JP2010284775A - Method for manufacturing regulating wheel for centerless grinding, regulating wheel, and method for manufacturing conical roller - Google Patents

Method for manufacturing regulating wheel for centerless grinding, regulating wheel, and method for manufacturing conical roller Download PDF

Info

Publication number
JP2010284775A
JP2010284775A JP2009142246A JP2009142246A JP2010284775A JP 2010284775 A JP2010284775 A JP 2010284775A JP 2009142246 A JP2009142246 A JP 2009142246A JP 2009142246 A JP2009142246 A JP 2009142246A JP 2010284775 A JP2010284775 A JP 2010284775A
Authority
JP
Japan
Prior art keywords
manufacturing
groove
cutting
adjustment
thread groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009142246A
Other languages
Japanese (ja)
Other versions
JP5538754B2 (en
Inventor
Kohei Higashi
晃平 東
Noriyuki Sugidachi
教志 杉立
Hidekazu Hirano
秀和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009142246A priority Critical patent/JP5538754B2/en
Publication of JP2010284775A publication Critical patent/JP2010284775A/en
Application granted granted Critical
Publication of JP5538754B2 publication Critical patent/JP5538754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a regulating wheel for centerless grinding, in which processing equipment cost can be reduced, the various regulating wheels can be easily and efficiently processed in accordance with a leading of a screw, a width and an angle of a bottom surface of the screw or the like, and desired processing accuracy can be obtained, and to provide the regulating wheel, and a method for manufacturing a conical roller. <P>SOLUTION: In the regulating wheel 1 for centerless grinding, a spirally continuing leading screw groove 2 is provided around an outer periphery, the bottom surface 2a of each round of the screw groove 2 forms a conical part, a flange 3 is provided between the conical parts. In the method for manufacturing the regulating wheel 1, the regulating wheel 1 is driven to rotate around an axial center L1 of the regulating wheel, and a conical workpiece is brought into rolling contact with the bottom surface 2a of the screw groove 2. In finishing step to finish the bottom surface 2a of the screw groove 2, with a numerically-controlled lathe 4, the bottom surface 2a of the screw groove 2 is sequentially finished part by part in an axial direction by using a cutting tool 5 with a cutting edge having an axial width of the part of the bottom surface 2a of the screw groove 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、例えば、自動車用軸受、産業機械用軸受等として使用される円錐ころ軸受の円錐ころの製造に用いられるセンタレス研削用調整車の製造方法、調整車、円錐ころの製作方法に関する。   The present invention relates to a method for manufacturing an adjustment wheel for centerless grinding used for manufacturing a tapered roller of a tapered roller bearing used as a bearing for an automobile, an industrial machine, or the like, an adjustment wheel, and a method for manufacturing a tapered roller.

円錐ころの外径をセンタレス研削盤によりスルーフィード方式で研削する技術が実用に供されている(特許文献1)。一般的にセンタレス研削盤にて図13に示すスルーフィード方式で円錐ころWrの外径を加工する場合、砥石20に対し円錐ころWrに推進力と回転力とを同時に与える必要がある。このため、金属製のねじ付き調整車21が使用される。これと同様に、外径面に曲率を持つクラウニング円錐ころWrを加工するには、図14に示すように、曲率22を持ったクラウニング型ねじ付き調整車23を使い、砥石20に対して意図的に円錐ころWrの姿勢を変化させながら円錐ころ外径にクラウニングが転写されるように研削を行う。   A technique for grinding the outer diameter of a tapered roller by a through-feed method using a centerless grinding machine has been put into practical use (Patent Document 1). In general, when the outer diameter of the tapered roller Wr is machined by the through-feed method shown in FIG. 13 using a centerless grinding machine, it is necessary to apply a propulsive force and a rotational force to the tapered roller Wr simultaneously to the grindstone 20. For this reason, a metal screwed adjustment wheel 21 is used. Similarly, in order to process the crowned tapered roller Wr having a curvature on the outer diameter surface, as shown in FIG. Thus, grinding is performed so that the crowning is transferred to the outer diameter of the tapered roller while changing the posture of the tapered roller Wr.

通常、この調整車のねじ部の断面形状は、図15に示すように、円錐ころWrの頂角θw、長さLw、平均直径Daに応じたねじ底24、鍔25、ねじ山26で構成される一定のリード27を持つ複合形状をしたねじになっている。特に、クラウニング型調整車は、調整車全体の曲率28に対してねじ底面の角度が常に一定になる特殊形状をしている。
従来この調整車の加工は、図16に示すように、研削盤を使い、調整車のリードに合わせて砥石29を同図矢符30に表記するように傾け、またねじ底面の角度θ1、幅31に合うように砥石29を修正している。このような砥石29の修正等を行ったうえで、直線送り型調整車は一軸方向に、クラウニング送り型調整車は、図17に示すように直線移動に加え砥石台を同図矢符33に表記するように旋回させながら、多量の研削液32を調整車および砥石29にかけて加工している。
Normally, the cross-sectional shape of the threaded portion of the adjusting wheel is composed of a screw bottom 24, a flange 25, and a thread 26 corresponding to the apex angle θw, length Lw, and average diameter Da of the tapered roller Wr, as shown in FIG. It is a screw having a composite shape having a certain lead 27. In particular, the crowning type adjustment wheel has a special shape in which the angle of the screw bottom is always constant with respect to the curvature 28 of the entire adjustment wheel.
Conventionally, as shown in FIG. 16, this adjusting wheel is processed by using a grinder and tilting the grindstone 29 in accordance with the lead of the adjusting wheel as indicated by an arrow 30 in FIG. The grindstone 29 is modified to match 31. After such correction of the grindstone 29, etc., the linear feed type adjusting wheel is uniaxially oriented, and the crowning feed type adjusting wheel is moved to the arrow 33 in FIG. A large amount of the grinding fluid 32 is applied to the adjustment wheel and the grindstone 29 while turning as shown.

特許第3871015号公報Japanese Patent No. 3871015

従来、調整車の加工に使用しているねじ研削盤は、多様な機械要素で構成されており、非常に高額な加工設備であると共に、安定した品質の調整車精度を得るには、熟練した操作技術が必要であった。ねじ研削盤でのねじ式調整車の加工は、ねじのリード、ねじ底面の幅、角度に応じた多種の砥石が必要であり、その都度砥石交換や砥石の修正等の段取り替えが必要であった。
また、ねじ部のヌスミ、溝をねじ研削盤で加工することはできず、必要に応じて調整車を、ヌスミまたは溝加工用の他の加工機に載せ換えて加工していた。
Conventionally, screw grinders used for processing of adjustment vehicles are composed of various machine elements, are very expensive processing equipment, and are skilled in obtaining adjustment vehicle accuracy with stable quality. Operation skills were required. The processing of a screw-type adjusting wheel on a screw grinder requires various types of grinding wheels according to the screw lead, the width of the screw bottom, and the angle. It was.
Further, the threaded portion of the thread and groove cannot be machined by a screw grinder, and the adjustment wheel is mounted on another machine for machining the groove or groove as necessary.

この発明の目的は、加工設備の低減を図ることができ、且つ、ねじのリード、ねじ底面の幅、角度等に応じた種々な調整車を容易に且つ能率良く加工することができ、所望の加工精度を得ることができるセンタレス研削用調整車の製造方法、調整車、円錐ころの製作方法を提供することである。   The object of the present invention is to reduce the processing equipment and to easily and efficiently process various adjustment wheels according to the screw lead, the screw bottom width, the angle, etc. It is to provide a manufacturing method of a centerless grinding adjusting wheel, a adjusting wheel, and a method of manufacturing a tapered roller capable of obtaining machining accuracy.

この発明のセンタレス研削用調整車の製造方法は、センタレス研削用の調整車であって、螺旋状に続く案内用のねじ溝を外周に有し、このねじ溝の各周の底面が円錐形状部を成し、円錐形状部間に鍔部を有し、調整車軸芯回りに回転駆動されて円錐形状ワークを前記ねじ溝の底面に転接させる調整車を製造する方法において、前記ねじ溝を有しこのねじ溝の底面の仕上げ加工が未加工の調整車である未完調整車を製造する仕上げ未完調整車製造過程と、前記未完調整車の前記ねじ溝の底面を仕上げ加工する仕上げ過程とを含み、前記仕上げ過程は、数値制御式の旋盤により、切削工具を用いて、前記ねじ溝の底面を軸方向の一部ずつ順次仕上げ加工することを特徴とする。   The centerless grinding adjusting wheel manufacturing method according to the present invention is a centerless grinding adjusting wheel having a guide thread groove on the outer periphery that follows a spiral shape, and the bottom surface of each periphery of the thread groove is a conical portion. In which the screw groove is provided in a method for manufacturing an adjustment wheel that is rotationally driven around the adjustment axle shaft and causes the cone-shaped workpiece to roll-contact with the bottom surface of the screw groove. The finishing process of the bottom surface of the screw groove includes a finishing incompletely adjusted vehicle manufacturing process for manufacturing an incompletely adjusted vehicle that is an unfinished adjusting vehicle, and a finishing process for finishing the bottom surface of the threaded groove of the incompletely adjusted vehicle. The finishing process is characterized in that the bottom surface of the thread groove is sequentially finished by a part in the axial direction by a numerically controlled lathe using a cutting tool.

この構成によると、ねじ溝の底面の仕上げ加工が未加工の未完調整車を製造した後、この未完調整車のねじ溝の底面を仕上げ加工する。このねじ溝の底面を仕上げ加工する過程において、数値制御式の旋盤つまりNC(Numerical Controlled )旋盤により、例えば、ねじ溝の底面の一部の軸方向幅を有する切刃を有する切削工具を用いて、前記ねじ溝の底面を軸方向の一部ずつ順次仕上げ加工する。   According to this configuration, after manufacturing the incompletely adjusted vehicle in which the bottom processing of the thread groove is not processed, the bottom surface of the thread groove of the incompletely adjusted vehicle is finished. In the process of finishing the bottom surface of the thread groove, a numerically controlled lathe, that is, an NC (Numerical Controlled) lathe, is used, for example, with a cutting tool having a cutting edge having a partial axial width of the bottom surface of the thread groove. Then, the bottom surface of the thread groove is sequentially finished part by part in the axial direction.

上記のように、軸方向の一部ずつ順次仕上げ加工するため、分割幅を適宜細かく設定すれば、切削工具によっても溝底面を平滑に仕上げることができる。工具位置を順次変更して加工を繰り返す多数回の工程が必要となるが、数値制御式の旋盤には、ねじ切りサイクルの機能が標準機能として一般的に備えられており、そのねじ切りサイクルの機能を利用することで、煩雑なプログラム作成を行うことなく、容易に加工することができる。
この方法によると、ねじのリード、ねじ底面の幅、角度等に応じた多種の砥石を準備する必要がなく、また砥石の段取り替え等が不要となる。この方法では、ねじ溝の形状に沿った工具を用いる必要がなく、汎用の切削工具を使用し得る。それ故、種々の形状の調整車に対する汎用性を高めることができ、多品種の調整車にも容易に対応することができ、しかも砥石の段取り替え等が不要となる分、調整車製造の稼働率を高めることができる。この場合、従来の製造方法よりも調整車の加工費用を低減でき、よって円錐ころのコスト低減を図ることが可能となる。また、この発明の製造方法によると、従来のねじ研削調整車と同等の加工精度が得られることが実証された。
As described above, since the finishing is sequentially performed partly in the axial direction, the groove bottom can be smoothly finished even with a cutting tool if the division width is set to be fine. Although it is necessary to change the tool position in sequence and repeat the machining many times, numerically controlled lathes are generally equipped with a threading cycle function as a standard function. By using it, it can be easily processed without creating a complicated program.
According to this method, it is not necessary to prepare various types of grindstones according to screw leads, screw bottom widths, angles, and the like, and it is not necessary to replace the grindstones. In this method, it is not necessary to use a tool along the shape of the thread groove, and a general-purpose cutting tool can be used. Therefore, the versatility of various types of adjustment vehicles can be improved, and it can be easily applied to a variety of adjustment vehicles. The rate can be increased. In this case, the processing cost of the adjustment vehicle can be reduced as compared with the conventional manufacturing method, and therefore the cost of the tapered roller can be reduced. Further, according to the manufacturing method of the present invention, it has been proved that processing accuracy equivalent to that of a conventional screw grinding wheel can be obtained.

前記仕上げ過程は、切削工具を未完調整車に対して相対移動させて加工を行う加工サイクルを繰り返す過程とし、前記加工サイクルは、切削工具を未完調整車から離れた待機位置からねじ溝の一端または延長位置における切削送り開始位置へ前進させる接近過程と、回転する未完調整車のねじ溝内面のねじ溝リードによる軸方向移動速度に合致した速度で前記切削工具を未完調整車のねじ溝の他端または延長位置となる切削送り終了位置まで軸方向に、または軸方向および径方向に移動させてねじ溝の底面の溝幅の一部を切削する切削送り過程と、前記切削送り終了位置から未完調整車に対して離れる後退位置へ切削工具を相対的に移動させ、前記後退位置から前記待機位置へ切削工具を戻す戻し過程とでなり、各加工サイクルの相互間で前記切削送り開始位置を、ねじ溝の溝幅方向の一端から他端側へ所定の開始位置変化経路に沿って所定シフト量ずつ変化させるものであっても良い。   The finishing process is a process of repeating a machining cycle in which machining is performed by moving the cutting tool relative to the incompletely adjusted vehicle, and the machining cycle includes one end of the screw groove or the end of the thread groove from a standby position away from the incompletely adjusted vehicle. The cutting tool is moved to the cutting feed start position in the extended position and the other end of the screw groove of the unfinished adjustment car at a speed that matches the axial movement speed of the screw groove lead on the inner surface of the screw groove of the rotating incomplete adjustment car. Or a cutting feed process in which a part of the groove width of the bottom surface of the thread groove is cut by moving axially or axially and radially to the cutting feed end position as an extended position, and incomplete adjustment from the cutting feed end position This is a process of moving the cutting tool relative to the retracted position away from the vehicle and returning the cutting tool from the retracted position to the standby position. Cutting feed start position may be one that changes by a predetermined shift amount along a predetermined start position change path from the groove width direction of the end of the thread groove to the other end side.

加工サイクルでは、接近過程において、切削工具を待機位置から切削送り開始位置へ前進させる。切削送り過程では、ねじ溝リードによる軸方向移動速度に合致した速度で、切削工具を切削送り終了位置まで軸方向に径方向移動成分を加えて、または径方向移動成分無しに移動させてねじ溝を切削する。戻し過程では、切削工具を切削送り終了位置から後退位置へ相対的に移動させる。その後、切削工具を後退位置から切削送り開始位置へ戻す。この加工サイクルにおいて、各加工サイクルの相互間で切削送り開始位置を、ねじ溝の溝幅方向の一端から他端側へ所定の開始位置変化経路に沿って所定シフト量ずつ変化させる。この所定シフト量を可能な限り小さくすることで、ねじ溝の底面の粗さを改善し、研削面に近い平面精度を実現する。   In the machining cycle, the cutting tool is advanced from the standby position to the cutting feed start position in the approaching process. In the cutting feed process, the cutting tool is moved at a speed matching the axial movement speed of the thread groove lead to the cutting feed end position by adding a radial movement component in the axial direction or without a radial movement component. To cut. In the returning process, the cutting tool is relatively moved from the cutting feed end position to the retracted position. Thereafter, the cutting tool is returned from the retracted position to the cutting feed start position. In this machining cycle, the cutting feed start position is changed by a predetermined shift amount along a predetermined start position changing path from one end to the other end side in the groove width direction of the thread groove between the respective machining cycles. By reducing this predetermined shift amount as much as possible, the roughness of the bottom surface of the thread groove is improved, and the planar accuracy close to the grinding surface is realized.

上記のねじ溝リードに合致した速度で切削工具を移動させる制御は、数値制御式の旋盤が一般に備えるねじ切り機能を利用することで、煩雑なプログラム作成を行うことなく実施することができる。すなわち、旋盤の数値制御装置は、ねじ溝のリードと主軸の回転速度とが入力されることで、工具の移動速度が制御されるようにしたねじ切り機能が備えられており、その機能を利用することにより、工具の移動速度は、特に命令を与えることなく制御される。   Control for moving the cutting tool at a speed that matches the above-described thread groove lead can be carried out without creating a complicated program by using a thread cutting function that is generally provided in a numerically controlled lathe. That is, the numerical control device of a lathe is provided with a thread cutting function in which the moving speed of the tool is controlled by inputting the lead of the thread groove and the rotational speed of the spindle, and uses this function. Thus, the moving speed of the tool is controlled without giving a specific command.

前記調整車をこの調整車軸芯を含む仮想平面で切断した断面について、前記ねじ溝の各周の軸方向同一箇所を調整車軸芯方向に沿って繋ぐ包絡線が、直線であり、前記切削送り過程では前記直線の包絡線に沿って前記切削工具を移動させるものであっても良い。この場合、加工サイクルのうち、切削工具を切削送り開始位置から切削送り終了位置まで軸方向に移動させる経路が直線の包絡線に沿った経路となる。   With respect to a cross section obtained by cutting the adjustment wheel along a virtual plane including the adjustment axle, an envelope connecting the same axial direction of each circumference of the thread groove along the adjustment axle is a straight line, and the cutting feed process Then, the cutting tool may be moved along the straight envelope. In this case, in the machining cycle, a path along which the cutting tool is moved in the axial direction from the cutting feed start position to the cutting feed end position is a path along the straight envelope.

前記調整車をこの調整車軸芯を含む仮想平面で切断した断面について、前記ねじ溝の各周の軸方向同一箇所を調整車軸芯方向に沿って繋ぐ包絡線が、調整車軸芯方向にわたり径方向外方に突出するクラウニング曲線であり、前記切削送り過程では前記クラウニング曲線の包絡線に沿って前記切削工具を移動させるものであっても良い。この場合、切削工具を切削送り開始位置から切削送り終了位置まで軸方向に移動させる経路がクラウニング曲線の包絡線に沿った経路となる。   With respect to a cross section of the adjustment wheel cut along a virtual plane including the adjustment axle core, an envelope connecting the same axial position of each circumference of the thread groove along the adjustment axle axis direction is radially outside the adjustment axle axis direction. It may be a crowning curve protruding in the direction, and the cutting tool may be moved along an envelope of the crowning curve in the cutting feed process. In this case, a path along which the cutting tool is moved in the axial direction from the cutting feed start position to the cutting feed end position is a path along the envelope of the crowning curve.

前記切削工具の切刃が凸曲線形状であっても良い。切刃先端が凸曲線形状となる切削工具を、ねじ溝の底面に沿って軸方向の一部ずつ順次仕上げ加工することで、実用上で平面とみなせる面である仮想的平面を成形することができる。この場合、工具形状を転写させる加工方法に比べて、ねじ溝の種々の形状を効率良く加工することができる。換言すれば、ねじ溝の形状に対する汎用性を高めることができる。   The cutting blade of the cutting tool may have a convex curve shape. By cutting a cutting tool with a convex curve at the tip of the cutting edge, partly in the axial direction along the bottom surface of the thread groove, a virtual flat surface that can be regarded as a flat surface in practice can be formed. it can. In this case, various shapes of the thread groove can be efficiently processed as compared with the processing method of transferring the tool shape. In other words, versatility with respect to the shape of the thread groove can be enhanced.

前記仕上げ過程は、前記ねじ溝の底面の仕上げ加工の他に、鍔部の端面、および鍔部の外周面の仕上げ加工を含み、これら底面、鍔部の端面、および鍔部の外周面の仕上げ加工を、互いに分離して順次行うものとしても良い。例えば、ねじ溝の底面を一つの切削工具で軸方向に沿って順次仕上げ加工する。この底面の仕上げ加工とは別に、鍔部の端面を軸方向に沿って順次加工する。これら底面、鍔部端面の加工とは別に、ねじ山だけを軸方向に沿って順次加工する。この場合、各周の底面、鍔部の端面、ねじ山を順次加工していくよりも、例えば切削工具の切替回数等の低減を図り、加工サイクルのサイクルタイムの短縮を図ることが可能となる。したがって、加工時間の短縮を図り、製造コストを低減できる。   The finishing process includes finishing of the end face of the buttock and the outer peripheral surface of the buttock in addition to the finishing of the bottom surface of the thread groove, and finishing of the bottom face, the end face of the buttock and the outer peripheral surface of the buttock. Processing may be performed separately and sequentially. For example, the bottom surface of the thread groove is sequentially finished along the axial direction with one cutting tool. Separately from the finishing of the bottom surface, the end surface of the flange is sequentially processed along the axial direction. Apart from the processing of the bottom face and the end face of the buttock, only the thread is processed sequentially along the axial direction. In this case, it is possible to reduce, for example, the number of times of switching of the cutting tool and shorten the cycle time of the machining cycle, rather than sequentially machining the bottom surface of each circumference, the end face of the flange, and the thread. . Therefore, the processing time can be shortened and the manufacturing cost can be reduced.

前記仕上げ過程は、ねじ溝の底面と鍔部の一端面との間のヌスミ、および底面と鍔部の他端面との間の溝を加工する工程を含み、未完調整車を主軸で支持した状態を維持して掴み変えることなく、この仕上げ過程における、ねじ溝の底面、鍔部の端面、鍔部の外周面、前記ヌスミ、および前記底面と鍔部の他端面との間の溝の加工を行っても良い。これらヌスミおよび溝を加工するとき、未完調整車を主軸で支持した状態を維持して掴み変えることなく加工でき、いわゆる段取り替えが不要となる。例えば、ヌスミ加工専用の切削工具、溝加工専用の切削工具に切替るだけで足りる。したがって、調整車製造の稼働率をより高めることができる。   The finishing process includes a step of machining a groove between the bottom surface of the thread groove and one end surface of the flange portion, and a groove between the bottom surface and the other end surface of the flange portion, and a state where the incompletely adjusted vehicle is supported by the main shaft In this finishing process, the bottom surface of the thread groove, the end surface of the flange portion, the outer peripheral surface of the flange portion, the Nusumi, and the groove between the bottom surface and the other end surface of the flange portion are processed in this finishing process. You can go. When machining these nuisances and grooves, machining can be performed without changing the gripping wheel while maintaining the state where the incompletely adjusted vehicle is supported by the main shaft, and so-called setup change becomes unnecessary. For example, it is only necessary to switch to a cutting tool dedicated to Nusumi processing or a cutting tool dedicated to grooving. Therefore, the operation rate of adjustment vehicle manufacturing can be further increased.

前記未完調整車は、熱処理された素材を用いたものであっても良い。熱処理後旋削を行えるため、素材を必要十分な硬度にし、且つ熱処理に伴う微小な歪等を旋削除去できる。よって、必要十分な硬度を得ると共に、調整車の寸法精度を高めることが可能となる。また、適用可能な素材の選択枝が広がる分、設計の自由度が高まる。
前記仕上げ過程では、加工油剤を使用することなく前記ねじ溝の底面を仕上げ加工しても良い。この場合、加工油剤を供給する設備、排油を回収する設備等を削減でき、よって設備費用の低減を図ることができる。
The incompletely adjusted vehicle may be one using a heat-treated material. Since turning can be performed after the heat treatment, the material can have a necessary and sufficient hardness, and minute strains and the like accompanying the heat treatment can be removed. Therefore, it is possible to obtain the necessary and sufficient hardness and to increase the dimensional accuracy of the adjusting wheel. In addition, the degree of freedom of design increases as the choices of applicable materials expand.
In the finishing process, the bottom surface of the thread groove may be finished without using a processing oil. In this case, the equipment for supplying the processing oil, the equipment for collecting the waste oil, and the like can be reduced, so that the equipment cost can be reduced.

この発明の調整車は、請求項1ないし請求項9のいずれか1項の製造方法を用いて製作するものである。この場合、加工設備の低減を図ることができ、且つ、ねじのリード、ねじ底面の幅、角度等に応じた種々な調整車を実現し得る。
この発明の円錐ころの製作方法は、請求項10の調整車をこの調整車軸芯回りに回転駆動して円錐形状ワークをねじ溝の底面に転接させつつ円錐ころを製作するものである。この場合、従来のねじ研削調整車を用いるよりも、円錐ころの単位数量当たりのコスト低減を図ることが可能となる。
The adjusting wheel of this invention is manufactured using the manufacturing method of any one of Claim 1 thru | or 9. In this case, processing equipment can be reduced, and various adjustment wheels can be realized in accordance with the lead of the screw, the width of the screw bottom, the angle, and the like.
The method for manufacturing the tapered roller according to the present invention is to manufacture the tapered roller while rotating the adjusting wheel of claim 10 around the center of the adjusting axle to cause the conical workpiece to roll in contact with the bottom surface of the thread groove. In this case, it is possible to reduce the cost per unit quantity of the tapered rollers, rather than using a conventional thread grinding wheel.

この発明のセンタレス研削用調整車の製造方法は、センタレス研削用の調整車であって、螺旋状に続く案内用のねじ溝を外周に有し、このねじ溝の各周の底面が円錐形状部を成し、円錐形状部間に鍔部を有し、調整車軸芯回りに回転駆動されて円錐形状ワークを前記ねじ溝の底面に転接させる調整車を製造する方法において、前記ねじ溝を有しこのねじ溝の底面の仕上げ加工が未加工の調整車である未完調整車を製造する仕上げ未完調整車製造過程と、前記未完調整車の前記ねじ溝の底面を仕上げ加工する仕上げ過程とを含み、前記仕上げ過程は、数値制御式の旋盤により、切削工具を用いて、前記ねじ溝の底面を軸方向の一部ずつ順次仕上げ加工するため、加工設備の低減を図ることができ、且つ、ねじのリード、ねじ底面の幅、角度等に応じた種々な調整車を容易に且つ能率良く加工することができ、所望の加工精度を得ることができる。   The centerless grinding adjusting wheel manufacturing method according to the present invention is a centerless grinding adjusting wheel having a guide thread groove on the outer periphery that follows a spiral shape, and the bottom surface of each periphery of the thread groove is a conical portion. In which the screw groove is provided in a method for manufacturing an adjustment wheel that is rotationally driven around the adjustment axle shaft and causes the cone-shaped workpiece to roll-contact with the bottom surface of the screw groove. The finishing process of the bottom surface of the screw groove includes a finishing incompletely adjusted vehicle manufacturing process for manufacturing an incompletely adjusted vehicle that is an unfinished adjusting vehicle, and a finishing process for finishing the bottom surface of the threaded groove of the incompletely adjusted vehicle. In the finishing process, the bottom surface of the thread groove is sequentially finished part by part in the axial direction using a numerically controlled lathe and using a cutting tool, so that the processing equipment can be reduced and Lead, screw bottom width, angle, etc. Flip and the various regulating wheel can be processed easily and efficiently, it is possible to obtain a desired machining precision.

この発明の調整車は、請求項1ないし請求項9のいずれか1項の製造方法を用いて製作するため、加工設備の低減を図ることができ、且つ、ねじのリード、ねじ底面の幅、角度等に応じた種々な調整車を容易に且つ能率良く加工することができ、所望の加工精度を得ることができる。   Since the adjusting wheel of the present invention is manufactured using the manufacturing method according to any one of claims 1 to 9, the processing equipment can be reduced, and the lead of the screw, the width of the screw bottom, Various adjustment wheels according to the angle and the like can be processed easily and efficiently, and a desired processing accuracy can be obtained.

この発明の円錐ころの製作方法は、請求項10の調整車をこの調整車軸芯回りに回転駆動して円錐形状ワークをねじ溝の底面に転接させつつ円錐ころを製作するため、加工設備の低減を図ることができ、且つ、ねじのリード、ねじ底面の幅、角度等に応じた種々な調整車を容易に且つ能率良く加工することができ、所望の加工精度を得ることができる。   In the tapered roller manufacturing method according to the present invention, the adjusting wheel according to claim 10 is driven to rotate around the adjusting axle and the tapered roller is manufactured while rolling the conical work piece on the bottom surface of the thread groove. Reduction can be achieved, and various adjustment wheels can be easily and efficiently processed according to the lead of the screw, the width and angle of the screw bottom, and desired processing accuracy can be obtained.

この発明の一実施形態に係るセンタレス研削用調整車の製造方法を概略表す平面図である。It is a top view which represents roughly the manufacturing method of the adjustment vehicle for centerless grinding which concerns on one Embodiment of this invention. 同センタレス研削用調整車の要部拡大図である。It is a principal part enlarged view of the adjustment vehicle for centerless grinding. NC旋盤の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of NC lathe. 同NC旋盤の正面図である。It is a front view of the NC lathe. (A)はねじ溝の底面を軸方向の一部ずつ仕上げ加工する一の加工サイクルを示す図、(B)は同加工サイクルを繰り返し、ねじ溝の底面の軸方向への仕上げ加工量を進行させた段階を示す図である。(A) is a diagram showing one machining cycle for finishing the bottom surface of the thread groove part by part in the axial direction, and (B) is repeating the machining cycle to advance the finishing machining amount in the axial direction of the bottom surface of the thread groove. It is a figure which shows the step made to do. この発明の実施形態に係る調整車製造方法において、先端が凸曲面形状である切削工具による加工サイクルでの平面成形を表す要部拡大図である。In the adjustment vehicle manufacturing method which concerns on embodiment of this invention, it is a principal part enlarged view showing the plane shaping | molding in the process cycle by the cutting tool whose front-end | tip is a convex curve shape. この発明の実施形態に係る調整車製造方法において、クラウニング型調整車の製造方法を概略表す平面図である。In the adjustment vehicle manufacturing method according to the embodiment of the present invention, it is a plan view schematically showing a manufacturing method of a crowning type adjustment vehicle. 片刃切り込みの加工サイクルを応用したセンタレス研削用調整車のねじ溝の加工例を示す要部断面図である。It is principal part sectional drawing which shows the example of a process of the thread groove of the adjustment wheel for centerless grinding which applied the processing cycle of the single blade cutting. 一定曲率で旋削加工したときのクラウニング型調整車の要部平面図である。It is a principal part top view of a crowning type adjustment wheel when turning with a fixed curvature. (A)は、この発明の実施形態に係るねじ切り開始位置の変化を説明するための図、(B)は図10(A)の要部拡大図である。(A) is a figure for demonstrating the change of the threading start position which concerns on embodiment of this invention, (B) is a principal part enlarged view of FIG. 10 (A). ねじ切りサイクルを使った片刃切り込みの概念を示す概念図である。It is a conceptual diagram which shows the concept of the single blade cutting using a thread cutting cycle. (A)は、NC旋盤の直線送りのねじ切りサイクルを説明する図、(B)は、同NC旋盤のクラウニング送りの円弧ねじ切りサイクルを説明する図である。(A) is a figure explaining the thread cutting cycle of the linear feed of NC lathe, (B) is a figure explaining the circular thread cutting cycle of the crowning feed of the NC lathe. センタレス研削盤にてスルーフィード方式で円錐ころ外径を加工する例を示す平面図である。It is a top view which shows the example which processes a tapered roller outer diameter by a through feed system with a centerless grinding machine. 同センタレス研削盤にてクラウニング円錐ころを加工する例を示す平面図である。It is a top view which shows the example which processes a crowning tapered roller with the same centerless grinding machine. センタレス研削用調整車のねじ溝の要部断面図である。It is principal part sectional drawing of the thread groove of the adjustment wheel for centerless grinding. 従来の直線送り型調整車の加工方法を表す平面図である。It is a top view showing the processing method of the conventional linear feed type adjustment wheel. 従来のクラウニング送り型調整車の加工方法を表す平面図である。It is a top view showing the processing method of the conventional crowning feed type adjustment wheel.

この発明の一実施形態を図1ないし図10と共に説明する。この実施形態に係るセンタレス研削用調整車は、例えば、円錐ころ軸受の円錐ころの外周面をスルーフィードセンタレス研削する際に用いられる。先ず、センタレス研削用調整車(以下単に「調整車」と称す)の概略構成について説明し、以下、調整車を製造するNC旋盤等の概略構成、調整車の製造方法等について順次説明する。   An embodiment of the present invention will be described with reference to FIGS. The centerless grinding wheel according to this embodiment is used, for example, when through-feed centerless grinding of the outer peripheral surface of a tapered roller of a tapered roller bearing. First, a schematic configuration of an adjustment wheel for centerless grinding (hereinafter simply referred to as an “adjustment vehicle”) will be described, and a schematic configuration of an NC lathe for manufacturing the adjustment vehicle, a manufacturing method of the adjustment vehicle, and the like will be sequentially described below.

調整車の概略構成について説明する。
図1、図2に示すように、調整車1はドラム軸1aの外周に取り付けられる。この調整車1は、螺旋状に続く案内用のねじ溝2を外周に有し、このねじ溝2の各周の底面2aが円錐形状部を成し、円錐形状部間に鍔部3を有する。つまり底面2aは、螺旋状の鍔部3によって区画形成され、螺旋状に続く円錐形状に形成されている。
ねじ溝2の底面2aと鍔部3の一端面との間には、環状のヌスミ2b(図8参照)が形成され、底面2aと鍔部3の他端面との間には環状の溝2cが形成されている。調整車1は、この調整車軸芯L1回りに回転駆動されて円錐形状ワークをねじ溝2の底面2aに転接させ得る。
A schematic configuration of the adjustment vehicle will be described.
As shown in FIGS. 1 and 2, the adjustment wheel 1 is attached to the outer periphery of the drum shaft 1a. The adjusting wheel 1 has a screw groove 2 for guiding following a spiral shape on the outer periphery, and a bottom surface 2a of each circumference of the screw groove 2 forms a conical portion, and a flange portion 3 is provided between the conical portions. . That is, the bottom surface 2a is defined by the spiral flange 3 and is formed in a conical shape following the spiral.
An annular nose 2b (see FIG. 8) is formed between the bottom surface 2a of the screw groove 2 and one end surface of the flange portion 3, and an annular groove 2c is formed between the bottom surface 2a and the other end surface of the flange portion 3. Is formed. The adjusting wheel 1 can be rotationally driven around the adjusting wheel shaft core L <b> 1 so that the conical workpiece can be brought into rolling contact with the bottom surface 2 a of the screw groove 2.

NC旋盤等について説明する。
図3、図4に示すように、ねじ溝2の底面2a等を仕上げ加工する過程において、数値制御式の旋盤つまりNC(Numerical Controlled )旋盤4が用いられる。NC旋盤4は、機械部分である旋盤本体4Aと、この旋盤本体4Aを制御する数値制御装置18とでなる。旋盤本体4Aは、例えば、タレット型の刃物台Taを支持する送り台14aを主軸台15の側方に配置したタレット旋盤である。主軸台15に支持された主軸15aには、前記調整車1の仕上げ加工が未加工のワークである未完調整車Wを把持する主軸チャック15aaが設けてある。この主軸チャック15aaと心押し軸7とで未完調整車Wが軸方向両端で支持される。主軸15aは、主軸モータ(図示せず)により回転駆動される。送り台14は、ベッドBdのレール16,16上に設置した左右方向(X方向)に移動自在な送り台ベース14aと、この送り台ベース14aに図示外のレールを介して前後方向(Z方向)に移動自在な設置した送り台上部体14bと、前記タレット型の刃物台Taとを有する。刃物台Taは、送り台上部体14bに割出回転可能に搭載されている。
The NC lathe will be described.
As shown in FIGS. 3 and 4, a numerically controlled lathe, that is, an NC (Numerical Controlled) lathe 4 is used in the process of finishing the bottom surface 2 a of the screw groove 2. The NC lathe 4 includes a lathe body 4A that is a machine part and a numerical controller 18 that controls the lathe body 4A. The lathe body 4A is, for example, a turret lathe in which a feed base 14a that supports a turret-type tool post Ta is arranged on the side of the headstock 15. A main spindle 15a supported by the main spindle 15 is provided with a main spindle chuck 15aa for gripping an incomplete adjustment wheel W which is a workpiece for which the finishing of the adjustment wheel 1 is not processed. The spindle chuck 15aa and the tailstock shaft 7 support the incompletely adjusted wheel W at both axial ends. The spindle 15a is rotationally driven by a spindle motor (not shown). The feed base 14 is provided on the rails 16 and 16 of the bed Bd. The feed base 14a is movable in the left-right direction (X direction), and the feed base 14a is moved in the front-rear direction (Z direction) via a rail (not shown). ) And the turret type tool post Ta. The tool rest Ta is mounted on the feed base upper body 14b so as to be indexed and rotatable.

送り台ベース14aと送り台上部体14bとは、各々送りねじを介してX軸サーボモータ17およびZ軸サーボモータ(図示せず)により、図3矢符にて示すX,Z方向に送られる。タレット型の刃物台Taは、図4に示すように、正面形状が多角形のドラム状のものであり、送り台上部体14bに内蔵された図示外の割り出しモータにより、水平軸回りで割出し回転させられる。刃物台Taの各周面部分には工具5A,5B等が装着してある。   The feed base 14a and the feed base upper body 14b are fed in the X and Z directions indicated by arrows in FIG. 3 by an X-axis servo motor 17 and a Z-axis servo motor (not shown) via feed screws, respectively. . As shown in FIG. 4, the turret tool post Ta has a polygonal drum-like front shape, and is indexed around the horizontal axis by an indexing motor (not shown) built in the feed base upper body 14b. Rotated. Tools 5A, 5B and the like are attached to each peripheral surface portion of the tool post Ta.

図3に示すように、数値制御装置18は、コンピュータ式のものであって、NCコード等で記述された加工プログラムPmを解読して実行する演算制御部19を備える。この演算制御部19により、NC旋盤4の各部の制御、例えば、上記X軸,Z軸のサーボモータや主軸モータの制御を行う。演算制御部19は、この他に旋盤本体4Aの各部のシーケンス制御、例えば刃物台Taの割出回転や、主軸チャック15aaの開閉を行う機能を備える。
数値制御装置18には、基本動作プログラムBPが、演算制御部19のOS(オペレーションプログラム)の一部として、またはOSとは別に設けられていて、加工プログラムPmの命令により、上記基本動作プログラムBPを用いて制御可能とされる。この基本動作プログラムBPの一部として、後述のねじ切りサイクルを行わせるねじ切りサイクル制御プログラムBPaが設けられている。
As shown in FIG. 3, the numerical control device 18 is of a computer type and includes an arithmetic control unit 19 that decodes and executes a machining program Pm described in NC code or the like. The arithmetic control unit 19 controls each part of the NC lathe 4, for example, controls the X-axis and Z-axis servomotors and the spindle motor. In addition to this, the arithmetic control unit 19 has a function of performing sequence control of each part of the lathe body 4A, for example, indexing rotation of the tool post Ta and opening / closing of the spindle chuck 15aa.
The numerical control device 18 is provided with a basic operation program BP as a part of the OS (operation program) of the arithmetic control unit 19 or separately from the OS, and the basic operation program BP according to an instruction of the machining program Pm. It is possible to control using As a part of the basic operation program BP, a threading cycle control program BPa for performing a threading cycle described later is provided.

調整車1の製造方法について説明する。
この実施形態に係る調整車の製造方法は、仕上げ未完調整車製造過程と、仕上げ過程とを含む。仕上げ未完調整車製造過程は、調整車1のねじ溝2の仕上げ加工のみが未加工の未完調整車Wを製造する過程であり、この過程では、ねじ溝2を有しこのねじ溝2の底面2aの仕上げ加工が未加工の未完調整車Wを製造する。この仕上げ未完調整車製造過程の例えば最終段階において、未完調整車Wは熱処理され、この熱処理された未完調整車Wが前述のNC旋盤4により旋削に供される。この仕上げ未完調整車製造過程においては、上記NC旋盤4とは別の機械で未完調整車Wを製造するが、上記NC旋盤4を用いて未完調整車Wを製造してもよい。
A method for manufacturing the adjustment vehicle 1 will be described.
The adjustment vehicle manufacturing method according to this embodiment includes a finish incomplete adjustment vehicle manufacturing process and a finishing process. The finishing incompletely adjusted vehicle manufacturing process is a process of manufacturing an incompletely adjusted vehicle W in which only the finishing of the screw groove 2 of the adjusting wheel 1 is not processed. In this process, the screw groove 2 is provided and the bottom surface of the screw groove 2 is provided. The incompletely adjusted vehicle W in which the finishing process of 2a is not processed is manufactured. For example, in the final stage of the manufacturing process of the finished incompletely adjusted vehicle, the incompletely adjusted vehicle W is heat-treated, and the heat-treated incompletely adjusted vehicle W is subjected to turning by the NC lathe 4 described above. In the finishing incompletely adjusted vehicle manufacturing process, the incompletely adjusted vehicle W is manufactured by a machine different from the NC lathe 4. However, the incompletely adjusted vehicle W may be manufactured using the NC lathe 4.

仕上げ過程では、前記仕上げ未完調整車製造過程にて製造された未完調整車Wの前記ねじ溝2の底面2aを仕上げ加工する。この仕上げ過程においては、特に、図1に示すように、NC旋盤4により、切削工具5(5A)を用いて前記ねじ溝2の底面2aを軸方向の一部ずつ順次仕上げ加工する。切削工具5(5A)は、ねじ溝2の底面2aの一部の軸方向幅を有する切刃5aを有する。切刃5aは、すくい面の縁を言う。   In the finishing process, the bottom surface 2a of the screw groove 2 of the incompletely adjusted vehicle W manufactured in the finishing incompletely adjusted vehicle manufacturing process is finished. In this finishing process, in particular, as shown in FIG. 1, the NC lathe 4 sequentially finishes the bottom surface 2a of the thread groove 2 part by part in the axial direction using a cutting tool 5 (5A). The cutting tool 5 (5A) has a cutting edge 5a having a partial axial width of the bottom surface 2a of the thread groove 2. The cutting edge 5a refers to the edge of the rake face.

具体的には、図1に示すように、主軸15aと心押し軸7とで未完調整車を支持した状態で、加工油剤を使用することなく、旋削用のバイト等の汎用の切削工具5Aでこの未完調整車を仕上げ加工する。この場合において、切削工具5Aを未完調整車に対して相対移動させて加工を行う加工サイクル(矢符9にて表記)を繰り返して、ねじ溝2の底面2aを軸方向の一部ずつ順次仕上げ加工していく。   Specifically, as shown in FIG. 1, a general-purpose cutting tool 5A such as a turning tool can be used without using a working oil in a state where an incompletely adjusted vehicle is supported by a main shaft 15a and a tailstock shaft 7. Finish this unfinished car. In this case, a machining cycle (denoted by an arrow 9) in which machining is performed by moving the cutting tool 5A relative to the incompletely adjusted vehicle is repeated, and the bottom surface 2a of the thread groove 2 is sequentially finished in portions in the axial direction. Processing.

この加工サイクル9は、図5に示すように、主に、接近過程と、切削送り過程と、戻し過程とでなる。前記接近過程は、切削工具5Aを未完調整車Wから離れた待機位置P0からねじ溝2の一端または延長位置における切削送り開始位置P1へ前進させる。
前記切削送り過程は、回転する未完調整車Wのねじ溝内面のねじ溝リードによる軸方向移動速度に合致した速度で、切削工具5Aを未完調整車Wのねじ溝2の他端または延長位置となる切削送り終了位置P2まで軸方向に移動させてねじ溝2を切削する。
前記戻し過程は、切削送り終了位置P2から未完調整車Wに対して離れる後退位置P3へ切削工具5Aを相対的に移動させ、後退位置P3から待機位置P0へ切削工具5Aを戻す。
図5、図6に示すように、各加工サイクル9の相互間で切削送り開始位置P1を、ねじ溝2の溝幅方向の一端から他端側へ所定の開始位置変化経路に沿って、軸方向および径方向の所定シフト量ずつ変化させる。前記軸方向を図6矢符Zにて示し、前記径方向を図6矢符Xにて示す。
As shown in FIG. 5, the machining cycle 9 mainly includes an approaching process, a cutting feed process, and a returning process. In the approaching process, the cutting tool 5A is advanced from the standby position P0 away from the incomplete adjustment vehicle W to the cutting feed start position P1 at one end of the screw groove 2 or the extended position.
In the cutting feed process, the cutting tool 5A is moved to the other end or the extended position of the thread groove 2 of the incompletely adjusted vehicle W at a speed that matches the axial movement speed of the thread groove lead on the inner surface of the thread groove of the rotating incompletely adjusted vehicle W. The thread groove 2 is cut by moving in the axial direction up to the cutting feed end position P2.
In the returning process, the cutting tool 5A is relatively moved from the cutting feed end position P2 to the retracted position P3 away from the incompletely adjusted vehicle W, and the cutting tool 5A is returned from the retracted position P3 to the standby position P0.
As shown in FIGS. 5 and 6, the cutting feed start position P <b> 1 between the machining cycles 9 is changed along the predetermined start position changing path from one end to the other end side in the groove width direction of the screw groove 2. It is changed by a predetermined shift amount in the direction and the radial direction. The axial direction is indicated by an arrow Z in FIG. 6, and the radial direction is indicated by an arrow X in FIG.

この加工サイクル9の制御には、数値制御装置18(図3)の基本動作プログラムBPにおけるねじ切りサイクル制御プログラムBPaを用いる。このねじ切りサイクル制御プログラムBPaは、図12に示すねじ切りサイクルを行わせるプログラムであり、加工プログラムPmにおける、ねじ切りサイクルを示すNCコード、例えば準備コードの一つである「G○○」(○は1文字の数字を示す)を先頭に含む命令行によって実行する。この命令行は、例えば、「G○○ X− Z− F−」の形式とされる。「X−」は、1回目の切り込み径、「Z−」はねじの終点のZ座標、「F−」はねじのリードである。加工プログラムPmには、上記命令行に続く行に、各回の切り込み径を指令する命令行および最終切り込み径の命令行と、工具をワークから遠ざける命令行とを記述しておく。また、加工プログラムPmには、ねじ切りサイクルの命令行の前に、工具をワークに近づける命令行、およびねじ切り開始点(すなわち、切削送り開始位置P1)へ移動させる命令行を記述しておく。
数値制御装置18(図3)の演算制御部19は、上記一連の命令行によって、ねじ切りサイクルを実行する。このとき、ねじ切りサイクル制御プログラムBPaは、ねじのリードと、上記とは別に指令されている主軸回転数とから、これらリードと主軸回転数に応じた切削工具5の軸方向の送り速度を計算して実行する。そのため、切削工具5の軸方向の送り速度を人が計算してプログラムすることは不要である。
For controlling the machining cycle 9, a threading cycle control program BPa in the basic operation program BP of the numerical controller 18 (FIG. 3) is used. This threading cycle control program BPa is a program for performing the threading cycle shown in FIG. 12, and is an NC code indicating a threading cycle in the machining program Pm, for example, “GOO” (○ is 1). Executed by a command line that starts with a letter. This command line is, for example, in the format of “GXX X-Z-F-”. "X-" is the first cut diameter, "Z-" is the Z coordinate of the end point of the screw, and "F-" is the lead of the screw. In the machining program Pm, a command line for instructing the cutting diameter for each round, a command line for the final cutting diameter, and a command line for moving the tool away from the workpiece are described in a line following the command line. Further, in the machining program Pm, a command line for bringing the tool closer to the workpiece and a command line for moving to the threading start point (that is, the cutting feed start position P1) are described before the command line of the thread cutting cycle.
The arithmetic control unit 19 of the numerical controller 18 (FIG. 3) executes a threading cycle according to the series of command lines. At this time, the thread cutting cycle control program BPa calculates the feed rate in the axial direction of the cutting tool 5 according to the lead and the spindle rotational speed from the screw lead and the spindle rotational speed commanded separately from the above. And execute. Therefore, it is not necessary for a person to calculate and program the axial feed rate of the cutting tool 5.

このような数値制御装置19に備えられるねじ切りサイクル制御プログラムBPaあるいはねじ切り制御機能を利用することにより、未完調整車Wのねじ溝2の底面2aの仕上げ加工が容易に行える。   By using the threading cycle control program BPa or the threading control function provided in such a numerical control device 19, finishing of the bottom surface 2a of the thread groove 2 of the incompletely adjusted vehicle W can be easily performed.

図1、図2および図5の調整車は、この調整車軸芯を含む仮想平面で切断した断面について、ねじ溝の各周の軸方向同一箇所を調整車軸芯方向に沿って繋ぐ包絡線が直線である。この場合、各加工サイクル9のうち切削送り過程はいわゆる直線送りによるねじ溝切削が行われる。この直線送りは、上記包絡線に平行な方向に工具の送りを行うことである。
図7は、この発明の実施形態に係る調整車製造方法において、クラウニング型調整車の製造方法を概略表す平面図である。
クラウニング送り型調整車を加工する場合には、図12(B)に示すように、太鼓型ねじの加工に使用する、加工サイクル10により未完調整車を加工する。クラウニング送り型調整車は、図9に示すように、この調整車軸芯を含む仮想平面で切断した断面について、ねじ溝2の各周の軸方向同一箇所を調整車軸芯方向に沿って繋ぐ包絡線が、調整車軸芯方向にわたり径方向外方に突出するクラウニング曲線である。前記クラウニング送りは、切削送り過程において、前記クラウニング曲線の包絡線に沿って切削工具5を移動させることである。
1, 2, and 5, with respect to a cross section cut along a virtual plane including the adjustment axle, the envelope that connects the same axial direction of each circumference of the thread groove along the adjustment axle is straight. It is. In this case, the cutting feed process of each machining cycle 9 performs thread groove cutting by so-called linear feed. This linear feed is to feed the tool in a direction parallel to the envelope.
FIG. 7 is a plan view schematically illustrating a method of manufacturing a crowning type adjustment vehicle in the adjustment vehicle manufacturing method according to the embodiment of the present invention.
When processing a crowning feed type adjusting wheel, as shown in FIG. 12 (B), the incompletely adjusted wheel is processed by a processing cycle 10 used for processing a drum-type screw. As shown in FIG. 9, the crowning feed type adjusting wheel has an envelope that connects the same axial direction of each circumference of the thread groove 2 along the adjusting axle axis direction with respect to a cross section cut along a virtual plane including the adjusting axle axis. Is a crowning curve protruding outward in the radial direction over the adjusting axle axis direction. The crowning feed is to move the cutting tool 5 along the envelope of the crowning curve in the cutting feed process.

ここで、図11は、ねじ切りサイクルを使った片刃切り込みの概念を示す概念図である。通常、リードの大きい山型ねじは、ねじ形状と同一の切削工具5Nを用いて工作物8の外周部から斜め方向に一定量δずつ切り込み、最終的にこの切削工具5Nの形状を転写させねじを成形する。ところが、今回加工対象となる円錐ころのセンタレス研削用調整車は、ねじ溝2の底面2aが平坦で且つ調整車軸芯L1、およびクラウニング曲率に対して傾斜を持っており、品種毎に形状も異なる。したがって、図11のように工具形状を転写させる加工方法は効率的でない。   Here, FIG. 11 is a conceptual diagram showing the concept of single-blade cutting using a threading cycle. Usually, a thread-type screw with a large lead is cut by a certain amount δ in an oblique direction from the outer periphery of the workpiece 8 using the same cutting tool 5N as the screw shape, and finally the shape of this cutting tool 5N is transferred to the screw. Is molded. However, the centerless grinding adjustment wheel of the tapered roller to be machined this time has a flat bottom surface 2a of the thread groove 2 and an inclination with respect to the adjustment axle L1 and the crowning curvature, and the shape varies depending on the type. . Therefore, the processing method for transferring the tool shape as shown in FIG. 11 is not efficient.

それに対し、この発明の実施形態に係る製造方法では、図6に示すように、切刃5aが凸曲線形状、つまり、すくい面の縁が曲率Rの凸曲線となる汎用切削工具5を、一定量δ1ずらしながら片刃切り込みを繰り返し行い、仮想的平面11を成形する。上記凸曲線は円弧状であっても、放物線状等であっても良く、変曲点を持たない凸曲線であれば良い。前記「片刃切り込み」とは、ねじ面の傾斜した内面に沿って工具の切り込み進める切り込みおよび軸方向送りの与え方である。これに対して、ワークの直径方向に工具の切り込みを与える切り込み方法は、直角切り込み等と呼ばれる。
クラウニング型調整車を製造する場合、図12(B)に示す加工サイクル10を併用し、図16の砥石台旋回型ねじ研削盤で加工したねじ溝と同品位の平面精度を持つクラウニング型調整車を加工する。
On the other hand, in the manufacturing method according to the embodiment of the present invention, as shown in FIG. 6, the general-purpose cutting tool 5 in which the cutting edge 5a has a convex curve shape, that is, the edge of the rake face has a convex curve with a curvature R, is fixed. The imaginary plane 11 is formed by repeatedly performing single-edged cutting while shifting the amount δ1. The convex curve may be an arc shape, a parabola shape, or the like, and may be a convex curve having no inflection point. The “single-blade incision” is a method of giving incision and axial feed for advancing the tool along the inclined inner surface of the thread surface. On the other hand, a cutting method for cutting a tool in the diameter direction of the workpiece is called a right angle cutting or the like.
When manufacturing a crowning type adjustment wheel, the crowning type adjustment wheel having the same plane accuracy as the thread groove processed by the grinding wheel head turning type screw grinder shown in FIG. 16 is used together with the machining cycle 10 shown in FIG. Is processed.

図6に示す手法で切削加工をした場合、工具曲率(R)と分割幅(ν)から、理論表面粗さRmax として式(1)で表現される。

Figure 2010284775


この数式(1)より、分割幅(ν)つまり切削工具5を軸方向へずらす一定量δ1を可能な限り小さくすることで、ねじ溝2の底面2aの粗さを改善し、研削面に近い平面精度を実現する。 When cutting is performed by the method shown in FIG. 6, the theoretical surface roughness Rmax is expressed by the equation (1) from the tool curvature (R) and the division width (ν).
Figure 2010284775


From this mathematical formula (1), by reducing the division width (ν), that is, the fixed amount δ1 for shifting the cutting tool 5 in the axial direction as much as possible, the roughness of the bottom surface 2a of the screw groove 2 is improved and close to the grinding surface. Realize planar accuracy.

図8は、片刃切り込みの加工サイクルを応用したセンタレス研削用調整車のねじ溝の加工例を示す要部断面図である。同図に示すように、ねじ溝2の底面2aを片刃切り込みで加工する場合、調整車右端にある切削送り開始位置を、ねじ溝2の底面2aの傾斜角αに応じて、径方向シフト量、軸方向シフト量毎に矢符A1に表記するように直線的に変化させる。この場合、繰り返し回数は、ねじ溝2の底面2aの傾斜角αに沿ったねじ底長さを、軸方向シフト量で割って残る「整数」となる。   FIG. 8 is a cross-sectional view of an essential part showing an example of machining of a thread groove of a centerless grinding adjusting wheel to which a machining cycle of single-blade cutting is applied. As shown in the figure, when the bottom surface 2a of the thread groove 2 is machined with a single-blade cut, the cutting feed start position at the right end of the adjustment wheel is shifted in the radial direction according to the inclination angle α of the bottom surface 2a of the thread groove 2. For each axial shift amount, it is linearly changed as indicated by the arrow A1. In this case, the number of repetitions is an “integer” remaining by dividing the screw bottom length along the inclination angle α of the bottom surface 2 a of the screw groove 2 by the axial shift amount.

図9は、一定曲率で旋削加工したときのクラウニング型調整車の要部平面図である。同図には、図5の直線型の加工サイクルを円弧ねじ切り用の加工サイクルに置き換えた場合のねじ溝2の底面2aの形状変化が示されている。ねじ溝2の各周の底面2aが、クラウニングの一定曲率Raに対して平行移動するように形成される。この場合、軸方向に沿って円錐ころWrの姿勢は変化せず、円錐ころWrにクラウニング形状を転写させることはできない。   FIG. 9 is a plan view of an essential part of the crowning type adjustment wheel when turning with a constant curvature. This figure shows the shape change of the bottom surface 2a of the thread groove 2 when the linear machining cycle of FIG. 5 is replaced with a machining cycle for circular thread cutting. The bottom surface 2a of each circumference of the thread groove 2 is formed so as to translate with respect to the constant curvature Ra of the crowning. In this case, the posture of the tapered roller Wr does not change along the axial direction, and the crowning shape cannot be transferred to the tapered roller Wr.

図10は、この発明の実施形態に係る、切削送り開始位置の変化を説明するための図である。調整車1の中央部のねじ溝2は、底面2aに沿って径方向シフト量D1ずつ位置をずらしながら、図8に示す加工サイクルを繰り返すと仮定する。このとき、切削工具5の工具軌跡12は、加工サイクルつまり加工プログラムPmで指定した半径と一致し、ねじ溝2の底面2aの傾斜に沿ってサイクル毎に径方向シフト量D1ずつ大きくなっていく。この場合、調整車右端にある切削送り開始位置P1は、工具軌跡12と分割量δ2との交点上にある。   FIG. 10 is a diagram for explaining a change in the cutting feed start position according to the embodiment of the present invention. It is assumed that the thread groove 2 in the central portion of the adjustment wheel 1 repeats the machining cycle shown in FIG. 8 while shifting the position by the radial shift amount D1 along the bottom surface 2a. At this time, the tool trajectory 12 of the cutting tool 5 coincides with the radius specified in the machining cycle, that is, the machining program Pm, and increases by the radial shift amount D1 for each cycle along the inclination of the bottom surface 2a of the thread groove 2. . In this case, the cutting feed start position P1 at the right end of the adjustment wheel is on the intersection of the tool locus 12 and the division amount δ2.

すなわち、切削送り開始位置P1を、分割量δ2と工具軌跡12の変化量とに応じてサイクル毎に修正していく。これにより、図14に示すような曲率22に対し、ねじ溝2の底面2aが放射状に変化するねじ付き調整車が加工できる。ただし、このとき、厳密には調整車1の中央部と、この調整車1の左右両端部とで、ねじ形状の不一致が推測されるが、図14に示すセンタレスでの研削加工においては、砥石中央部の加工精度が円錐ころWrの真円度、粗さ等を決めるため、調整車1の両端部の僅かな精度誤差は円錐ころWrの精度に対して致命的ではない。
以上の手法を用いた調整車1で円錐ころWrをセンタレス研削した結果、直線送り型、クラウニング送り型共にねじ研削調整車と同等の加工精度が得られることが実証された。また、この手法を応用すれば、従来の砥石を使った方法では加工できない特殊形状の調整車や、熱処理された材料からなる調整車を加工することも可能である。したがって、適用可能な材料、特殊形状の選択肢が広がる分、設計の自由度が高まる。
That is, the cutting feed start position P1 is corrected for each cycle according to the division amount δ2 and the change amount of the tool locus 12. Thereby, a threaded adjustment wheel in which the bottom surface 2a of the thread groove 2 changes radially with respect to the curvature 22 as shown in FIG. 14 can be processed. However, at this time, strictly speaking, it is estimated that the screw shape is inconsistent between the central portion of the adjustment wheel 1 and the left and right end portions of the adjustment wheel 1, but in the centerless grinding shown in FIG. Since the processing accuracy of the central portion determines the roundness, roughness, etc. of the tapered roller Wr, a slight accuracy error at both ends of the adjustment wheel 1 is not fatal to the accuracy of the tapered roller Wr.
As a result of centerless grinding of the tapered roller Wr with the adjusting wheel 1 using the above method, it has been demonstrated that both the linear feed type and the crowning feed type can obtain the same processing accuracy as that of the screw grinding adjusting wheel. If this method is applied, it is also possible to process a specially shaped adjustment wheel that cannot be processed by a conventional method using a grindstone, or an adjustment wheel made of heat-treated material. Therefore, the degree of freedom in design is increased by expanding the choices of applicable materials and special shapes.

以上説明したセンタレス研削用調整車の製造方法によると、NC旋盤4により、ねじ溝2の底面2aの一部の軸方向幅を有する切刃を有する切削工具5を用いて、前記ねじ溝2の底面2aを軸方向の一部ずつ順次仕上げ加工する。この底面2aを順次仕上げ加工する分割幅を適宜細かく設定すれば、切削工具5によっても底面2aを平滑に仕上げることができる。工具位置を順次変更して加工を繰り返す多数回の工程が必要となるが、NC旋盤4には、ねじ切りサイクルの機能が標準機能として一般的に備えられており、そのねじ切りサイクルの機能を利用することで、煩雑なプログラム作成を行うことなく、容易に加工することができる。
この方法によると、ねじのリード、底面2aの軸方向幅、角度等に応じた多種の砥石を準備する必要がなく、また砥石の段取り替え等が不要となる。この方法では、ねじ溝2の形状に沿った工具を用いる必要がなく、汎用の切削工具5を使用し得る。それ故、種々の形状の調整車に対する汎用性を高めることができ、多品種の調整車にも容易に対応することができ、しかも砥石の段取り替え等が不要となる分、調整車製造の稼働率を高めることができる。この場合、従来の製造方法よりも調整車の加工費用を低減でき、よって円錐ころのコスト低減を図ることが可能となる。また、この発明の製造方法によると、従来のねじ研削調整車と同等の加工精度が得られることが実証された。
According to the manufacturing method of the centerless grinding adjusting wheel described above, the NC lathe 4 is used to cut the thread groove 2 by using the cutting tool 5 having a cutting edge having a partial axial width of the bottom surface 2a of the thread groove 2. The bottom surface 2a is sequentially finished part by part in the axial direction. If the division width for finishing the bottom surface 2a sequentially is set finely as appropriate, the bottom surface 2a can be smoothly finished by the cutting tool 5 as well. The NC lathe 4 is generally provided with a function of a threading cycle as a standard function, and uses the function of the threading cycle. Therefore, it can be easily processed without creating a complicated program.
According to this method, there is no need to prepare various types of grindstones according to the screw leads, the width in the axial direction of the bottom surface 2a, the angle, etc., and it is not necessary to replace the grindstones. In this method, it is not necessary to use a tool along the shape of the thread groove 2, and a general-purpose cutting tool 5 can be used. Therefore, the versatility of various types of adjustment vehicles can be improved, and it can be easily applied to a variety of adjustment vehicles. The rate can be increased. In this case, the processing cost of the adjustment vehicle can be reduced as compared with the conventional manufacturing method, and therefore the cost of the tapered roller can be reduced. Further, according to the manufacturing method of the present invention, it has been proved that processing accuracy equivalent to that of a conventional screw grinding wheel can be obtained.

仕上げ過程において、図6に示すように、各加工サイクルの相互間で切削送り開始位置を、ねじ溝2の溝幅方向の一端から他端側へ所定の開始位置変化経路に沿って所定シフト量ずつ変化させる。この所定シフト量を可能な限り小さくすることで、ねじ溝2の底面2aの粗さを改善し、研削面に近い平面精度を実現することができる。換言すれば、加工サイクルの繰り返し回数を多くすればする程、ねじ溝2の底面2aを粗さを改善し、研削面に近い平面精度を実現し得る。
図6に示すように、切刃先端が曲率Rの凸曲線形状となる切削工具5を、底面2aに沿って一定量ずらしながら片刃切り込みを繰り返し行うことで、仮想的平面11を成形することができる。この場合、図11の工具形状を転写させる加工方法に比べて、ねじ溝2の種々の形状を効率良く加工することができる。換言すれば、ねじ溝2の形状に対する汎用性を高めることができる。
In the finishing process, as shown in FIG. 6, the cutting feed start position between each processing cycle is shifted by a predetermined shift amount along a predetermined start position changing path from one end to the other end side in the groove width direction of the thread groove 2. Change it step by step. By making this predetermined shift amount as small as possible, the roughness of the bottom surface 2a of the screw groove 2 can be improved, and the planar accuracy close to the grinding surface can be realized. In other words, the more the number of repetitions of the machining cycle, the more the roughness of the bottom surface 2a of the thread groove 2 can be improved, and the plane accuracy close to the grinding surface can be realized.
As shown in FIG. 6, the virtual plane 11 can be formed by repeatedly cutting the cutting tool 5 having a convex curve shape with a curvature R at the cutting edge tip while shifting the cutting tool 5 by a certain amount along the bottom surface 2a. it can. In this case, various shapes of the thread groove 2 can be efficiently processed as compared with the processing method of transferring the tool shape of FIG. In other words, versatility with respect to the shape of the thread groove 2 can be enhanced.

溝底面仕上げ過程は、ねじ溝2の底面2aの仕上げ加工の他に、鍔部3の端面、および鍔部3の外周面を成すねじ山の仕上げ加工を含み、これら底面2a、鍔部3の端面、およびねじ山を仕上げ加工を、互いに分離して順次行うものとしても良い。例えば、刃物台Taを割り出し回転させて所望の切削工具5を指定し、この切削工具5によりねじ溝2の底面2aを軸方向に沿って順次仕上げ加工する。鍔部3の端面を加工する場合、タレットTaを割り出し回転させこの端面加工専用の切削工具を指定し、鍔部3の端面を軸方向に沿って順次加工する。これら底面2a、鍔部端面の加工とは別に、ねじ山だけを軸方向に沿って順次加工する。この場合、各周の底面2a、鍔部3の端面、ねじ山を順次加工していくよりも、切削工具の切替回数等の低減を図り、加工サイクルのサイクルタイムの短縮を図ることが可能となる。したがって、加工時間の短縮を図り、製造コストを低減できる。   The groove bottom finishing process includes, in addition to the finishing of the bottom surface 2a of the thread groove 2, finishing processing of the end face of the flange portion 3 and the thread that forms the outer peripheral surface of the flange portion 3, and these bottom surface 2a and flange portion 3 It is also possible to finish the end face and the screw thread separately and sequentially. For example, a desired cutting tool 5 is specified by indexing and rotating the tool post Ta, and the cutting tool 5 sequentially finishes the bottom surface 2a of the thread groove 2 along the axial direction. When machining the end face of the collar part 3, the turret Ta is indexed and rotated, a cutting tool dedicated to this end face machining is designated, and the end face of the collar part 3 is sequentially machined along the axial direction. Apart from the processing of the bottom surface 2a and the flange end surface, only the thread is sequentially processed along the axial direction. In this case, it is possible to reduce the number of times of switching of the cutting tool and shorten the cycle time of the machining cycle, rather than sequentially machining the bottom surface 2a of each circumference, the end face of the flange 3 and the thread. Become. Therefore, the processing time can be shortened and the manufacturing cost can be reduced.

仕上げ過程では、ねじ溝2の底面2aと鍔部3の一端面との間のヌスミ2b、および底面2aと鍔部3の他端面との間の溝2cを加工する工程を含んでも良い。この場合において、未完調整車Wを主軸15aで支持した状態を維持して掴み変えることなく、この仕上げ過程における、ねじ溝2の底面2a、鍔部3の端面、前記ねじ山、ヌスミ2b、および溝2cの加工を行っても良い。これらヌスミ2bおよび溝2cを加工するとき、未完調整車Wを主軸15で支持した状態を維持して掴み変えることなくいわゆる段取り替えが不要となる。例えば、ヌスミ加工専用の切削工具、溝加工専用の切削工具に切替るだけで足りる。したがって、調整車製造の稼働率をより高めることができる。
未完調整車Wが熱処理された素材を用いたものである場合、例えば、砥石を使用した製造方法では加工不能な熱処理素材を容易に加工することができる。熱処理後旋削を行えるため、素材を必要十分な硬度にし、且つ熱処理に伴う微小な歪等を旋削除去できる。よって、必要十分な硬度を得ると共に、調整車の寸法精度を高めることが可能となる。また、適用可能な素材の選択枝が広がる分、設計の自由度が高まる。
The finishing process may include a step of machining the screw 2b between the bottom surface 2a of the screw groove 2 and one end surface of the flange portion 3 and the groove 2c between the bottom surface 2a and the other end surface of the flange portion 3. In this case, the bottom surface 2a of the thread groove 2, the end surface of the flange 3 in the finishing process, the thread, the screw 2b, and the like in this finishing process without maintaining and holding the state where the incompletely adjusted vehicle W is supported by the main shaft 15a. The groove 2c may be processed. When machining the pussies 2b and the grooves 2c, so-called setup change is not required without maintaining and holding the incompletely adjusted vehicle W supported by the main shaft 15. For example, it is only necessary to switch to a cutting tool dedicated to Nusumi processing or a cutting tool dedicated to grooving. Therefore, the operation rate of adjustment vehicle manufacturing can be further increased.
When the incompletely adjusted vehicle W is made of a heat-treated material, for example, a heat-treated material that cannot be processed by a manufacturing method using a grindstone can be easily processed. Since turning can be performed after the heat treatment, the material can have a necessary and sufficient hardness, and minute strains and the like accompanying the heat treatment can be removed. Therefore, it is possible to obtain the necessary and sufficient hardness and to increase the dimensional accuracy of the adjusting wheel. In addition, the degree of freedom of design increases as the choices of applicable materials expand.

仕上げ過程において、加工油剤を使用することなくねじ溝2の底面2aを仕上げ加工しているため、加工油剤を供給する設備、排油を回収する設備等を削減でき、よって設備費用の低減を図ることができる。
この実施形態に係る製造方法により得られた調整車1をこの調整車軸芯L1回りに回転駆動して円錐形状ワークをねじ溝2の底面2aに転接させつつ円錐ころを製作する場合、従来のねじ研削調整車を用いるよりも、円錐ころの単位数量当たりのコスト低減を図ることが可能となる。
この発明の他の実施形態として、主軸移動型の旋盤を用いて未完調整車Wに対して切削工具5を相対移動させて加工しても良い。
In the finishing process, since the bottom surface 2a of the thread groove 2 is finished without using any processing oil, the equipment for supplying the processing oil and the equipment for collecting the waste oil can be reduced, thereby reducing the equipment cost. be able to.
When the adjusting wheel 1 obtained by the manufacturing method according to this embodiment is rotationally driven around the adjusting axle axis L1 and the conical roller is manufactured while rolling the conical work to the bottom surface 2a of the screw groove 2, It is possible to reduce the cost per unit quantity of the tapered rollers, rather than using a thread grinding adjusting wheel.
As another embodiment of the present invention, machining may be performed by moving the cutting tool 5 relative to the incompletely adjusted vehicle W using a spindle moving type lathe.

1…調整車
2…ねじ溝
2a…底面
2b…ヌスミ
2c…溝
3…鍔部
4…NC旋盤
5…切削工具
L1…調整車軸芯
P0…待機位置
P1…切削送り開始位置
P2…切削送り終了位置
P3…後退位置
W…未完調整車
DESCRIPTION OF SYMBOLS 1 ... Adjustment wheel 2 ... Screw groove 2a ... Bottom 2b ... Nusumi 2c ... Groove 3 ... Gutter 4 ... NC lathe 5 ... Cutting tool L1 ... Adjustment axle core P0 ... Standby position P1 ... Cutting feed start position P2 ... Cutting feed end position P3 ... Reverse position W ... Unfinished adjustment vehicle

Claims (11)

センタレス研削用の調整車であって、螺旋状に続く案内用のねじ溝を外周に有し、このねじ溝の各周の底面が円錐形状部を成し、円錐形状部間に鍔部を有し、調整車軸芯回りに回転駆動されて円錐形状ワークを前記ねじ溝の底面に転接させる調整車を製造する方法において、
前記ねじ溝を有しこのねじ溝の底面の仕上げ加工が未加工の調整車である未完調整車を製造する仕上げ未完調整車製造過程と、
前記未完調整車の前記ねじ溝の底面を仕上げ加工する仕上げ過程とを含み、
前記仕上げ過程は、数値制御式の旋盤により、切削工具を用いて、前記ねじ溝の底面を軸方向の一部ずつ順次仕上げ加工することを特徴とするセンタレス研削用調整車の製造方法。
An adjustment wheel for centerless grinding, which has a spiral guide groove on the outer periphery, the bottom of each circumference of the screw groove forms a conical portion, and there is a flange between the conical portions. Then, in a method of manufacturing an adjustment wheel that is rotationally driven around the adjustment axle axis and causes the conical workpiece to roll-contact with the bottom surface of the thread groove,
A finish incompletely adjusted vehicle manufacturing process for manufacturing an incompletely adjusted vehicle, which is an adjusted vehicle having the threaded groove and finishing processing of the bottom surface of the threaded groove,
A finishing process for finishing the bottom surface of the screw groove of the incompletely adjusted vehicle,
In the finishing process, a centerless grinding adjusting wheel manufacturing method is characterized in that a bottom surface of the thread groove is sequentially finished part by part in the axial direction using a cutting tool with a numerically controlled lathe.
請求項1において、前記仕上げ過程は、切削工具を未完調整車に対して相対移動させて加工を行う加工サイクルを繰り返す過程とし、
前記加工サイクルは、
切削工具を未完調整車から離れた待機位置からねじ溝の一端または延長位置における切削送り開始位置へ前進させる接近過程と、
回転する未完調整車のねじ溝内面のねじ溝リードによる軸方向移動速度に合致した速度で前記切削工具を未完調整車のねじ溝の他端または延長位置となる切削送り終了位置まで軸方向に、または軸方向および径方向に移動させてねじ溝の底面の溝幅の一部を切削する切削送り過程と、
前記切削送り終了位置から未完調整車に対して離れる後退位置へ切削工具を相対的に移動させ、前記後退位置から前記待機位置へ切削工具を戻す戻し過程とでなり、
各加工サイクルの相互間で前記切削送り開始位置を、ねじ溝の溝幅方向の一端から他端側へ所定の開始位置変化経路に沿って所定シフト量ずつ変化させる、
センタレス研削用調整車の製造方法。
In claim 1, the finishing process is a process of repeating a machining cycle in which machining is performed by moving a cutting tool relative to an incompletely adjusted vehicle,
The machining cycle is
An approach process in which the cutting tool is advanced from a standby position away from the unfinished adjustment vehicle to a cutting feed start position at one end or an extended position of the thread groove;
In the axial direction to the cutting feed end position that is the other end of the screw groove of the incompletely adjusted vehicle or the extension position of the cutting tool at a speed that matches the axial movement speed by the thread groove lead on the inner surface of the screw groove of the incompletely adjusted car that rotates. Or a cutting feed process in which a part of the groove width of the bottom surface of the screw groove is cut by moving in the axial direction and the radial direction;
It is a process of returning the cutting tool from the retracted position to the standby position by relatively moving the cutting tool to the retracted position away from the incompletely adjusted vehicle from the cutting feed end position,
The cutting feed start position between each processing cycle is changed by a predetermined shift amount along a predetermined start position change path from one end to the other end side in the groove width direction of the thread groove,
A method for manufacturing a centerless grinding wheel.
請求項2において、前記調整車をこの調整車軸芯を含む仮想平面で切断した断面について、前記ねじ溝の各周の軸方向同一箇所を調整車軸芯方向に沿って繋ぐ包絡線が、直線でであり、前記切削送り過程では前記直線の包絡線に沿って前記切削工具を移動させるセンタレス研削用調整車の製造方法。   In Claim 2, about the cross section which cut | disconnected the said adjustment wheel by the virtual plane containing this adjustment axle core, the envelope which connects the axial direction same location of each periphery of the said thread groove along an adjustment axle core direction is a straight line. And a centerless grinding adjusting wheel manufacturing method in which the cutting tool is moved along the straight envelope in the cutting feed process. 請求項2において、前記調整車をこの調整車軸芯を含む仮想平面で切断した断面について、前記ねじ溝の各周の軸方向同一箇所を調整車軸芯方向に沿って繋ぐ包絡線が、調整車軸芯方向にわたり径方向外方に突出するクラウニング曲線であり、前記切削送り過程では前記クラウニング曲線の包絡線に沿って前記切削工具を移動させるセンタレス研削用調整車の製造方法。   The cross-section obtained by cutting the adjusting wheel along a virtual plane including the adjusting axle core according to claim 2, wherein an envelope that connects the same axial position of each circumference of the thread groove along the adjusting axle axis direction is an adjusting axle axis. A centering grinding adjusting wheel manufacturing method in which a crowning curve is projected radially outward over a direction, and the cutting tool is moved along an envelope of the crowning curve in the cutting feed process. 請求項3または請求項4において、前記切削工具の切刃が凸曲線形状であるセンタレス研削用調整車の製造方法。   5. The method of manufacturing an adjustment wheel for centerless grinding according to claim 3, wherein a cutting edge of the cutting tool has a convex curve shape. 請求項1ないし請求項5のいずれか1項において、前記仕上げ過程は、前記ねじ溝の底面の仕上げ加工の他に、鍔部の端面、および鍔部の外周面の仕上げ加工を含み、これら底面、鍔部の端面、および鍔部の外周面の仕上げ加工を、互いに分離して順次行うセンタレス研削用調整車の製造方法。   6. The finishing process according to claim 1, wherein the finishing process includes finishing of the end face of the flange and the outer peripheral surface of the flange in addition to the finishing of the bottom of the thread groove. A method of manufacturing an adjustment wheel for centerless grinding, in which finishing of the end face of the flange and the outer peripheral surface of the flange is sequentially performed separately from each other. 請求項6において、前記仕上げ過程は、ねじ溝の底面と鍔部の一端面との間のヌスミ、および底面と鍔部の他端面との間の溝を加工する工程を含み、未完調整車を主軸で支持した状態を維持して掴み変えることなく、この仕上げ過程における、ねじ溝の底面、鍔部の端面、鍔部の外周面、前記ヌスミ、および前記底面と鍔部の他端面との間の溝の加工を行うセンタレス研削用調整車の製造方法。   7. The finishing process according to claim 6, wherein the finishing process includes a step of machining a slot between the bottom surface of the screw groove and one end surface of the flange portion, and a groove between the bottom surface and the other end surface of the flange portion. The bottom surface of the thread groove, the end surface of the buttock, the outer peripheral surface of the buttock, the Nusumi, and the bottom surface and the other end surface of the buttock in this finishing process without maintaining and supporting the main shaft. Of manufacturing an adjustment wheel for centerless grinding, in which a groove of the center is processed. 請求項1ないし請求項7のいずれか1項において、前記未完調整車は、熱処理された素材を用いたものであるセンタレス研削用調整車の製造方法。   8. The method of manufacturing an adjustment wheel for centerless grinding according to any one of claims 1 to 7, wherein the incompletely adjusted vehicle uses a heat-treated material. 請求項1ないし請求項8のいずれか1項において、前記仕上げ過程では、加工油剤を使用することなく前記ねじ溝の底面を仕上げ加工するセンタレス研削用調整車の製造方法。   9. The method of manufacturing an adjustment wheel for centerless grinding according to claim 1, wherein in the finishing process, the bottom surface of the thread groove is finished without using a processing oil. 請求項1ないし請求項9のいずれか1項の製造方法を用いて製作する調整車。   An adjustment vehicle manufactured using the manufacturing method according to any one of claims 1 to 9. 請求項10の調整車をこの調整車軸芯回りに回転駆動して円錐形状ワークをねじ溝の底面に転接させつつ円錐ころを製作する円錐ころの製作方法。   11. A method of manufacturing a tapered roller, wherein the adjusting wheel according to claim 10 is rotationally driven around the axis of the adjusting axle so that the tapered roller is manufactured while rolling the conical work to the bottom surface of the thread groove.
JP2009142246A 2009-06-15 2009-06-15 Manufacturing method of adjusting wheel for centerless grinding, adjusting wheel, manufacturing method of tapered roller Active JP5538754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142246A JP5538754B2 (en) 2009-06-15 2009-06-15 Manufacturing method of adjusting wheel for centerless grinding, adjusting wheel, manufacturing method of tapered roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142246A JP5538754B2 (en) 2009-06-15 2009-06-15 Manufacturing method of adjusting wheel for centerless grinding, adjusting wheel, manufacturing method of tapered roller

Publications (2)

Publication Number Publication Date
JP2010284775A true JP2010284775A (en) 2010-12-24
JP5538754B2 JP5538754B2 (en) 2014-07-02

Family

ID=43540881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142246A Active JP5538754B2 (en) 2009-06-15 2009-06-15 Manufacturing method of adjusting wheel for centerless grinding, adjusting wheel, manufacturing method of tapered roller

Country Status (1)

Country Link
JP (1) JP5538754B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447635A (en) * 2013-08-28 2013-12-18 吴江固德电材系统股份有限公司 Novel turning lathe
CN114749731A (en) * 2022-03-17 2022-07-15 广信新材料科技(长沙)有限责任公司 Processing method of overlong insulation paper screw of transformer
CN114789259A (en) * 2022-06-09 2022-07-26 洛阳新强联回转支承股份有限公司 Tapered roller machining method for tapered roller bearing of high-power wind driven generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB571043A (en) * 1944-03-28 1945-08-02 Jessop William & Sons Ltd Improvements in or relating to work plates for centreless grinding machines
JPS5228083A (en) * 1975-08-27 1977-03-02 Nec Corp Numerical control device for continuous threading
JPH02180523A (en) * 1988-12-28 1990-07-13 Tsubakimoto Chain Co Cutting method for screw shaft
JPH06254720A (en) * 1992-12-22 1994-09-13 Sugawara Kogyo Kk Machining method for screw
JP2001138186A (en) * 1999-11-18 2001-05-22 Nsk Ltd Centerless grinding method
JP2002039303A (en) * 2000-07-28 2002-02-06 Nissan Motor Co Ltd Traction drive and method for grooving rolling element for power transmission
JP2006000995A (en) * 2004-06-21 2006-01-05 Yamazaki Mazak Corp Thread cutting apparatus
JP3871015B2 (en) * 2000-02-14 2007-01-24 日本精工株式会社 How to grind tapered rollers
JP2008307627A (en) * 2007-06-13 2008-12-25 Mitsui Seiki Kogyo Co Ltd Polishing device of drum type regulating wheel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB571043A (en) * 1944-03-28 1945-08-02 Jessop William & Sons Ltd Improvements in or relating to work plates for centreless grinding machines
JPS5228083A (en) * 1975-08-27 1977-03-02 Nec Corp Numerical control device for continuous threading
JPH02180523A (en) * 1988-12-28 1990-07-13 Tsubakimoto Chain Co Cutting method for screw shaft
JPH06254720A (en) * 1992-12-22 1994-09-13 Sugawara Kogyo Kk Machining method for screw
JP2001138186A (en) * 1999-11-18 2001-05-22 Nsk Ltd Centerless grinding method
JP3871015B2 (en) * 2000-02-14 2007-01-24 日本精工株式会社 How to grind tapered rollers
JP2002039303A (en) * 2000-07-28 2002-02-06 Nissan Motor Co Ltd Traction drive and method for grooving rolling element for power transmission
JP2006000995A (en) * 2004-06-21 2006-01-05 Yamazaki Mazak Corp Thread cutting apparatus
JP2008307627A (en) * 2007-06-13 2008-12-25 Mitsui Seiki Kogyo Co Ltd Polishing device of drum type regulating wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447635A (en) * 2013-08-28 2013-12-18 吴江固德电材系统股份有限公司 Novel turning lathe
CN114749731A (en) * 2022-03-17 2022-07-15 广信新材料科技(长沙)有限责任公司 Processing method of overlong insulation paper screw of transformer
CN114789259A (en) * 2022-06-09 2022-07-26 洛阳新强联回转支承股份有限公司 Tapered roller machining method for tapered roller bearing of high-power wind driven generator

Also Published As

Publication number Publication date
JP5538754B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
RU2312002C2 (en) Circular grinding method for making tools of hard alloy and circular grinding machine for grinding initial cylindrical blanks at making tool of hard alloy
CN102548698B (en) Apparatus for chamfering and/or deburring of gears
JP7224109B2 (en) Gear manufacturing machining method for workpiece
CN101516559A (en) Deburring by hobbing with integrated secondary deburring without a smoothing tool
US20060174464A1 (en) Multiple operation gear manufacturing apparatus with common work axis
RU2397844C1 (en) Procedure and metal working machine for cutting complex shapes of non-central parts
JP2007320022A (en) Roll machining method
JP5181703B2 (en) Processing method of concave Fresnel lens shaped member and concave Fresnel lens shaped member
KR20150136485A (en) Polygon machining device and polygon machining method
JPWO2017086238A1 (en) Machine tool and machining method by machine tool
JP2009184066A5 (en)
JP5538754B2 (en) Manufacturing method of adjusting wheel for centerless grinding, adjusting wheel, manufacturing method of tapered roller
CN205438045U (en) Interior surface grinding device
JP4140574B2 (en) Method and apparatus for grinding a cam having a concave surface
JP4921032B2 (en) Growing method for crowning roll
US9575485B2 (en) Compound machining method and apparatus
JP5262576B2 (en) Thread groove grinding device rest device and thread groove grinding device
US20090060672A1 (en) Multiple Operation Gear Manufacturing Apparatus With Common Work Axis
US11738399B2 (en) Method for machining a toothing and toothing machine designed for same, as well as computer program product for same
JP4712586B2 (en) NC machine tool
CN110026747A (en) The nonstandard bush processing technology of high precision
JP2014195862A (en) Method for truing rotary grindstone and grinding machine for performing the truing method
JP7439403B2 (en) Grinding method using a whetstone
JP2008279540A (en) Method and device for grinding thread groove
KR20140134617A (en) Method for tooth-machining workpieces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5538754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250