JP2014201033A - ガスバリア性フィルムおよびその製造方法 - Google Patents

ガスバリア性フィルムおよびその製造方法 Download PDF

Info

Publication number
JP2014201033A
JP2014201033A JP2013080587A JP2013080587A JP2014201033A JP 2014201033 A JP2014201033 A JP 2014201033A JP 2013080587 A JP2013080587 A JP 2013080587A JP 2013080587 A JP2013080587 A JP 2013080587A JP 2014201033 A JP2014201033 A JP 2014201033A
Authority
JP
Japan
Prior art keywords
film
layer
gas
gas barrier
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013080587A
Other languages
English (en)
Inventor
本田 誠
Makoto Honda
本田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013080587A priority Critical patent/JP2014201033A/ja
Publication of JP2014201033A publication Critical patent/JP2014201033A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高いガスバリア性および高い耐屈曲性を有し、かつ高温高湿条件下での保存安定性に優れるガスバリア性フィルムおよびその製造方法を提供する。【解決手段】基材と、鉛筆硬度がHB以上である下地層と、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を堆積させた後に、前記蒸着膜表面に波長150nm以下の光を照射することにより形成されるバリア層と、をこの順に含む、ガスバリア性フィルムおよびその製造方法。【選択図】なし

Description

本発明は、ガスバリア性フィルムおよびその製造方法に関する。
近年、酸素や水蒸気などのガスを遮断するガスバリア性フィルムは、液晶ディスプレイなどのフラットパネルディスプレイ(FPD)や太陽電池用の部材(基板、バックシートなど)、有機エレクトロルミネッセント(有機EL)素子用のフレキシブル基板や封止膜などにも用いられるようになってきている。このような電子デバイスの用途においては、例えば1×10−4g/m・day以下の非常に高いガスバリア性が求められている。
高いガスバリア性を達成できる技術としては、ポリシラザン膜に真空紫外線を照射することによりガスバリア層を得る技術が知られている(特許文献1〜3参照)。
また、特許文献4には、乾式法によりケイ素(Si)と窒素(N)とを含有する層を堆積した後、波長150nm以下の光を照射してガスバリア層を形成する方法が開示されている。
特開2012−4349号公報 国際公開第2011/007543号 特開2011−183773号公報 特開2012−149278号公報
しかしながら、特許文献1〜4に記載のガスバリア層は、経時変化で、ガスバリア性が劣化するという問題がある。また、エネルギー照射によりガスバリア層が緻密化され硬度が増すものの、ガスバリア層下部の未改質部分との硬度差が生じ、フレキシブルな電子デバイスの特徴である屈曲操作により表面にクラックが生じやすく、ガスバリア性が劣化するという問題がある。さらに、より高いガスバリア性を達成するために特許文献1〜4に記載のガスバリア層を2層以上積層した場合、層界面の密着性が不十分であり、経時で著しくガスバリア性が劣化するという問題もある。
本発明は、上記課題に鑑みなされたものであり、高いガスバリア性および高い耐屈曲性を有し、かつ保存安定性、特に過酷な条件(高温高湿条件)下での保存安定性に優れるガスバリア性フィルムを提供することを目的とする。
本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、基材と、鉛筆硬度がHB以上である下地層と、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を堆積させた後に、前記蒸着膜表面に波長150nm以下の光を照射することにより形成されるバリア層と、をこの順に含むガスバリア性フィルムが、上記課題を解決することを見出した。上記知見に基づいて、本発明を完成した。
すなわち、本発明は、基材と、鉛筆硬度がHB以上である下地層と、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を堆積させた後に、前記蒸着膜表面に波長150nm以下の光を照射することにより形成されるバリア層と、をこの順に含むガスバリア性フィルムである。
また、本発明は、基材上に下地層を形成する工程と、前記下地層上に、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を形成する工程と、前記蒸着膜に波長150nm以下の光を照射しバリア層を形成する工程と、を含むガスバリア性フィルムの製造方法である。
本発明によれば、高いガスバリア性および高い耐屈曲性を有し、かつ高温高湿条件下での保存安定性に優れたガスバリア性フィルムおよびその製造方法が提供されうる。
本発明に係るバリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。 ナノインデンテーション法に従って得られる荷重−変位曲線の一例を示す図である。 ナノインデンテーション法による硬度測定におけるダイヤモンド圧子と試料との接触状態の一例を示す図である。 本発明に係るガスバリア性フィルムを封止フィルムとして用いた電子機器である有機ELパネルの一例である。 実施例で作製した有機EL素子の断面概略図である。
本発明の第1は、基材と、鉛筆硬度がHB以上である下地層と、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を堆積させた後に、前記蒸着膜表面に波長150nm以下の光を照射することにより形成されるバリア層と、をこの順に含むガスバリア性フィルムである。
このような構成を有するガスバリア性フィルムは、層界面の密着性が向上し、高いガスバリア性を発現するとともに、保存安定性、特に高温高湿下での保存安定性に優れたガスバリア性フィルムを提供できる。さらに、柔らかい膜と硬い膜とが積層された積層膜になることで、屈曲操作によるガスバリア層のクラックが生じにくい、耐屈曲性に優れたガスバリア性フィルムとなる。
以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
また、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で測定する。
[基材]
本発明のガスバリア性フィルムに用いられる基材としては、例えば、シリコン等の金属基板、ガラス基板、セラミックス基板、プラスチックフィルム等が挙げられるが、好ましくはプラスチックフィルムが用いられる。用いられるプラスチックフィルムは、バリア層、ハードコート層等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
本発明に係るガスバリア性フィルムを有機EL素子等の電子デバイスの基板として使用する場合は、前記基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の樹脂基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。即ち、これらの用途に本発明のガスバリア性フィルムを用いる場合、ガスバリア性フィルムは、150℃以上の工程に曝されることがある。この場合、ガスバリア性フィルムにおける基材の線膨張係数が100ppm/Kを超えると、ガスバリア性フィルムを前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張および収縮に伴い、遮断性性能が劣化する不都合や、或いは、熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。
基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001−150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF−PC:特開2000−227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP−PC:特開2000−227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002−80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。
本発明に係るガスバリア性フィルムを偏光板と組み合わせて使用する場合、ガスバリア性フィルムのバリア層がセルの内側に向くようにし、最も内側に(素子に隣接して)配置することが好ましい。このとき、偏光板よりセルの内側にガスバリア性フィルムが配置されることになるため、ガスバリア性フィルムのレターデーション値が重要になる。このような態様でのガスバリア性フィルムの使用形態は、レターデーション値が10nm以下の基材フィルムを用いたガスバリア性フィルムと円偏光板(1/4波長板+(1/2波長板)+直線偏光板)を積層して使用するか、あるいは1/4波長板として使用可能な、レターデーション値が100nm〜180nmの基材フィルムを用いたガスバリア性フィルムに直線偏光板を組み合わせて用いるのが好ましい。
レターデーションが10nm以下の基材フィルムとしては、例えば、セルローストリアセテート(富士フイルム株式会社製:フジタック(登録商標))、ポリカーボネート(帝人化成株式会社製:ピュアエース(登録商標)、株式会社カネカ製:エルメック(登録商標))、シクロオレフィンポリマー(JSR株式会社製:アートン(登録商標)、日本ゼオン株式会社製:ゼオノア(登録商標))、シクロオレフィンコポリマー(三井化学株式会社製:アペル(登録商標)(ペレット)、ポリプラスチック株式会社製:トパス(登録商標)(ペレット))、ポリアリレート(ユニチカ株式会社製:U100(ペレット))、透明ポリイミド(三菱ガス化学株式会社製:ネオプリム(登録商標))等を挙げることができる。
また1/4波長板としては、上記のフィルムを適宜延伸することで所望のレターデーション値に調整したフィルムを用いることができる。
本発明に係るガスバリア性フィルムは、有機EL素子等の電子デバイスとして利用されることから、プラスチックフィルムは透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。
ただし、本発明に係るガスバリア性フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、プラスチックフィルムとして不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。
本発明に係るガスバリア性フィルムに用いられるプラスチックフィルムの厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1〜800μmであり、好ましくは10〜200μmである。これらのプラスチックフィルムは、透明導電層、プライマー層等の機能層を有していてもよい。機能層については、上述したもののほか、特開2006−289627号公報の段落番号0036〜0038に記載されているものを好ましく採用できる。
基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともバリア層を設ける側を研摩し、平滑性を向上させておいてもよい。
また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
本発明で用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。
基材の少なくとも本発明に係るバリア層を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行うことが好ましく、必要に応じて上記処理を組み合わせて行うことがより好ましい。
[下地層]
本発明に係るガスバリア性フィルムは、基材上に下地層を有する。
下地層に含ませることが可能な化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物または分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。これらは活性エネルギー線硬化性材料であり、紫外線等の活性エネルギー線を照射し硬化させることにより、活性エネルギー線硬化性樹脂となる。これらの化合物は、単独でもまたは2種以上組み合わせて用いてもよい。
ここで、多価不飽和有機化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
下地層は、密着性や耐摩耗性を向上させる観点から、無機粒子を含むことが好ましい。無機粒子としては、例えば、シリカ、アルミナ、ジルコニア、チタニア等が挙げられる。無機粒子の平均粒径は、大きくなると透明性が低下するので100nm以下が好ましく、50nm以下であることがより好ましい。
さらに、下地層の強度、耐擦傷性や耐摩耗性をより高めるために、無機粒子の表面が、活性エネルギー線重合性基を有する化合物で修飾されていることが好ましい。このような無機粒子を下地層に添加しておくことにより、下地層の強度、耐擦傷性、耐摩耗性等をより高めることができる。活性エネルギー線重合性基を有する化合物で表面修飾されている無機粒子としては、例えば、特開平11−60235号公報、特開平9−100111号公報、および特開2001−187812号公報に記載されている反応性シリカ粒子があり、本発明において好ましく用いることができる。なお、特開平11−60235号公報に記載のシリカ粒子は、反応性基としてカチオン反応性のオキセタニル基を含むものであり、特開平9−100111号公報に記載のシリカ粒子は、反応性基としてラジカル反応性の(メタ)アクリロイル基を含んでいる。また、特開2001−187812号公報に記載のシリカ粒子は、(メタ)アクリロイル基等のラジカル反応性不飽和二重結合と、エポキシ基等のカチオン反応性基とを同時に含むものである。
無機粒子の含有量は、例えば、下地層に含まれる活性エネルギー線硬化性樹脂の重量に対して5〜70重量%であることが好ましく、30〜60重量%であることがより好ましい。無機粒子の含有量が70重量%を超えると、下地層の膜強度が低下する虞がある。
また、下地層は、上記の活性エネルギー線硬化性材料および無機粒子以外の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
また、電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。
光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
下地層の形成方法は、特に制限はないが、活性エネルギー線硬化性材料および必要に応じて他の成分を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、または蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射および/または加熱により、前記塗膜を硬化させて形成する方法が好ましい。活性エネルギー線を照射する方法としては、例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い好ましくは100〜400nm、より好ましくは200〜400nmの波長領域の紫外線を照射する、または、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する方法が挙げられる。
下地層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等の1種または2種以上を挙げることができる。
本発明に係る下地層の鉛筆硬度は、HB以上である。鉛筆硬度は、軟らかいものから順に、6B、5B、4B、3B、2B、B、HB、F、H、2H、3H、4H、5H、6Hとなる。鉛筆硬度がHB未満であると、ガスバリア性フィルムの耐屈曲性が不十分となる。該鉛筆硬度は、好ましくはF以上、より好ましくはH以上である。また、鉛筆硬度の上限は、特に制限されないが、6H以下であることが好ましく、5H以下であることがより好ましい。後述する下部バリア層が、通常6H以上の鉛筆硬度を有するため、下地層の鉛筆硬度がHB〜6Hの範囲であると、耐屈曲性がさらに向上するためより好ましい。
なお、鉛筆硬度は、JIS K5600−5−4:1999に記載の方法により測定することができる。また、鉛筆硬度が10H、7B、8B、9B、10Bのものを測定する場合は、三菱鉛筆株式会社製、ハイユニ アートセットの10H、7B、8B、9B、10Bの鉛筆をそれぞれ用いて、同様に測定を行う。
下地層の厚さとしては、ガスバリア性フィルムの密着性を向上させ、ガスバリア性フィルムの光学特性のバランス調整を容易にし、かつ、ガスバリア性フィルムのカールを調整する観点から、0.5〜15μmの範囲が好ましく、1〜10μmの範囲がより好ましく、2μm〜7μmの範囲がさらに好ましい。
[バリア層]
本発明に係るバリア層は、上記下地層の上部に形成される層であり、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を形成させた後、波長150nm以下の光を照射することにより形成される層である。
波長150nm以下の光を照射することにより形成される層は、その表面において、膜の原子組成が徐々に変化する傾斜構造を有する、Si、Si、SiO等から構成される変性領域が形成されている。この変性領域は、光照射により構成原子の化学結合が再構成された領域である。本明細書では、この変性領域を第2のバリア層とも称し、第2のバリア層の下部にある領域を第1のバリア層とも称する。また、第1のバリア層および第2のバリア層をまとめて下部バリア層、または単にバリア層とも称する。
<蒸着法>
本発明で用いられる蒸着法は、特に制限されず、例えば、物理気相成長法および化学気相成長法が挙げられる。物理気相成長法は、気相中で物質の表面に物理的手法により目的とする物質(例えば、炭素膜等)の薄膜を堆積する方法であり、この方法としては、例えば、真空蒸着法(抵抗加熱法、電子ビーム蒸着法、分子線エピタキシー法)、イオンプレーティング法、スパッタ法等が挙げられる。
一方、化学気相成長法(化学蒸着法、Chemical Vapor Deposition)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面または気相での化学反応により膜を堆積する方法である。この方法としては、例えば、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式が挙げられ、特に限定されるものではない。
これらの中でも、膜質が均一な膜ができるという観点から、真空蒸着法、スパッタ法、または化学気相成長法が好ましく、製膜速度や処理面積の観点から真空プラズマCVD法がより好ましい。
真空プラズマCVD法、大気圧プラズマCVD法により得られる蒸着膜は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。
例えば、ケイ素化合物を原料化合物として用い、分解ガスにアンモニアおよび亜酸化窒素を用いれば、酸窒化ケイ素が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。
原料化合物としては、ケイ素化合物を用いる。ケイ素化合物としては、モノシラン、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O−ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4−ビストリメチルシリル−1,3−ブタジイン、ジ−t−ブチルシラン、1,3−ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1−(トリメチルシリル)−1−プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。
原料ガスを分解するための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気などが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。原料化合物を含む原料ガスと、分解ガスとを適宜選択することで所望の組成を有する蒸着膜を得ることができる。
以下、好適な形態であるプラズマCVD法について具体的に説明する。
図1は、本発明に係るバリア層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。
図1において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。
加熱冷却装置160は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱または冷却し、サセプタ105に供給するように構成されている。供給された熱媒体はサセプタ105の内部を流れ、サセプタ105を加熱または冷却して加熱冷却装置160に戻る。このとき、熱媒体の温度は、設定温度よりも高温または低温になっており、加熱冷却装置160は熱媒体を設定温度まで加熱または冷却し、サセプタ105に供給する。かくて冷却媒体はサセプタと加熱冷却装置160の間を循環し、サセプタ105は、供給された設定温度の熱媒体によって加熱または冷却される。
真空槽102は真空排気系107に接続されており、この真空プラズマCVD装置101によって成膜処理を開始する前に、予め真空槽102の内部を真空排気すると共に、熱媒体を加熱して室温から設定温度まで昇温させておき、設定温度の熱媒体をサセプタ105に供給する。サセプタ105は使用開始時には室温であり、設定温度の熱媒体が供給されると、サセプタ105は昇温される。
一定時間、設定温度の熱媒体を循環させた後、真空槽102内の真空雰囲気を維持しながら真空槽102内に成膜対象の下地層形成済基材110を搬入し、サセプタ105上に配置する。カソード電極103のサセプタ105に対向する面には多数のノズル(孔)が形成されている。
カソード電極103はガス導入系108に接続されており、ガス導入系108からカソード電極103にCVDガスを導入すると、カソード電極103のノズルから真空雰囲気の真空槽102内にCVDガスが噴出される。
カソード電極103は高周波電源109に接続されており、サセプタ105および真空槽102は接地電位に接続されている。
ガス導入系108から真空槽102内にCVDガスを供給し、加熱冷却装置160から一定温度の熱媒体をサセプタ105に供給しながら高周波電源109を起動し、カソード電極103に高周波電圧を印加すると、導入されたCVDガスのプラズマが形成される。プラズマ中で活性化されたCVDガスがサセプタ105上の下地層形成済基材110の表面に到達すると、下地層形成済基材110の表面に薄膜である蒸着膜が成長する。
この際のサセプタ105とカソード電極103との距離は適宜設定される。
また、原料ガスおよび分解ガスの流量は、原料ガスおよび分解ガス種等を考慮して適宜設定される。一実施形態として、原料ガスの流量は、5〜300sccmであり、分解ガスの流量は20〜1000sccmである。
薄膜成長中は、加熱冷却装置160から一定温度の熱媒体がサセプタ105に供給されており、サセプタ105は、熱媒体によって加熱または冷却され、一定温度に維持された状態で薄膜が形成される。一般に、薄膜を形成する際の成長温度の下限温度は、薄膜の膜質により決まっており、上限温度は、下地層形成済基材110上に既に形成されている薄膜のダメージの許容範囲により決まっている。下限温度や上限温度は形成する薄膜の材質や、既に形成されている薄膜の材質等によって異なるが、ガスバリア性の高い膜質を確保するために下限温度は50℃以上であり、上限温度は基材の耐熱温度以下であることが好ましい。
真空プラズマCVD法で形成される薄膜の膜質と成膜温度の相関関係と、成膜対象物(下地層形成済基材110)が受けるダメージと成膜温度の相関関係とを予め求め、下限温度・上限温度が決定される。例えば、真空プラズマCVDプロセス中の下地層形成済基材110の温度は50〜250℃であることが好ましい。
さらに、カソード電極103に13.56MHz以上の高周波電圧を印加してプラズマを形成した場合の、サセプタ105に供給する熱媒体の温度と下地層形成済基材110の温度の関係が予め測定されており、真空プラズマCVDプロセス中に下地層形成済基材110の温度を、下限温度以上、上限温度以下に維持するために、サセプタ105に供給する熱媒体の温度が求められる。
例えば、下限温度(ここでは50℃)が記憶され、下限温度以上の温度に温度制御された熱媒体がサセプタ105に供給されるように設定されている。サセプタ105から還流された熱媒体は、加熱または冷却され、50℃の設定温度の熱媒体がサセプタ105に供給される。例えば、CVDガスとして、シランガスとアンモニアガスと窒素ガスとの混合ガスが供給され、下地層形成済基材110が、下限温度以上、上限温度以下の温度条件に維持された状態で、SiN膜が形成される。
真空プラズマCVD装置101の起動直後は、サセプタ105は室温であり、サセプタ105から加熱冷却装置160に還流された熱媒体の温度は設定温度よりも低い。したがって、起動直後は、加熱冷却装置160は還流された熱媒体を加熱して設定温度に昇温させ、サセプタ105に供給することになる。この場合、サセプタ105および下地層形成済基材110は熱媒体によって加熱、昇温され、下地層形成済基材110は、下限温度以上、上限温度以下の範囲に維持される。
複数枚の下地層形成済基材110に連続して薄膜を形成すると、プラズマから流入する熱によってサセプタ105が昇温する。この場合、サセプタ105から加熱冷却装置160に還流される熱媒体は下限温度(50℃)よりも高温になっているため、加熱冷却装置160は熱媒体を冷却し、設定温度の熱媒体をサセプタ105に供給する。これにより、下地層形成済基材110を下限温度以上、上限温度以下の範囲に維持しながら薄膜を形成することができる。
このように、加熱冷却装置160は、還流された熱媒体の温度が設定温度よりも低温の場合には熱媒体を加熱し、設定温度よりも高温の場合は熱媒体を冷却し、いずれの場合も設定温度の熱媒体をサセプタに供給しており、その結果、下地層形成済基材110は下限温度以上、上限温度以下の温度範囲が維持される。
薄膜が所定膜厚に形成されたら、下地層形成済基材110を真空槽102の外部に搬出し、未成膜の下地層形成済基材110を真空槽102内に搬入し、上記と同様に、設定温度の熱媒体を供給しながら薄膜を形成する。
本発明の蒸着法で形成される膜としては、酸窒化ケイ素(SiON)膜が好ましい。
<光照射>
次に、得られた蒸着膜に対して、波長150nm以下の光を照射する。これにより、本発明に係るバリア層が形成される。かような光照射を行うことにより、蒸着膜が有するSi−H結合やN−H結合に由来するH(水素原子)が効率よく膜外に除去され、膜がより緻密になる。
光照射は、酸素または水蒸気を実質的に含まない雰囲気で行うことが好ましい。「酸素または水蒸気を実質的に含まない雰囲気」とは、酸素および/もしくは水蒸気が全く存在しないか、または好ましくは酸素濃度が0.5体積%(5000体積ppm)以下、より好ましくは0.05体積%(500体積ppm)以下、さらに好ましくは0.005体積%(50体積ppm)以下である。
あるいは、相対湿度が好ましくは0.5%RH以下、より好ましくは0.2%RH以下、さらに好ましくは相対湿度0.1%RH以下、さらに好ましくは、相対湿度0.05%以下である。また、水蒸気濃度(室温23℃における水蒸気分圧/大気圧)は、好ましくは140ppm以下、より好ましくは56ppm以下、さらに好ましくは28ppm以下である。
光照射としては、波長150nm以下の光を照射する。波長が30〜150nmの範囲の光を照射することが好ましい。波長150nm以下の光を照射する方法としては、特に制限されないが、光の照射量の低減、高エネルギーである光を得ることができる、光の効率的な利用等の観点から、プラズマで発生した真空紫外光を全て直接照射できるプラズマ処理が好ましい。
以下、プラズマ処理について以下に説明する。
(プラズマ処理)
プラズマ処理は、前記のように、酸素または水蒸気を実質的に含まない雰囲気で実施することが好ましい。酸素または水蒸気を実質的に含まない雰囲気で実施する方法として、装置内を減圧にする方法、ガスフローする方法等が挙げられるが、減圧にする方法が好ましい。装置内の圧力を、真空ポンプを用いて大気圧から好ましくは100Pa以下、より好ましくは20Pa以下まで減圧した後、所定のガスを導入し、所定の圧力にすることで、プラズマで励起する雰囲気をつくる。
減圧下における酸素濃度および水蒸気濃度は、一般的に、酸素分圧および水蒸気分圧で表される。具体的には、好ましくは酸素分圧10Pa以下(酸素濃度0.001体積%(10体積ppm))以下、より好ましくは酸素分圧2Pa以下(酸素濃度0.0002体積%(2体積ppm))以下である。また、水蒸気濃度は、好ましくは10体積ppm以下、より好ましくは1体積ppm以下になるまで減圧した後、雰囲気ガスを導入することで行われる。
プラズマによって励起された雰囲気ガスはエネルギーを放出して失活するが、その際、気体の種類と圧力に依存して、種々の波長の真空紫外光を放出する。プラズマ処理は、真空紫外光を放出する励起種で大別すると、(1)低圧プラズマ処理と、(2)大気圧近傍のプラズマ処理、との2つの方法に分けられる。
なお、蒸着法としてプラズマを利用した手法が使われる場合があるが、蒸着法では、波長150nm以下の光を照射する工程を実質的に兼ねることはできない。その理由は、プラズマが形成される空間、およびプラズマと蒸着膜との間の空間に、蒸着膜の材料となるガスが存在し、それらがプラズマから発生する真空紫外光を吸収するなど、光照射を効率よく行うことができないからである。
(1)低圧プラズマ処理
低圧プラズマ処理は、減圧することによって酸素または水蒸気を実質的に含まない雰囲気にした後、ガスを装置内に導入することで行われる。低圧プラズマ処理では、低圧下のプラズマにより励起された原子、分子が基底状態もしくは下の準位に落ちる際の真空紫外の発光を利用する。低圧プラズマで発生する真空紫外光の波長は、プラズマを発生させるガス種に依存する。波長は、短い方がよく、波長が125nm以下の真空紫外の発光を利用した方がより好ましい。しかしながら、波長が短過ぎると、高いエネルギー準位に励起される頻度は低くなるため、発光強度は著しく減少する。実質的に低圧プラズマ処理で利用できる比較的高強度の真空紫外光の波長は、50nm以上となる。即ち、低圧プラズマ処理で利用する光の波長として50〜125nmの範囲がより好ましい。
プラズマで形成された励起状態の原子が発した真空紫外光が、別の基底状態の原子に吸収され、その原子の励起に使われる自己吸収の影響がある。そのため、あまり圧力が高いと、発生した真空紫外光は雰囲気ガスの原子や分子に吸収され、蒸着膜に効率よく照射されない虞がある。よって、圧力は100Pa以下が好ましい。一方、圧力があまり低く過ぎると、プラズマの発生が困難になる場合がある。よって、圧力の下限はプラズマの発生方式により異なるが、概ね0.1Pa以上が好ましい。
本発明で用いられる低圧プラズマのガス種は、主としてヘリウム(He)、ネオン(Ne)、およびアルゴン(Ar)から選択される1種以上の希ガスが用いられる。これらの励起された希ガス原子の発する主要な真空紫外光の波長は、ヘリウム(He)の場合で58.4nm、ネオン(Ne)の場合で73.6nmおよび74.4nm、アルゴン(Ar)の場合で104.8nmおよび106.7nmであることが知られている。
また、これらの希ガス原子のプラズマは、プラズマによる励起によって真空紫外光を発するだけでなく、発光しない準安定な励起状態の原子を多量に形成する。この準安定な励起状態の原子が持つエネルギーを有効利用するために、希ガスにHおよびNの少なくとも一方のガスを添加してもよい。希ガス中に前記のガスが添加されると、準安定な励起状態の希ガス原子の持つ励起エネルギーが効率よく添加ガスの励起に使われるため、希ガス原子の真空紫外発光に、添加ガスの真空紫外発光も加わり、波長150nm以下の真空紫外光の照射強度を増すことができる。添加ガスは、解離・励起された原子が真空紫外光を発する場合と、励起された分子が真空紫外光を発する場合とがあるが、分子の発光はバンド状になっており、その中心波長は原子の発光波長より長い。蒸着膜の変性には、波長の短い原子の発光のほうが重要である。励起されたH原子の発する主要な真空紫外光の波長は121nm、N原子の場合は120nmであることが知られている。添加ガス種としては、準安定な励起状態を持たないHがより好ましい。
好ましいガス種は、He、Ne、HeとHの混合ガス、NeとHの混合ガス、ArとHとの混合ガスである。添加ガスの比率は、0.1〜20体積%の範囲であることが好ましい。この範囲であれば、添加ガスの効果が顕著に現れ、また、プラズマ密度の減少もほとんど見られず、添加ガスの励起に使われる準安定な励起状態の希ガス原子の密度が増すためである。添加ガスの比率は、より好ましくは0.5〜10体積%の範囲である。
さらに、効率よく波長150nm以下の光を蒸着膜に照射するために、波長150nm以下の光を吸収して、自身が分解するような多原子分子のガス種(例えばCO、CO、CHSi−H等)は、実質的に含まれない方がより好ましい。
低圧プラズマの生成に必要な電源の周波数は、1MHz〜100GHzが好ましい。この範囲であれば、プラズマ生成反応に直接寄与する電子に効率よくエネルギーを与えることができ、電子密度、すなわちプラズマ密度は高くなる。これに伴い、プラズマで発生する真空紫外光の強度も強くなる。また、エネルギーの伝達効率が向上する。電源の周波数は、より好ましくは、4MHz〜10GHzである。
波長150nm以下の光を発するプラズマの生成方式は、従来公知の方式を用いることができる。好ましくは、幅広の基材に形成した蒸着膜の処理に対応できる方式がよく、例えば、容量結合プラズマ(CCP)、誘導結合プラズマ(ICP)、表面波プラズマ、電子サイクロトロン共鳴(ECR)プラズマ、ヘリコン波プラズマ等が挙げられる。
蒸着膜と対向したプラズマへの投入電力の大きさの指標として、プラズマの大きさを反映するプラズマ源の占める面積で規格化した投入電力密度を定義する。これは、単位面積あたりの蒸着膜に照射される真空紫外光の照射強度に相関するパラメータとなる。特に、容量結合プラズマのような有電極プラズマの場合、高周波を印加する側の電極面積が、実質的にプラズマの大きさを規定しており、これをプラズマ源の占める面積とする。
投入電力密度は、好ましくは0.1〜20W/cmであり、より好ましくは0.3〜10W/cmである。この範囲であれば、十分な強度の照射ができ、基材の温度上昇による熱変形、プラズマの不均一化、電極などのプラズマ源を構成する部材の損傷などを防止することができる。
(2)大気圧近傍のプラズマ処理
大気圧近傍のプラズマ処理では、減圧またはガスフローによって酸素または水蒸気を実質的に含まない雰囲気にした後、所定のガスを導入して装置内を所定の大気圧近傍の圧力にして処理を行う。大気圧近傍のプラズマ処理では、エキシマの発光を利用することが好ましい。現実的に利用可能なエキシマの発光としては、Arガスを用いたプラズマによって形成されるArエキシマの発光が最も波長が短く、中心波長が126nmの光になる。より波長の短い真空紫外光が利用できるという点では、プラズマ処理方法としては低圧プラズマ処理の方が好ましい。
大気圧近傍のプラズマ処理で利用できるガス種のうち、150nm以下のエキシマ光を出せるのは、Arガスである。尚、Arエキシマ(Ar )は、プラズマで形成された準安定状態のAr原子(Ar)をもとに、次式で表される3体衝突反応で生じるとされている。
Figure 2014201033
そのため、Ar以外の不純物ガスの比率は、プラズマ密度や上記の反応に影響しない程度に少ない方が良い。不純物濃度は1体積%以下が好ましく、0.5体積%以下がより好ましい。さらに、効率よく波長150nm以下の光を蒸着膜に照射するために、波長126nm近傍の光を吸収して、自身が分解するような多原子分子のガス種(例えばCO、CO、CH等)は、実質的に含まれない方がより好ましい。
大気圧近傍とは、1〜110kPaの圧力を指し、大気に開放して使用できるほか、密閉容器の中で使用し、大気圧に比べ、わずかに減圧にする場合や、わずかに加圧状態にする場合にも使用可能であるという意味である。わずかに減圧にした方が、放電し易くなるため、プラズマによる準安定状態のAr原子の形成は容易になる。しかしながら、減圧にし過ぎるとAr密度が減少し、Arエキシマ(Ar )の形成反応である3体衝突反応が起こる頻度が減る。Arエキシマによる発光の強度を増すためには、10〜90kPa圧力の範囲とすることがより好ましい。また、このような範囲の減圧にすれば、処理に使用するガス量を削減できる上、酸素や水などの阻害成分の量を低下させることができる。
Arエキシマを発するプラズマの生成方式は、従来公知の大気圧近傍でプラズマを生成できる方式を用いることができる。好ましくは、プラズマで形成されたArとArとから生じたArエキシマ(Ar )の発光を直接蒸着膜に照射することができる方式であり、幅広の基材に形成した蒸着膜の処理に対応できる方式がより好ましい。例えば、少なくとも一方の電極表面に誘電体を配した電極間に、蒸着膜付き基材を配置し、そこへガスを通し、電極間に交流電力を印加し、放電プラズマを形成する誘電体バリア放電を使ったダイレクト処理方式を用いることができる。
電源周波数は、50Hz〜1GHzの範囲が好ましい。上記低圧プラズマ処理とは、動作させる圧力範囲が異なるため、使用する電源周波数帯も異なる。この範囲であれば、プラズマで形成される準安定状態のAr原子が多く、高い照射光度のArエキシマ光が得られ、また、プラズマのガス温度が低く抑えられ、下地層形成済基材110に熱的な損傷を与えることを防止することができる。電源周波数は、好ましくは1kHz〜100MHzの範囲である。
低圧プラズマ処理の場合と同様に、蒸着膜に対向したプラズマへの投入電力の大きさの指標として、プラズマの大きさを反映するプラズマ源の占める面積で規格化した投入電力密度を定義する。投入電力密度は、好ましくは0.1〜20W/cm、より好ましくは0.3〜10W/cm以上である。この範囲であれば、十分な強度の光照射ができ、十分な強度の照射ができ、基材の温度上昇による熱変形、プラズマの不均一化、電極などのプラズマ源を構成する部材の損傷などを防止することができる。
波長150nm以下の光の照射と同時に、基材の加熱処理を行うことで、より短時間で処理することができる。加熱処理温度としては、基材の耐熱性を考慮すると、好ましくは25℃〜200℃である
上記のような方法により、本発明に係るバリア層(第1のバリア層および第2のバリア層)が得られる。
ナノインデンテーション法に測定される第1のバリア層の硬度(HJ1)は、2GPa以上であることが好ましく、2.03GPa以上であることがより好ましい。また、硬度の上限値は特に制限されないが、2.45GPa以下であることが好ましい。
また、ナノインデンテーション法に測定される第2のバリア層の硬度(HJ2)は、2GPa以上であることが好ましく、2.05GPa以上であることがより好ましい。また、硬度の上限値は特に制限されないが、2.5GPa以下であることが好ましく、2.45GPa以下であることがより好ましい。
ナノインデンテーション法による硬度は、以下の方法により測定される。
ナノインデンテーション法とは、試料に対して超微小な荷重で圧子を連続的に負荷、除荷し、得られた荷重−変位曲線から硬さ(Hardness)や弾性率(Reduced Modulus)を測定する方法である。
(ナノインデンテーション法の測定原理)
ナノインデンテーション法とは、原子間力顕微鏡(AFM)に、押し込み硬度測定用モジュール(トランスデューサーと押し込みチップにて構成)を付加することにより、ナノレベルでの押し込み硬度測定を行うことができるようになった最新の測定方法である。μN以下の荷重を加えながら、試料にダイヤモンド圧子を押し込み、ナノメートルの精度で押し込み深さを測定する。この測定から荷重−変位曲線図が得られ、材料の弾塑性変形に関する特性を定量的に評価することができる。薄膜の場合、基材の影響を受けずに測定するには、膜厚の1/10〜1/3の深さまで押し込むことが必要である。
図2に、ナノインデンテーション法に従って得られる荷重−変位曲線の一例を示す。
図3は、ナノインデンテーション法による硬度測定におけるダイヤモンド圧子と試料との接触状態の一例を示す図である。図3において、1は圧子が接触していない時の試料の初期表面であり、2は圧子を介して荷重をかけている時の試料表面のプロファイルであり、3は圧子を取り除いた後の試料表面のプロファイルである。
硬度Hは、H=W/A(Wは荷重、Aは接触面積)の式より求められる。しかしながら、ナノインデンテーション法では、荷重が非常に小さいため、圧痕などから直接Aを求めることはできない。
そこで、図3に示す様に、hcはhc=ht−ε・W/S(εは圧子固有の定数、Sは図2に記載の傾き)の式が成り立ち、A=24.5hc2となる。ht、W、Sが分かれば、Hを求めることができる。また、複合弾性率Erは、Er=S・π1/2/2/A1/2より算出できる。Erが大きければ塑性変形しやすく、小さければ弾性変形しやすいと推定される。
本発明では、走査型プローブ顕微鏡(セイコーインスツルメンツ社製SPI3800N)に付属して、Hysitoron社製Triboscopeを用いて測定する。使用圧子はcube corner tip(90°)である。
試料サイズは、最大20mmφ×10mmであるが、試料台に接着剤その他で固定する。本装置の荷重範囲は〜10mNと非常に低荷重のため、膜厚数10nm〜1μm程度の薄膜の硬さ、弾性率測定に適している。上記方法では材料としてDLC膜〜ポリマーまで測定は可能であるが、本発明に係る無機のバリア層などの硬質の材料の測定に適している。
本発明において、下部バリア層を形成した後の基材面側(第1のバリア層)の硬度HJ1、および反対面側(第2のバリア層)の硬度HJ2の具体的な測定方法としては、以下の通りである。
はじめに、作製した下部バリア層の表面(第2のバリア層)を、上記の方法に従ってナノインデンテーション法により、硬度を測定する。次いで、後述する硬度HJ1領域の膜厚情報および硬度HJ2領域の膜厚情報にしたがって、下部バリア層の表面(第2のバリア層)よりスパッタ等で、硬度HJ1の膜厚領域までトリミングし、硬度HJ1領域を露出させて、同様にしてナノインデンテーション法により、硬度HJ1を測定する。
(下部バリア層の膜厚測定)
本発明において、光照射を施す面側で硬度を有する表面側(第2のバリア層)領域の(平均)膜厚と、反対側である基材面側(第1のバリア層)の硬度を有する領域の(平均)膜厚の算出は、以下のようにして判別できる。
(膜厚方向の断面のTEM画像)
観察試料を、以下のFIB加工装置により薄片を作成した後、TEM観察を行う。このとき、試料に電子線を照射し続けると電子線ダメージを受ける部分とそうでない部分にコントラスト差が現れるため、その領域を測定することで算出できる。光照射側で硬度が高い領域は電子線ダメージを受けにくいが、そうでない部分は電子線ダメージを受け変質が確認される。
〈FIB加工〉
装置:SII製SMI2050
加工イオン:(Ga 30kV)
試料厚み:100nm〜200nm
〈TEM観察〉
装置:日本電子株式会社製JEM2000FX(加速電圧:200kV)
電子線照射時間:5秒から60秒。
第1のバリア層の平均膜厚は、10〜1000nmであることが好ましく、30〜500nmであることがより好ましい。また、第2のバリア層の平均膜厚は、20〜70nmであることが好ましく、30〜60nmであることがより好ましい。さらに、バリア層の膜厚(第1のバリア層の膜厚および第2のバリア層の膜厚の合計)は、30nm〜1070nmが好ましく、60nm〜560nmがより好ましい。
硬度HJ1および硬度HJ2を、上記の好ましい範囲内に調整する方法としては、蒸着および光照射手段の選択、蒸着膜の(平均)膜厚、水分量、光照射をする際の処理強度、照射雰囲気の酸素濃度、処理時間等の条件の調整により行うことができる。
[上部バリア層]
本発明のガスバリア性フィルムは、前記下部バリア層の上部に、さらにポリシラザンを含む層を活性エネルギー線照射により改質処理して形成される層を有することが好ましい。
活性エネルギー線照射により改質処理して形成される層は、その表面において、ポリシラザンの改質がより進行した領域が形成される。本明細書では、この改質がより進行した領域を第4のバリア層と称し、第4のバリア層の下部にある領域を第3のバリア層と称する。また、第3のバリア層および第4のバリア層をまとめて、上部バリア層とも称する。
本発明に係る上部バリア層は、好ましくはポリシラザンを含有する液を塗布して形成される塗膜を改質処理して形成される。
ポリシラザンとは、ケイ素−窒素結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
具体的には、ポリシラザンは、好ましくは下記の構造を有する。
Figure 2014201033
上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1〜8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6〜30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1〜8のアルコキシ基で置換されたシリル基を有する炭素原子数1〜8のアルキル基が挙げられる。より具体的には、3−(トリエトキシシリル)プロピル基、3−(トリメトキシシリル)プロピル基などが挙げられる。上記R〜Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(−OH)、メルカプト基(−SH)、シアノ基(−CN)、スルホ基(−SOH)、カルボキシル基(−COOH)、ニトロ基(−NO)などがある。なお、場合によって存在する置換基は、置換するR〜Rと同じとなることはない。例えば、R〜Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、RおよびRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、ビニル基、3−(トリエトキシシリル)プロピル基または3−(トリメトキシシリルプロピル)基である。
また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。
上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。
または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
Figure 2014201033
上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。
上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。
または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
Figure 2014201033
上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n、pおよびqは、同じであってもあるいは異なるものであってもよい。
上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。
一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。
ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま上部バリア層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標) NN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。
本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
ポリシラザンを用いる場合、改質処理前の上部バリア層中におけるポリシラザンの含有率としては、上部バリア層の全重量を100重量%としたとき、100重量%でありうる。また、上部バリア層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10重量%以上99重量%以下であることが好ましく、40重量%以上95重量%以下であることがより好ましく、特に好ましくは70重量%以上95重量%以下である。
上部バリア層の塗布法による形成方法は、特に制限されず、公知の方法が適用できるが、有機溶剤中にポリシラザンおよび必要に応じて触媒を含む上部バリア層形成用塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。
(上部バリア層形成用塗布液)
上部バリア層形成用塗布液を調製するための溶剤としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ケイ素化合物の溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
上部バリア層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1〜80重量%、より好ましくは5〜50重量%、特に好ましくは10〜40重量%である。
上部バリア層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、例えば、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン等のアミン化合物、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物、ピリジン、α−ピコリン、β−ピコリン、γ−ピコリン、ピペリジン、ルチジン、ピリミジン、ピリダジン等のピリジン化合物、DBU(1,8−ジアザビシクロ[5.4.0]−7−ウンデセン)、DBN(1,5−ジアザビシクロ[4.3.0]−5−ノネン)、酢酸、プロピオン酸、酪酸、吉草酸、マレイン酸、ステアリン酸、等の有機酸、塩酸、硝酸、硫酸、過酸化水素等の無機酸等が挙げられる。これらのうち、アミン化合物を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1〜10重量%、より好ましくは0.5〜7重量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。
上部バリア層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
(上部バリア層形成用塗布液を塗布する方法)
上部バリア層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
塗布厚さは、目的に応じて適切に設定され得る。例えば、上部バリア層1層当たりの塗布厚さは、乾燥後の厚さが10nm〜10μm程度であることが好ましく、15nm〜1μmであることがより好ましく、20〜500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な上部バリア層が得られうる。なお、残存する溶媒は後に除去されうる。
塗膜の乾燥温度は、適用する基材によっても異なるが、50〜200℃であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
上部バリア層形成用塗布液を塗布して得られた塗膜は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は−5℃(温度25℃/湿度10%)以下であり、維持される時間は上部バリア層の膜厚によって適宜設定することが好ましい。上部バリア層の膜厚が1.0μm以下の条件においては、露点温度は−5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、−50℃以上であり、−40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化した上部バリア層の脱水反応を促進する観点から好ましい形態である。
<塗布法により形成された上部バリア層の改質処理>
本発明における塗布法により形成された上部バリア層の改質処理とは、ポリシラザンの酸化ケイ素または酸窒化ケイ素等への転化反応を指し、具体的には上部バリア層がガスバリア性を発現するに貢献できるレベルの無機薄膜となる処理をいう。
ポリシラザンの酸化ケイ素または酸窒化ケイ素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、プラスチック基材への適応という観点から、より低温で、転化反応が可能なプラズマ処理または紫外線照射処理による転化反応が好ましい。
(プラズマ処理)
改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等をあげることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子を含むガス、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
(紫外線照射処理)
改質処理の方法として、紫外線照射による処理が好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸窒化ケイ素膜を形成することが可能である。
この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られる上部バリア層が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。
紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。
なお、本発明でいう紫外線とは、一般には、10〜400nmの波長を有する電磁波をいうが、後述する真空紫外線(10〜200nm)処理以外の紫外線照射処理の場合は、好ましくは210〜375nmの紫外線を用いる。
紫外線の照射は、照射される上部バリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。
基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm、好ましくは50〜200mW/cmになるように基材−紫外線照射ランプ間の距離を設定し、0.1秒〜10分間の照射を行うことができる。
一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。
このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線を上部バリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから上部バリア層に当てることが好ましい。
紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、上部バリア層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、上部バリア層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や上部バリア層の組成、濃度にもよるが、一般に0.1秒〜10分であり、好ましくは0.5秒〜3分である。
(真空紫外線照射処理:エキシマ照射処理)
上部バリア層において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。
本発明においての放射線源は、100〜180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。
このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。
エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10〜20,000体積ppmとすることが好ましく、より好ましくは50〜10,000体積ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1000〜4000体積ppmの範囲である。
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm〜10W/cmであると好ましく、30mW/cm〜200mW/cmであることがより好ましく、50mW/cm〜160mW/cmであるとさらに好ましい。1mW/cm未満では、改質効率が大きく低下する懸念があり、10W/cmを超えると、塗膜にアブレーションを生じたり、基材にダメージを与えたりする懸念が出てくる。
塗膜面における真空紫外線の照射エネルギー量(照射量)は、10〜10000mJ/cmであることが好ましく、100〜8000mJ/cmであることがより好ましく、200〜6000mJ/cmであることがさらに好ましい。10mJ/cm未満では、改質が不十分となる懸念があり、10000mJ/cm超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。
また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
上部バリア層の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、上部バリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。
また、上部バリア層の膜密度は、目的に応じて適切に設定され得る。例えば、1.5〜2.6g/cmの範囲にあることが好ましい。この範囲を外れると、膜の緻密さが低下しバリア性の劣化や、湿度による膜の酸化劣化が起こる場合がある。
該上部バリア層は、単層でもよいし2層以上の積層構造であってもよい。
また、前記上部バリア層は、長周期型周期表の第2〜13族の元素(以下、単に添加元素とも称する)を含むことも好ましい。これら添加元素を含む上部バリア層は、膜の規則性が低下し融点が下がり、製膜工程中の熱または光により融解することで、欠陥が修復されより緻密な膜となり、ガスバリア性が向上するものと考えられる。また、融解により流動性が高くなることで、層の内部まで酸素が供給され、層内部まで酸化が進んだバリア層となり、製膜が済んだ状態では酸化耐性が高いバリア層になるものと考えられる。また、高温高湿環境に強い層になるものと考えられる。また、上記添加元素は、ポリシラザンの活性エネルギー線照射による改質における触媒としての機能をも有するものと考えられ、添加元素が存在することにより、改質反応がより効率よく進行すると考えられる。
上部バリア層に含まれる添加元素の例としては、例えば、ベリリウム(Be)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、ラジウム(Ra)等が挙げられる。
これら添加元素の中でも、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、銀(Ag)、インジウム(In)が好ましく、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、鉄(Fe)、ガリウム(Ga)、インジウム(In)がより好ましく、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)がさらに好ましく、アルミニウム(Al)が特に好ましい。ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などの第13族元素は3価の原子価となり、ケイ素の原子価である4価と比べて、価数が不足しているため、膜の柔軟性が高くなる。この柔軟性の向上により、欠陥が修復され、上部バリア層は緻密な膜となり、ガスバリア性が向上する。また、柔軟性が高くなることで、シリコン含有膜の内部まで酸素が供給され、膜内部まで酸化が進んだバリア層となり、製膜が済んだ状態では酸化耐性が高いバリア層となる。
なお、添加元素は、1種単独でも、または2種以上の混合物の形態で存在してもよい。
上部バリア層に添加元素を含有させる方法としては、上述した上部バリア層形成用塗布液中に、上記添加元素を含む化合物を含有させ、塗布および改質処理を行えばよい。塗布および改質処理の方法は、上記と同様であるため、ここでは説明を省略する。
添加元素を含む化合物の例としては、金属アルコキシド化合物、金属アミド化合物、および金属水酸化物からなる群より選択される少なくとも1種の化合物が挙げられる。
金属アルコキシド化合物としては、ベリリウム(Be)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、ラジウム(Ra)等の長周期型周期表の第2〜13族元素のアルコキシドが挙げられる。
金属アルコキシド化合物のさらに具体的な例としては、例えば、ベリリウムアセチルアセトネート、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn−プロピル、ホウ酸トリイソプロピル、ホウ酸トリn−ブチル、ホウ酸トリtert−ブチル、マグネシウムエトキシド、マグネシウムエトキシエトキシド、マグネシウムメトキシエトキシド、マグネシウムアセチルアセトネート、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn−プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn−ブトキシド、アルミニウムトリsec−ブトキシド、アルミニウムトリtert−ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn−ブチレート、アルミニウムジエチルアセトアセテートモノn−ブチレート、アルミニウムジイソプロピレートモノsec−ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4−ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー、カルシウムメトキシド、カルシウムエトキシド、カルシウムイソプロポキシド、カルシウムアセチルアセトネート、スカンジウムアセチルアセトネート、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラノルマルプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトライソブトキシド、チタンジイソプロポキシジノルマルブトキシド、チタンジターシャリーブトキシジイソプロポキシド、チタンテトラtert−ブトキシド、チタンテトライソオクチロキシド、チタンテトラステアリルアルコキシド、バナジウムトリイソブトキシドオキシド、トリス(2,4−ペンタンジオナト)クロム、クロムn−プロポキシド、クロムイソプロポキシド、マンガンメトキシド、トリス(2,4−ペンタンジオナト)マンガン、鉄メトキシド、鉄エトキシド、鉄n−プロポキシド、鉄イソプロポキシド、トリス(2,4−ペンタンジオナト)鉄、コバルトイソプロポキシド、トリス(2,4−ペンタンジオナト)コバルト、ニッケルアセチルアセトネート、銅メトキシド、銅エトキシド、銅イソプロポキシド、銅アセチルアセトネート、亜鉛エトキシド、亜鉛エトキシエトキシド、亜鉛メトキシエトキシド、ガリウムメトキシド、ガリウムエトキシド、ガリウムイソプロポキシド、ガリウムアセチルアセトナート、ストロンチウムイソプロポキシド、イットリウムn−プロポキシド、イットリウムイソプロポキシド、イットリウムアセチルアセトネート、ジルコニウムエトキシド、ジルコニウムn−プロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムtert−ブトキシド、テトラキス(2,4−ペンタンジオナト)ジルコニウム、ニオブエトキシド、ニオブn−ブトキシド、ニオブtert−ブトキシド、モリブデンエトキシド、モリブデンアセチルアセトネート、パラジウムアセチルアセトネート、銀アセチルアセトネート、カドミウムアセチルアセトネート、トリス(2,4−ペンタンジオナト)インジウム、インジウムイソプロポキシド、インジウムイソプロポキシド、インジウムn−ブトキシド、インジウムメトキシエトキシド、バリウムジイソプロポキシド、バリウムtert−ブトキシド、バリウムアセチルアセトネート、ランタンイソプロポキシド、ランタンメトキシエトキシド、ランタンアセチルアセトネート、セリウムn−ブトキシド、セリウムtert−ブトキシド、セリウムアセチルアセトネート、プラセオジムメトキシエトキシド、プラセオジムアセチルアセトネート、ネオジムメトキシエトキシド、ネオジムアセチルアセトネート、ネオジムメトキシエトキシド、サマリウムイソプロポキシド、サマリウムアセチルアセトネート、ユーロピウムアセチルアセトネート、ガドリニウムアセチルアセトネート、テルビウムアセチルアセトネート、ホルミウムアセチルアセトネート、イッテルビウムアセチルアセトネート、ルテチウムアセチルアセトネート、ハフニウムエトキシド、ハフニウムn−ブトキシド、ハフニウムtert−ブトキシド、ハフニウムアセチルアセトネート、タンタルメトキシド、タンタルエトキシド、タンタルn−ブトキシド、タンタルブトキシド、タンタルテトラメトキシドアセチルアセトネート、タングステンエトキシド、イリジウムアセチルアセトネート、イリジウムジカルボニルアセチルアセトネート、タリウムエトキシド、タリウムアセチルアセトネートなどが挙げられる。
これらアルコキシド化合物の中でも、反応性、溶解性等の観点から分岐状のアルコキシ基を有する化合物が好ましく、2−プロポキシ基、またはsec−ブトキシ基を有する化合物がより好ましい。
また、アセチルアセトナート基を有する金属アルコキシド化合物もまた好ましい。アセチルアセトナート基は、カルボニル構造により金属アルコキシド化合物の中心元素と相互作用を有するため、取り扱い性が容易になり好ましい。さらに好ましくは上記のアルコキシド基、またはアセチルアセトナート基を複数種有する化合物が反応性や膜組成の観点からより好ましい。
さらに好ましい金属アルコキシド化合物は、具体的には、ホウ酸トリイソプロピル、アルミニウムトリsec−ブトキシド、アルミニウムエチルアセトアセテート・ジイソプロピレート、カルシウムイソプロポキシド、チタンテトライソプロポキシド、ガリウムイソプロポキシド、アルミニウムジイソプロピレートモノsec−ブチレート、アルミニウムエチルアセトアセテートジn−ブチレート、またはアルミニウムジエチルアセトアセテートモノn−ブチレートである。
金属アルコキシド化合物は、市販品を用いてもよいし合成品を用いてもよい。市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec−ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH−TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL−M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。
なお、金属アルコキシド化合物を用いる場合は、ポリシラザンを含む溶液と不活性ガス雰囲気下で混合することが好ましい。金属アルコキシド化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。
金属アミド化合物の具体例としては、例えば、ベリリウム(Be)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、ラジウム(Ra)等の長周期型周期表の第2〜13族元素のアミド化合物が挙げられる。また、金属水酸化物の例としては、例えば、ベリリウム(Be)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、ラジウム(Ra)等の長周期型周期表の第2〜13族元素の水酸化物が挙げられる。
上記添加元素としては、ポリシラザン中の窒素原子と配位結合を形成しやすい元素が好ましく、ルイス酸性が高いアルミニウム(Al)、鉄(Fe)、またはホウ素(B)がより好ましく、アルミニウム(Al)がさらに好ましい。
上部バリア層形成用塗布液における添加元素を含む化合物の使用量は、ポリシラザンに対して1〜50重量%であることが好ましく、1〜15重量%であることがより好ましい。
ナノインデンテーション法に測定される第3のバリア層の硬度(HP3)は、0.3〜1.5GPaであることが好ましく、0.7〜1.2GPaであることがより好ましい。
また、ナノインデンテーション法に測定される第4のバリア層の硬度(HP4)は、2.0GPa以上であることが好ましく、2.05GPa以上であることがより好ましい。また、硬度HP4の上限値は特に制限されないが、2.5GPa以下であることが好ましく、2.2GPa以下であることがより好ましい。
さらに、硬度HP4と硬度HP3との比(HP4/HP3)は、1.5〜10.0であることが好ましく、3.0〜8.5であることがより好ましく、4.5〜7.0であることがさらに好ましい。この範囲であれば、活性エネルギー線照射処理中に第2のバリア層との膜剥がれ起こりにくい。
ナノインデンテーション法の具体的な方法は、上述の下部バリア層の項で説明した内容と同様であるため、ここでは説明を省略する。
第3のバリア層の平均膜厚は、10〜600nmであることが好ましく、20〜400nmであることがより好ましい。また、第4のバリア層の平均膜厚は、10〜100nmであることが好ましく、20〜70nmであることがより好ましい。
膜厚測定の具体的な方法も、上述の下部バリア層の項で説明した内容と同様であるので、ここでは説明を省略する。
硬度HP3、硬度HP4、およびHP4とHP3との硬度比(HP4/HP3)を、上記の好ましい範囲内に調整する方法としては、改質手段の選択、ポリシラザン塗布膜の(平均)膜厚、水分量、改質処理をする際の処理強度、照射雰囲気の酸素濃度、処理時間等の条件の調整により行うことができる。例えば、真空紫外光による改質処理においては、ポリシラザン塗布膜の(平均)膜厚を薄く、真空紫外光強度を高く、かつ処理時間を短くする条件に制御することで硬度比を高めに調整することができる。
[アンカーコート層]
本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。アンカーコート層の構成材料、形成方法等は、特開2013−52561号公報の段落「0229」〜「0232」に開示される材料、方法等が適宜採用される。
[平滑層]
本発明のガスバリア性フィルムは、基材のバリア層を有する面、好ましくは基材と下地層との間に平滑層を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、樹脂基材に存在する突起により、バリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。平滑層の構成材料、形成方法、表面粗さ、膜厚等は、特開2013−52561号公報の段落「0233」〜「0248」に開示される材料、方法等が適宜採用される。
[ブリードアウト防止層]
本発明のガスバリア性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、樹脂基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。ブリードアウト防止層の構成材料、形成方法、膜厚等は、特開2013−52561号公報の段落「0249」〜「0262」に開示される材料、方法等が適宜採用される。
[ガスバリア性フィルムの製造方法]
本発明の第2は、基材上に下地層を形成する工程と、前記下地層上に、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を形成する工程と、前記蒸着膜に波長150nm以下の光を照射しバリア層を形成する工程と、を含むガスバリア性フィルムの製造方法である。これら工程の詳細な方法、製造条件等は、上述の通りであるため、ここでは説明を省略する。
[電子デバイス]
本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。前記デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。
本発明に係るガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。すなわち、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける方法である。ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。
本発明に係るガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。
以下、具体的な電子デバイスの一例として有機EL素子およびこれを用いた有機ELパネルについて説明する。
本発明に係るガスバリア性フィルム10を封止フィルムとして用いた電子機器である有機ELパネル9の一例を図4に示す。有機ELパネル9は、図4に示すように、ガスバリア性フィルム10と、ガスバリア性フィルム10上に形成されたITOなどの透明電極5と、透明電極5を介してガスバリア性フィルム10上に形成された有機EL素子6と、その有機EL素子6を覆うように接着剤層7を介して配設された対向フィルム8等を備えている。なお、透明電極5は、有機EL素子6の一部を成すともいえる。このガスバリア性フィルム10におけるガスバリア層が形成された面に、透明電極5と有機EL素子6が形成されるようになっている。また、対向フィルム8は、アルミ箔などの金属フィルムのほか、本発明に係るガスバリアフィルムを用いてもよい。対向フィルム8にガスバリア性フィルムを用いる場合、ガスバリア層が形成された面を有機EL素子6に向けて、接着剤層7によって貼付するようにすればよい。
以下に有機EL素子6の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(1)陽極/発光層/陰極
(2)陽極/正孔輸送層/発光層/陰極
(3)陽極/発光層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/電子輸送層/陰極バッファー層(電子注入層)/陰極。
(陽極)
有機EL素子6における陽極(透明電極5)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜として形成し、その薄膜をフォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。また、陽極の膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
(陰極)
有機EL素子6における陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が陰極として好適である。
陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましい。また、陰極の膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子6の陽極または陰極のいずれか一方が透明または半透明であれば、発光輝度が向上し好都合である。
また、陰極の説明で挙げた上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(注入層:電子注入層、正孔注入層)
注入層には電子注入層と正孔注入層があり、電子注入層と正孔注入層を必要に応じて設け、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させる。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、特開平9−260062号公報、特開平8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、特開平9−17574号公報、特開平10−74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1nm〜5μmの範囲が好ましい。
(発光層)
有機EL素子6における発光層は、電極(陰極、陽極)または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
有機EL素子6の発光層には、以下に示すドーパント化合物(発光ドーパント)とホスト化合物(発光ホスト)が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。
(発光ドーパント)
発光ドーパントは、大きく分けて蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
リン光性ドーパントの代表例としては、好ましくは元素の周期表で第8族、第9族、第10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。発光ドーパントは複数種の化合物を混合して用いてもよい。
(発光ホスト)
発光ホスト(単にホストとも言う)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントとも言う)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
発光ホストとしては構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、またはカルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。中でも、カルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。
そして、発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。発光層としての膜厚は特に制限はないが、通常は5nm〜5μm、好ましくは5〜200nmの範囲で選ばれる。この発光層はドーパント化合物やホスト化合物が1種または2種以上からなる一層構造であってもよいし、あるいは同一組成または異種組成の複数層からなる積層構造であってもよい。
(正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
(電子輸送層)
電子輸送層とは電子を輸送する機能を有する電子輸送材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
電子輸送材料としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq3)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
(有機EL素子の作製方法)
有機EL素子6の作製方法について説明する。
ここでは有機EL素子6の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製方法について説明する。
まず、ガスバリア性フィルム10上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、例えば、蒸着やスパッタリング、プラズマCVD等の方法により形成させ、陽極を作製する。
次に、その上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の有機化合物薄膜を形成させる。この有機化合物薄膜の成膜方法としては、蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。さらに層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
この有機EL素子6の作製は、一回の真空引きで一貫して陽極、正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
このようにして得られた有機EL素子6を備える多色の表示装置(有機ELパネル9)に、直流電圧を印加する場合には、陽極をプラス、陰極をマイナスの極性として電圧2〜40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「重量部」あるいは「重量%」を表す。
(実施例1)
基材として、2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム株式会社製、商品名:テオネックス(登録商標)Q65FA)を用い、下記組成の下地層塗布液を、スピンコーターを用いて基材上に塗布し、60℃、5分で加熱乾燥し、高圧水銀灯で紫外線を1〜2秒照射することにより膜厚1μmの下地層を形成した。
<下地層塗布液>
電離放射線硬化型樹脂(ダイヤビーム(登録商標)UR6530:三菱レイヨン株式会社製) 30.0部、光重合開始剤(イルガキュア(登録商標)651:チバ・スペシャルティ・ケミカルズ社製) 0.15部、メチルエチルケトン 40.0部、トルエン 30.0部。
図1に示す真空プラズマCVD装置を用いて、下地層の上にSiON膜を作製した。この時使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、シランガス流量を7.5sccm、アンモニアガス流量を100sccm、亜酸化窒素ガス流量を50sccmとして真空チャンバー内へ導入した。成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を100Paに設定して窒化珪素を主成分とする酸窒化珪素薄膜(SiON膜)を膜厚350nmで形成した。
その後、上記で作製した蒸着膜に下記条件にて低圧プラズマ処理を施し、ガスバリア性フィルムを完成させた。
プラズマ処理装置:低圧容量結合プラズマ処理装置(ユーテック株式会社製)
ガス:Ar+H(H濃度:6体積%)
全圧力:18Pa
基材加熱温度:室温(25℃)
投入電力密度:1.3W/cm
周波数:13.56MHz
処理時間:75秒。
(実施例2〜13、比較例1〜2)
表1に示すように、下地層の膜厚や無機粒子の添加量を変更して下地層を形成したこと以外は、実施例1と同様にして、ガスバリア性フィルムを作製した。なお、無機粒子としては、富士シリシア株式会社製「サイシリア(登録商標)」を用い、表1中の添加量は、電離放射線硬化型樹脂に対する重量%で表している。なお、比較例1では、下地層を形成しなかった。また、比較例2では、SiON膜に対して波長150nm以下の光の照射を行わなかった。
得られたガスバリア性フィルムの各特性値を、下記の方法に従って測定した。
《ガスバリア性フィルムの特性値の測定方法》
〔鉛筆硬度〕
JIS K5600−5−4:1999に従い、下地層およびバリア層の鉛筆硬度を測定した。
〔水蒸気バリア性(WVTR)の評価〕
以下の測定方法に従って、各ガスバリア性フィルムの透過水分量を測定し、下記の基準に従って、水蒸気バリア性を評価した。
(装置)
蒸着装置:日本電子株式会社製、真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)。
(水蒸気バリア性評価用セルの作製)
試料のバリア層面に、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE−400)を用い、ガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス株式会社製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005−283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。
なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。
以上により測定された各ガスバリア性フィルムの透過水分量(g/m・day;表中の「WVTR」)を、Ca法によって評価した。
〔クラック〕
各ガスバリア性フィルムを、ディスクカッターDC−230(CADL社製)を用いてB5サイズに断裁した後、断裁した各端部をルーペ観察し、四辺のクラックの総発生数を確認し、下記の基準に従って断裁加工適性を評価した。
5:クラック発生が全く認められなかった
4:クラックの発生数が、1本以上、2本以下である
3:クラックの発生数が、3本以上、5本以下である
2:クラックの発生数が、6本以上、9本以下である
1:クラックの発生数が、10本以上である。
〔密着性〕
JIS K5400:1990に準拠した碁盤目試験を行った。形成された薄膜の表面に片刃のカミソリの刃を面に対して90°の角度で切り込みを1mm間隔で縦横に11本入れ、1mm角の碁盤目を100個作製した。この上に市販のセロハンテープを張り付け、その一端を手で持って垂直に力強く引っぱって剥がし、切り込み線からの貼られたテープ面積に対する薄膜が剥がされた面積の割合を、下記のように5段階のランクに分けて評価した。
剥離面積/テープ面積×100(%)
5:剥離無し
4:剥離はあるが1%未満
3:1%以上5%未満
2:5%以上20%未満
1:20%以上。
上記で作製した各ガスバリア性フィルムを、85℃、85%RHの環境下で50時間保存し、作製直後(初期)のガスバリア性フィルムと共に、WVTR、クラック、および密着性を評価した。評価結果を表1に示す。
<ガスバリア性フィルムを用いた電子デバイスの耐久性評価>
《有機薄膜電子デバイスの作製》
上記で作製したガスバリア性フィルムを封止フィルムとして用いて、図5に示すような有機薄膜電子デバイスである有機EL素子を作製した。
〔有機EL素子の作製〕
(第1電極層22の形成)
各ガスバリア性フィルム21のガスバリア層4上に、厚さ150nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層22を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
(正孔輸送層23の形成)
第1電極層22が形成された各ガスバリア性フィルム21の第1電極層22の上に、以下に示す正孔輸送層形成用塗布液を、25℃、相対湿度50%RHの環境下で、押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理を行い、正孔輸送層23を形成した。正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。
正孔輸送層形成用塗布液を塗布する前に、ガスバリア性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
〈正孔輸送層形成用塗布液の準備〉
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
〈乾燥および加熱処理条件〉
正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層23を形成した。
(発光層24の形成)
上記で形成した正孔輸送層23上に、以下に示す白色発光層形成用塗布液を、下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理を行い、発光層24を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
〈白色発光層形成用塗布液〉
ホスト材として下記化学式H−Aで表される化合物1.0gと、ドーパント材として下記化学式D−Aで表される化合物を100mg、ドーパント材として下記化学式D−Bで表される化合物を0.2mg、ドーパント材として下記化学式D−Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure 2014201033
〈塗布条件〉
塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
〈乾燥および加熱処理条件〉
白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層24を形成した。
(電子輸送層25の形成)
上記で形成した発光層24の上に、以下に示す電子輸送層形成用塗布液を下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥および加熱処理し、電子輸送層25を形成した。電子輸送層形成用塗布液は乾燥後の厚みが30nmになるように塗布した。
〈塗布条件〉
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
〈電子輸送層形成用塗布液〉
電子輸送層は下記化学式E−Aで表される化合物を2,2,3,3−テトラフルオロ−1−プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
Figure 2014201033
〈乾燥および加熱処理条件〉
電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層25を形成した。
(電子注入層26の形成)
上記で形成した電子輸送層25上に、電子注入層26を形成した。まず、基板を減圧チャンバーに投入し、5×10−4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(第2電極層27の形成)
上記で形成した電子注入層26の上であって、第1電極22の取り出し電極になる部分を除く部分に、5×10−4Paの真空下で、第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極層27を積層した。
(裁断)
以上のように、第2電極層27までが形成された各積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子を作製した。
(電極リード接続)
作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
(封止)
封止部材29として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用意した。
用意した封止部材29のアルミニウム面に熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布し、接着剤層28を形成した。
このとき、熱硬化性接着剤としては以下の成分を含むエポキシ系接着剤を用いた。
ビスフェノールAジグリシジルエーテル(DGEBA)、ジシアンジアミド(DICY)、エポキシアダクト系硬化促進剤。
封止部材29を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて圧着条件、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。
《有機EL素子の評価》
上記作製した有機EL素子について、下記の方法に従って、耐久性の評価を行った。
〔耐久性の評価〕
(加速劣化処理)
上記作製した各有機EL素子に対して85℃、85%RHの環境下で加速劣化処理を施したものと、加速劣化処理を施す前の有機EL素子のそれぞれに対し、1mA/cmの電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方に切り抜き、黒点の発生面積比率を求め、その比率が1%増加した段階での加速劣化処理の時間を求め、下記により評価した。
◎:比率が1%以上になる時間が1000時間以上
○:比率が1%以上になる時間が500時間以上1000時間未満
△:比率が1%以上になる時間が100時間以上500時間未満
×:比率が1%以上になる時間が100時間未満。
得られた結果を、表1に示す。
Figure 2014201033
上記表1から明らかなように、本発明のガスバリア性フィルムは、高いガスバリア性および高い耐屈曲性を有し、高温高湿下での保存安定性に優れる。また、本発明のガスバリア性フィルムを用いた有機EL素子は、高温高湿下で保存した後でも、発光がほとんど劣化しないことが分かる。
1 基材、
2 平滑層、
3 下地層、
4 バリア層、
5 透明電極
6 有機EL素子、
7 接着剤層、
8 対向フィルム、
9 有機ELパネル、
10、21 ガスバリア性フィルム、
22 第1電極層、
23 正孔輸送層、
24 発光層、
25 電子輸送層、
26 電子注入層、
27 第2電極層、
28 接着剤層、
29 封止部材、
101 プラズマCVD装置、
102 真空槽、
103 カソード電極、
105 サセプタ、
106 熱媒体循環系、
107 真空排気系、
108 ガス導入系、
109 高周波電源、
110 下地層形成済基材、
160 加熱冷却装置。

Claims (6)

  1. 基材と、
    鉛筆硬度がHB以上である下地層と、
    蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を堆積させた後に、前記蒸着膜表面に波長150nm以下の光を照射することにより形成されるバリア層と、
    をこの順に含む、ガスバリア性フィルム
  2. 前記下地層の膜厚が1〜10μmである、請求項1に記載のガスバリア性フィルム。
  3. 前記下地層が、活性エネルギー線硬化性樹脂および無機粒子を含む、請求項1または2に記載のガスバリア性フィルム。
  4. 前記無機粒子の含有量が、前記活性エネルギー線硬化性樹脂に対して5〜70重量%である、請求項3に記載のガスバリア性フィルム。
  5. 前記無機粒子の含有量が、前記活性エネルギー線硬化性樹脂に対して30〜60重量%である、請求項3または4に記載のガスバリア性フィルム。
  6. 基材上に下地層を形成する工程と、
    前記下地層上に、蒸着法により少なくともケイ素原子および窒素原子を含む蒸着膜を形成する工程と、
    前記蒸着膜に波長150nm以下の光を照射しバリア層を形成する工程と、
    を含むガスバリア性フィルムの製造方法。
JP2013080587A 2013-04-08 2013-04-08 ガスバリア性フィルムおよびその製造方法 Pending JP2014201033A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080587A JP2014201033A (ja) 2013-04-08 2013-04-08 ガスバリア性フィルムおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080587A JP2014201033A (ja) 2013-04-08 2013-04-08 ガスバリア性フィルムおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2014201033A true JP2014201033A (ja) 2014-10-27

Family

ID=52351905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080587A Pending JP2014201033A (ja) 2013-04-08 2013-04-08 ガスバリア性フィルムおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2014201033A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124246A (ja) * 2015-01-07 2016-07-11 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
WO2016136842A1 (ja) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 ガスバリア性フィルム
JP2017077731A (ja) * 2016-05-30 2017-04-27 尾池工業株式会社 電子デバイス用ガスバリア積層体
WO2017090592A1 (ja) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 ガスバリアー性フィルム及びこれを備えた電子デバイス
WO2017090602A1 (ja) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 ガスバリアー性フィルム及びこれを備えた電子デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP2012106421A (ja) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
JP2012149278A (ja) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc シリコン含有膜の製造方法
WO2012137662A1 (ja) * 2011-04-05 2012-10-11 東レ株式会社 ガスバリア性フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
JP2012106421A (ja) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
JP2012149278A (ja) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc シリコン含有膜の製造方法
WO2012137662A1 (ja) * 2011-04-05 2012-10-11 東レ株式会社 ガスバリア性フィルム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124246A (ja) * 2015-01-07 2016-07-11 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
WO2016136842A1 (ja) * 2015-02-25 2016-09-01 コニカミノルタ株式会社 ガスバリア性フィルム
JPWO2016136842A1 (ja) * 2015-02-25 2017-12-14 コニカミノルタ株式会社 ガスバリア性フィルム
WO2017090592A1 (ja) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 ガスバリアー性フィルム及びこれを備えた電子デバイス
WO2017090602A1 (ja) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 ガスバリアー性フィルム及びこれを備えた電子デバイス
JP2017077731A (ja) * 2016-05-30 2017-04-27 尾池工業株式会社 電子デバイス用ガスバリア積層体

Similar Documents

Publication Publication Date Title
JP5533585B2 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
JP6504284B2 (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP5929775B2 (ja) ガスバリア性フィルムおよびその製造方法、ならびに前記ガスバリア性フィルムを含む電子デバイス
JP5857452B2 (ja) バリアーフィルムの製造方法
JP2015003464A (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP6229506B2 (ja) ガスバリア性フィルム、およびこれを用いた電子デバイス
JP6319316B2 (ja) ガスバリア性フィルムの製造方法
WO2016009801A1 (ja) ガスバリア性フィルムおよび電子デバイス
JP2014201032A (ja) ガスバリア性フィルムおよびその製造方法
JP5884531B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JPWO2016009801A6 (ja) ガスバリア性フィルムおよび電子デバイス
JP2014201033A (ja) ガスバリア性フィルムおよびその製造方法
WO2015182623A1 (ja) ガスバリア性フィルムおよびそれを用いた電子デバイス
JP5849790B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JP6520932B2 (ja) ガスバリア性フィルム
JP5761005B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JPWO2015178069A6 (ja) ガスバリア性フィルム
WO2014189060A1 (ja) ガスバリア性フィルムおよびこれを用いた電子デバイス
JP5768652B2 (ja) バリアーフィルムの製造方法
WO2015029795A1 (ja) ガスバリア性フィルムの製造方法
JP6287634B2 (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP6102986B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム、電子機器及び有機エレクトロルミネッセンスパネル
JP2016087951A (ja) ガスバリアーフィルム、ガスバリアーフィルムの製造方法及び電子デバイス
WO2015029732A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2016089083A (ja) ガスバリアーフィルムの製造方法、ガスバリアーフィルム及び電子デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131