JP2006000995A - Thread cutting apparatus - Google Patents

Thread cutting apparatus Download PDF

Info

Publication number
JP2006000995A
JP2006000995A JP2004182380A JP2004182380A JP2006000995A JP 2006000995 A JP2006000995 A JP 2006000995A JP 2004182380 A JP2004182380 A JP 2004182380A JP 2004182380 A JP2004182380 A JP 2004182380A JP 2006000995 A JP2006000995 A JP 2006000995A
Authority
JP
Japan
Prior art keywords
spindle
speed
incomplete
thread
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182380A
Other languages
Japanese (ja)
Other versions
JP4639058B2 (en
Inventor
Masahiro Kurata
政宏 倉田
Yasuhiko Suzuki
康彦 鈴木
Makoto Tanahashi
誠 棚橋
Hajime Ohashi
肇 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazaki Mazak Corp
Original Assignee
Yamazaki Mazak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Mazak Corp filed Critical Yamazaki Mazak Corp
Priority to JP2004182380A priority Critical patent/JP4639058B2/en
Publication of JP2006000995A publication Critical patent/JP2006000995A/en
Application granted granted Critical
Publication of JP4639058B2 publication Critical patent/JP4639058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thread cutting apparatus which shortens the length of an incomplete thread portion, and also shortens the total machining time for thread cutting by increasing the rotational speed of a main spindle. <P>SOLUTION: A numerically controlled (NC) lathe 10 comprises a main spindle 20, a main spindle motor 230, a tool rest 340 movable relative to the main spindle 20, a Z-axis feed motor 320 for driving the tool rest 340 in the axial direction in parallel with the main spindle 20, and an X-axis feed motor 350 for driving the tool rest 340 in the direction perpendicular to the main spindle 20. The NC lathe 10 forms a screw having a complete thread portion and an incomplete thread portion on a workpiece W by means of a cutting tool 400 by moving the tool rest 340 relative to the workpiece W held by the main spindle 20. An NC unit 100 controls the Z-axis feed motor 320 and the main motor 230 by the synchronous interpolation by controlling the main spindle motor 230 such that the rotational speed of the main spindle in cutting the incomplete thread portion is lower than that of the main spindle in cutting the complete thread portion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ねじ切り加工装置に関する。   The present invention relates to a thread cutting apparatus.

NC旋盤等の数値制御工作機械における従来のねじ切り加工について図14及び図15を参照して説明する。
図14(a),(b)に示すように、ワーク500に対してねじ切り加工を行う場合、主軸(図示しない)を回転中心としてワーク500を回転させ、アプローチ部から、ワーク500の周部に対して加工工具510を接触させながら、ワーク500の回転に同期させて主軸の軸心Oに平行なZ軸方向に加工工具510を移動させて有効ねじ部を形成する。なお、図14(b)は、有効ねじ部側の端部から見た側面図であり、矢印は、ワーク500の回転方向を示している。そして、有効ねじ部の加工サイクル終了点付近では、加工工具510をねじ溝から、引き抜くため、Z軸方向と直交するX軸方向の切り上げ動作を行うようにしている(図15(a)〜(c)参照)。
A conventional threading process in a numerically controlled machine tool such as an NC lathe will be described with reference to FIGS.
As shown in FIGS. 14A and 14B, when threading a workpiece 500, the workpiece 500 is rotated about a main shaft (not shown) as a rotation center, and from the approach portion to the peripheral portion of the workpiece 500. On the other hand, the working tool 510 is moved in the Z-axis direction parallel to the axis O of the main spindle in synchronization with the rotation of the workpiece 500 while the machining tool 510 is brought into contact with each other, thereby forming an effective screw portion. FIG. 14B is a side view as viewed from the end on the effective screw portion side, and the arrow indicates the rotation direction of the workpiece 500. Then, in the vicinity of the end point of the machining cycle of the effective thread portion, in order to pull out the machining tool 510 from the thread groove, a rounding up operation in the X-axis direction orthogonal to the Z-axis direction is performed (FIGS. 15A to 15 ( c)).

従って、この部分は、ねじ溝が浅い不完全ねじ部となる(図14(a)参照)。この不完全ねじ部は、主軸回転数が速いほど長くなるため、設計図面指示より不完全ねじ部が長くなる場合は、主軸回転数を切削の適正な値よりも下げる必要がある。又、従来は、図15(a)〜(c)に示すように、有効ねじ部及び不完全ねじ部において、主軸回転数を一定に保ち、Z軸とX軸の2軸補間でねじ切り加工を行うようにしている。   Therefore, this portion becomes an incomplete screw portion having a shallow screw groove (see FIG. 14A). Since the incomplete thread portion becomes longer as the main shaft rotational speed becomes faster, it is necessary to lower the main shaft rotational speed from an appropriate value for cutting when the incomplete thread portion becomes longer than in the design drawing instruction. Conventionally, as shown in FIGS. 15 (a) to 15 (c), in the effective screw portion and the incomplete screw portion, the spindle rotation speed is kept constant, and threading is performed by biaxial interpolation of the Z axis and the X axis. Like to do.

なお、特許文献1は、ねじ切り加工と、ねじ穴加工において、加工工具と主軸との同期制御に関して開示がされている。
特開平11−245118号公報
Patent Document 1 discloses the synchronous control between the machining tool and the spindle in thread cutting and screw hole machining.
JP-A-11-245118

しかし、従来は上記のように、主軸回転数を、有効ねじ部、及び不完全ねじ部を加工する領域においても一定に保っていることから、図面指示(設計値)より、不完全ねじ部が長くなる場合は、主軸回転数を切削の適正な値より下げて、不完全ねじ部が長くならないようにしている。しかし、主軸回転数を下げると、有効ねじ部及び不完全ねじ部を含めた加工時間が長くなる問題がある。   However, conventionally, as described above, the spindle speed is kept constant even in the area where the effective thread part and the incomplete thread part are machined. When it becomes longer, the spindle rotation speed is lowered from an appropriate value for cutting so that the incomplete thread portion does not become longer. However, when the spindle rotational speed is lowered, there is a problem that the machining time including the effective screw portion and the incomplete screw portion becomes long.

なお、特許文献1では、加工工具と主軸との同期制御により、ねじ切り加工を短時間に実行できるものであるが、不完全ねじ部に対してどのようにするかの技術的事項については開示がない。   In addition, in patent document 1, although threading can be performed in a short time by synchronous control of a processing tool and a spindle, technical matters on how to perform an incomplete thread portion are disclosed. Absent.

本発明の目的は、不完全ねじ部の長さを短縮できるとともに、主軸回転数を上げてねじ切り加工の総加工時間を短縮することができるねじ切り加工装置を提供することにある。   An object of the present invention is to provide a threading device that can shorten the length of an incomplete thread portion and increase the rotational speed of the main shaft to shorten the total processing time of threading.

上記問題点を解決するために、請求項1に記載の発明は、ワークを保持する主軸と、
前記主軸を回転駆動する主軸駆動手段と、加工工具を備えた刃物台と、前記主軸及び刃物台の少なくともいずれか一方を前記主軸の軸心と平行な第1軸方向へ移動するように駆動する第1駆動手段と、前記主軸及び刃物台の少なくともいずれか一方を、前記第1軸方向と直交する第2軸方向に駆動する第2駆動手段と、前記主軸駆動手段、第1駆動手段及び前記第2駆動手段をそれぞれ制御駆動する制御手段と、を有し、前記主軸と、前記刃物台を相対移動させることによって、該刃物台の加工工具により前記主軸に保持されたワークに有効ねじ部と不完全ねじ部を有するねじを形成し得るねじ切り加工装置において、前記制御手段は、前記不完全ねじ部を加工する場合の主軸回転数を、前記有効ねじ部を加工する場合の主軸回転数よりも小さくなるように前記主軸駆動手段を制御するとともに、前記第1駆動手段と第2駆動手段のうち、少なくとも第1駆動手段を、前記主軸駆動手段とともに同期補間して制御することを特徴とするねじ切り加工装置を要旨とするものである。
In order to solve the above-mentioned problem, the invention according to claim 1 includes a spindle for holding a workpiece,
A spindle driving means for rotationally driving the spindle, a tool rest provided with a processing tool, and driving at least one of the spindle and the tool rest to move in a first axial direction parallel to the axis of the spindle. A first driving means; a second driving means for driving at least one of the spindle and the tool post in a second axis direction orthogonal to the first axis direction; the spindle driving means; the first driving means; Control means for controlling and driving each of the second driving means, and by moving the main spindle and the tool rest relative to each other, an effective thread portion on the work held on the main spindle by a processing tool of the tool rest, In the threading device capable of forming a screw having an incomplete thread portion, the control means is configured such that the spindle rotational speed when machining the incomplete thread portion is greater than the spindle rotational speed when machining the effective thread portion. small Thread cutting, characterized in that the spindle driving means is controlled so that at least one of the first driving means and the second driving means is controlled by synchronous interpolation together with the spindle driving means. The gist of the processing apparatus.

請求項2の発明は、請求項1において、前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、少なくとも不完全ねじ部領域では、主軸回転数を徐々に減速するように変化させることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the control means rotates the spindle in at least an incomplete screw portion region of an effective screw portion region and an incomplete screw portion region where the workpiece is processed by the processing tool. The number is changed so as to be gradually reduced.

請求項3の発明は、請求項1又は請求項2において、前記制御手段は、前記有効ねじ領域部のねじのピッチと不完全ねじ部領域のねじのピッチが同じとなるように前記第1駆動手段と第2駆動手段のうち、少なくとも第1駆動手段と、主軸駆動手段を同期補間して制御することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the control unit is configured to perform the first driving so that the pitch of the screw in the effective screw region and the pitch of the screw in the incomplete screw region are the same. Of the means and the second driving means, at least the first driving means and the spindle driving means are controlled by synchronous interpolation.

請求項4の発明は、請求項1において、前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、有効ねじ部領域では主軸回転数を一定にして制御し、不完全ねじ部領域では、主軸回転数を徐々に減少するように変化させることを特徴とする。   According to a fourth aspect of the present invention, in the first aspect, the control means is configured to maintain a constant spindle rotational speed in the effective screw portion region of the effective screw portion region and the incomplete screw portion region where the workpiece is processed by the processing tool. In the incomplete thread portion region, the spindle rotational speed is changed so as to gradually decrease.

請求項5の発明は、請求項1においては、前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、有効ねじ部領域では主軸回転数を一定にして制御した後、該主軸回転数を徐々に減少するように制御し、不完全ねじ部領域では、前記有効ねじ部領域から継続して主軸回転数を徐々に減少するように変化させることを特徴とする。   According to a fifth aspect of the present invention, in the first aspect, the control unit is configured to control the spindle rotational speed in the effective screw portion region of the effective screw portion region and the incomplete screw portion region where the workpiece is processed by the processing tool. After the control is made constant, the spindle speed is controlled to gradually decrease, and in the incomplete thread area, the spindle speed is continuously changed from the effective thread area to be gradually decreased. It is characterized by.

請求項6の発明は、請求項1において、前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、有効ねじ部領域では主軸回転数を一定にして制御した後、該主軸回転数を徐々に減少するように制御し、不完全ねじ部領域では、有効ねじ部領域で一定にした主軸回転数よりも少ない主軸回転数で一定にするように制御することを特徴とする。   A sixth aspect of the present invention is the first aspect of the present invention, wherein the control means has a constant spindle rotational speed in the effective screw portion region of the effective screw portion region and the incomplete screw portion region where the workpiece is processed by the processing tool. After that, the spindle rotational speed is controlled so as to gradually decrease, and in the incomplete thread portion area, the spindle rotational speed that is less than the constant spindle rotational speed made constant in the effective thread portion area is made constant. It is characterized by controlling.

請求項7の発明は、前記不完全ねじ部の加工長を加工長関連パラメータに基づいて算出する加工長演算手段を備え、該加工長と、前記加工長関連パラメータに含まれる不完全ねじ部の加工長の上限値の大小関係に応じて、制御手段は、有効ねじ部領域と不完全ねじ部領域において主軸回転数を一定に制御するか、或いは、請求項4乃至請求項6のうちいずれか1項に記載の制御を行うことを特徴とする。   The invention according to claim 7 includes processing length calculation means for calculating a processing length of the incomplete thread portion based on a processing length related parameter, the processing length and the incomplete thread portion included in the processing length related parameter. According to the magnitude relation of the upper limit value of the machining length, the control means controls the spindle rotational speed to be constant in the effective screw portion region and the incomplete screw portion region, or any one of claims 4 to 6. The control described in item 1 is performed.

請求項8の発明は、請求項7において、前記加工長関連パラメータは、目標主軸回転数、不完全ねじ部領域加工時間、目標主軸加減速度及び不完全ねじ部の加工長の上限値を含み、前記制御手段は、前記加工長が、前記上限値以下の場合、有効ねじ部領域で、前記目標主軸回転数に応じて主軸回転数を一定にした後、不完全ねじ部領域では前記目標主軸加減速度に基づいて主軸回転数を徐々に減少するように変化させることを特徴とする。   The invention of claim 8 provides the machining length-related parameter according to claim 7, wherein the machining length-related parameter includes a target spindle rotational speed, an incomplete screw portion region machining time, a target spindle acceleration / deceleration, and an upper limit value of the machining length of the incomplete screw portion, When the machining length is equal to or less than the upper limit value, the control means stabilizes the spindle speed in the effective thread area according to the target spindle speed, and then adjusts the target spindle in the incomplete thread area. It is characterized in that the spindle rotational speed is changed so as to gradually decrease based on the speed.

請求項9の発明は、請求項7において、前記加工長関連パラメータは、有効ねじ部で採用される目標主軸回転数よりも小である不完全ねじ部領域で到達すべき到達目標主軸回転数、不完全ねじ部領域加工時間、目標主軸加減速度及び不完全ねじ部の加工長の上限値を含み、前記制御手段は、該加工長が前記上限値以下の場合、前記有効ねじ部領域で前記目標主軸回転数に応じて主軸回転数を一定にする制御を行った後、前記目標主軸加減速度に基づいて、前記有効ねじ部領域及び前記不完全ねじ部領域で主軸回転数を徐々に減少するように変化させて、前記到達目標主軸回転数に向かって制御することを特徴とする。   The invention of claim 9 is the target target spindle speed to be reached in the incomplete thread portion region in which the machining length related parameter is smaller than the target spindle speed adopted in the effective thread portion in claim 7, An incomplete thread portion region machining time, a target spindle acceleration / deceleration and an upper limit value of the machining length of the incomplete thread portion, and the control means, when the machining length is equal to or less than the upper limit value, in the effective thread portion region After controlling the spindle speed to be constant according to the spindle speed, the spindle speed is gradually reduced in the effective thread area and the incomplete thread area based on the target spindle acceleration / deceleration. And the control is performed toward the target spindle speed.

請求項10の発明は、請求項7において、前記加工長関連パラメータは、有効ねじ部で採用される目標主軸回転数よりも小である不完全ねじ部領域で到達すべき到達目標主軸回転数、不完全ねじ部領域加工時間及び不完全ねじ部の加工長の上限値を含み、前記制御手段は、該加工長が前記上限値以下の場合、前記有効ねじ部領域では前記目標主軸回転数に応じて主軸回転数を一定する制御を行った後、主軸回転数を徐々に減少するように変化させて前記到達目標主軸回転数に達するよう制御し、不完全ねじ部領域では前記到達目標主軸回転数に基づいた主軸回転数で一定にすることを特徴とする。   The invention of claim 10 is directed to claim 7, wherein the machining length related parameter is a target spindle revolution speed to be reached in an incomplete thread section area that is smaller than a target spindle revolution speed employed in an effective thread section, The control means includes an incomplete thread portion region machining time and an upper limit value of the incomplete thread portion machining length. When the machining length is equal to or less than the upper limit value, the control means responds to the target spindle speed in the effective thread portion region. The spindle rotational speed is controlled to be constant, and then the spindle rotational speed is changed so as to gradually decrease to reach the target spindle rotational speed. It is characterized in that it is constant at the spindle speed based on the above.

なお、本明細書では、主軸回転数を使用するが、主軸回転数は主軸回転速度と同じ意味であるため、主軸回転数が減速(減少)するとは、主軸回転速度が減速する意味で使用している。   In this specification, the main shaft speed is used. However, since the main shaft speed is the same as the main shaft speed, the main shaft speed is decelerated (decreased). ing.

又、本明細書で使用する「目標主軸回転数」は、予め設定された値であって、有効ねじ部領域で主軸回転数を一定にして制御されるときに使用される主軸回転数である。
又、「到達目標主軸回転数」は、不完全ねじ部領域で到達する目標値である主軸回転数である。
Further, the “target spindle speed” used in the present specification is a preset value, which is the spindle speed used when the spindle speed is controlled to be constant in the effective screw region. .
The “reached target spindle rotational speed” is a spindle rotational speed that is a target value that is reached in the incomplete thread portion region.

又、有効ねじ部領域は、ワークの有効ねじ部となる部分を加工する場合の、加工工具の移動範囲を意味し、不完全ねじ部領域はワークの不完全ねじ部となる部分を加工する場合の加工工具の移動範囲を意味する。   The effective thread area means the range of movement of the machining tool when machining the part that becomes the effective thread part of the workpiece, and the incomplete thread area is when machining the part that becomes the incomplete thread part of the workpiece. This means the movement range of the machining tool.

請求項1の発明によれば、不完全ねじ部を加工するときの主軸回転数を、有効ねじ部を加工するときの主軸回転数よりも小さくするため、従来、有効ねじ部と不完全ねじ部の主軸回転数を同じにしていたときよりも、不完全ねじ部の長さを短縮できる。又、不完全ねじ部による切削条件の制限がなくなり、有効ねじ部を加工する際の主軸回転数を不完全ねじ部を加工する場合よりも上げて、有効ねじ部の加工時間を短縮でき、ひいてはねじ切り加工の加工時間を短縮できる。さらに、請求項1の発明によれば、従来できなかったねじ加工中の主軸オーバライドを変更できる効果がある。   According to the first aspect of the present invention, in order to make the spindle rotational speed when machining the incomplete thread portion smaller than the spindle rotational speed when machining the effective thread portion, the effective thread portion and the incomplete thread portion have been conventionally used. The length of the incomplete thread portion can be shortened as compared with the case where the main shaft rotation speed is the same. In addition, there is no restriction on cutting conditions due to incomplete thread, and the spindle speed when machining the effective thread can be increased compared to machining the incomplete thread, reducing the machining time of the effective thread, The processing time for threading can be shortened. Furthermore, according to the first aspect of the present invention, there is an effect that the spindle override during screw machining, which has not been possible conventionally, can be changed.

請求項2の発明によれば、有効ねじ部領域と不完全ねじ部領域のうち、少なくとも不完全ねじ部領域では、主軸回転数を徐々に減速するように変化させることにより、上記効果を容易に実現することができる。   According to the second aspect of the present invention, at least in the incomplete screw portion region among the effective screw portion region and the incomplete screw portion region, the above effect can be easily achieved by changing the spindle rotational speed so as to be gradually reduced. Can be realized.

請求項3の発明によれば、有効ねじ部と不完全ねじ部を同じねじのピッチにすることができる。
請求項4の発明によれば、有効ねじ部領域では主軸回転数を一定にして制御し、不完全ねじ部領域では、主軸回転数を徐々に減少するように変化させることにより、請求項1の効果を容易に実現できる。
According to the invention of claim 3, the effective screw portion and the incomplete screw portion can have the same screw pitch.
According to the invention of claim 4, the spindle speed is controlled to be constant in the effective thread area, and the spindle speed is gradually changed in the incomplete thread area to change gradually. The effect can be easily realized.

請求項5の発明によれば、有効ねじ部領域では主軸回転数を一定にして制御した後、該主軸回転数を徐々に減少するように制御し、不完全ねじ部領域では、前記有効ねじ部領域から継続して主軸回転数を徐々に減少するように変化させることにより、請求項1の効果を容易に実現できる。   According to the invention of claim 5, after the main shaft rotation speed is controlled to be constant in the effective screw portion region, the main shaft rotation number is controlled to be gradually decreased. In the incomplete screw portion region, the effective screw portion is controlled. The effect of claim 1 can be easily realized by continuously changing from the region so as to gradually decrease the spindle rotational speed.

請求項6の発明によれば、有効ねじ部領域では主軸回転数を一定にして制御した後、該主軸回転数を徐々に減少するように制御し、不完全ねじ部領域では、有効ねじ部領域で一定にした主軸回転数よりも少ない主軸回転数で一定にするように制御することにより、請求項1の効果を容易に実現できる。   According to the invention of claim 6, after the main shaft rotation speed is controlled to be constant in the effective screw portion region, the main shaft rotation number is controlled to gradually decrease. In the incomplete screw portion region, the effective screw portion region is controlled. The effect of claim 1 can be easily realized by performing control so that the main shaft rotation speed is lower than the main shaft rotation speed constant.

請求項7の発明によれば、不完全ねじ部の加工長と、前記加工長関連パラメータに含まれる不完全ねじ部の加工長の上限値の大小関係に応じて、有効ねじ部領域と不完全ねじ部領域において主軸回転数を一定に制御するか、或いは請求項4乃至請求項6のうちいずれかに記載の制御が行われる。この場合、請求項4乃至請求項6のうちいずれかに記載の制御が行われると、請求項1の効果を容易に実現できる。   According to the invention of claim 7, the effective thread portion region and the incomplete thread portion are incomplete according to the relationship between the machining length of the incomplete thread portion and the upper limit value of the machining length of the incomplete thread portion included in the machining length related parameter. The main shaft rotation speed is controlled to be constant in the thread region, or the control according to any one of claims 4 to 6 is performed. In this case, when the control according to any one of claims 4 to 6 is performed, the effect of claim 1 can be easily realized.

請求項8の発明によれば、不完全ねじ部の加工長が、不完全ねじ部の加工長の上限値以下の場合、有効ねじ部領域で、目標主軸回転数に応じて主軸回転数を一定にした後、不完全ねじ部領域では目標主軸加減速度に基づいて主軸回転数を徐々に減少するように変化させることにより、請求項1の効果を容易に実現できる。   According to the invention of claim 8, when the machining length of the incomplete screw portion is equal to or less than the upper limit value of the machining length of the incomplete screw portion, the spindle rotation speed is constant in the effective screw portion region according to the target spindle rotation speed. After that, the effect of claim 1 can be easily realized by changing the spindle rotational speed so as to gradually decrease based on the target spindle acceleration / deceleration in the incomplete thread portion region.

請求項9の発明によれば、不完全ねじ部の加工長が不完全ねじ部の加工長の上限値以下の場合、有効ねじ部領域で目標主軸回転数に応じて主軸回転数を一定にした後、有効ねじ部領域及び不完全ねじ部領域で主軸回転数を徐々に減少するように変化させて、到達目標主軸回転数に向かって制御することにより、請求項1の効果を容易に実現できる。   According to the invention of claim 9, when the machining length of the incomplete screw portion is equal to or less than the upper limit value of the machining length of the incomplete screw portion, the spindle rotation speed is made constant according to the target spindle rotation speed in the effective screw portion region. Thereafter, the effect of the first aspect can be easily realized by changing the main shaft rotational speed so as to gradually decrease in the effective thread portion region and the incomplete thread portion region, and controlling toward the ultimate target main shaft rotational speed. .

請求項10の発明によれば、不完全ねじ部の加工長が不完全ねじ部の加工長の上限値以下の場合、有効ねじ部領域では前記目標主軸回転数に応じて主軸回転数を一定にした後、主軸回転数を徐々に減少させて到達目標主軸回転数に達するよう制御する、そして、不完全ねじ部領域で到達目標主軸回転数に基づいた主軸回転数で一定にすることにより、請求項1の効果を容易に実現できる。   According to the invention of claim 10, when the machining length of the incomplete thread portion is equal to or less than the upper limit value of the machining length of the incomplete thread portion, the spindle speed is made constant in the effective thread area in accordance with the target spindle speed. After that, the spindle speed is gradually decreased to control to reach the target spindle speed, and the spindle speed based on the target spindle speed is made constant in the incomplete thread region. The effect of item 1 can be easily realized.

以下、本発明のねじ切り加工装置を数値制御旋盤10に具体化した実施形態を図1〜10を参照して説明する。
数値制御旋盤10は、図1に示すように、Z軸を回転中心として回転自在な主軸20を有しており、主軸20には爪30が、その中心を該主軸20に一致させた形で主軸20と共に回転駆動自在に設けられている。爪30にはねじを切削加工すべきワークWが、該主軸20の回転軸であるZ軸を回転中心として回転自在な形で把持固定されている。主軸20には該主軸20を回転駆動させ得る主軸モータ230が接続されている。主軸モータ230は、主軸駆動手段に相当する。又、主軸20には該主軸20の回転検出器であるパルスエンコーダ等からなる角度検出器122が、取付けられている。角度検出器122は、主軸モータ230が一定角度回転する毎にパルス信号を発生し、主軸制御部170へフィードバックする。この主軸モータ230及び爪30を備えた主軸20は、ベッド(図示略)に配設されている。
Hereinafter, an embodiment in which the threading device of the present invention is embodied in a numerically controlled lathe 10 will be described with reference to FIGS.
As shown in FIG. 1, the numerically controlled lathe 10 has a main shaft 20 that is rotatable about the Z axis, and a claw 30 is formed on the main shaft 20 such that its center coincides with the main shaft 20. The main shaft 20 and the main shaft 20 are rotatably provided. A work W to be machined with a screw is gripped and fixed to the claw 30 in such a manner that the work W can rotate about the Z axis, which is the rotation axis of the main shaft 20. A main shaft motor 230 that can rotate the main shaft 20 is connected to the main shaft 20. The main shaft motor 230 corresponds to main shaft driving means. Further, an angle detector 122 composed of a pulse encoder or the like that is a rotation detector of the main shaft 20 is attached to the main shaft 20. The angle detector 122 generates a pulse signal every time the spindle motor 230 rotates by a certain angle, and feeds it back to the spindle controller 170. The main shaft 20 including the main shaft motor 230 and the claw 30 is disposed on a bed (not shown).

刃物台駆動機構300は、サドル310をZ軸方向(図1では水平方向であって、主軸20の軸心と平行)に移動させるためのZ軸送りモータ320と送りねじ330、及びサドル310に設けられた刃物台340をX軸方向(図では垂直方向)に移動させるためのX軸送りモータ350と送りねじ360等により構成されている。Z軸方向は、第1軸方向に相当し、X軸方向は、Z軸方向に直交する第2軸方向に相当する。X軸送りモータ350及びZ軸送りモータ320には、それぞれX軸位置及びZ軸位置検出器としてのロータリエンコーダ124X,126Zが装着され、両ロータリエンコーダにより加工工具400のX軸位置、Z軸位置が検出可能である。Z軸送りモータ320は、第1駆動手段に相当し、X軸送りモータ350は、第2駆動手段に相当する。   The turret driving mechanism 300 includes a Z-axis feed motor 320, a feed screw 330, and a saddle 310 for moving the saddle 310 in the Z-axis direction (the horizontal direction in FIG. 1 and parallel to the axis of the main shaft 20). An X-axis feed motor 350 and a feed screw 360 for moving the provided tool post 340 in the X-axis direction (vertical direction in the figure) are configured. The Z-axis direction corresponds to the first axis direction, and the X-axis direction corresponds to the second axis direction orthogonal to the Z-axis direction. The X-axis feed motor 350 and the Z-axis feed motor 320 are mounted with rotary encoders 124X and 126Z as X-axis position and Z-axis position detectors, respectively, and the X-axis position and Z-axis position of the machining tool 400 by both rotary encoders. Can be detected. The Z-axis feed motor 320 corresponds to the first drive means, and the X-axis feed motor 350 corresponds to the second drive means.

刃物台340には、ねじ切りバイト即ち加工工具400が着脱自在に装着されている。数値制御旋盤10にはねじ切り加工制御装置としてのNC装置100が、主軸20と加工工具400を制御駆動させ得る形で設けられており、NC装置100は、図2に示すように、CPUからなる主制御部110を有している。主制御部110は、制御手段、加工長演算手段に相当する。主制御部110には入力部120、X軸制御部130、Z軸制御部140、補間制御部150、主軸制御部170、加工プログラム解析部180、操作盤185、表示部187、テープリーダ190、記憶部(メモリ)195等が接続されている。入力部120には刃物台340のロータリエンコーダ124X,126Z及び前記主軸20の角度検出器122がそれぞれ接続されている。なお、図1では、説明の便宜上、NC装置100の構成を一部省略して図示していないが、図2に示すように、X軸制御部130には駆動回路132を介してX軸送りモータ350が接続されている。又、Z軸制御部140には駆動回路142を介してZ軸送りモータ320が接続されている。さらに、主軸制御部170には駆動回路172を介して前記主軸モータ230が、接続されている。   A thread cutting tool, that is, a processing tool 400 is detachably mounted on the tool post 340. The numerically controlled lathe 10 is provided with an NC device 100 as a threading control device that can control and drive the spindle 20 and the processing tool 400, and the NC device 100 includes a CPU as shown in FIG. A main control unit 110 is included. The main control unit 110 corresponds to control means and machining length calculation means. The main control unit 110 includes an input unit 120, an X axis control unit 130, a Z axis control unit 140, an interpolation control unit 150, a main axis control unit 170, a machining program analysis unit 180, an operation panel 185, a display unit 187, a tape reader 190, A storage unit (memory) 195 and the like are connected. The input unit 120 is connected to the rotary encoders 124X and 126Z of the tool post 340 and the angle detector 122 of the spindle 20 respectively. In FIG. 1, for convenience of explanation, a part of the configuration of the NC device 100 is omitted and is not shown. However, as shown in FIG. 2, the X-axis control unit 130 is supplied with an X-axis feed via a drive circuit 132. A motor 350 is connected. A Z-axis feed motor 320 is connected to the Z-axis controller 140 via a drive circuit 142. Further, the spindle motor 230 is connected to the spindle controller 170 via a drive circuit 172.

X軸制御部130は、その出力制御信号によって駆動回路132を介してX軸送りモータ350の回転を制御し、ロータリエンコーダ124Xからの送りねじ360の回転速度に比例する周波数のパルス信号をフィードバック信号として入力する。   The X-axis control unit 130 controls the rotation of the X-axis feed motor 350 via the drive circuit 132 based on the output control signal, and feeds back a pulse signal having a frequency proportional to the rotation speed of the feed screw 360 from the rotary encoder 124X. Enter as.

一方、Z軸制御部140は、その出力制御信号によってZ軸送りモータ320の回転を制御し、ロータリエンコーダ126Zからの送りねじ330の回転速度に比例する周波数のパルス信号をフィードバック信号として入力するようにされている。   On the other hand, the Z-axis control unit 140 controls the rotation of the Z-axis feed motor 320 by the output control signal, and inputs a pulse signal having a frequency proportional to the rotation speed of the feed screw 330 from the rotary encoder 126Z as a feedback signal. Has been.

補間制御部150は、主軸制御部170、X軸制御部130,Z軸制御部140で生成された1ブロック分の実行データを受け取り、単位時間当たりの各軸の移動量を演算する。主軸制御部170、X軸制御部130,及びZ軸制御部140は、補間制御部150で演算された単位時間当たりの各軸の移動量に基づいてそれぞれ主軸モータ230,Z軸送りモータ320,X軸送りモータ350を互いに同期補間の制御にて駆動が可能である。又、主軸制御部170、及びZ軸制御部140は、補間制御部150で演算された単位時間当たりの各軸の移動量に基づいてそれぞれ主軸モータ230,Z軸送りモータ320を互いに同期補間の制御にて駆動が可能である。   The interpolation control unit 150 receives the execution data for one block generated by the spindle control unit 170, the X-axis control unit 130, and the Z-axis control unit 140, and calculates the movement amount of each axis per unit time. The spindle control unit 170, the X-axis control unit 130, and the Z-axis control unit 140 are based on the movement amount of each axis per unit time calculated by the interpolation control unit 150, respectively. The X-axis feed motor 350 can be driven by synchronous interpolation control. The spindle control unit 170 and the Z-axis control unit 140 perform synchronous interpolation on the spindle motor 230 and the Z-axis feed motor 320, respectively, based on the movement amount of each axis per unit time calculated by the interpolation control unit 150. It can be driven by control.

具体的には、後述する有効ねじ部領域において、主軸20の回転、X軸の送り、及びZ軸の送りの同期補間の制御が、主制御部110の制御指令に基づいて、主軸制御部170、X軸制御部130及びZ軸制御部140を介して行われる。又、後述する不完全ねじ部領域において、主軸20の回転、X軸の送り、及びZ軸の送りについての同期補間の制御が、主制御部110の制御指令に基づいて、主軸制御部170、X軸制御部130及びZ軸制御部140を介して行われる。なお、後述する不完全ねじ部領域においては、主軸20の回転、及びZ軸の送りについての同期補間の制御を、主制御部110の制御指令に基づいて、主軸制御部170、及びZ軸制御部140を介して行うようにしてもよい。   More specifically, in the effective screw region described later, the control of synchronous interpolation of the rotation of the spindle 20, the X-axis feed, and the Z-axis feed is performed based on the control command of the main control unit 110. This is performed via the X-axis control unit 130 and the Z-axis control unit 140. In addition, in the incomplete thread portion region described later, the synchronous interpolation control for the rotation of the main shaft 20, the X-axis feed, and the Z-axis feed is performed based on the control command of the main control unit 110, This is performed via the X-axis control unit 130 and the Z-axis control unit 140. Note that, in the incomplete thread region described later, synchronous interpolation control for the rotation of the main shaft 20 and the Z-axis feed is performed based on the control command of the main control unit 110 and the Z-axis control. It may be performed via the unit 140.

記憶部195は、図示しない入力部で入力されたデータや、補間制御部150で生成した各種データや、各種プログラムを格納する。操作盤185は、各種データを入力したり、操作入力するためのキー群を備えている。表示部187は、液晶表示装置や又はCRT等から構成されたディスプレイ装置である。   The storage unit 195 stores data input by an input unit (not shown), various data generated by the interpolation control unit 150, and various programs. The operation panel 185 includes a group of keys for inputting various data and inputting operations. The display unit 187 is a display device configured from a liquid crystal display device, a CRT, or the like.

そして、NC装置100の制御により、刃物台駆動機構300が駆動されて、刃物台340に取り付けた加工工具400がX軸方向及びZ軸方向に移動されるとともに、主軸20の爪30に保持されたワークWが回転されて加工される。   Then, under the control of the NC device 100, the tool post driving mechanism 300 is driven, and the processing tool 400 attached to the tool post 340 is moved in the X-axis direction and the Z-axis direction, and is held by the claw 30 of the spindle 20. The workpiece W is rotated and processed.

なお、図の例では、説明の便宜上簡略して、刃物台340に1つの加工工具400のみが取り付けたようにしているが、この形態に限定するものではない。例えば、この種の装置には一般にはターレット式刃物台を使用して、その周囲に放射状に多数の工具、例えば各種の外径削り用バイト、内径削り用バイト、ねじ切り用バイト、突切り用バイト、回転工具であるドリルなどが取り付けられており、それらのいずれかを任意に選択して使用できるようされている。従って、この実施形態においても、ターレット式刃物台を使用して、ねじ切り加工プログラムの実行中に工具を自動的に交換できるものとする。   In the example shown in the drawing, for convenience of explanation, only one processing tool 400 is attached to the tool post 340. However, the present invention is not limited to this form. For example, a turret tool post is generally used for this type of device, and a number of tools are radially formed around it, such as various types of outer diameter cutting tools, inner diameter cutting tools, thread cutting tools, parting tools, etc. A drill or the like which is a rotary tool is attached, and any one of them can be selected and used. Therefore, also in this embodiment, it is assumed that the tool can be automatically changed during execution of the thread cutting program using the turret tool post.

(実施形態の作用)
次に、本実施形態の数値制御旋盤10の作用を説明する。図3〜4は、NC装置100が実行するねじ切り加工で行われるZ軸送り速度パターンの決定のためのフローチャートであり、ねじ切り加工を行う前に、操作盤185の図示しないスタートボタンの操作がされると、主制御部110により、実行される。なお、本実施形態では、1条ねじのねじ切り加工について説明するが、ねじ条数に限定されるものではない。
(Operation of the embodiment)
Next, the operation of the numerically controlled lathe 10 of this embodiment will be described. 3 to 4 are flowcharts for determining the Z-axis feed speed pattern performed in the threading process executed by the NC apparatus 100. Before the threading process, a start button (not shown) on the operation panel 185 is operated. Then, it is executed by the main control unit 110. In addition, although this embodiment demonstrates the thread cutting process of a single thread | thread, it is not limited to the number of threads.

(S10)
S10では、操作盤185を操作して、ワークWの材質が入力されると、そのワークW材質に応じて、記憶部195に格納されたパラメータが読み込まれる。すなわち、操作盤185にて、ワークWの材質が選択されると、記憶部195に格納したデータベースからその材質に応じたパラメータが一義的に読み込まれる。
(S10)
In S10, when the material of the workpiece W is input by operating the operation panel 185, the parameters stored in the storage unit 195 are read according to the workpiece W material. That is, when the material of the workpiece W is selected on the operation panel 185, the parameters corresponding to the material are uniquely read from the database stored in the storage unit 195.

具体的には、不完全ねじ部の最低周速度V(mm/min)、ねじ切り加工における主軸加減速度A(rev/min2)、X軸送り速度クランプ値F(mm/min)、X軸加減速時定数T(sec)が読み込まれる。これらの値は、後に不完全ねじ部長さ(不完全ねじ部の加工長に相等する)を算出するための基礎となるパラメータである。主軸加減速度Aは目標主軸加減速度に相等する。 Specifically, a minimum peripheral velocity V 0 which incomplete thread portion (mm / min), the spindle acceleration A s (rev / min 2) in the threading, X-axis feedrate clamp value F x (mm / min), X-axis acceleration / deceleration time constant T x (sec) is read. These values are parameters serving as a basis for calculating the incomplete thread length (equivalent to the machining length of the incomplete thread) later. Spindle acceleration rate A s is equivalent to the target spindle acceleration rate.

不完全ねじ部の最低周速度V(mm/min)、ねじ切り加工における主軸加減速度A(rev/min2)、X軸送り速度クランプ値F(mm/min)は、選択されたワークWの材質の加工条件でもある。 The minimum peripheral speed V 0 (mm / min) of the incomplete thread, the spindle acceleration / deceleration speed A s (rev / min 2 ), and the X-axis feed speed clamp value F x (mm / min) in thread cutting are selected. This is also the processing condition of the W material.

S20では、ねじ切り加工プログラムがテープリーダ190等から読み込まれる。このねじ切り加工プログラムには、予め、形成するべきねじに関するデータが含まれており、このデータを読み込む。具体的には、形成するべきねじに関するデータとしては、ねじ終点部のX座標値X(mm)、同じくねじ終点部のZ座標値Z(mm)、ねじ山高さK(mm)、ねじのリードF(mm)、目標主軸回転数S(min−1)、不完全ねじ部長さの上限値J(mm)及び有効ねじ部長さR(有効ねじ部の加工長に相当する)であり、これらの値は固定値である。なお、ねじ終点部とは、不完全ねじ部の終点部である。 In S20, the thread cutting program is read from the tape reader 190 or the like. The thread cutting program includes data relating to a screw to be formed in advance, and this data is read. Specifically, the data relating to the screw to be formed includes the X coordinate value X (mm) of the screw end point, the Z coordinate value Z (mm) of the screw end point, the thread height K (mm), and the lead of the screw. F (mm), target spindle speed S (min −1 ), upper limit value J (mm) of incomplete thread length, and effective thread length R (corresponding to the working length of the effective thread). The value is a fixed value. The screw end point is the end point of the incomplete screw portion.

S30では、不完全ねじ部領域の加工時間ΔT(不完全ねじ部領域加工時間)の算出が次式にて行われる。   In S30, the machining time ΔT (incomplete thread portion region machining time) for the incomplete thread portion region is calculated by the following equation.

Figure 2006000995
S40では、不完全ねじ部領域の主軸最低回転数Sの算出が次式にて行われる。
Figure 2006000995
In S40, the calculation of the spindle minimum rotational speed S 0 of the incomplete thread portion region is performed by the following expression.

Figure 2006000995
S50では、不完全ねじ部長さJの算出が次式にて行われる。
Figure 2006000995
In S50, incomplete thread portion for calculating the length J 1 is performed by the following expression.

Figure 2006000995
S60では、S50で算出された不完全ねじ部長さJと、上限値Jとの大小関係の判定が行われる。J>Jの場合は、S70に移行され、J≦Jの場合は、S140でZ軸送り速度パターンAが選択されて、このルーチンが終了される。
Figure 2006000995
In S60, the incomplete thread portion length J 1 calculated in S50, the determination of the magnitude relationship between the upper limit value J is performed. If J 1 > J, the process proceeds to S70. If J 1 ≦ J, the Z-axis feed speed pattern A is selected in S140, and this routine ends.

S70では、不完全ねじ部長さJ(<J)の算出が次式にて行われる。S70の「数4」で使用される各種データ(ΔT、F、S、A)は、加工長関連パラメータに相当する。 In S70, the incomplete thread length J 2 (<J 1 ) is calculated by the following equation. Various data (ΔT, F, S, A s ) used in “Equation 4” of S70 correspond to machining length related parameters.

Figure 2006000995
S80では、S70で算出された不完全ねじ部長さJと、上限値Jとの大小関係の判定が行われる。J>Jの場合は、S90に移行され、J≦Jの場合は、S150でZ軸送り速度パターンBが選択されて、このルーチンが終了される。
Figure 2006000995
In S80, the incomplete thread portion length J 2 calculated in S70, the determination of the magnitude relationship between the upper limit value J is performed. If J 2 > J, the process proceeds to S90. If J 2 ≦ J, the Z-axis feed speed pattern B is selected in S150, and this routine is terminated.

S90では、不完全ねじ部長さJ(<J<J)の算出が次式にて行われる。「数5」の算出で使用される各種データ(ΔT、F、S、A)は、加工長関連パラメータに相当する。 In S90, the incomplete thread length J 3 (<J 2 <J 1 ) is calculated by the following equation. Various data (ΔT, F, S 0 , A s ) used in the calculation of “Equation 5” correspond to machining length related parameters.

Figure 2006000995
S100では、S90で算出された不完全ねじ部長さJと、上限値Jとの大小関係の判定が行われる。J>Jの場合は、S110に移行され、J≦Jの場合は、S160でZ軸送り速度パターンCが選択されて、このルーチンが終了される。
Figure 2006000995
In S100, the incomplete thread portion length J 3 calculated in S90, the determination of the magnitude relationship between the upper limit value J is performed. If J 3 > J, the process proceeds to S110. If J 3 ≦ J, the Z-axis feed speed pattern C is selected in S160, and this routine is terminated.

S110では、不完全ねじ部長さJ(<J<J<J)の算出が次式にて行われる。S110の「数6」で使用される各種データ(ΔT、F、S)は、加工長関連パラメータに相当する。 In S110, the incomplete thread length J 4 (<J 3 <J 2 <J 1 ) is calculated by the following equation. Various data (ΔT, F, S 0 ) used in “Equation 6” of S110 corresponds to machining length related parameters.

Figure 2006000995
S120では、S110で算出された不完全ねじ部長さJと、上限値Jとの大小関係の判定が行われる。J>Jの場合は、S130に移行され、J≦Jの場合は、S170でZ軸送り速度パターンDが選択されて、このルーチンが終了される。
Figure 2006000995
In S120, the incomplete thread portion length J 4 calculated in S110, the determination of the magnitude relationship between the upper limit value J is performed. If J 4 > J, the process proceeds to S130. If J 4 ≦ J, the Z-axis feed speed pattern D is selected in S170, and this routine is terminated.

S130では、アラーム(警告文)が表示部187に表示されてこのルーチンを終了する。すなわち、現在付与されている各種データに基づいて算出した不完全ねじ部の加工長ではいずれも、上限値を超えてしまい、現在付与されているデータに基づいてのねじ切り加工は好ましくないとして警告を付与するのである。   In S130, an alarm (warning text) is displayed on the display unit 187, and this routine ends. In other words, the machining length of the incomplete thread calculated based on the currently assigned data exceeds the upper limit, and a warning is given that threading machining based on the currently assigned data is not preferable. It is granted.

次に、S140〜S170で選択されるZ軸送り速度パターンA〜Dについて説明するとともに、各パターンが選択された場合の、主軸回転数について説明する。
(Z軸送り速度パターンA)
図7(a)は、Z軸送り速度パターンAを示しており、有効ねじ部領域及び不完全ねじ部領域とも、Z軸送り速度は一定値に保持される。なお、この場合のZ軸送り速度は、目標主軸回転数SとねじのリードFの積である。
Next, the Z-axis feed speed patterns A to D selected in S140 to S170 will be described, and the spindle speed when each pattern is selected will be described.
(Z-axis feed rate pattern A)
FIG. 7A shows a Z-axis feed rate pattern A, and the Z-axis feed rate is maintained at a constant value in both the effective screw portion region and the incomplete screw portion region. Note that the Z-axis feed speed in this case is the product of the target spindle speed S and the screw lead F.

Z軸送り速度パターンAにおいて、t1は有効ねじ部領域の始点の切削開始時点を示している(以下、同様)。又、ta(>t1)は、不完全ねじ部の始点の切削開始時点を示す。   In the Z-axis feed rate pattern A, t1 indicates the cutting start time at the start point of the effective thread region (the same applies hereinafter). Further, ta (> t1) indicates the cutting start time at the starting point of the incomplete thread portion.

このZ軸送り速度パターンAが選択された場合、有効ねじ部領域において、主制御部110は、ロータリエンコーダ126Zの検出信号に基づいて加工工具400の実際のZ軸位置を算出し、算出した実際のZ軸位置に基づいて有効ねじ部の切削加工が終了したか否かを判定する。主制御部110は、加工工具400の実際のZ軸位置が有効ねじ部の終点のZ軸位置の場合、有効ねじ部の切削加工が終了したと判定し、この有効ねじ部の切削加工が終了した時点taからは、主制御部110は、不完全ねじ部の切削を開始するように、主軸制御部170、X軸制御部130、及びZ軸制御部140を制御する。   When this Z-axis feed speed pattern A is selected, in the effective screw region, the main control unit 110 calculates the actual Z-axis position of the machining tool 400 based on the detection signal of the rotary encoder 126Z, and calculates the actual It is determined whether or not the cutting of the effective thread portion is completed based on the Z-axis position. When the actual Z-axis position of the processing tool 400 is the Z-axis position of the end point of the effective thread part, the main control unit 110 determines that the cutting process of the effective thread part is completed, and the cutting process of the effective thread part is completed. From the time point ta, the main control unit 110 controls the main shaft control unit 170, the X-axis control unit 130, and the Z-axis control unit 140 so as to start cutting the incomplete thread portion.

なお、Z軸送り速度パターンAが選択された場合は、図8(a)に示すように有効ねじ部領域及び不完全ねじ部領域のいずれも、主制御部110により、主軸20は、目標主軸回転数S(固定値),すなわち、一定の回転数で回転される(主軸回転数パターンA1)。   When the Z-axis feed speed pattern A is selected, as shown in FIG. 8A, both the effective screw portion region and the incomplete screw portion region are controlled by the main control unit 110 so that the main shaft 20 is the target main shaft. It is rotated at a rotational speed S (fixed value), that is, at a constant rotational speed (spindle rotational speed pattern A1).

又、有効ねじ部領域では、主軸20の回転と、X軸及びZ軸の送りは、主軸制御部170,X軸制御部130,Z軸制御部140及び補間制御部150により同期補間で制御される。不完全ねじ部領域では、主軸20の回転、X軸及びZ軸の送りは、主軸制御部170,X軸制御部130,Z軸制御部140及び補間制御部150により同期補間で制御される。このように、いずれの領域においても、主軸回転数が一定で、かつZ軸送り速度が一定となるように、主軸20とZ軸の送りが同期補間されて、両領域でねじのピッチPが同じとなるように加工される。   In the effective thread area, the rotation of the spindle 20 and the feed of the X and Z axes are controlled by synchronous interpolation by the spindle controller 170, the X axis controller 130, the Z axis controller 140, and the interpolation controller 150. The In the incomplete thread portion region, the rotation of the spindle 20 and the feed of the X axis and the Z axis are controlled by synchronous interpolation by the spindle controller 170, the X axis controller 130, the Z axis controller 140, and the interpolation controller 150. In this way, the spindle 20 and the Z-axis feed are synchronously interpolated so that the spindle speed is constant and the Z-axis feed speed is constant in any region, so that the screw pitch P is Processed to be the same.

(Z軸送り速度パターンB)
図7(b)は、Z軸送り速度パターンBを示しており、有効ねじ部領域においては、Z軸送り速度は一定値に保持される。なお、この領域のZ軸送り速度は、目標主軸回転数SとねじのリードFの積である。又、不完全ねじ部領域の全域、すなわち、有効ねじ部領域の終点(=不完全ねじ部領域の始点)から不完全ねじ部領域の終点まで(加工時間ΔT中の領域)の間、Z軸送り速度は、図7(b)に示すように、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速するように設定されている。
(Z-axis feed rate pattern B)
FIG. 7B shows a Z-axis feed rate pattern B, and the Z-axis feed rate is held at a constant value in the effective screw portion region. The Z-axis feed speed in this region is the product of the target spindle speed S and the screw lead F. In addition, the entire Z axis region, that is, from the end point of the effective screw region (= start point of the incomplete screw region) to the end point of the incomplete screw region (region during machining time ΔT) As shown in FIG. 7B, the feed speed is set so as to gradually decelerate with an inclination A s · F (product of spindle acceleration / deceleration and screw lead).

図7(b)に示すZ軸送り速度パターンBにおいて、tb(=ta)は、不完全ねじ部の始点の切削開始時点を示す。
このZ軸送り速度パターンBが選択された場合、有効ねじ部領域において、主制御部110は、ロータリエンコーダ126Zの検出信号に基づいて加工工具400の実際のZ軸位置を算出し、算出した実際のZ軸位置に基づいて有効ねじ部の切削加工が終了したか否かを、Z軸送り速度パターンAを選択したときと同様に判定する。主制御部110は、加工工具400の実際のZ軸位置が有効ねじ部の終点のZ軸位置の場合、有効ねじ部の切削加工が終了したと判定し、この有効ねじ部の切削加工が終了した時点tbからは、主制御部110は、不完全ねじ部の切削を開始するように、主軸制御部170、X軸制御部130、及びZ軸制御部140を制御する。
In the Z-axis feed rate pattern B shown in FIG. 7B, tb (= ta) indicates the cutting start point of the starting point of the incomplete thread portion.
When this Z-axis feed speed pattern B is selected, in the effective screw region, the main control unit 110 calculates the actual Z-axis position of the machining tool 400 based on the detection signal of the rotary encoder 126Z, and calculates the actual Whether or not the cutting of the effective thread portion has been completed is determined based on the Z-axis position in the same manner as when the Z-axis feed speed pattern A is selected. When the actual Z-axis position of the processing tool 400 is the Z-axis position of the end point of the effective thread part, the main control unit 110 determines that the cutting process of the effective thread part is completed, and the cutting process of the effective thread part is completed. From the time point tb, the main control unit 110 controls the main shaft control unit 170, the X-axis control unit 130, and the Z-axis control unit 140 so as to start cutting the incomplete thread portion.

又、Z軸送り速度パターンBが選択された場合は、図8(b)に示すように有効ねじ部領域では、主制御部110の制御により、主軸20は目標主軸回転数S(固定値)で、すなわち、一定の回転数で回転される。又、不完全ねじ部領域の全域では、主軸回転数は、図8(b)に示すように、有効ねじ部領域の終点から加工時間ΔTの時間中、傾きA(主軸加減速度)で徐々に減速される(主軸回転数パターンB1)。なお、この場合、主軸回転数が最終的に向かう目標値は、図8(b)に示すように主軸最低回転数Sよりも大となる値である。 When the Z-axis feed speed pattern B is selected, the main shaft 20 is controlled by the main control unit 110 in the effective screw region as shown in FIG. That is, it is rotated at a constant rotational speed. In addition, in the entire area of the incomplete thread area, the spindle speed gradually increases with a slope A s (spindle acceleration / deceleration) during the machining time ΔT from the end point of the effective thread area as shown in FIG. 8B. (Spindle speed pattern B1). In this case, the target value to which the main shaft rotation speed finally goes is a value that is larger than the minimum main shaft rotation speed S 0 as shown in FIG.

又、有効ねじ部領域では、主軸20の回転と、X軸及びZ軸の送りは、主軸制御部170,X軸制御部130,Z軸制御部140及び補間制御部150により同期補間で制御される。不完全ねじ部領域では、主軸制御部170,X軸制御部130、Z軸制御部140及び補間制御部150により、ねじのピッチPが有効ねじ部領域と同じとなるように主軸20の回転とZ軸の送りが同期補間で制御されるとともに、主軸20の回転とX軸の送りが同期補間で制御される。   In the effective thread area, the rotation of the spindle 20 and the feed of the X and Z axes are controlled by synchronous interpolation by the spindle controller 170, the X axis controller 130, the Z axis controller 140, and the interpolation controller 150. The In the incomplete thread region, the main shaft controller 170, the X-axis controller 130, the Z-axis controller 140, and the interpolation controller 150 rotate the main shaft 20 so that the screw pitch P is the same as the effective thread region. The Z-axis feed is controlled by synchronous interpolation, and the rotation of the spindle 20 and the X-axis feed are controlled by synchronous interpolation.

(Z軸送り速度パターンC)
図7(c)は、Z軸送り速度パターンCを示しており、有効ねじ部領域の始点から始まる一部の領域においては、Z軸送り速度は一定値に保持される。なお、この領域のZ軸送り速度は、目標主軸回転数SとねじのリードFの積である。又、有効ねじ部領域の前記一部においては、該一部の領域の終点から、有効ねじ部領域の終点までは、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速するように設定されている。さらに、不完全ねじ部領域の全域では、Z軸送り速度は、図7(c)に示すように、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速し、不完全ねじ部領域の終点で、S・F(主軸最低回転数SとねじのリードFの積)に達するように設定されている。
(Z-axis feed rate pattern C)
FIG. 7C shows a Z-axis feed rate pattern C, and the Z-axis feed rate is held at a constant value in a part of the region starting from the start point of the effective screw portion region. The Z-axis feed speed in this region is the product of the target spindle speed S and the screw lead F. Further, in the part of the effective thread area, the speed gradually decreases with the inclination A s · F (product of spindle acceleration / deceleration and screw lead) from the end point of the partial area to the end point of the effective thread area. It is set to be. Furthermore, in the entire area of the incomplete thread portion region, Z axis feed rate, as shown in FIG. 7 (c), gradually decelerated in slope A s · F (product of spindle acceleration speed and thread lead), Incomplete It is set to reach S 0 · F (the product of the minimum spindle speed S 0 and the screw lead F) at the end point of the thread region.

図7(c)に示すZ軸送り速度パターンCにおいて、tc1は前述の前記一部の領域の終点から、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速を開始する時点を示している。さらにtc2(>tc1>t1)は、不完全ねじ部の始点の切削開始時点を示している。 In the Z-axis feed speed pattern C shown in FIG. 7 (c), tc1 starts gradually decelerating from the end point of the above-mentioned partial area at an inclination A s · F (product of spindle acceleration / deceleration and screw lead). Indicates the time. Furthermore, tc2 (>tc1> t1) indicates the cutting start point of the starting point of the incomplete thread portion.

tc1及びtc2に達した時に、加工工具400が位置すべきZ軸位置(予定位置)は、予めねじ切り加工プログラムに含まれた演算式に基づいて、主制御部110が算出する。なお、前記予定位置の算出には、切削開始時点t1、有効ねじ部長さR、有効ねじ部領域のZ軸送り速度(S・F)、傾きA・F、加工時間ΔT、S・F(主軸最低回転数SとねじのリードFの積)のデータが使用される。ここで、主軸最低回転数Sは、到達目標主軸回転数に相当する。 When reaching tc1 and tc2, the main control unit 110 calculates the Z-axis position (scheduled position) where the machining tool 400 should be positioned based on the arithmetic expression included in the threading machining program in advance. For calculating the planned position, the cutting start time t1, the effective thread length R, the Z-axis feed rate (S · F) of the effective thread area, the inclination A s · F, the machining time ΔT, and S 0 · F data (spindle minimum rotational speed S 0 and the thread of the product of the lead F) is used. Here, the spindle minimum frequency S 0 corresponds to the final target spindle speed.

そして、有効ねじ部領域では、主制御部110は、加工工具400の実際のZ軸位置をロータリエンコーダ126Zの検出信号に基づいて算出し、加工工具400の実際のZ軸位置が、予定位置である一方のZ軸位置に達した時点tc1から、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速して切削を行う。又、主制御部110は、残りの予定位置である一方のZ軸位置に達した時点tc2から、傾きA・F(主軸加減速度とねじリードの積)で減速しながら不完全ねじ部の加工切削を行う。 In the effective screw region, the main control unit 110 calculates the actual Z-axis position of the processing tool 400 based on the detection signal of the rotary encoder 126Z, and the actual Z-axis position of the processing tool 400 is the planned position. From the time tc1 at which one Z-axis position is reached, cutting is performed while gradually decelerating at an inclination A s · F (product of spindle acceleration / deceleration and screw lead). In addition, the main control unit 110 decelerates the incomplete screw portion while decelerating at a slope A s · F (product of the main shaft acceleration / deceleration and screw lead) from the time tc2 when it reaches one Z-axis position which is the remaining planned position. Perform cutting.

又、Z軸送り速度パターンCが選択された場合は、図8(c)に示すように有効ねじ部領域の始点から始まる一部の領域では、主制御部110により、主軸20は、t1〜tc1の間は、目標主軸回転数S(固定値)で回転され、すなわち、主軸20は一定の回転数で回転される。又、tc1〜tc2、及び不完全ねじ部領域の全域では、すなわち、図8(c)に示すように、主制御部110により、主軸回転数は傾きA(主軸加減速度)で到達目標主軸回転数である主軸最低回転数Sに向かって徐々に減速される(主軸回転数パターンC1)。 Further, when the Z-axis feed speed pattern C is selected, in a part of the region starting from the starting point of the effective screw portion region as shown in FIG. During tc1, the spindle rotates at a target spindle speed S (fixed value), that is, the spindle 20 rotates at a constant speed. Further, Tc1~tc2, and the entire area of the incomplete thread portion region, i.e., as shown in FIG. 8 (c), the main control unit 110, reaches the target spindle spindle speed in the slope A s (spindle acceleration rate) toward the spindle minimum rotational speed S 0 is the rotation speed is decelerated gradually (spindle speed pattern C1).

又、有効ねじ部領域では、主軸20の回転と、X軸及びZ軸の送りは主軸制御部170,X軸制御部130,Z軸制御部140及び補間制御部150により同期補間で制御される。不完全ねじ部領域では、主軸20の回転、X軸の送り及びZ軸の送りは、主軸制御部170,X軸制御部130、Z軸制御部140及び補間制御部150により同期補間で制御される。 そして、有効ねじ部領域の一部の領域では、主軸回転数が一定、かつZ軸送り速度が一定となるように、主軸20とZ軸の送りが同期補間されて、ねじのピッチPが同じとなるように加工される。又、傾きA・F(主軸加減速度とねじリードの積)で減速しながら加工切削が行われる領域では、ねじのピッチPが有効ねじ部領域の前記一部の領域と同じとなるように主軸20回転とZ軸の送りが同期補間で制御される。 Further, in the effective screw portion region, the rotation of the spindle 20 and the feed of the X axis and the Z axis are controlled by synchronous interpolation by the spindle control unit 170, the X axis control unit 130, the Z axis control unit 140, and the interpolation control unit 150. . In the incomplete thread portion region, the rotation of the spindle 20, the feed of the X axis and the feed of the Z axis are controlled by synchronous interpolation by the spindle control unit 170, the X axis control unit 130, the Z axis control unit 140 and the interpolation control unit 150. The Then, in a part of the effective screw region, the spindle 20 and the Z-axis feed are synchronously interpolated so that the spindle speed is constant and the Z-axis feed speed is constant, and the screw pitch P is the same. To be processed. Further, in the region where machining cutting is performed while decelerating with the inclination A s · F (product of spindle acceleration / deceleration and screw lead), the screw pitch P is the same as the partial region of the effective screw region. The rotation of the spindle 20 and the Z-axis feed are controlled by synchronous interpolation.

(Z軸送り速度パターンD)
図7(d)は、Z軸送り速度パターンDを示しており、有効ねじ部領域の始点から始まる一部の領域においては、Z軸送り速度は一定値に保持される。なお、この場合のZ軸送り速度は、目標主軸回転数SとねじのリードFの積である。又、有効ねじ部領域の一部において、前記一部の領域の終点から、有効ねじ部領域の終点までは、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速するように設定され、かつ、有効ねじ部領域の終点に達したときに、Z軸送り速度が、S・F(主軸最低回転数SとねじのリードFの積)の速度となるように設定されている。さらに、不完全ねじ部領域の全域では、Z軸送り速度を、図7(d)に示すように、S・F(主軸最低回転数SとねじのリードFの積)にして一定に保持される。
(Z-axis feed rate pattern D)
FIG. 7D shows a Z-axis feed rate pattern D, and the Z-axis feed rate is held at a constant value in a partial region starting from the start point of the effective screw portion region. Note that the Z-axis feed speed in this case is the product of the target spindle speed S and the screw lead F. In addition, in a part of the effective thread part region, from the end point of the part of the part to the end point of the effective thread part region, the speed gradually decreases with an inclination A s · F (product of spindle acceleration / deceleration and screw lead). When the end point of the effective thread area is reached, the Z-axis feed speed is set to a speed of S0 · F (the product of the minimum spindle speed S0 and the screw lead F). Has been. Furthermore, in the entire area of the incomplete thread portion, the Z-axis feed speed is kept constant at S 0 · F (the product of the minimum spindle speed S 0 and the screw lead F) as shown in FIG. Retained.

図7(d)に示すZ軸送り速度パターンDにおいて、td1は前述の前記一部の領域の終点から、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速を開始する時点を示している。さらにtd2(>td1>t1)は、不完全ねじ部の始点の切削開始時点を示している。 In the Z-axis feed speed pattern D shown in FIG. 7 (d), td1 starts gradually decelerating from the end point of the partial area described above with the slope A s · F (product of spindle acceleration / deceleration and screw lead). Indicates the time. Furthermore, td2 (>td1> t1) indicates the cutting start point of the starting point of the incomplete thread portion.

td1及びtd2に達したときに、加工工具400が位置すべきZ軸位置(予定位置)は、予めねじ切り加工プログラムに含まれた演算式に基づいて、主制御部110が算出する。なお、前記予定位置の算出には、切削開始時点t1、有効ねじ部長さR、有効ねじ部領域のZ軸送り速度(S・F)、傾きA・F、S・F(主軸最低回転数SとねじのリードFの積)のデータが使用される。 When td1 and td2 are reached, the main control unit 110 calculates the Z-axis position (scheduled position) where the machining tool 400 should be located based on an arithmetic expression included in advance in the threading program. For calculating the planned position, the cutting start time t1, the effective thread length R, the Z-axis feed speed (S · F) of the effective thread area, the inclination A s · F, and the S 0 · F (spindle minimum rotation) The data of the number S 0 and the screw lead F) is used.

そして、有効ねじ部領域では、主制御部110は、加工工具400の実際のZ軸位置をロータリエンコーダ126Zの検出信号に基づいて算出し、加工工具400の実際のZ軸位置が、予定位置である一方のZ軸位置に達した時点td1から、傾きA・F(主軸加減速度とねじリードの積)で徐々に減速して切削を行う。 In the effective screw region, the main control unit 110 calculates the actual Z-axis position of the processing tool 400 based on the detection signal of the rotary encoder 126Z, and the actual Z-axis position of the processing tool 400 is the planned position. from the time td1 reaching the Z-axis position of a hand, performs cutting is decelerated gradually slope a s · F (product of spindle acceleration speed and thread lead).

加工工具400の実際のZ軸位置が、予定位置である一方のZ軸位置に達した時点td2からは、Z軸送り速度を、S・F(主軸最低回転数SとねじのリードFの積)の速度にして一定にし、不完全ねじ部の加工切削を行う。 Actual Z-axis position of the working tool 400 is, from the predetermined position at which one of Z-axis time td2 reaching position, the Z-axis feed rate, S 0 · F (spindle minimum rotational speed S 0 and thread lead F The product is cut at an incomplete threaded portion at a constant speed.

なお、Z軸送り速度パターンDが選択された場合、図8(d)に示すように有効ねじ部領域の始点から始まる一部の領域では、主制御部110により、主軸20は、t1〜td1の間は、目標主軸回転数S(固定値)で回転され、すなわち、主軸20は一定の回転数で回転される。   When the Z-axis feed speed pattern D is selected, in a part of the region starting from the starting point of the effective screw portion region as shown in FIG. Is rotated at a target spindle speed S (fixed value), that is, the spindle 20 is rotated at a constant speed.

又、td1〜td2では、図8(d)に示すように、有効ねじ部領域の一部の終点(時点td1)から有効ねじ部領域の終点までは、主制御部110により、主軸回転数が傾きA(主軸加減速度)で到達目標主軸回転数である主軸最低回転数Sに向かって徐々に減速する。さらに、主制御部110により、主軸回転数が不完全ねじ部領域では、主軸最低回転数Sで一定となる(主軸回転数パターンD1)。 In addition, from td1 to td2, as shown in FIG. 8D, the main controller 110 changes the spindle speed from the end point (time point td1) of the effective screw region to the end point of the effective screw region. gradually decelerated toward the slope a s spindle minimum rotational speed S 0 is reached the target spindle speed in (spindle acceleration rate). Further, the main control unit 110 makes the main shaft rotation speed constant at the minimum main shaft rotation speed S 0 in the incomplete thread portion region (main shaft rotation speed pattern D1).

又、有効ねじ部領域では、主軸20の回転と、X軸及びZ軸の送りは主軸制御部170,X軸制御部130,Z軸制御部140及び補間制御部150により同期補間で制御される。不完全ねじ部領域では、主軸20の回転、X軸の送り及びZ軸の送りは、主軸制御部170,X軸制御部130,Z軸制御部140及び補間制御部150により同期補間で制御される。   Further, in the effective screw portion region, the rotation of the spindle 20 and the feed of the X axis and the Z axis are controlled by synchronous interpolation by the spindle control unit 170, the X axis control unit 130, the Z axis control unit 140, and the interpolation control unit 150. . In the incomplete thread portion region, the rotation of the spindle 20, the feed of the X axis and the feed of the Z axis are controlled by synchronous interpolation by the spindle control unit 170, the X axis control unit 130, the Z axis control unit 140 and the interpolation control unit 150. The

そして、有効ねじ部領域の一部の領域では、主軸回転数が一定、かつZ軸送り速度が一定となるように、主軸20とZ軸の送りが同期補間されて、ねじのピッチPが同じとなるように加工される。又、傾きA・F(主軸加減速度とねじリードの積)で減速しながら加工切削が行われる領域では、ねじのピッチPが有効ねじ部領域の前記一部の領域と同じとなるように主軸20回転とZ軸の送りが同期補間で制御される。さらに、不完全ねじ部領域では、主軸20の回転、及びZ軸の送りは、主軸制御部170,Z軸制御部140及び補間制御部150により同期補間で制御され、ねじのピッチPが前記有効ねじ部領域と同じとなるように加工される。 Then, in a part of the effective screw region, the spindle 20 and the Z-axis feed are synchronously interpolated so that the spindle speed is constant and the Z-axis feed speed is constant, and the screw pitch P is the same. To be processed. Further, in the region where machining cutting is performed while decelerating with the inclination A s · F (product of spindle acceleration / deceleration and screw lead), the screw pitch P is the same as the partial region of the effective screw region. The rotation of the spindle 20 and the Z-axis feed are controlled by synchronous interpolation. Further, in the incomplete thread region, the rotation of the main shaft 20 and the Z-axis feed are controlled by synchronous interpolation by the main shaft control unit 170, the Z-axis control unit 140, and the interpolation control unit 150, and the screw pitch P is effective. It is processed to be the same as the thread region.

さて、上記のように、Z軸送り速度パターンのいずれかが選択された場合、引き続き、ねじ切り加工プログラムに基づいて主制御部110は、選択されたZ軸送り速度パターンA〜D及び、そのZ軸送り速度パターンと対応する主軸回転数パターンA1〜D1にて、ワークWに対するねじ切り加工を行う。   As described above, when one of the Z-axis feed rate patterns is selected, the main control unit 110 continues to select the selected Z-axis feed rate patterns A to D and the Z-axis feed rate patterns based on the thread cutting program. Thread cutting is performed on the workpiece W with the spindle rotation speed patterns A1 to D1 corresponding to the shaft feed speed pattern.

以下では、説明の便宜上、Z軸送り速度パターンCが選択されたものとして説明する。ねじ切り加工が開始されると、主制御部110は、主軸制御部170、駆動回路172を介して、主軸モータ230を制御して、主軸回転数が目標主軸回転数Sとなるように制御する。   Hereinafter, for convenience of explanation, it is assumed that the Z-axis feed speed pattern C is selected. When threading is started, the main control unit 110 controls the main shaft motor 230 via the main shaft control unit 170 and the drive circuit 172 so that the main shaft rotation speed becomes the target main shaft rotation speed S.

そして、主軸回転数が目標主軸回転数Sに達すると、主制御部110は、Z軸制御部140及びX軸制御部130に制御指令を出力し、加工工具400が待機する位置から、ワークWの加工開始点までのアプローチ部の領域では、X軸方向の送りと、Z軸方向の送りとを有効ねじ部直前まで、同期補間しながら加速する(図5(a)〜(c)参照)。なお、図5(a)〜(c)はZ軸送り速度パターンCの場合の、実際の主軸回転数、Z軸送り速度、及びX軸送り速度のタイムチャートを示している。   When the spindle rotational speed reaches the target spindle rotational speed S, the main control unit 110 outputs a control command to the Z-axis control unit 140 and the X-axis control unit 130, and from the position where the machining tool 400 stands by, the work W In the area of the approach portion up to the machining start point, the feed in the X-axis direction and the feed in the Z-axis direction are accelerated to the just before the effective thread portion while synchronously interpolating (see FIGS. 5A to 5C). . 5A to 5C show time charts of the actual spindle speed, the Z-axis feed speed, and the X-axis feed speed in the case of the Z-axis feed speed pattern C. FIG.

有効ねじ部領域(t1〜tc2)では、主軸20の回転と、Z軸及びX軸の送りは、主軸制御部170、X軸制御部130、Z軸制御部140及び補間制御部150により同期補間で制御される。そして、同図に示すようにt1〜tc1の間は、Z軸送り速度パターンCに従い、主軸回転数は、目標主軸回転数Sに基づいて制御され、一定に保持される。続く、tc1〜tc2の間は、主軸制御部170により、主軸回転数が傾きA(主軸加減速度)で徐々に減速する。 In the effective screw part region (t1 to tc2), the rotation of the spindle 20 and the feed of the Z axis and the X axis are synchronously interpolated by the spindle controller 170, the X axis controller 130, the Z axis controller 140, and the interpolation controller 150. It is controlled by. Then, as shown in the figure, between t1 and tc1, according to the Z-axis feed speed pattern C, the spindle speed is controlled based on the target spindle speed S and is kept constant. It followed, during tc1~tc2 is the spindle control section 170, gradually decelerated in A s (spindle deceleration) slope spindle speed.

又、不完全ねじ部領域(加工時間ΔT)では、主軸20の回転、X軸の送り及びZ軸の送りは、主制御部110の制御指令に基づいて主軸制御部170、X軸制御部130、Z軸制御部140及び補間制御部150により、同期補間で制御される。又、この領域では、主制御部110の制御指令に基づいて主軸制御部170により、主軸回転数が傾きA(主軸加減速度)で徐々に減速する。一方、不完全ねじ部領域では、主制御部110の制御指令に基づいて、X軸制御部130を介してX軸送りモータ350を駆動制御して、図5(c)に示すように、X軸送り速度を変化させ、刃物台340を移動させることにより、加工工具400をワークWから離間する方向へ切り上げ、不完全ねじ部領域の終点で切り上げを完了する。 Further, in the incomplete thread portion region (machining time ΔT), the rotation of the main shaft 20, the feed of the X axis, and the feed of the Z axis are performed based on the control command of the main control portion 110, and the main shaft control portion 170 and the X axis control portion 130. The Z-axis control unit 140 and the interpolation control unit 150 are controlled by synchronous interpolation. Further, in this region, the spindle control unit 170 gradually reduces the spindle rotational speed with a slope A s (spindle acceleration / deceleration) based on the control command of the main control unit 110. On the other hand, in the incomplete thread region, the X-axis feed motor 350 is driven and controlled via the X-axis control unit 130 based on the control command of the main control unit 110, and as shown in FIG. By changing the axial feed speed and moving the tool post 340, the machining tool 400 is rounded up in the direction away from the workpiece W, and the rounding up is completed at the end point of the incomplete thread portion region.

不完全ねじ部領域の終点を超えた時点からは、図5(a)に示すように、主制御部110の制御指令に基づいて、主軸制御部170は、主軸回転数を再び初期速度である目標主軸回転数Sになるように主軸モータ230を加速する。一方、主制御部110の制御指令に基づいて、Z軸制御部140及びX軸制御部130は、Z軸送り速度及びX軸送り速度が0となるように非補間で減速し、X軸送りモータ350及びZ軸送りモータ320を停止制御する。   From the time when the end point of the incomplete thread portion region is exceeded, as shown in FIG. 5A, the spindle control unit 170 again sets the spindle rotational speed to the initial speed based on the control command of the main control unit 110. The spindle motor 230 is accelerated so as to reach the target spindle speed S. On the other hand, based on the control command of the main control unit 110, the Z-axis control unit 140 and the X-axis control unit 130 decelerate by non-interpolation so that the Z-axis feed speed and the X-axis feed speed become zero, and the X-axis feed The motor 350 and the Z-axis feed motor 320 are controlled to stop.

なお、図5(c)に示すように、X軸送り速度は、0〜t1の間のアプローチ部で立ち上がって、t1〜tc1の間は、一定速度になる。tc1からtc2の間は主軸回転数の減少に同期して、徐々に減速し、tc2からは、所定速度まで増速した後、その所定速度を一定時間保持した後は、0(mm/min)まで減速するようにしている。この結果、図11に示すように、形成された有効ねじ部では、先端の外径が小径で、基端の外径が大径となるテーパー形状を備えたものとなる。   As shown in FIG. 5C, the X-axis feed speed rises at the approach portion between 0 and t1, and becomes a constant speed between t1 and tc1. Between tc1 and tc2, the motor gradually decelerates in synchronization with the decrease in the spindle speed, and after tc2, the speed is increased to a predetermined speed, and after maintaining the predetermined speed for a certain time, 0 (mm / min) To slow down. As a result, as shown in FIG. 11, the formed effective screw portion has a tapered shape in which the outer diameter of the distal end is small and the outer diameter of the proximal end is large.

なお、上記説明では、Z軸送り速度パターンCを使用したねじ切り加工について説明したが、残りのパターンについては、前述した各パターンの項目で説明しているため、説明を省略する。   In the above description, the threading process using the Z-axis feed speed pattern C has been described. However, the remaining patterns have been described in the above-described items of the respective patterns, and thus description thereof will be omitted.

本実施形態の特徴は、下記の通りである。
(1) 図6は、主制御部110の制御により行われるZ軸位置と主軸回転角度の補間パターンを示し、縦軸が主軸回転角度(rad)、横軸がZ軸位置である。本実施形態の場合、有効ねじ部領域は勿論のこと、不完全ねじ部領域においても、主軸20の回転と、Z軸の送りを同期補間して、ピッチPを一定とし、すなわち、ねじリードを一定とする。なお、ねじリードL(ねじを一回転したときにねじの軸方向に動く距離)とピッチPとの関係は、1条ねじの場合は、L=P、であり、2条ねじの場合は、L=2Pとなる。すなわち、L=nP、(nはねじの条数)の関係にある。本実施形態では、1条ねじのねじ切り加工である。
The features of this embodiment are as follows.
(1) FIG. 6 shows an interpolation pattern of the Z-axis position and the main shaft rotation angle performed by the control of the main control unit 110, where the vertical axis is the main shaft rotation angle (rad) and the horizontal axis is the Z-axis position. In the case of the present embodiment, not only the effective thread area but also the incomplete thread area, the rotation of the spindle 20 and the Z-axis feed are synchronously interpolated to make the pitch P constant. Let it be constant. The relationship between the screw lead L (the distance moved in the axial direction of the screw when the screw is rotated once) and the pitch P is L = P in the case of a single thread, and in the case of a double thread, L = 2P. That is, L = nP, where n is the number of threads. In this embodiment, it is threading of a single thread.

(2) 図9(a)は、従来のねじ切り加工の場合のZ軸送り速度のタイムチャートであり、図10は、従来の不完全ねじ部領域のタイムチャートである。従来は、Sを主軸回転数としたとき、Z軸送り速度S・Fを、有効ねじ部領域の加工時間(t2−t1)、及び不完全ねじ部領域の加工時間(t3−t2)において、一定にしている。すなわち、有効ねじ部領域(t1〜t2間)、及び不完全ねじ部領域(t2〜t3間)においては、主軸回転数を一定にしている。 (2) FIG. 9A is a time chart of the Z-axis feed speed in the case of conventional threading, and FIG. 10 is a time chart of a conventional incomplete thread portion region. Conventionally, when the S 1 and the spindle rotation speed, the Z-axis feed rate S 1 · F, effective thread area of the processing time (t2-t1), and incomplete threaded region of the processing time (t3-t2) In, it is made constant. That is, in the effective screw portion region (between t1 and t2) and the incomplete screw portion region (between t2 and t3), the spindle speed is made constant.

は有効ねじ部長さであり、L=S・F*(t2−t1)で表される。Lは従来のねじ切り加工の不完全ねじ部長さであり、L=S・F*(t3−t2)で表される。 L 1 is the effective thread length, and is represented by L 1 = S 1 · F * (t2−t1). L 2 is incomplete thread portion length of the conventional thread cutting, is expressed by L 2 = S 1 · F * (t3-t2).

従来は、主軸回転数を、有効ねじ部、及び不完全ねじ部を加工する領域においても一定に保っていることから、図面指示(設計値)より、不完全ねじ部が長くなる場合は、主軸回転数を切削の適正な値より下げて、不完全ねじ部が長くならないようにしている。例えば、図10に示すように、S・FをS11・F(<S・F)や、S12・F(<S・F)に示すように下げる必要がある。なお、S11(<S),S12(<S11)はそれぞれ主軸回転数である。この場合、S11,S12での主軸回転数で不完全ねじ部領域を加工すると、その場合の不完全ねじ部長さL21,L22は、L21=S11・F*(t3−t2)、L22=S12・F*(t3−t2)でそれぞれ表される。従って、L>L21>L22となる。 Conventionally, the spindle speed is kept constant even in the area where the effective thread part and incomplete thread part are machined. If the incomplete thread part becomes longer than the drawing instruction (design value), the spindle The rotational speed is lowered below the appropriate value for cutting so that the incomplete thread portion does not become longer. For example, as shown in FIG. 10, S 1 · F needs to be lowered as shown in S 11 · F (<S 1 · F) or S 12 · F (<S 1 · F). Note that S 11 (<S 1 ) and S 12 (<S 11 ) are spindle speeds, respectively. In this case, when the incomplete thread portion region is machined at the spindle speed at S 11 and S 12 , the incomplete thread lengths L 21 and L 22 in that case are L 21 = S 11 · F * (t 3 −t 2). ), L 22 = S 12 · F * (t3−t2). Therefore, L 2 > L 21 > L 22 is satisfied.

しかし、主軸回転数をこのように下げると、有効ねじ部領域でもその下げた主軸回転数で加工することになるため、有効ねじ部及び不完全ねじ部を含めた加工時間が長くなり、有効ねじ部領域及び不完全ねじ部領域を含めた加工時間が長くなる問題がある。なお、有効ねじ部長さは、一般的には、不完全ねじ部長さよりも、数倍以上の長さを有しており、有効ねじ部領域の加工時間が長くなること、すなわち総加工時間が長くなることには加工効率の点で好ましくない。   However, if the spindle speed is reduced in this way, machining will be performed at the reduced spindle speed even in the effective thread area, so the machining time including the effective thread part and incomplete thread part will become longer, and the effective thread part will become longer. There is a problem that the processing time including the partial region and the incomplete threaded region becomes long. The effective thread length is generally several times longer than the incomplete thread length, and the effective thread area has a longer machining time, that is, a longer total machining time. This is not preferable in terms of processing efficiency.

図9(b)は、本実施形態のZ軸送り速度パターンCのZ軸送り速度のタイムチャートである。
本実施形態では、有効ねじ部領域において、Z軸送り速度を切削開始時点t1からtc1までは、Z軸送り速度を一定に保持する。この場合、Z軸送り速度を従来のS・Fよりも速いS・Fにする。そして、tc1〜t4(=tc2)〜t5(不完全ねじ部領域の終点)までは、傾きA・(主軸加減速度)で徐々に減速する。この場合、主軸回転数も同様に図8(c)に示すパターンとなる。この場合、従来のSよりも速い主軸回転数Sで主軸20が回転されるため、有効ねじ部領域の加工時間を短くでき、有効ねじ部領域と不完全ねじ部領域の加工時間を短縮できる効果がある。
FIG. 9B is a time chart of the Z-axis feed speed of the Z-axis feed speed pattern C of the present embodiment.
In the present embodiment, the Z-axis feed rate is kept constant from the cutting start time t1 to tc1 in the effective screw portion region. In this case, the Z-axis feed speed is set to S 2 · F which is faster than the conventional S 1 · F. Until tc1~t4 (= tc2) ~t5 (end point of the incomplete thread portion region) is gradually decelerated by the slope A s · (spindle acceleration rate). In this case, the spindle speed also has the pattern shown in FIG. In this case, since the spindle 20 is rotated at a spindle speed S 2 faster than the conventional S 1, the machining time for the effective thread region can be shortened, and the machining time for the effective thread region and the incomplete thread region can be shortened. There is an effect that can be done.

一方、不完全ねじ部領域では、有効ねじ部領域の主軸回転数よりも小さくするため、不完全ねじ部長さを、従来、有効ねじ部領域と不完全ねじ部領域と同じ一定の主軸回転数で切削加工していたときよりも短縮することができる。   On the other hand, in the incomplete thread area, the incomplete thread length is conventionally set to the same constant spindle speed as in the effective thread area and the incomplete thread area in order to make it smaller than the spindle speed in the effective thread area. This can be shortened compared to when cutting.

なお、図9(b)で示す不完全ねじ部長さLはJに相当する。
(3) なお、Z軸送り速度パターンBが選択され、主軸回転数が主軸回転数パターンB1で制御される場合においても、上記と同様の理由から、上記(1)、(2))の効果を奏する。
Incidentally, incomplete thread portion length L 3 shown in FIG. 9 (b) corresponds to J 3.
(3) Even when the Z-axis feed speed pattern B is selected and the spindle rotational speed is controlled by the spindle rotational speed pattern B1, the effects (1) and (2)) are provided for the same reason as described above. Play.

又、Z軸送り速度パターンDが選択され、主軸回転数が主軸回転数パターンD1で制御される場合でも、上記と同様の理由から、上記(1)、(2))の効果を奏する。
なお、本発明の実施形態は前記実施形態に限定するものではない。例えば下記のようにしてもよい。
Even when the Z-axis feed speed pattern D is selected and the spindle rotation speed is controlled by the spindle rotation speed pattern D1, the effects (1) and (2) are obtained for the same reason as described above.
In addition, embodiment of this invention is not limited to the said embodiment. For example, the following may be used.

(1) 前記実施形態では、Z軸送り速度パターンCでは、tc1〜tc2の間の傾きを加工時間ΔT中の傾きA・Fと同じとしたが、図5(b)の点線で示すように、互いに異なる傾きに設定してもよい。この場合、主制御部110により、主軸20も同期補間で制御するため主軸回転数も同様に変更される。 (1) In the embodiment, the Z-axis feed speed pattern C, and was the same as the inclination A s · F in slope machining time ΔT between Tc1~tc2, as indicated by the dotted line shown in FIG. 5 (b) In addition, different inclinations may be set. In this case, since the main shaft 20 is also controlled by synchronous interpolation by the main control unit 110, the main shaft rotation speed is similarly changed.

(2) 前記実施形態では、刃物台340をX軸方向に移動自在にし、サドル310をZ軸方向に移動自在に配置したが、主軸20をZ軸方向及びX軸方向に移動自在とし、それぞれの方向に駆動する第1駆動手段(例えばモータ)及び第2駆動手段(例えばモータ)を設けてもよい。そして、制御手段としての主制御部110にて、第1駆動手段及び第2駆動手段を前記実施形態と同様に制御するようにしてもよい。   (2) In the embodiment, the tool post 340 is movable in the X-axis direction and the saddle 310 is movable in the Z-axis direction. However, the spindle 20 is movable in the Z-axis direction and the X-axis direction, respectively. You may provide the 1st drive means (for example, motor) and the 2nd drive means (for example, motor) which drive to these directions. Then, the first drive unit and the second drive unit may be controlled in the same manner as in the above embodiment by the main control unit 110 as the control unit.

(3) 又、主軸20をZ軸方向に移動自在とし、サドル310を省略して、刃物台340をX軸方向に移動自在に配置してもよい。そして、主軸20をZ軸方向に駆動する第1駆動手段(例えばモータ)を設け、刃物台340をX軸方向に駆動する第2駆動手段(例えばX軸送りモータ350)を設ける。そして、制御手段としての主制御部110にて、第1駆動手段及び第2駆動手段を前記実施形態と同様に制御するようにしてもよい。   (3) The spindle 20 may be movable in the Z-axis direction, the saddle 310 may be omitted, and the tool post 340 may be disposed so as to be movable in the X-axis direction. Then, first driving means (for example, a motor) for driving the spindle 20 in the Z-axis direction is provided, and second driving means (for example, an X-axis feed motor 350) for driving the tool post 340 in the X-axis direction is provided. Then, the first drive unit and the second drive unit may be controlled in the same manner as in the above embodiment by the main control unit 110 as the control unit.

(4) 又、サドル310をZ軸方向に移動自在とし、主軸20をX軸方向に移動自在に配置してもよい。そして、サドル310をZ軸方向に駆動する第1駆動手段(例えばZ軸送りモータ320)を設け、主軸20をX軸方向に駆動する第2駆動手段(例えばモータ)を設ける。そして、制御手段としての主制御部110にて、第1駆動手段及び第2駆動手段を前記実施形態と同様に制御するようにしてもよい。   (4) Further, the saddle 310 may be movable in the Z-axis direction, and the main shaft 20 may be disposed so as to be movable in the X-axis direction. Then, first driving means (for example, Z-axis feed motor 320) for driving the saddle 310 in the Z-axis direction is provided, and second driving means (for example, motor) for driving the main shaft 20 in the X-axis direction is provided. Then, the first drive unit and the second drive unit may be controlled in the same manner as in the above embodiment by the main control unit 110 as the control unit.

(5) 前記実施形態では、図5(a)〜(c)に示す、主軸回転数、Z軸送り速度パターン、及びX軸送り速度パターンで行ったが、図13(a)〜(c)に示す、パターンで行ってもよい。図13(a)〜(c)中、図13(a)の主軸回転数及び図13(b)のZ軸送り速度パターンは、図5(a)、(b)と同じであり、図13(c)のX軸送り速度パターンが異なっている。図13(c)のX軸送り速度パターンでは、アプローチ部、有効ねじ部では、X軸送り速度が0(mm/min)となっており、tc2からは、所定の速度まで増速した後、その所定速度を一定時間経過後は、0(mm/min)まで減速するようにしている。この結果、図12に示すように、形成された有効ねじ部では、先端から基端までの外径は同径となるストレート状のものとなる。   (5) In the said embodiment, although it carried out with the main-axis | shaft rotation speed, the Z-axis feed rate pattern, and the X-axis feed rate pattern which are shown to Fig.5 (a)-(c), FIG.13 (a)-(c). The pattern shown in FIG. 13 (a) to 13 (c), the spindle rotational speed in FIG. 13 (a) and the Z-axis feed rate pattern in FIG. 13 (b) are the same as those in FIGS. 5 (a) and 5 (b). The X-axis feed rate pattern of (c) is different. In the X-axis feed rate pattern of FIG. 13C, the X-axis feed rate is 0 (mm / min) in the approach portion and the effective screw portion, and after increasing to a predetermined speed from tc2, The predetermined speed is decelerated to 0 (mm / min) after a predetermined time has elapsed. As a result, as shown in FIG. 12, in the formed effective screw portion, the outer diameter from the distal end to the proximal end is a straight shape having the same diameter.

数値制御旋盤10の概略図。1 is a schematic diagram of a numerically controlled lathe 10. FIG. NC装置100のブロック図。2 is a block diagram of the NC device 100. FIG. ねじ切り加工のフローチャート。The flowchart of a thread cutting process. ねじ切り加工のフローチャート。The flowchart of a thread cutting process. (a)は、主軸回転数のタイムチャート、(b)は、Z軸送り速度のタイムチャート、(c)はX軸送り速度のタイムチャート。(A) is a time chart of spindle rotation speed, (b) is a time chart of Z-axis feed speed, and (c) is a time chart of X-axis feed speed. Z軸と主軸との補間パターン示す説明図。Explanatory drawing which shows the interpolation pattern of a Z-axis and a principal axis. (a)〜(d)は、Z軸送り速度パターンの説明図。(A)-(d) is explanatory drawing of a Z-axis feed rate pattern. (a)〜(d)は、主軸回転数パターンの説明図。(A)-(d) is explanatory drawing of a spindle speed pattern. (a)は、従来のねじ切り加工のZ軸送り速度のタイムチャート、(b)は、本実施形態におけるZ軸送り速度のタイムチャート。(A) is a time chart of the Z-axis feed speed of the conventional thread cutting process, (b) is a time chart of the Z-axis feed speed in this embodiment. 不完全ねじ部におけるZ軸送り速度のタイムチャート。The time chart of the Z-axis feed speed in an incomplete thread part. 一実施形態のねじ切り加工する場合のワークの正面から見た場合の説明図。Explanatory drawing at the time of seeing from the front of the workpiece | work in the case of threading of one Embodiment. 他の実施形態のねじ切り加工する場合のワークの正面から見た場合の説明図。Explanatory drawing at the time of seeing from the front of the workpiece | work in the case of threading of other embodiment. (a)は他の実施形態の主軸回転数のタイムチャート、(b)は、Z軸送り速度のタイムチャート、(c)はX軸送り速度のタイムチャート。(A) is a time chart of the spindle speed of another embodiment, (b) is a time chart of a Z-axis feed speed, and (c) is a time chart of an X-axis feed speed. (a)は、ねじ切り加工する場合のワークの正面から見た場合の説明図、(b)は、同じくワークを側面から見た場合の説明図。(A) is explanatory drawing at the time of seeing from the front of the workpiece | work in the case of threading, (b) is explanatory drawing at the time of similarly seeing a workpiece | work from the side. (a)は従来の従来のねじ切り加工のZ軸送り速度の説明図、(b)は同じくZ軸送り速度の説明図、(c)は、X軸送り速度の説明図。(A) is explanatory drawing of the Z-axis feed speed of the conventional conventional threading process, (b) is explanatory drawing of Z-axis feed speed similarly, (c) is explanatory drawing of X-axis feed speed.

符号の説明Explanation of symbols

10…数値制御旋盤(ねじ切り加工装置)
20…主軸
110…主制御部(制御手段、加工長演算手段)
170…主軸制御部
230…主軸モータ(主軸駆動手段)
320…Z軸送りモータ(第1駆動手段)
350…X軸送りモータ(第2駆動手段)
340…刃物台
400…加工工具
W…ワーク
10 ... Numerically controlled lathe (threading machine)
20 ... Spindle 110 ... Main control section (control means, machining length calculation means)
170 ... Spindle control unit 230 ... Spindle motor (spindle drive means)
320 ... Z-axis feed motor (first drive means)
350 ... X-axis feed motor (second drive means)
340 ... Tool post 400 ... Processing tool W ... Workpiece

Claims (10)

ワークを保持する主軸と、前記主軸を回転駆動する主軸駆動手段と、加工工具を備えた刃物台と、前記主軸及び刃物台の少なくともいずれか一方を前記主軸の軸心と平行な第1軸方向へ移動するように駆動する第1駆動手段と、前記主軸及び刃物台の少なくともいずれか一方を、前記第1軸方向と直交する第2軸方向に駆動する第2駆動手段と、前記主軸駆動手段、第1駆動手段及び前記第2駆動手段をそれぞれ制御駆動する制御手段と、を有し、前記主軸と、前記刃物台を相対移動させることによって、該刃物台の加工工具により前記主軸に保持されたワークに有効ねじ部と不完全ねじ部を有するねじを形成し得るねじ切り加工装置において、前記制御手段は、前記不完全ねじ部を加工する場合の主軸回転数を、前記有効ねじ部を加工する場合の主軸回転数よりも小さくなるように前記主軸駆動手段を制御するとともに、前記第1駆動手段と第2駆動手段のうち、少なくとも第1駆動手段を、前記主軸駆動手段とともに同期補間して制御することを特徴とするねじ切り加工装置。   A main shaft for holding a workpiece, main shaft driving means for rotating the main shaft, a tool post provided with a processing tool, and a first axial direction in which at least one of the main shaft and the tool post is parallel to the axis of the main shaft First driving means for driving to move to, second driving means for driving at least one of the spindle and the tool post in a second axis direction orthogonal to the first axis direction, and the spindle driving means And control means for controlling and driving the first driving means and the second driving means, respectively, by moving the spindle and the tool rest relative to each other, the tool is held on the spindle by the tool of the tool rest. In a threading apparatus capable of forming a thread having an effective thread part and an incomplete thread part on a workpiece, the control means processes the effective thread part according to a spindle rotational speed when the incomplete thread part is processed. The spindle driving means is controlled to be smaller than the combined spindle speed, and at least the first driving means of the first driving means and the second driving means is controlled by synchronous interpolation with the spindle driving means. A threading device characterized by: 前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、少なくとも不完全ねじ部領域では、主軸回転数を徐々に減速するように変化させることを特徴とする請求項1に記載のねじ切り加工装置。   The control means may change the spindle rotational speed so as to gradually decelerate at least in the incomplete screw portion region of the effective screw portion region and the incomplete screw portion region in which the workpiece is processed by the processing tool. The threading device according to claim 1, wherein 前記制御手段は、前記有効ねじ部領域のねじのピッチと不完全ねじ部領域のねじのピッチが同じとなるように前記第1駆動手段と第2駆動手段のうち、少なくとも第1駆動手段と、主軸駆動手段を同期補間して制御することを特徴とする請求項1又は請求項2に記載のねじ切り加工装置。   The control means includes at least a first drive means among the first drive means and the second drive means so that the pitch of the screw in the effective screw portion region and the pitch of the screw in the incomplete screw portion region are the same. 3. The thread cutting apparatus according to claim 1, wherein the spindle driving means is controlled by synchronous interpolation. 前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、有効ねじ部領域では主軸回転数を一定にして制御し、不完全ねじ部領域では、主軸回転数を徐々に減少するように変化させることを特徴とする請求項1に記載のねじ切り加工装置。   The control means controls the spindle speed to be constant in the effective screw portion region among the effective screw portion region and the incomplete screw portion region that processes the workpiece with the processing tool, and in the incomplete screw portion region, 2. The thread cutting apparatus according to claim 1, wherein the spindle rotational speed is changed so as to gradually decrease. 前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、有効ねじ部領域では主軸回転数を一定にして制御した後、該主軸回転数を徐々に減少するように制御し、不完全ねじ部領域では、前記有効ねじ部領域から継続して主軸回転数を徐々に減少するように変化させることを特徴とする請求項1に記載のねじ切り加工装置。   The control means controls the spindle speed in the effective thread area, which is the effective thread area and the incomplete thread area where the workpiece is processed by the processing tool, and then gradually increases the spindle speed. 2. The threading device according to claim 1, wherein the spindle rotational speed is changed so as to gradually decrease in the incomplete thread portion region continuously from the effective thread portion region. . 前記制御手段は、前記加工工具にて前記ワークを加工する有効ねじ部領域と不完全ねじ部領域のうち、有効ねじ部領域では主軸回転数を一定にして制御した後、該主軸回転数を徐々に減少するように制御し、不完全ねじ部領域では、有効ねじ部領域で一定にした主軸回転数よりも少ない主軸回転数で一定にするように制御することを特徴とする請求項1に記載のねじ切り加工装置。   The control means controls the spindle speed in the effective thread area, which is the effective thread area and the incomplete thread area where the workpiece is processed by the processing tool, and then gradually increases the spindle speed. 2. The incomplete thread portion region is controlled so as to be constant at a spindle rotational speed that is smaller than a constant spindle rotational speed in the effective thread portion region. Threading machine. 前記不完全ねじ部の加工長を加工長関連パラメータに基づいて算出する加工長演算手段を備え、
該加工長と、前記加工長関連パラメータに含まれる不完全ねじ部の加工長の上限値の大小関係に応じて、制御手段は、有効ねじ部領域と不完全ねじ部領域において主軸回転数を一定に制御するか、或いは、請求項4乃至請求項6のうちいずれかの制御を行うことを特徴とするねじ切り加工装置。
A processing length calculation means for calculating a processing length of the incomplete thread portion based on a processing length related parameter,
In accordance with the magnitude relationship between the machining length and the upper limit value of the machining length of the incomplete thread included in the machining length-related parameter, the control means keeps the spindle speed constant in the effective thread area and the incomplete thread area. Or a threading device characterized by performing the control according to any one of claims 4 to 6.
前記加工長関連パラメータは、目標主軸回転数、不完全ねじ部領域加工時間、目標主軸加減速度及び不完全ねじ部の加工長の上限値を含み、
前記制御手段は、前記加工長が、前記上限値以下の場合、有効ねじ部領域で、前記目標主軸回転数に応じて主軸回転数を一定にした後、不完全ねじ部領域では前記目標主軸加減速度に基づいて主軸回転数を徐々に減少するように変化させることを特徴とする請求項7に記載のねじ切り加工装置。
The machining length-related parameters include a target spindle speed, an incomplete thread portion region machining time, a target spindle acceleration / deceleration, and an upper limit value of the machining length of the incomplete thread portion,
When the machining length is equal to or less than the upper limit value, the control means stabilizes the spindle speed in the effective thread area according to the target spindle speed, and then adjusts the target spindle in the incomplete thread area. 8. The thread cutting apparatus according to claim 7, wherein the spindle rotational speed is changed so as to gradually decrease based on the speed.
前記加工長関連パラメータは、有効ねじ部で採用される目標主軸回転数よりも小である不完全ねじ部領域で到達すべき到達目標主軸回転数、不完全ねじ部領域加工時間、目標主軸加減速度及び不完全ねじ部の加工長の上限値を含み、
前記制御手段は、該加工長が前記上限値以下の場合、前記有効ねじ部領域で前記目標主軸回転数に応じて主軸回転数を一定にする制御を行った後、前記目標主軸加減速度に基づいて、前記有効ねじ部領域及び前記不完全ねじ部領域で主軸回転数を徐々に減少するように変化させて、前記到達目標主軸回転数に向かって制御することを特徴とする請求項7に記載のねじ切り加工装置。
The machining length-related parameters are the target spindle speed to be reached in the incomplete thread area that is smaller than the target spindle speed employed in the effective thread, the incomplete thread area machining time, the target spindle acceleration / deceleration And the upper limit of the machining length of the incomplete thread,
When the machining length is equal to or less than the upper limit value, the control means performs control to make the main shaft rotational speed constant in the effective screw portion region according to the target main shaft rotational speed, and then based on the target main shaft acceleration / deceleration The main shaft rotational speed is controlled so as to gradually decrease in the effective screw portion region and the incomplete screw portion region, and control is performed toward the ultimate target main shaft rotational speed. Threading machine.
前記加工長関連パラメータは、有効ねじ部で採用される目標主軸回転数よりも小である不完全ねじ部領域で到達すべき到達目標主軸回転数、不完全ねじ部領域加工時間及び不完全ねじ部の加工長の上限値を含み、
前記制御手段は、該加工長が前記上限値以下の場合、前記有効ねじ部領域では前記目標主軸回転数に応じて主軸回転数を一定する制御を行った後、主軸回転数を徐々に減少するように変化させて前記到達目標主軸回転数に達するよう制御し、不完全ねじ部領域では前記到達目標主軸回転数に基づいた主軸回転数で一定にすることを特徴とする請求項7に記載のねじ切り加工装置。
The machining length-related parameters are the target spindle rotational speed to be reached in the incomplete thread area that is smaller than the target spindle speed adopted in the effective thread, the incomplete thread area processing time, and the incomplete thread section. Including the upper limit of the processing length of
When the machining length is equal to or less than the upper limit value, the control means performs control to keep the spindle rotation speed constant in the effective screw region in accordance with the target spindle rotation speed, and then gradually decreases the spindle rotation speed. The control is performed so as to change to reach the target spindle speed, and in the incomplete thread region, the spindle speed based on the target spindle speed is constant. Threading machine.
JP2004182380A 2004-06-21 2004-06-21 Threading machine Active JP4639058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182380A JP4639058B2 (en) 2004-06-21 2004-06-21 Threading machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182380A JP4639058B2 (en) 2004-06-21 2004-06-21 Threading machine

Publications (2)

Publication Number Publication Date
JP2006000995A true JP2006000995A (en) 2006-01-05
JP4639058B2 JP4639058B2 (en) 2011-02-23

Family

ID=35769807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182380A Active JP4639058B2 (en) 2004-06-21 2004-06-21 Threading machine

Country Status (1)

Country Link
JP (1) JP4639058B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000941A (en) * 2005-06-21 2007-01-11 Okuma Corp Screw cutting control method and device
JP2007319971A (en) * 2006-05-31 2007-12-13 Star Micronics Co Ltd Threading method and machine tool
JP2008272925A (en) * 2007-04-05 2008-11-13 Toshiba Mach Co Ltd Roll surface processing method and device
JP2010036277A (en) * 2008-08-01 2010-02-18 Nakayama Mokkosho:Kk Method for forming screw on timber, timber with screw, and joining structure of timbers
JP2010284775A (en) * 2009-06-15 2010-12-24 Ntn Corp Method for manufacturing regulating wheel for centerless grinding, regulating wheel, and method for manufacturing conical roller
JP2013244576A (en) * 2012-05-28 2013-12-09 Okuma Corp Machine tool
CN110621430A (en) * 2017-07-13 2019-12-27 西铁城时计株式会社 Thread cutting device and thread cutting method
IT202000015085A1 (en) * 2020-04-28 2021-10-28 Levi Dancona Pier Lorenzo PROCESS OF MANUFACTURING A DOUBLE STRENGTH BOLT BY MEANS OF INCLINE TURNING HEAD OR CONICAL INCLINE ROLLERS
US11209793B2 (en) 2019-07-19 2021-12-28 Fanuc Corporation Controller for machine tool and control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107775122A (en) * 2017-11-24 2018-03-09 中山复盛机电有限公司 Lathe process fixture applied to clamping processing screw thread electrode
CN108608008A (en) * 2018-06-11 2018-10-02 中国航发哈尔滨东安发动机有限公司 A kind of method of the numerically controlled lathe removal imperfect button of screw thread

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155163A (en) * 1992-11-18 1994-06-03 Yamazaki Mazak Corp Thread cutting control device in nc controlled lathe
JP2003136332A (en) * 2001-11-05 2003-05-14 Citizen Watch Co Ltd Threading control method and device for numerical control machine tool and numerical control machine tool incorporating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155163A (en) * 1992-11-18 1994-06-03 Yamazaki Mazak Corp Thread cutting control device in nc controlled lathe
JP2003136332A (en) * 2001-11-05 2003-05-14 Citizen Watch Co Ltd Threading control method and device for numerical control machine tool and numerical control machine tool incorporating the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000941A (en) * 2005-06-21 2007-01-11 Okuma Corp Screw cutting control method and device
JP2007319971A (en) * 2006-05-31 2007-12-13 Star Micronics Co Ltd Threading method and machine tool
JP2008272925A (en) * 2007-04-05 2008-11-13 Toshiba Mach Co Ltd Roll surface processing method and device
US8413557B2 (en) 2007-04-05 2013-04-09 Toshiba Kikai Kabushiki Kaisha Method and apparatus for machining roll surface
US8424427B2 (en) 2007-04-05 2013-04-23 Toshiba Kikai Kabushiki Kaisha Method and apparatus for roll surface machining
JP2010036277A (en) * 2008-08-01 2010-02-18 Nakayama Mokkosho:Kk Method for forming screw on timber, timber with screw, and joining structure of timbers
JP2010284775A (en) * 2009-06-15 2010-12-24 Ntn Corp Method for manufacturing regulating wheel for centerless grinding, regulating wheel, and method for manufacturing conical roller
JP2013244576A (en) * 2012-05-28 2013-12-09 Okuma Corp Machine tool
CN110621430A (en) * 2017-07-13 2019-12-27 西铁城时计株式会社 Thread cutting device and thread cutting method
US11209793B2 (en) 2019-07-19 2021-12-28 Fanuc Corporation Controller for machine tool and control system
IT202000015085A1 (en) * 2020-04-28 2021-10-28 Levi Dancona Pier Lorenzo PROCESS OF MANUFACTURING A DOUBLE STRENGTH BOLT BY MEANS OF INCLINE TURNING HEAD OR CONICAL INCLINE ROLLERS

Also Published As

Publication number Publication date
JP4639058B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US6597142B2 (en) Apparatus and method for setting control parameters of machining apparatus
US7058473B2 (en) Method and device for generation of machining program
JP2008015740A (en) Control device of machine tool
JP2011043874A (en) Tool vector display device for machine tool
JP4847428B2 (en) Machining simulation apparatus and program thereof
US6257348B1 (en) Control apparatus for drilling machine and drilling method
JP4639058B2 (en) Threading machine
JP6740199B2 (en) Numerical control device, CNC machine tool, numerical control method, and numerical control program
JP7195110B2 (en) Machine tools and controllers
TW201348905A (en) Numeric control device
US5453674A (en) Numerical control apparatus
JP4995976B1 (en) Numerical control device that performs in-position check of rotating shaft
JP4059411B2 (en) NC machine tool controller
JPH0611458B2 (en) Tool shape display device
JP2000317710A (en) Tool abnormality detection tethod and device for machine tool
JP2009098981A (en) Working time calculation device and its program
JP2005271148A (en) Tool path data generating device and control device having it
JP2007319971A (en) Threading method and machine tool
JP7035875B2 (en) Numerical control device, numerical control method, and numerical control program
JP2012056030A (en) Machine tool
JP2007172325A (en) Method of machining free curve and numerical control device
JP4037087B2 (en) Thread cutting control method and control device for numerically controlled machine tool and numerically controlled machine tool incorporating the same
JP7131454B2 (en) Numerical controllers, machine tools, control programs, and storage media
JP7252426B1 (en) Machine tool control device and machine tool display device
US20200264579A1 (en) Numerical control apparatus and machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4639058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250