧値を調整することで、P5>P2に設定している。   On the other hand, the bypass passage 32 is controlled to be opened and closed by a regulator (pressure reducing valve) 44 that reduces the driving gas branched from the fuel gas supply passage 31 and supplied to the differential pressure valve 43, and a control unit (ECU) 50. Each of the three-port solenoid valves 45 is disposed in order from upstream to downstream. For convenience of explanation, among the bypass flow paths 32, the flow path upstream of the regulator 44 is 32a, the flow path between the regulator 44 and the 3-port solenoid valve 45 is 32b, and the flow between the 3-port solenoid valve 45 and the differential pressure valve 43 is flow. Let the road be 32c. The three-port solenoid valve 45 includes ports A1 to A3. The port A1 is connected to the bypass passage 32b, the port A2 is connected to the bypass passage 32c, and the port A3 is connected to the fuel gas supply passage 31b via the driving gas exhaust passage 33. And communicate with each other. The driving gas exhaust passage 33 is provided with a check valve 46 for preventing the backflow of the driving gas exhausted from the bypass flow path 32 to the fuel gas supply path 31. Here, let the signal pressure of the bypass flow path 32b, the bypass flow path 32c, and the driving gas exhaust passage 33 be P5 to P7. When the signal pressure P6 supplied to the signal pressure chamber of the differential pressure valve 43 becomes high, the drive gas pushes the valve against the urging force of the spring in the signal pressure chamber, thereby opening the differential pressure valve 43. When the signal pressure P6 becomes low, the spring in the signal pressure chamber closes the valve against the driving gas, thereby closing the differential pressure valve 43. In order to control the opening / closing of the differential pressure valve 43 by adjusting the signal pressure P6 in two stages of high pressure and low pressure, the pressure is always adjusted so that P5 (high pressure)> P2 (low pressure). In this example, by providing the branch point 60 of the fuel gas supply path 31 and the bypass flow path 32 on the upstream side of the intermediate pressure regulator 41, the primary pressures of the regulators 41 and 44 are set to be the same. By adjusting the pressure regulation value, P5> P2 is set.

制御部50は燃料電池の運転状態を制御するシステムコントローラであり、3ポート電磁弁45の各ポートA1〜A3の開閉制御を通じて差圧弁43を開閉制御し、燃料ガス供給路31を連通又は遮断する。例えば、ポートA1とポートA2を開弁し、ポートA3を閉弁すると、バイパス流路32bとバイパス流路32cは連通するので、両者のガス圧は等しくなり、P1>P5=P6>P7>P2>P3>P4となる。差圧弁43に供給される信号圧P6はP5(高圧)と等しくなるので、差圧弁43は開弁する。一方、ポートA1を閉弁し、ポートA2とポートA3を開弁すると、バイパス流路32cと燃料ガス供給路31bは駆動用ガス排気通路33を介して連通するので、両者のガス圧は等しくなり、P1>P5>P6=P7=P2>P3>P4となる。差圧弁43に供給される信号圧P6はP2(低圧)と等しくなるので、差圧弁43は閉弁する。   The control unit 50 is a system controller that controls the operating state of the fuel cell, and controls the opening and closing of the differential pressure valve 43 through the opening and closing control of the ports A1 to A3 of the three-port solenoid valve 45, thereby connecting or blocking the fuel gas supply path 31. . For example, when the ports A1 and A2 are opened and the port A3 is closed, the bypass flow path 32b and the bypass flow path 32c communicate with each other, so that the gas pressures of both are equal, and P1> P5 = P6> P7> P2 > P3> P4. Since the signal pressure P6 supplied to the differential pressure valve 43 becomes equal to P5 (high pressure), the differential pressure valve 43 is opened. On the other hand, when the port A1 is closed and the ports A2 and A3 are opened, the bypass passage 32c and the fuel gas supply passage 31b communicate with each other via the driving gas exhaust passage 33, so that the gas pressures of both are equal. , P1> P5> P6 = P7 = P2> P3> P4. Since the signal pressure P6 supplied to the differential pressure valve 43 becomes equal to P2 (low pressure), the differential pressure valve 43 is closed.

本実施形態によれば、燃料ガスのガス圧を差圧弁43の信号圧P6として利用することにより、少ない駆動力で弁の開閉動作を行うことができる。また、弁動作に使用した駆動用ガスは燃料ガスとして利用されるため、燃料の浪費がない。更に、差圧弁43の流路面積を大きく確保することができるので圧力損失が低く、しかも、燃料ガス供給路31から分岐した燃料ガスの圧力で差圧弁43を開閉制御するので、締め切り性に優れている。以上より、差圧弁43は低圧力損失、大流量、高応答性、高締め切り性、小型、低駆動力をバランスよく実現した開閉弁(又は遮断弁)として機能する。   According to the present embodiment, by using the gas pressure of the fuel gas as the signal pressure P6 of the differential pressure valve 43, the valve can be opened and closed with a small driving force. Further, since the driving gas used for the valve operation is used as fuel gas, there is no waste of fuel. Furthermore, since a large flow path area of the differential pressure valve 43 can be secured, the pressure loss is low, and the differential pressure valve 43 is controlled to be opened and closed by the pressure of the fuel gas branched from the fuel gas supply path 31, so that the closing performance is excellent. ing. As described above, the differential pressure valve 43 functions as an on-off valve (or shut-off valve) that achieves a good balance of low pressure loss, large flow rate, high response, high shut-off, small size, and low driving force.

尚、差圧弁43は燃料ガス系統の開閉弁(又は遮断弁)として用いる他に、例えば、アノード側のスタック入口弁若しくはスタック出口弁、又は水素循環系の水素排気弁若しくは排水弁として用いることも可能であり、更にはこれらの弁と併用して用いることも可能である。また、上述の説明では、差圧弁43を燃料ガス系統の開閉弁(又は遮断弁)として用いる場合を例示したが、本発明はこれに限られるものではなく、例えば、差圧弁43を酸化ガス系統の遮断弁、カソード側のスタック入口弁或いはスタック出口弁、又は酸化ガス系統の排水弁として用いてもよく、更にはこれらの弁と併用して用いることも可能である。つまり、上述した差圧弁43は燃料電池システム10の全ての弁に適用できる。   The differential pressure valve 43 may be used as an on-off valve (or shut-off valve) of the fuel gas system, for example, as an anode-side stack inlet valve or stack outlet valve, or a hydrogen circulation system hydrogen exhaust valve or drain valve. It is also possible to use it in combination with these valves. In the above description, the case where the differential pressure valve 43 is used as an on-off valve (or shut-off valve) of the fuel gas system is exemplified. However, the present invention is not limited to this, and for example, the differential pressure valve 43 is used as the oxidizing gas system. It may be used as a shutoff valve, a cathode side stack inlet valve or stack outlet valve, or an oxidant gas system drain valve, and may be used in combination with these valves. That is, the differential pressure valve 43 described above can be applied to all the valves of the fuel cell system 10.

また、差圧弁43の信号圧P6を高圧と低圧の二段階に調整できる構成であれば、必ずしも上述の構成に限られるものではない。例えば、3ポート電磁弁45のポートA3を燃料ガス供給路31bに連通させることは必須ではなく、例えば、サブタンク等の他の装置内(圧力P5よりも低圧であることが必要である)に連通させるように構成してもよい。   Further, the configuration is not necessarily limited to the above-described configuration as long as the signal pressure P6 of the differential pressure valve 43 can be adjusted in two stages of high pressure and low pressure. For example, it is not essential to connect the port A3 of the three-port solenoid valve 45 to the fuel gas supply path 31b. For example, the port A3 communicates with another device such as a sub tank (which needs to be lower in pressure than the pressure P5). You may comprise.

本実施形態の燃料電池システムの構成図である。It is a block diagram of the fuel cell system of this embodiment. 差圧弁の断面図である。It is sectional drawing of a differential pressure valve.

符号の説明Explanation of symbols

10…燃料電池システム 20…燃料貯蔵装置 31…燃料ガス供給路 32…バイパス流路 33…駆動用ガス排気通路 41…中圧レギュレータ 42…低圧レギュレータ 43…差圧弁 44…レギュレータ 45…3ポート電磁弁 50…制御部 60…分岐点 DESCRIPTION OF SYMBOLS 10 ... Fuel cell system 20 ... Fuel storage device 31 ... Fuel gas supply path 32 ... Bypass flow path 33 ... Drive gas exhaust passage 41 ... Medium pressure regulator 42 ... Low pressure regulator 43 ... Differential pressure valve 44 ... Regulator 45 ... Three port solenoid valve 50 ... Control unit 60 ... Branching point

Claims (4)

反応ガスを貯蔵する反応ガス供給源と、燃料電池と前記反応ガス供給源を接続する反応ガス供給路と、前記反応ガス供給路上に設けられ前記反応ガス供給路の開度を調整する開閉弁とを備え、前記開閉弁は少なくとも前記反応ガス供給源から放出される反応ガスの圧力を利用して開閉駆動される差圧弁である、燃料電池システム。   A reaction gas supply source for storing the reaction gas, a reaction gas supply path connecting the fuel cell and the reaction gas supply source, and an on-off valve provided on the reaction gas supply path for adjusting the opening of the reaction gas supply path; And the on-off valve is a differential pressure valve that is opened / closed using at least the pressure of the reaction gas discharged from the reaction gas supply source. 請求項1に記載の燃料電池システムであって、前記差圧弁は前記反応ガス供給路から分岐して前記差圧弁の信号圧室に連通するバイパス流路を伝播する反応ガスの圧力によって開閉駆動される、燃料電池システム。   2. The fuel cell system according to claim 1, wherein the differential pressure valve is driven to open and close by the pressure of a reactive gas that branches from the reactive gas supply passage and propagates through a bypass passage that communicates with a signal pressure chamber of the differential pressure valve. A fuel cell system. 請求項2に記載の燃料電池システムであって、前記反応ガス供給路には反応ガスの圧力を減圧するためのレギュレータが配設されており、前記バイパス流路は前記レギュレータよりも上流側の前記反応ガス供給路から分岐配管されている、燃料電池システム。   3. The fuel cell system according to claim 2, wherein a regulator for reducing a pressure of the reaction gas is disposed in the reaction gas supply path, and the bypass flow path is located upstream of the regulator. A fuel cell system branched from the reaction gas supply path. 請求項1乃至請求項3のうち何れか1項に記載の燃料電池システムであって、前記反応ガス供給源は反応ガスを高圧状態で貯蔵する高圧ガスタンクである、燃料電池システム。

4. The fuel cell system according to claim 1, wherein the reaction gas supply source is a high-pressure gas tank that stores the reaction gas in a high-pressure state. 5.

JP2004153853A 2004-05-24 2004-05-24 Fuel cell system Pending JP2005339847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153853A JP2005339847A (en) 2004-05-24 2004-05-24 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153853A JP2005339847A (en) 2004-05-24 2004-05-24 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2005339847A true JP2005339847A (en) 2005-12-08

Family

ID=35493186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153853A Pending JP2005339847A (en) 2004-05-24 2004-05-24 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2005339847A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269593A (en) * 2006-03-31 2007-10-18 Osaka Gas Co Ltd Hydrogen manufacturing plant
US8088531B2 (en) 2006-08-01 2012-01-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR101126664B1 (en) * 2006-11-16 2012-03-29 도요타 지도샤(주) Fuel cell system
WO2012095495A1 (en) * 2011-01-14 2012-07-19 Helion Pressure-regulating device for a system of fuel-cell stacks
US20160133975A1 (en) * 2014-11-12 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9991531B2 (en) 2014-11-14 2018-06-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US10033057B2 (en) 2014-11-12 2018-07-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell system
JP2018170087A (en) * 2017-03-29 2018-11-01 東邦液化ガス株式会社 Gas pressure regulator for fuel cell system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269593A (en) * 2006-03-31 2007-10-18 Osaka Gas Co Ltd Hydrogen manufacturing plant
US8088531B2 (en) 2006-08-01 2012-01-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN101542803B (en) * 2006-11-16 2012-09-05 丰田自动车株式会社 Fuel cell system
KR101126664B1 (en) * 2006-11-16 2012-03-29 도요타 지도샤(주) Fuel cell system
US8343680B2 (en) 2006-11-16 2013-01-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2012095495A1 (en) * 2011-01-14 2012-07-19 Helion Pressure-regulating device for a system of fuel-cell stacks
FR2970601A1 (en) * 2011-01-14 2012-07-20 Helion PRESSURE REGULATION DEVICE FOR A FUEL CELL SYSTEM
US9461315B2 (en) 2011-01-14 2016-10-04 Areva Stockage D'energie Pressure-regulating device for a system of fuel-cell stacks
US20160133975A1 (en) * 2014-11-12 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN105591129A (en) * 2014-11-12 2016-05-18 丰田自动车株式会社 Fuel cell system
US10033057B2 (en) 2014-11-12 2018-07-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell system
US10038208B2 (en) * 2014-11-12 2018-07-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9991531B2 (en) 2014-11-14 2018-06-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2018170087A (en) * 2017-03-29 2018-11-01 東邦液化ガス株式会社 Gas pressure regulator for fuel cell system

Similar Documents

Publication Publication Date Title
JP5023743B2 (en) Fuel cell system
JP5024295B2 (en) Fuel cell system
JP4962777B2 (en) Gas supply system
US8252472B2 (en) Fuel cell system
JP4923969B2 (en) Fuel cell system
JP2005339847A (en) Fuel cell system
JP2008218072A (en) Fuel cell system
JP5194443B2 (en) Valve for fuel cell
JP5040411B2 (en) Fuel cell system
JP5292693B2 (en) Fuel cell system
JP4771292B2 (en) Fuel cell system
JP3572401B2 (en) Fuel circulation system for fuel cell system
JP2000003717A (en) Fuel cell system
JP2008251315A (en) Fuel cell system
WO2013137217A1 (en) Fuel cell system
JP2008021574A (en) Fuel cell system
JP5228695B2 (en) Fuel cell system
JP2007184109A (en) Oxidization gas path system and fuel cell system
JP2008243762A (en) Fuel cell system
JP5045041B2 (en) Fuel cell system
JP4645805B2 (en) Fuel cell system
JP2005121173A (en) Tank device formed of two or more tanks
WO2007077907A1 (en) Fuel cell system
JP5380760B2 (en) Fuel cell control device
JP2008020163A (en) Humidifier device and fuel cell system