JP2014195862A - Method for truing rotary grindstone and grinding machine for performing the truing method - Google Patents

Method for truing rotary grindstone and grinding machine for performing the truing method Download PDF

Info

Publication number
JP2014195862A
JP2014195862A JP2013073593A JP2013073593A JP2014195862A JP 2014195862 A JP2014195862 A JP 2014195862A JP 2013073593 A JP2013073593 A JP 2013073593A JP 2013073593 A JP2013073593 A JP 2013073593A JP 2014195862 A JP2014195862 A JP 2014195862A
Authority
JP
Japan
Prior art keywords
grindstone
conical surface
workpiece
truing
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013073593A
Other languages
Japanese (ja)
Other versions
JP6127657B2 (en
Inventor
大介 三島
Daisuke Mishima
大介 三島
久幸 長屋
Hisayuki Nagaya
久幸 長屋
後藤 慶太
Keita Goto
慶太 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2013073593A priority Critical patent/JP6127657B2/en
Priority to DE112014001748.5T priority patent/DE112014001748T5/en
Priority to PCT/JP2014/058791 priority patent/WO2014157490A1/en
Priority to CN201480019385.4A priority patent/CN105073341B/en
Priority to US14/781,105 priority patent/US20160059381A1/en
Publication of JP2014195862A publication Critical patent/JP2014195862A/en
Application granted granted Critical
Publication of JP6127657B2 publication Critical patent/JP6127657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/04Devices or means for dressing or conditioning abrasive surfaces of cylindrical or conical surfaces on abrasive tools or wheels
    • B24B53/053Devices or means for dressing or conditioning abrasive surfaces of cylindrical or conical surfaces on abrasive tools or wheels using a rotary dressing tool

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To further reduce a difference in surface roughness between a conical surface on the side close to a workpiece rotating shaft and a conical surface on the side far from the workpiece rotating shaft, when grinding a conical surface of a workpiece, and thereby the workpiece can be machined more efficiently.SOLUTION: A method for truing a rotary grindstone is configured by truing the rotary grindstone for grinding a conical surface using a truer by bringing an outer circumferential surface of the rotary grindstone of a grinding machine into abutment with the conical surface of a workpiece, while rotating the workpiece having a conical surface to a workpiece rotating shaft around the workpiece rotating shaft. The outer circumferential surface of the rotary grindstone is subjected to truing while relatively moving the position of the truer to the rotary grindstone along the outer circumferential surface of the rotary grindstone, from the side of one end toward the other end side in the axial direction of the rotary grindstone on the outer circumferential surface of the rotary grindstone. In that case, the relative movement speed of the truer is configured such that the position of the outer circumferential surface of the rotary grindstone for grinding a large diameter part is slowed down more than the position of the outer circumferential surface of the rotary grindstone for grinding a small diameter part of the conical surface.

Description

本発明は、回転砥石のツルーイング方法及びそのツルーイング方法を採用した研削盤に関する。   The present invention relates to a truing method for a rotating grindstone and a grinding machine employing the truing method.

従来、研削盤では、種々の形状のワークを加工する。例えば、図9に示すように軸部WAと、その軸部WAの略中央に鍔状に突出するとともに軸方向の少なくとも一方側の面が円錐面WCに形成された円板部WBと、を有するワークWがある。このようなワークWの円錐面WCは、ワークWを軸周りに回転させつつ、円板状の回転砥石TAを円錐面WCに当接させて研削する。   Conventionally, a grinding machine processes various shapes of workpieces. For example, as shown in FIG. 9, a shaft portion WA and a disc portion WB that protrudes in a bowl shape substantially at the center of the shaft portion WA and has at least one surface in the axial direction formed on a conical surface WC. There is a work W to have. Such a conical surface WC of the workpiece W is ground by rotating the workpiece W about the axis and bringing the disc-shaped rotary grindstone TA into contact with the conical surface WC.

上述した回転砥石TAは、同図に示すように、その外周の研削面TA1が砥石回転軸ZTAに対し傾斜して円錐面WCの幅と略等しい長さを有する所謂アンギュラ砥石TAである。このアンギュラ砥石TAは、研削盤に取付けてモータ等の駆動力によって砥石回転軸ZTA周りに回転される。そして、ワークWを別途の駆動源によってワーク回転軸ZW周りに回転させ、回転するアンギュラ砥石TAの研削面TA1を円錐面WCに当接させて研削する。   As shown in the figure, the rotary grindstone TA described above is a so-called angular grindstone TA whose outer peripheral grinding surface TA1 is inclined with respect to the grindstone rotation axis ZTA and has a length substantially equal to the width of the conical surface WC. The angular grindstone TA is attached to a grinding machine and rotated around the grindstone rotation axis ZTA by a driving force such as a motor. Then, the workpiece W is rotated around the workpiece rotation axis ZW by a separate drive source, and the grinding surface TA1 of the rotating angular grindstone TA is brought into contact with the conical surface WC for grinding.

ここで、ワークWの円錐面WCを研削した場合、ワーク回転軸ZWに近い側の円錐面WC1と、ワーク回転軸ZWに遠い側の円錐面WC2とでは、ワーク回転軸ZWに遠い側のほうが周速度が速い。これにより、ワークWの円錐面WCにおける径の差によって研削除去量の差を生じ、仕上がりの仕上げ面粗さに差が生じている。   Here, when the conical surface WC of the workpiece W is ground, the conical surface WC1 closer to the workpiece rotation axis ZW and the conical surface WC2 farther from the workpiece rotation axis ZW are closer to the workpiece rotation axis ZW. The peripheral speed is fast. Thereby, the difference in the grinding removal amount is caused by the difference in the diameter of the workpiece W on the conical surface WC, and the finished finished surface roughness is different.

また、アンギュラ砥石TAは、研削面TA1が砥石回転軸ZTAに対し傾斜している形状であることから外周の径が相対的に大径の大径部位TA3と小径の小径部位TA2を有する。そのため、アンギュラ砥石TAの研削面TA1は、大径部位TA3の周方向に配設される砥粒数が、小径部位TA2の周方向に配設される砥粒数より相対的に多い傾向となる。そのため、アンギュラ砥石TAの研削面TA1の小径部位TA2は、大径部位TA3に比べて少ない砥粒数でワークWを加工することに伴いワークWの加工後の仕上げ面粗さが大きくなる傾向にある。   Further, the angular grindstone TA has a shape in which the grinding surface TA1 is inclined with respect to the grindstone rotation axis ZTA, and thus has a large diameter portion TA3 having a relatively large outer diameter and a small diameter portion TA2 having a small diameter. Therefore, the grinding surface TA1 of the angular grindstone TA has a tendency that the number of abrasive grains arranged in the circumferential direction of the large diameter portion TA3 is relatively larger than the number of abrasive grains arranged in the circumferential direction of the small diameter portion TA2. . Therefore, the small-diameter portion TA2 of the grinding surface TA1 of the angular grindstone TA tends to increase the finished surface roughness after machining the workpiece W as the workpiece W is machined with a smaller number of abrasive grains than the large-diameter portion TA3. is there.

ここで、アンギュラ砥石TAによるワークWの円錐面WCの研削は、ワーク回転軸ZWに近い側の円錐面WC1にアンギュラ砥石TAの大径部位TA3が当接し、ワーク回転軸ZWに遠い側の円錐面WC2にアンギュラ砥石TAの小径部位TA2が当接する関係となる。そのため、ワークWの円錐面WCの仕上がりの仕上げ面粗さは、ワークWの周速度の差に伴う影響と、アンギュラ砥石TAの砥粒数の差に伴う影響が相俟ってワーク回転軸ZWに遠い側の円錐面WC2の方が粗くなる。   Here, in the grinding of the conical surface WC of the workpiece W by the angular grindstone TA, the large-diameter portion TA3 of the angular grindstone TA abuts on the conical surface WC1 on the side close to the workpiece rotation axis ZW, and the cone on the side far from the workpiece rotation axis ZW. The small diameter portion TA2 of the angular grindstone TA comes into contact with the surface WC2. Therefore, the finished surface roughness of the finished conical surface WC of the workpiece W is combined with the influence caused by the difference in the peripheral speed of the workpiece W and the influence caused by the difference in the number of abrasive grains of the angular grindstone TA. The conical surface WC2 on the far side is rougher.

ここで、特許文献1に記載された技術は、ワークの円錐面の幅より小さい研削面を有する回転砥石を用いて円錐面上に当接した回転砥石を円錐面の母線に沿って移動させて研削するものである。この研削の際、ワークの回転速度を変化させることで円錐面の仕上がりの仕上げ面粗さを所望の交差内とすることを試みている。   Here, the technique described in Patent Document 1 uses a rotating grindstone having a grinding surface smaller than the width of the conical surface of the workpiece to move the rotating grindstone abutting on the conical surface along the generatrix of the conical surface. It is to be ground. At the time of grinding, an attempt is made to make the finished surface roughness of the conical surface within a desired intersection by changing the rotation speed of the workpiece.

特開2004−345054号公報JP 2004-345054 A

しかしながら、特許文献1における技術では、円錐面の加工に時間がかかってしまい効率よく加工することができない。そこで本願発明者は回転砥石の整形や目立てを行うツルアによる回転砥石のツルーイング方法に着目した。   However, with the technique in Patent Document 1, it takes time to process the conical surface and cannot be efficiently processed. Therefore, the inventor of the present application paid attention to a truing method of a rotating grindstone by a truer that shapes and sharpens the rotating grindstone.

本発明は、このような点に鑑みて創案されたものであり、本発明が解決しようとする課題は、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できることにある。   The present invention has been made in view of the above points, and the problem to be solved by the present invention is that when a conical surface of a workpiece is ground, a conical surface near the workpiece rotation axis, The conical surface on the side far from the rotation axis can reduce the difference in the finished surface roughness and can process the workpiece more efficiently.

上記課題を解決するため、本発明に係る回転砥石のツルーイング方法は次の手段をとる。
まず、本発明の第1の発明は、回転砥石の外周面における当該回転砥石の軸方向の長さを、ワークの円錐面の母線の長さと略等しくすることで、前記円錐面に前記回転砥石の外周面を当接させて研削する際は、前記円錐面の母線方向に前記回転砥石を相対的に移動させることなく研削する研削盤において、ワーク回転軸に対して前記円錐面を有するワークを前記ワーク回転軸回りに回転させながら、前記ワークの円錐面に、研削盤の回転砥石の外周面を当接させて前記円錐面を研削するための前記回転砥石をツルアを用いてツルーイングする、回転砥石のツルーイング方法であって、前記回転砥石の外周面における当該回転砥石の軸方向の一端側から他端側に向けて、前記回転砥石に対する前記ツルアの位置を、前記回転砥石の外周面に沿って相対的に移動させながら前記回転砥石の外周面をツルーイングする際に、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度よりも、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度を遅くする。
In order to solve the above problems, the truing method for a rotating grindstone according to the present invention takes the following means.
First, the first invention of the present invention is such that the axial length of the rotating grindstone on the outer peripheral surface of the rotating grindstone is substantially equal to the length of the generatrix of the conical surface of the workpiece, whereby the rotating grindstone is placed on the conical surface. When grinding by bringing the outer peripheral surface into contact with each other, in a grinding machine that grinds without moving the rotary grindstone relatively in the generatrix direction of the conical surface, While rotating around the workpiece rotation axis, the outer grindstone of the grinder is brought into contact with the conical surface of the workpiece and the rotating grindstone for grinding the conical surface is trued using a truer. A truing method for a grindstone, wherein the position of the truer with respect to the rotating grindstone is aligned with the outer peripheral surface of the rotating grindstone from one end side to the other end side in the axial direction of the rotating grindstone on the outer peripheral surface of the rotating grindstone. When truing the outer peripheral surface of the rotating grindstone while relatively moving, than the relative movement speed of the truer when truing the position of the outer peripheral surface of the rotating grindstone for grinding the small diameter portion of the conical surface of the workpiece. The relative movement speed of the truer when slowing the position of the outer peripheral surface of the rotating grindstone that grinds the large diameter portion of the conical surface of the workpiece is slowed down.

この第1の発明によれば、ツルーイングする際のツルアの相対移動速度を変化させることで回転砥石の表面状態を変化させることができる。即ち、周速度が遅いワーク回転軸に近い側の円錐面を研削する回転砥石の研削面の研削面粗さより、周速度が速いワーク回転軸に遠い側の円錐面を研削する回転砥石の研削面の研削面粗さを相対的に細かくする。これにより、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができる。また、回転砥石の外周面における当該回転砥石の軸方向の長さを、ワークの円錐面の母線の長さと略等しくすることで、円錐面に回転砥石の外周面を当接させて研削する際は、円錐面の母線方向に回転砥石を相対的に移動させることなく研削することができるので効率よくワークを加工できる。もって、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できる。   According to the first aspect of the present invention, the surface condition of the rotating grindstone can be changed by changing the relative movement speed of the truer during truing. In other words, the grinding surface of the rotating grindstone that grinds the conical surface farther from the workpiece rotation axis whose peripheral speed is faster than the grinding surface roughness of the grinding surface of the rotating grindstone that grinds the conical surface closer to the workpiece rotation axis whose peripheral speed is slow. The grinding surface roughness of the is relatively fine. Thereby, when the conical surface of the workpiece is ground, the difference in the finished surface roughness can be further reduced between the conical surface close to the work rotation axis and the conical surface far from the work rotation axis. In addition, when the axial length of the rotating grindstone on the outer peripheral surface of the rotating grindstone is substantially equal to the length of the generatrix of the conical surface of the workpiece, the outer grindstone of the rotating grindstone is brought into contact with the conical surface for grinding. Since it can grind without moving a rotary grindstone relatively in the generatrix direction of a conical surface, a work can be processed efficiently. Therefore, when the workpiece conical surface is ground, the difference in surface roughness between the conical surface near the workpiece rotation axis and the cone surface far from the workpiece rotation axis can be reduced, and more The workpiece can be processed efficiently.

また、本発明の第2発明は、上記第1の発明に係る回転砥石のツルーイング方法であって、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に遅くする、あるいは、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に速くする。   Further, a second invention of the present invention is the truing method for a rotating grindstone according to the first invention, wherein the workpiece is removed from a position of the outer peripheral surface of the rotating grindstone for grinding a small diameter portion of the conical surface of the work. Relative movement of the truer toward the position of the outer peripheral surface of the rotating grindstone that grinds the large-diameter portion of the conical surface and gradually slowing down the relative movement speed of the truer, or the large diameter of the conical surface of the workpiece And moving the truer relative to the position of the outer peripheral surface of the rotating grindstone for grinding the small-diameter portion of the conical surface of the workpiece from the position of the outer peripheral surface of the rotating grindstone for grinding the portion, and the relative movement speed of the truer To make it faster.

この第2の発明によれば、ツルーイングする際のツルアの相対移動速度を徐々に変化させることで、回転砥石の研削面粗さを徐々に変化させ、ワークの円錐面をより一層均一な仕上げ面粗さとすることができる。   According to the second aspect of the invention, by gradually changing the relative movement speed of the truer during truing, the grinding surface roughness of the rotating grindstone is gradually changed, and the conical surface of the workpiece is made a more uniform finished surface. It can be roughness.

次に、本発明の第3の発明は、上記第1の発明または第2の発明に係る回転砥石のツルーイング方法であって、前記回転砥石は、円筒形状のプレーン砥石である。   Next, a third invention of the present invention is a truing method for a rotating grindstone according to the first invention or the second invention, wherein the rotating grindstone is a cylindrical plain grindstone.

この第3の発明によれば、回転砥石を円筒形状のプレーン砥石とすることで、外周面の周方向に配置される砥粒数の差が生じにくい。そのため、砥粒の密度の差を考慮する必要がなく、砥石の研削面の研削面粗さを調整することで、ワークの円錐面の仕上げ面粗さを調整することが可能であり、ワークの円錐面をより一層均一な仕上げ面粗さとすることができる。   According to the third aspect of the present invention, a difference in the number of abrasive grains arranged in the circumferential direction of the outer peripheral surface is unlikely to occur because the rotating grindstone is a cylindrical plain grindstone. Therefore, it is not necessary to consider the difference in the density of the abrasive grains, and by adjusting the grinding surface roughness of the grinding surface of the grindstone, it is possible to adjust the finished surface roughness of the conical surface of the workpiece. The conical surface can have a more uniform finished surface roughness.

次に、本発明の第4の発明は、回転砥石と、前記回転砥石をツルーイングするツルアと、制御手段とを有し、前記制御手段の指令に基づき、上記第1の発明から第3の発明のいずれか1つの回転砥石のツルーイング方法を実行する研削盤である。   Next, a fourth invention of the present invention includes a rotary grindstone, a truer for truing the rotary grindstone, and a control means, and based on a command from the control means, the first to third inventions described above. It is a grinder which performs the truing method of any one of these.

この第4の発明によれば、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できる研削盤を得ることができる。   According to the fourth aspect of the present invention, when the conical surface of the workpiece is ground, the difference in the finished surface roughness between the conical surface near the workpiece rotation axis and the conical surface far from the workpiece rotation axis is further reduced. It is possible to obtain a grinding machine that can process the workpiece more efficiently.

本発明は上記発明の手段をとることにより、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できる。   According to the present invention, when the conical surface of the workpiece is ground by taking the measures of the above invention, the difference in the finished surface roughness between the conical surface near the work rotation axis and the conical surface far from the work rotation axis. Can be made smaller and the workpiece can be processed more efficiently.

本実施形態における研削盤の平面図である。It is a top view of the grinding machine in this embodiment. 本実施形態におけるワークの断面図である。It is sectional drawing of the workpiece | work in this embodiment. 本実施形態における回転砥石の研削時の位置を示した平面図である。It is the top view which showed the position at the time of grinding of the rotating grindstone in this embodiment. 本実施形態における回転砥石がツルーイングする際の位置を示した平面図である。It is the top view which showed the position at the time of the truing wheel in this embodiment truing. 図4のV部の拡大平面図である。It is an enlarged plan view of the V section of FIG. 図5のVI部における回転砥石の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a rotating grindstone in a VI part of FIG. 5. 本実施形態における制御手段による処理手順を示したフローチャートである。It is the flowchart which showed the process sequence by the control means in this embodiment. 本実施形態におけるツルーイングする際のツルアの相対移動速度の変化を示したグラフである。(a)は、ツルアの相対移動速度の変化例1である。(b)は、ツルアの相対移動速度の変化例2である。(c)は、ツルアの相対移動速度の変化例3である。It is the graph which showed the change of the relative movement speed of the truer at the time of truing in this embodiment. (A) is the example 1 of change of the relative movement speed of a truer. (B) is a change example 2 of the relative movement speed of the truer. (C) is the example 3 of change of the relative movement speed of a truer. 従来の研削の例を示した概略図である。It is the schematic which showed the example of the conventional grinding.

以下に本発明を実施するための形態を図面を用いて説明する。なお、各図において、X軸とY軸とZ軸は互いに直交しており、Y軸は鉛直上向きの方向を示し、Z軸はワークWの回転軸であるワーク回転軸ZW方向を示し、X軸は旋回台12の進退方向を示している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. In each figure, the X axis, the Y axis, and the Z axis are orthogonal to each other, the Y axis indicates a vertically upward direction, the Z axis indicates a workpiece rotation axis ZW direction that is a rotation axis of the workpiece W, and X The axis indicates the advancing / retreating direction of the swivel base 12.

次に図1〜図8を用いて、本実施の形態における研削盤1について説明する。第1の実施の形態は、旋回台12上にプレーン砥石TP(回転砥石に相当)を適切な位置に配置した研削盤1である。   Next, the grinding machine 1 in this Embodiment is demonstrated using FIGS. 1st Embodiment is the grinding machine 1 which has arrange | positioned the plain grindstone TP (equivalent to a rotating grindstone) in the appropriate position on the turntable 12. FIG.

[研削盤1の全体構成(図1)]
図1に示すように、研削盤1は、基台10と、基台10上でZ軸方向に往復移動可能な主軸テーブル11と、基台10上でX軸方向に往復移動可能な旋回台12と、を備えており、旋回台12はY軸と平行な旋回軸ZS回りに旋回可能である。なお、各可動体等を制御する制御手段(数値制御装置等)については、図示省略する。
主軸テーブル11は、Z軸駆動モータ11Mと送りねじにてZ軸方向に往復移動し、制御手段はエンコーダ等の位置検出手段11Eからの信号を検出しながらZ軸駆動モータ11Mに制御信号を出力して主軸テーブル11のZ軸方向の位置決めを行う。
旋回台12は、X軸駆動モータ12Mと送りねじにてX軸方向に往復移動し、制御手段はエンコーダ等の位置検出手段12Eからの信号を検出しながらX軸駆動モータ12Mに制御信号を出力して旋回台12のX軸方向の位置決めを行う。
[Overall configuration of grinding machine 1 (FIG. 1)]
As shown in FIG. 1, a grinding machine 1 includes a base 10, a spindle table 11 that can reciprocate in the Z-axis direction on the base 10, and a swivel that can reciprocate in the X-axis direction on the base 10. 12, and the swivel base 12 can swivel about a swivel axis ZS parallel to the Y axis. In addition, about the control means (numerical controller etc.) which controls each movable body etc., illustration is abbreviate | omitted.
The spindle table 11 reciprocates in the Z-axis direction by a Z-axis drive motor 11M and a feed screw, and the control means outputs a control signal to the Z-axis drive motor 11M while detecting a signal from the position detection means 11E such as an encoder. Thus, the spindle table 11 is positioned in the Z-axis direction.
The swivel 12 is reciprocated in the X-axis direction by the X-axis drive motor 12M and a feed screw, and the control means outputs a control signal to the X-axis drive motor 12M while detecting a signal from the position detection means 12E such as an encoder. Then, the swivel base 12 is positioned in the X-axis direction.

主軸テーブル11には、センタ部材21を備えた主軸台20と、センタ部材31を備えた心押台30が載置されており、センタ部材21とセンタ部材31はZ軸方向に平行なワーク回転軸ZW上に配置されている。また心押台30には、プレーン砥石TPをツルーイングするためのツルーイング装置25が設置されている。(なお、プレーン砥石TPの配置位置関係によってはツルーイング装置25が主軸台20に設けられる態様であってもよい。)
センタ部材21は主軸22に設けられ、主軸22には図示しない駆動モータが設けられており、制御手段は、センタ部材21の先端をとおるワーク回転軸ZW回りに主軸22を、任意の角速度で任意の角度まで回転させることができる。
センタ部材31は心押軸32に設けられ、心押軸32は回転可能または回転不能に支持されている。
On the spindle table 11, a headstock 20 having a center member 21 and a tailstock 30 having a center member 31 are placed. The center member 21 and the center member 31 rotate a workpiece parallel to the Z-axis direction. It is arranged on the axis ZW. The tailstock 30 is provided with a truing device 25 for truing the plain grindstone TP. (Note that the truing device 25 may be provided on the head stock 20 depending on the positional relationship of the plain grinding stones TP.)
The center member 21 is provided on the main shaft 22, and a drive motor (not shown) is provided on the main shaft 22, and the control means arbitrarily moves the main shaft 22 around the workpiece rotation axis ZW passing through the tip of the center member 21 at an arbitrary angular velocity. Can be rotated up to an angle of.
The center member 31 is provided on a tailstock shaft 32, and the tailstock shaft 32 is supported so as to be rotatable or non-rotatable.

旋回台12は、より小さくするために板状であり、旋回台12の中央近傍には、旋回モータ13がY軸方向に突出するように設けられている。制御手段はエンコーダ等の角度検出手段からの信号を検出しながら旋回モータ13に制御信号を出力して旋回台12の旋回角度を制御する。
そして旋回台12上には、プレーン砥石TP(回転砥石に相当)を備えたプレーン砥石装置50が旋回モータ13を挟むように配置されている。
なお、プレーン砥石TPの回転軸である砥石回転軸ZTPは旋回軸ZSに直交する面内に位置する。
プレーン砥石TPは、砥石回転軸ZTP方向における一方の方向の端部に取り付けられている(図1では、プレーン砥石TPは、右側の端部に取り付けられている)。
また、プレーン砥石TPは砥石駆動モータ50Mからベルト50Bを介して回転駆動される。
また、研削盤1には、ワークWとプレーン砥石TPとの接触個所(研削点)の近傍にクーラントを供給するクーラントノズルが設けられているが図示省略する。
The swivel base 12 is plate-shaped to make it smaller, and a swivel motor 13 is provided in the vicinity of the center of the swivel base 12 so as to protrude in the Y-axis direction. The control means outputs a control signal to the turning motor 13 while detecting a signal from the angle detecting means such as an encoder, and controls the turning angle of the turntable 12.
On the swivel base 12, a plain grindstone device 50 having a plain grindstone TP (corresponding to a rotating grindstone) is arranged so as to sandwich the swivel motor 13.
Note that the grindstone rotation axis ZTP, which is the rotation axis of the plain grindstone TP, is located in a plane orthogonal to the turning axis ZS.
The plain grindstone TP is attached to an end portion in one direction in the direction of the grindstone rotation axis ZTP (in FIG. 1, the plain grindstone TP is attached to the right end portion).
The plain grindstone TP is rotationally driven from the grindstone drive motor 50M via the belt 50B.
Further, the grinding machine 1 is provided with a coolant nozzle for supplying coolant in the vicinity of a contact point (grinding point) between the workpiece W and the plain grindstone TP, which is not shown.

プレーン砥石TPは、図1に示すように砥石回転軸ZTPに対して平行な研削面TP1(回転砥石の外周面に相当)を有して円筒形状に形成されている。
プレーン砥石TPは、その外周面である研削面TP1の軸方向の長さがワークWの円錐面WCの母線WL(図2参照)の長さと略等しい。
研削盤1は、図3に示すようにプレーン砥石TPの研削面TP1の位置がワークWの円錐面WCを研削するプレーン砥石TPの加工位置(プレーン砥石TPの研削面TP1をワークWの円錐面WCに当接する位置)となるように旋回台12を旋回させてワークWに対して相対的に旋回台12を近接させた状態とすることでワークWの円錐面WCを研削可能としている。
なお図示は省略するが、ワーク回転軸ZWと砥石回転軸ZTPとツルーイング装置25のツルア回転軸ZTRは、旋回軸ZSに直交する相対移動平面上に配置されている。
As shown in FIG. 1, the plain grindstone TP has a grinding surface TP1 (corresponding to the outer peripheral surface of the rotating grindstone) parallel to the grindstone rotation axis ZTP and is formed in a cylindrical shape.
In the plain grindstone TP, the length in the axial direction of the grinding surface TP1 which is the outer peripheral surface thereof is substantially equal to the length of the generatrix WL (see FIG. 2) of the conical surface WC of the workpiece W.
As shown in FIG. 3, the grinding machine 1 is configured such that the position of the grinding surface TP <b> 1 of the plain grinding stone TP grinds the conical surface WC of the workpiece W (the grinding surface TP <b> 1 of the plain grinding stone TP is the conical surface of the workpiece W). The conical surface WC of the work W can be ground by turning the swivel base 12 so that the swivel base 12 is brought close to the work W so that the conical surface WC comes into contact with the WC.
Although illustration is omitted, the workpiece rotation axis ZW, the grindstone rotation axis ZTP, and the truer rotation axis ZTR of the truing device 25 are arranged on a relative movement plane orthogonal to the turning axis ZS.

[ワークWの全体構成(図2)]
ワークWは、図1に示すようにセンタ部材21とセンタ部材31に両端(または両端近傍)が支持されている(センタ部材の代わりにチャックであってもよい)。
ワークWは、図2に示すように軸部WAと、その軸部WAの略中央に鍔状に突出するとともに軸方向の少なくとも一方側の面が円錐面WCに形成された円板部WBと、を有する。円板部WBは、軸部WAから連続して小径部WBiが直径Diで形成され、小径部WBiから連続して鍔状に突出して大径部WBoが直径Doで形成されている。円錐面WCは、断面形状で見て角度Wθで形成されている。こうしてワークWの円錐面WCは母線WLが形成される。
[Overall configuration of work W (Fig. 2)]
As shown in FIG. 1, the workpiece W is supported at both ends (or near both ends) by the center member 21 and the center member 31 (a chuck may be used instead of the center member).
As shown in FIG. 2, the workpiece W includes a shaft portion WA, a disc portion WB that protrudes in a bowl shape substantially at the center of the shaft portion WA, and has at least one surface in the axial direction formed on a conical surface WC. Have. In the disc part WB, the small diameter part WBi is formed with a diameter Di continuously from the shaft part WA, and the large diameter part WBo is formed with a diameter Do by projecting continuously from the small diameter part WBi in a bowl shape. The conical surface WC is formed at an angle Wθ when viewed in cross section. Thus, the bus bar WL is formed on the conical surface WC of the workpiece W.

[ツルーイング装置25の構成(図1、4、5)]
ツルーイング装置25は、図1に示すようにプレーン砥石TPをツルーイングするためのものであり心押台30に設置されている。
ツルーイング装置25には、ワーク回転軸ZWと平行なツルア回転軸ZTR回りに回転駆動されるツルアTRと、このツルアTRを回転駆動する図示しない駆動モータとを有する。
図4は、プレーン砥石TPに対するツルアTRの位置を相対的に旋回及び移動させツルーイング開始位置A(図5参照)とした状態を示している。即ち、研削盤1は、図5に示すようにプレーン砥石TPの研削面TP1とツルーイング装置25のツルアTRのツルア面TR1とが、略同一直線上に位置するように旋回台12によってプレーン砥石TPを旋回させる。
図5は、プレーン砥石TPをツルーイング装置25のツルアTRでツルーイングする状態を示した拡大図である。ツルアTRは、概略、円板状に形成されておりその外周面がツルア面TR1として構成されている。
[Configuration of Truing Device 25 (FIGS. 1, 4, 5)]
The truing device 25 is for truing the plain grindstone TP as shown in FIG.
The truing device 25 includes a truer TR that is rotationally driven around a truer rotational axis ZTR parallel to the workpiece rotational axis ZW, and a drive motor (not shown) that rotationally drives the truer TR.
FIG. 4 shows a state in which the position of the truer TR with respect to the plain grindstone TP is turned and moved relatively to the truing start position A (see FIG. 5). That is, as shown in FIG. 5, the grinding machine 1 uses the swivel base 12 so that the grinding surface TP1 of the plain grindstone TP and the truer surface TR1 of the truer TR of the truing device 25 are located on substantially the same straight line. Swivel.
FIG. 5 is an enlarged view showing a state in which the plain grindstone TP is trued by the truer TR of the truing device 25. The truer TR is generally formed in a disc shape, and its outer peripheral surface is configured as a truer surface TR1.

ここで、研削盤における砥石の知見として、研削代断面積と、工作物(本実施形態でいえばワークW)の研削された加工面の仕上げ面粗さとの間には相関関係がある。すなわち、研削代断面積が大きくなるにつれて、工作物における加工面の仕上げ面粗さが大きく(粗く)なる関係にある。
また、研削盤における砥石のツルーイングについての知見として、砥石に対するツルアの移動速度が速くなるほど、当該ツルアでツルーイングした砥石によって加工した工作物における加工面の仕上げ面粗さが大きくなる関係にある。
これらの知見に基づいてプレーン砥石TPのツルーイングでは、ツルアTRの速度変化をさせることに着目している。
Here, as a knowledge of a grindstone in a grinding machine, there is a correlation between a grinding allowance cross-sectional area and a finished surface roughness of a ground work surface of a workpiece (work W in this embodiment). That is, as the grinding allowance cross-sectional area increases, the finished surface roughness of the processed surface of the workpiece increases (roughens).
Further, as knowledge about the truing of the grindstone in the grinder, there is a relation that the finished surface roughness of the work surface of the workpiece machined by the grindstone truried with the truer increases as the moving speed of the truer with respect to the grindstone increases.
Based on these findings, the truing of the plain grindstone TP focuses on changing the speed of the truer TR.

[プレーン砥石TPのツルーイング方法の処理手順(図7)]
次に、図7に示すフローチャートを用いて、制御手段によるプレーン砥石TPのツルーイング方法の処理手順の例を説明する。制御手段は、ツルーイングの実行が指示された場合や、予め設定されたツルーイングタイミングとなった場合等に、図7に示す処理を実行する。
ステップS10にて制御手段は、プレーン砥石TPに対するツルアTRの位置がツルーイング開始位置Aとなるように、プレーン砥石TPに対するツルアTRの位置を相対的に旋回及び移動(図4に示す位置)させ、ステップS20に進む。
ステップS20にて制御手段は、プレーン砥石TPに対するツルアTRの相対移動速度Fにおける初期移動速度を設定し、ステップS30に進む。例えば図5に示すツルーイング開始位置Aが、ワークWの円錐面WCの小径部WBiを研削する側(図2参照)である場合、初期移動速度は円錐面WCの大径部WBoを研削する側(図2参照)の移動速度に比べ相対的に高い速度に設定され、ワークWの円錐面WCの大径部WBoを研削する側(図2参照)である場合、初期移動速度は円錐面WCの小径部WBiを研削する側(図2参照)の移動速度に比べ相対的に低い速度に設定される。
[Processing procedure of truing method for plain grinding stone TP (Fig. 7)]
Next, an example of the processing procedure of the truing method of the plain grindstone TP by the control means will be described using the flowchart shown in FIG. The control means executes the processing shown in FIG. 7 when execution of truing is instructed or when a truing timing set in advance is reached.
In step S10, the control means relatively turns and moves (the position shown in FIG. 4) the truer TR with respect to the plain grindstone TP so that the position of the truer TR with respect to the plain grindstone TP becomes the truing start position A. Proceed to step S20.
In step S20, the control means sets an initial movement speed at a relative movement speed F of the truer TR with respect to the plain grindstone TP, and proceeds to step S30. For example, when the truing start position A shown in FIG. 5 is the side for grinding the small diameter portion WBi of the conical surface WC of the workpiece W (see FIG. 2), the initial moving speed is the side for grinding the large diameter portion WBo of the conical surface WC. When the moving speed is set relatively higher than the moving speed (see FIG. 2) and is on the side where the large diameter portion WBo of the conical surface WC of the workpiece W is ground (see FIG. 2), the initial moving speed is the conical surface WC. Is set to a relatively low speed compared to the moving speed on the side (see FIG. 2) for grinding the small-diameter portion WBi.

ステップS30にて制御手段は、設定されている相対移動速度Fで、プレーン砥石TPに対するツルアTRの相対的な位置を移動させてツルーイング(図5に示す状態)し、ステップS40に進む。
ステップS40にて制御手段は、プレーン砥石TPに対する現在のツルアTRの相対的な位置を検出し、ステップS50に進む。
ステップS50にて制御手段は、プレーン砥石TPに対するツルアTRの相対的な位置がツルーイング終了位置B(図5参照)に達しているか否かを判定する。ツルーイング終了位置Bに達している場合(Yes)はステップS70に進み、まだツルーイング終了位置Bまで達していない場合(No)はステップS60に進む。
In step S30, the control means moves the relative position of the truer TR with respect to the plain grindstone TP at the set relative movement speed F to perform truing (the state shown in FIG. 5), and proceeds to step S40.
In step S40, the control means detects the relative position of the current truer TR with respect to the plain grindstone TP, and proceeds to step S50.
In step S50, the control means determines whether or not the relative position of the truer TR with respect to the plain grindstone TP has reached the truing end position B (see FIG. 5). When the truing end position B has been reached (Yes), the process proceeds to step S70, and when the truing end position B has not yet been reached (No), the process proceeds to step S60.

ステップS60に進んだ場合、制御手段は、位置に応じた移動速度を設定し、ステップS30に戻り、ステップS30以降を繰り返す。例えばワークWの円錐面WCの小径部WBiを研削する側から大径部WBoを研削する側へと移動させている場合では、位置に応じて移動速度を徐々にあるいは段階的に遅くしていき(図8の(a)〜(c)参照)、ワークWの円錐面WCの大径部WBoを研削する側から小径部WBiを研削する側へと移動させている場合では、位置に応じて移動速度を徐々にあるいは段階的に速くしていく。
ステップS70に進んだ場合、制御手段は、プレーン砥石TPの位置を初期位置(図1に示す位置)に旋回及び移動させ(初期位置に戻し)、ツルーイング処理を終了する。
When it progresses to step S60, a control means sets the moving speed according to a position, returns to step S30, and repeats step S30 and subsequent steps. For example, in the case where the small diameter portion WBi of the conical surface WC of the workpiece W is moved from the grinding side to the grinding side of the large diameter portion WBo, the moving speed is gradually or stepwise decreased depending on the position. (Refer to (a) to (c) of FIG. 8), in the case where the large diameter portion WBo of the conical surface WC of the workpiece W is moved from the grinding side to the grinding side of the small diameter portion WBi, depending on the position. Increase the moving speed gradually or step by step.
When the process proceeds to step S70, the control means turns and moves the plain grindstone TP to the initial position (position shown in FIG. 1) (returns to the initial position), and ends the truing process.

プレーン砥石TPとツルーイング装置25の相対速度の変化は徐々あるいは段階的に変化させるものである。ここで、プレーン砥石TPとツルーイング装置25の相対速度Fの変化は、図8(a)のようにプレーン砥石TPに対するツルアTRの相対的な位置に応じて逐次変化させるものがより好ましいが、図8(b)のようにプレーン砥石TPに対するツルアTRの相対的な位置が一定距離を移動する毎に段階的に変化させるものでもよい、また、図8(c)のように、二段階に変化させるものであってもよい。   The change in the relative speed of the plain grindstone TP and the truing device 25 is changed gradually or stepwise. Here, it is more preferable that the relative speed F of the plain grindstone TP and the truing device 25 is sequentially changed according to the relative position of the truer TR with respect to the plain grindstone TP as shown in FIG. As shown in FIG. 8 (b), the relative position of the truer TR with respect to the plain grindstone TP may be changed stepwise every time it moves a certain distance, or it changes in two steps as shown in FIG. 8 (c). It may be allowed.

上記ツルーイングを施すことで、プレーン砥石TPの研削面TP1は図6に示すように砥粒の突出量が徐々に変化する表面状態となる。
研削面TP1における砥粒TP2の突き出し量Hは、図6に示すようにワークWの円錐面WCの小径部WBiを研削する側の突き出し量HAが大きく、大径部WBoを研削する側の突き出し量HBが小さくなるようにツルーイングされる。こうして研削面粗さを調整する。
By applying the truing, the grinding surface TP1 of the plain grindstone TP becomes a surface state in which the protruding amount of the abrasive grains gradually changes as shown in FIG.
As shown in FIG. 6, the protrusion amount H of the abrasive grains TP2 on the grinding surface TP1 is large, and the protrusion amount HA on the side where the small diameter portion WBi of the conical surface WC of the workpiece W is ground is large, and the protrusion on the side where the large diameter portion WBo is ground. Truing is performed so that the amount HB becomes small. In this way, the grinding surface roughness is adjusted.

このように、本実施形態によるプレーン砥石TP(回転砥石)のツルーイング方法及びそのツルーイング方法を実施するための研削盤1によれば、ツルーイングする際のツルアTRの相対移動速度を変化させることでプレーン砥石TPの表面状態を変化させることができる。即ち、周速度が遅いワーク回転軸ZWに近い側の位置(小径部WBi側)の円錐面WCを研削するプレーン砥石TPの研削面TP1の研削面粗さより、周速度が速いワーク回転軸ZWに遠い側の位置(大径部WBo側)の円錐面WCを研削するプレーン砥石TPの研削面TP1の研削面粗さを相対的に細かくする。これにより、ワークWの円錐面WCを研削した場合において、円錐面WCのうちワーク回転軸ZWに近い側の位置(小径部WBi側)と、円錐面WCのうちワーク回転軸ZWに遠い側の位置(大径部WBo側)で、仕上げ面粗さの差をより小さくすることができる。また、プレーン砥石TPの研削面TP1(回転砥石の外周面に相当)におけるプレーン砥石TPの軸方向の長さを、ワークWの円錐面WCの母線WLの長さと略等しくすることで、円錐面WCにプレーン砥石TPの外周面を当接させて研削する際は、円錐面WCの母線WL方向にプレーン砥石TPを相対的に移動させることなく研削することができるので効率よくワークWを加工できる。
また、ツルーイングする際のツルアTRの相対移動速度を徐々に変化させることで、プレーン砥石TPの研削面粗さを徐々に変化させ、ワークWの円錐面WCをより一層均一な仕上げ面粗さとすることができる。
また、砥石を円筒形状のプレーン砥石TPとすることで、研削面TP1の周方向に配置される砥粒数の差が生じにくい。そのため、砥粒TP2の密度の差を考慮する必要がなく、プレーン砥石TPの研削面TP1の研削面粗さを調整することで、ワークWの円錐面WCの仕上げ面粗さを調整することが可能であり、ワークWの円錐面WCをより一層均一な仕上げ面粗さとすることができる。
また、ワークWの円錐面WCを研削した場合において、円錐面WCのうちワーク回転軸ZWに近い側の位置(小径部WBi側)と、円錐面WCのうちワーク回転軸ZWに遠い側の位置(大径部WBo側)で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークWを加工できる研削盤1を得ることができる。
As described above, according to the truing method of the plain grindstone TP (rotary grindstone) and the grinder 1 for carrying out the truing method according to the present embodiment, the plane can be changed by changing the relative movement speed of the true TR during truing. The surface state of the grindstone TP can be changed. In other words, the workpiece rotation axis ZW has a higher peripheral speed than the grinding surface roughness of the grinding surface TP1 of the plain grindstone TP that grinds the conical surface WC on the side closer to the workpiece rotation axis ZW (the small diameter portion WBi side). The grinding surface roughness of the grinding surface TP1 of the plain grindstone TP that grinds the conical surface WC at the far side (large diameter portion WBo side) is made relatively fine. As a result, when the conical surface WC of the workpiece W is ground, the position of the conical surface WC closer to the workpiece rotation axis ZW (the small diameter portion WBi side) and the side of the conical surface WC farther from the workpiece rotation axis ZW. The difference in the finished surface roughness can be further reduced at the position (large diameter portion WBo side). Further, the length of the plain grindstone TP in the axial direction on the grinding surface TP1 (corresponding to the outer peripheral surface of the rotating grindstone) of the plain grindstone TP is made substantially equal to the length of the generatrix WL of the conical surface WC of the workpiece W. When grinding by bringing the outer peripheral surface of the plain grindstone TP into contact with the WC, it is possible to grind the workpiece W efficiently without moving the plain grindstone TP relatively in the direction of the generatrix WL WC. .
Also, by gradually changing the relative movement speed of the truer TR during truing, the grinding surface roughness of the plain grindstone TP is gradually changed, and the conical surface WC of the workpiece W is made to have a more uniform finished surface roughness. be able to.
Moreover, the difference in the number of abrasive grains arranged in the circumferential direction of the grinding surface TP1 is less likely to occur by using a cylindrical plain grinding stone TP as the grinding stone. Therefore, it is not necessary to consider the difference in density of the abrasive grains TP2, and the finished surface roughness of the conical surface WC of the workpiece W can be adjusted by adjusting the grinding surface roughness of the grinding surface TP1 of the plain grindstone TP. This is possible, and the conical surface WC of the workpiece W can be made to have a more uniform finished surface roughness.
Further, when the conical surface WC of the workpiece W is ground, the position on the conical surface WC closer to the work rotation axis ZW (small diameter portion WBi side) and the position on the conical surface WC farther from the work rotation axis ZW. On the (large diameter portion WBo side), it is possible to obtain a grinding machine 1 that can further reduce the difference in finished surface roughness and that can process the workpiece W more efficiently.

以上、本発明の実施形態を説明したが、本発明の回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤は、本実施の形態に限定されず、この発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。
例えば、本実施形態では、回転砥石のツルーイング方法は、プレーン砥石TPを例示して説明したが、アンギュラ砥石であっても適用可能である。
また、本実施形態では、X軸方向においてはワークWに対してプレーン砥石TPを移動可能な構成として、Z軸方向においてはプレーン砥石TPに対してワークWを移動可能な構成とした例を示しているが、ワークWに対してプレーン砥石TPを相対的にX軸方向及びZ軸方向に移動可能(XZ平面(相対移動平面に相当)上を移動可能)な構成であればよい。
また、本実施形態にて説明した研削盤1では、旋回台12上にプレーン砥石TPを備えた例を示したがこれに限定されず、旋回台上にプレーン砥石とアンギュラ砥石を適切な位置に配置した複合研削盤であってもよい。これによれば、ワークの円錐面以外の種々の部位についても研削を施すことができる。
本実施形態にて説明した研削盤1では、各砥石の支持方法が片持ち式の例を示しているが、両持ち式で砥石を支持してもよい。
なお、砥石の形状や構成、及びワークWの形状は、本実施の形態にて説明したものに限定されるものではない。
As mentioned above, although embodiment of this invention was described, the grinding machine for implementing the truing method of the rotary grindstone of this invention and its truing method is not limited to this embodiment, The range which does not deviate from the summary of this invention It can also be implemented in various forms.
For example, in the present embodiment, the truing method of the rotating grindstone has been described by exemplifying the plain grindstone TP. However, even an angular grindstone is applicable.
In the present embodiment, an example is shown in which the plain grindstone TP is movable with respect to the workpiece W in the X-axis direction and the workpiece W is movable with respect to the plain grindstone TP in the Z-axis direction. However, the plain grindstone TP may be moved relative to the workpiece W in the X-axis direction and the Z-axis direction (movable on the XZ plane (corresponding to the relative movement plane)).
Moreover, in the grinding machine 1 demonstrated in this embodiment, although the example provided with the plain grindstone TP on the turntable 12 was shown, it is not limited to this, A plain grindstone and an angular grindstone are put on an appropriate position on a turntable. It may be a combined grinding machine. According to this, it can grind also about various site | parts other than the conical surface of a workpiece | work.
In the grinding machine 1 described in the present embodiment, an example in which the method for supporting each grindstone is a cantilever type is shown, but the grindstone may be supported by a double-sided type.
Note that the shape and configuration of the grindstone and the shape of the workpiece W are not limited to those described in the present embodiment.

1 研削盤
10 基台
11 主軸テーブル
12 旋回台
13 旋回モータ
11M Z軸駆動モータ
11E 位置検出手段
12M X軸駆動モータ
12E 位置検出手段
20 主軸台
21 センタ部材
22 主軸
25 ツルーイング装置
30 心押台
31 センタ部材
32 心押軸
50 プレーン砥石装置
50B ベルト
TP プレーン砥石(回転砥石)
TP1 研削面(回転砥石の外周面)
TP2 砥粒
H 突き出し量
HA 突き出し量
HB 突き出し量
W ワーク
WC 円錐面
WA 軸部
WB 円板部
WBi 小径部
WBo 大径部
WC 円錐面
Di 直径
Do 直径
WL 母線
Wθ 角度
ZS 旋回軸
ZW ワーク回転軸
ZTP 砥石回転軸
ZTR ツルア回転軸
TR ツルア
TR1 ツルア面
F 相対移動速度
A ツルーイング開始位置
B ツルーイング終了位置
DESCRIPTION OF SYMBOLS 1 Grinding machine 10 Base 11 Spindle table 12 Swivel table 13 Swivel motor 11M Z-axis drive motor 11E Position detection means 12M X-axis drive motor 12E Position detection means 20 Spindle base 21 Center member 22 Spindle 25 Truing device 30 Tailstock 31 Center Member 32 Tailstock 50 Plain grinding wheel device 50B Belt TP Plain grinding wheel (Rotating grinding wheel)
TP1 grinding surface (outer peripheral surface of rotating wheel)
TP2 Abrasive grain H Protrusion amount HA Protrusion amount HB Protrusion amount W Workpiece WC Conical surface WA Shaft portion WB Disc portion WBi Small diameter portion WBo Large diameter portion WC Conical surface Di Diameter Do Diameter WL Busbar Wθ Angle ZS Rotating axis ZW Workpiece rotation axis ZW Wheel rotation axis ZTR Truer rotation axis TR Truer TR1 Truer surface F Relative movement speed A Truing start position B Truing end position

Claims (4)

回転砥石の外周面における当該回転砥石の軸方向の長さを、ワークの円錐面の母線の長さと略等しくすることで、前記円錐面に前記回転砥石の外周面を当接させて研削する際は、前記円錐面の母線方向に前記回転砥石を相対的に移動させることなく研削する研削盤において、
ワーク回転軸に対して前記円錐面を有するワークを前記ワーク回転軸回りに回転させながら、前記ワークの円錐面に、研削盤の回転砥石の外周面を当接させて前記円錐面を研削するための前記回転砥石をツルアを用いてツルーイングする、回転砥石のツルーイング方法であって、
前記回転砥石の外周面における当該回転砥石の軸方向の一端側から他端側に向けて、前記回転砥石に対する前記ツルアの位置を、前記回転砥石の外周面に沿って相対的に移動させながら前記回転砥石の外周面をツルーイングする際に、
前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度よりも、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度を遅くする、
回転砥石のツルーイング方法。
When grinding with the outer peripheral surface of the rotating grindstone coming into contact with the conical surface by making the axial length of the outer surface of the rotating grindstone substantially equal to the length of the generatrix of the conical surface of the workpiece Is a grinding machine that performs grinding without relatively moving the rotating grindstone in the generatrix direction of the conical surface,
Grinding the conical surface by rotating the work having the conical surface around the work rotation axis around the work rotation axis while bringing the outer peripheral surface of the grinding wheel of the grinding machine into contact with the conical surface of the work A truing method for a rotating grindstone, wherein the rotating grindstone is trued using a truer.
While relatively moving the position of the truer relative to the rotating grindstone along the outer peripheral surface of the rotating grindstone from one end side to the other end side in the axial direction of the rotating grindstone on the outer peripheral surface of the rotating grindstone, When truing the outer peripheral surface of the rotating whetstone,
The outer periphery of the rotating grindstone that grinds the large diameter portion of the conical surface of the workpiece than the relative movement speed of the truer when the position of the outer peripheral surface of the rotating grindstone that grinds the small diameter portion of the conical surface of the workpiece is true. Slow down the relative movement speed of the truer when truing the surface position;
The truing method of a rotating whetstone.
請求項1に記載の回転砥石のツルーイング方法であって、
前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に遅くする、
あるいは、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に速くする、
回転砥石のツルーイング方法。
A truing method for a rotating grindstone according to claim 1,
Relative movement of the truer from the position of the outer peripheral surface of the rotating grindstone that grinds the small diameter portion of the conical surface of the work toward the position of the outer peripheral surface of the rotating grindstone that grinds the large diameter portion of the conical surface of the work And gradually reduce the relative movement speed of the truer.
Alternatively, from the position of the outer peripheral surface of the rotating grindstone that grinds the large diameter portion of the conical surface of the workpiece, toward the position of the outer peripheral surface of the rotating grindstone that grinds the small diameter portion of the conical surface of the workpiece, The relative movement speed is gradually increased while the relative movement speed is gradually increased.
The truing method of a rotating whetstone.
請求項1または請求項2に記載の回転砥石のツルーイング方法であって、
前記回転砥石は、円筒形状のプレーン砥石である、
回転砥石のツルーイング方法。
A truing method for a rotating grindstone according to claim 1 or 2,
The rotating grindstone is a cylindrical plain grindstone,
The truing method of a rotating whetstone.
回転砥石と、前記回転砥石をツルーイングするツルアと、制御手段とを有し、前記制御手段の指令に基づき、請求項1〜3のいずれかに記載の回転砥石のツルーイング方法を実行する研削盤。
A grinding machine having a rotary grindstone, a truer for truing the rotary grindstone, and a control means, and executing the truing method for the rotary grindstone according to any one of claims 1 to 3 based on a command from the control means.
JP2013073593A 2013-03-29 2013-03-29 Truing method for rotating wheel and grinding machine for carrying out the truing method Active JP6127657B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013073593A JP6127657B2 (en) 2013-03-29 2013-03-29 Truing method for rotating wheel and grinding machine for carrying out the truing method
DE112014001748.5T DE112014001748T5 (en) 2013-03-29 2014-03-27 Abrasive wheel dressing method and grinding machine for carrying out a dressing method
PCT/JP2014/058791 WO2014157490A1 (en) 2013-03-29 2014-03-27 Method for truing rotary grindstone and grinding machine for implementing method for truing
CN201480019385.4A CN105073341B (en) 2013-03-29 2014-03-27 For repairing the method for spinning mill and grinder for implementing dressing method
US14/781,105 US20160059381A1 (en) 2013-03-29 2014-03-27 Grinding wheel truing method and grinding machine for carrying out truing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073593A JP6127657B2 (en) 2013-03-29 2013-03-29 Truing method for rotating wheel and grinding machine for carrying out the truing method

Publications (2)

Publication Number Publication Date
JP2014195862A true JP2014195862A (en) 2014-10-16
JP6127657B2 JP6127657B2 (en) 2017-05-17

Family

ID=51624452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073593A Active JP6127657B2 (en) 2013-03-29 2013-03-29 Truing method for rotating wheel and grinding machine for carrying out the truing method

Country Status (5)

Country Link
US (1) US20160059381A1 (en)
JP (1) JP6127657B2 (en)
CN (1) CN105073341B (en)
DE (1) DE112014001748T5 (en)
WO (1) WO2014157490A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017108675A1 (en) * 2016-04-28 2017-11-02 Jtekt Corporation grinding system
CN110188501B (en) * 2019-06-06 2022-10-11 厦门理工学院 Method for determining roughness of circumferential surface of transversely-ground excircle
CN111716251B (en) * 2020-06-28 2021-10-26 上海理工大学 Method for optimizing finishing process of precision bearing grinding diamond roller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163048A (en) * 1981-04-01 1982-10-07 Toshiba Corp Machining method of peripheral surface of electric power element
US4480410A (en) * 1982-09-15 1984-11-06 Cen-T-Lap Corp. Precision center lapping apparatus and method
JPS63306878A (en) * 1987-06-02 1988-12-14 Koyo Seiko Co Ltd Machining method for tapered roller bearing inner ring
JP2005534509A (en) * 2002-07-30 2005-11-17 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for grinding rotationally symmetric mechanical parts
JP2013240871A (en) * 2012-05-22 2013-12-05 Honda Motor Co Ltd Method of dressing rotary grinding wheel, rotary grinding wheel, and grinding method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834149C2 (en) * 1978-08-04 1982-08-12 Dieter Dr.-Ing. 7505 Ettlingen Wiener Dressing device for a device working with a cup grinding wheel for grinding spiral-toothed bevel gears
CH671912A5 (en) * 1987-01-25 1989-10-13 Tschudin Werkzeugmasch
DE3811782A1 (en) * 1987-12-23 1989-07-06 Fortuna Werke Maschf Ag METHOD FOR DRESSING GRINDING WHEELS
CN2156983Y (en) * 1993-04-24 1994-02-23 大连机床厂 Honing wheel dressing device
JP3598534B2 (en) * 1994-04-28 2004-12-08 豊田工機株式会社 Aspherical surface processing equipment
US6123605A (en) * 1997-02-20 2000-09-26 Koyo Machine Industries Company Ltd. Dressing device for centerless grinding machine and dressing method for centerless grinding machine
JP3937148B2 (en) * 2002-04-03 2007-06-27 日本精工株式会社 Centerless grinding apparatus and centerless grinding method
CN2579603Y (en) * 2002-12-03 2003-10-15 汕头大学 Repairing device for grinder emery wheel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163048A (en) * 1981-04-01 1982-10-07 Toshiba Corp Machining method of peripheral surface of electric power element
US4480410A (en) * 1982-09-15 1984-11-06 Cen-T-Lap Corp. Precision center lapping apparatus and method
JPS63306878A (en) * 1987-06-02 1988-12-14 Koyo Seiko Co Ltd Machining method for tapered roller bearing inner ring
JP2005534509A (en) * 2002-07-30 2005-11-17 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for grinding rotationally symmetric mechanical parts
JP2013240871A (en) * 2012-05-22 2013-12-05 Honda Motor Co Ltd Method of dressing rotary grinding wheel, rotary grinding wheel, and grinding method

Also Published As

Publication number Publication date
CN105073341B (en) 2017-10-13
WO2014157490A1 (en) 2014-10-02
US20160059381A1 (en) 2016-03-03
CN105073341A (en) 2015-11-18
DE112014001748T5 (en) 2015-12-17
JP6127657B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
KR101442568B1 (en) Method of grinding an indexable insert and grinding wheel for carrying out the grinding method
JP2009255186A (en) Grinder and grinding method
KR102542334B1 (en) Method and grinding machine for grinding grooved workpieces
JP6127657B2 (en) Truing method for rotating wheel and grinding machine for carrying out the truing method
JP4140574B2 (en) Method and apparatus for grinding a cam having a concave surface
JP2011083875A (en) Composite grinder
JP3878519B2 (en) Grinding method
JP6776660B2 (en) Center and grinder
JP5425570B2 (en) Processing method and apparatus for trunnion of tripod type constant velocity joint
JP5326661B2 (en) Grinding wheel forming method
CN106956217B (en) Shaper, shaping device provided with same, grinding device and shaping method
JP2015077650A (en) Truing method and truing device
JP4929790B2 (en) Truing method of grinding wheel
JP5668486B2 (en) Truing method and grinding machine
JP2010284775A (en) Method for manufacturing regulating wheel for centerless grinding, regulating wheel, and method for manufacturing conical roller
JP5262577B2 (en) Grinding method and grinding machine
JP5206194B2 (en) Truing method and truing device for grinding wheel
JP6561596B2 (en) Cutting apparatus and cutting method
JP5326662B2 (en) Grinding wheel forming apparatus, grinding machine and grinding wheel forming method
JP2011104676A (en) Grinding wheel shaping machine and method for manufacturing grinding wheel by using the same
JP3834493B2 (en) Compound grinding method and apparatus
JP2003181748A (en) Grinding method for work having end face in inside diameter and grinding device
JPH06134668A (en) Grinding machine
JP2024008635A (en) Surface grinder and grinding method
JPH04240061A (en) Method and device for machining small hole internal surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170327

R150 Certificate of patent or registration of utility model

Ref document number: 6127657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150